xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 68198dca)
1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_perf_event.h>
13 #include <linux/filter.h>
14 #include <linux/uaccess.h>
15 #include <linux/ctype.h>
16 #include "trace.h"
17 
18 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
19 
20 /**
21  * trace_call_bpf - invoke BPF program
22  * @call: tracepoint event
23  * @ctx: opaque context pointer
24  *
25  * kprobe handlers execute BPF programs via this helper.
26  * Can be used from static tracepoints in the future.
27  *
28  * Return: BPF programs always return an integer which is interpreted by
29  * kprobe handler as:
30  * 0 - return from kprobe (event is filtered out)
31  * 1 - store kprobe event into ring buffer
32  * Other values are reserved and currently alias to 1
33  */
34 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
35 {
36 	unsigned int ret;
37 
38 	if (in_nmi()) /* not supported yet */
39 		return 1;
40 
41 	preempt_disable();
42 
43 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
44 		/*
45 		 * since some bpf program is already running on this cpu,
46 		 * don't call into another bpf program (same or different)
47 		 * and don't send kprobe event into ring-buffer,
48 		 * so return zero here
49 		 */
50 		ret = 0;
51 		goto out;
52 	}
53 
54 	/*
55 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
56 	 * to all call sites, we did a bpf_prog_array_valid() there to check
57 	 * whether call->prog_array is empty or not, which is
58 	 * a heurisitc to speed up execution.
59 	 *
60 	 * If bpf_prog_array_valid() fetched prog_array was
61 	 * non-NULL, we go into trace_call_bpf() and do the actual
62 	 * proper rcu_dereference() under RCU lock.
63 	 * If it turns out that prog_array is NULL then, we bail out.
64 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
65 	 * was NULL, you'll skip the prog_array with the risk of missing
66 	 * out of events when it was updated in between this and the
67 	 * rcu_dereference() which is accepted risk.
68 	 */
69 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
70 
71  out:
72 	__this_cpu_dec(bpf_prog_active);
73 	preempt_enable();
74 
75 	return ret;
76 }
77 EXPORT_SYMBOL_GPL(trace_call_bpf);
78 
79 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
80 {
81 	int ret;
82 
83 	ret = probe_kernel_read(dst, unsafe_ptr, size);
84 	if (unlikely(ret < 0))
85 		memset(dst, 0, size);
86 
87 	return ret;
88 }
89 
90 static const struct bpf_func_proto bpf_probe_read_proto = {
91 	.func		= bpf_probe_read,
92 	.gpl_only	= true,
93 	.ret_type	= RET_INTEGER,
94 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
95 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
96 	.arg3_type	= ARG_ANYTHING,
97 };
98 
99 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
100 	   u32, size)
101 {
102 	/*
103 	 * Ensure we're in user context which is safe for the helper to
104 	 * run. This helper has no business in a kthread.
105 	 *
106 	 * access_ok() should prevent writing to non-user memory, but in
107 	 * some situations (nommu, temporary switch, etc) access_ok() does
108 	 * not provide enough validation, hence the check on KERNEL_DS.
109 	 */
110 
111 	if (unlikely(in_interrupt() ||
112 		     current->flags & (PF_KTHREAD | PF_EXITING)))
113 		return -EPERM;
114 	if (unlikely(uaccess_kernel()))
115 		return -EPERM;
116 	if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
117 		return -EPERM;
118 
119 	return probe_kernel_write(unsafe_ptr, src, size);
120 }
121 
122 static const struct bpf_func_proto bpf_probe_write_user_proto = {
123 	.func		= bpf_probe_write_user,
124 	.gpl_only	= true,
125 	.ret_type	= RET_INTEGER,
126 	.arg1_type	= ARG_ANYTHING,
127 	.arg2_type	= ARG_PTR_TO_MEM,
128 	.arg3_type	= ARG_CONST_SIZE,
129 };
130 
131 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
132 {
133 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
134 			    current->comm, task_pid_nr(current));
135 
136 	return &bpf_probe_write_user_proto;
137 }
138 
139 /*
140  * Only limited trace_printk() conversion specifiers allowed:
141  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
142  */
143 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
144 	   u64, arg2, u64, arg3)
145 {
146 	bool str_seen = false;
147 	int mod[3] = {};
148 	int fmt_cnt = 0;
149 	u64 unsafe_addr;
150 	char buf[64];
151 	int i;
152 
153 	/*
154 	 * bpf_check()->check_func_arg()->check_stack_boundary()
155 	 * guarantees that fmt points to bpf program stack,
156 	 * fmt_size bytes of it were initialized and fmt_size > 0
157 	 */
158 	if (fmt[--fmt_size] != 0)
159 		return -EINVAL;
160 
161 	/* check format string for allowed specifiers */
162 	for (i = 0; i < fmt_size; i++) {
163 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
164 			return -EINVAL;
165 
166 		if (fmt[i] != '%')
167 			continue;
168 
169 		if (fmt_cnt >= 3)
170 			return -EINVAL;
171 
172 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
173 		i++;
174 		if (fmt[i] == 'l') {
175 			mod[fmt_cnt]++;
176 			i++;
177 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
178 			mod[fmt_cnt]++;
179 			i++;
180 			if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
181 				return -EINVAL;
182 			fmt_cnt++;
183 			if (fmt[i - 1] == 's') {
184 				if (str_seen)
185 					/* allow only one '%s' per fmt string */
186 					return -EINVAL;
187 				str_seen = true;
188 
189 				switch (fmt_cnt) {
190 				case 1:
191 					unsafe_addr = arg1;
192 					arg1 = (long) buf;
193 					break;
194 				case 2:
195 					unsafe_addr = arg2;
196 					arg2 = (long) buf;
197 					break;
198 				case 3:
199 					unsafe_addr = arg3;
200 					arg3 = (long) buf;
201 					break;
202 				}
203 				buf[0] = 0;
204 				strncpy_from_unsafe(buf,
205 						    (void *) (long) unsafe_addr,
206 						    sizeof(buf));
207 			}
208 			continue;
209 		}
210 
211 		if (fmt[i] == 'l') {
212 			mod[fmt_cnt]++;
213 			i++;
214 		}
215 
216 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
217 		    fmt[i] != 'u' && fmt[i] != 'x')
218 			return -EINVAL;
219 		fmt_cnt++;
220 	}
221 
222 /* Horrid workaround for getting va_list handling working with different
223  * argument type combinations generically for 32 and 64 bit archs.
224  */
225 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
226 #define __BPF_TP(...)							\
227 	__trace_printk(1 /* Fake ip will not be printed. */,		\
228 		       fmt, ##__VA_ARGS__)
229 
230 #define __BPF_ARG1_TP(...)						\
231 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
232 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
233 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
234 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
235 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
236 
237 #define __BPF_ARG2_TP(...)						\
238 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
239 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
240 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
241 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
242 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
243 
244 #define __BPF_ARG3_TP(...)						\
245 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
246 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
247 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
248 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
249 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
250 
251 	return __BPF_TP_EMIT();
252 }
253 
254 static const struct bpf_func_proto bpf_trace_printk_proto = {
255 	.func		= bpf_trace_printk,
256 	.gpl_only	= true,
257 	.ret_type	= RET_INTEGER,
258 	.arg1_type	= ARG_PTR_TO_MEM,
259 	.arg2_type	= ARG_CONST_SIZE,
260 };
261 
262 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
263 {
264 	/*
265 	 * this program might be calling bpf_trace_printk,
266 	 * so allocate per-cpu printk buffers
267 	 */
268 	trace_printk_init_buffers();
269 
270 	return &bpf_trace_printk_proto;
271 }
272 
273 static __always_inline int
274 get_map_perf_counter(struct bpf_map *map, u64 flags,
275 		     u64 *value, u64 *enabled, u64 *running)
276 {
277 	struct bpf_array *array = container_of(map, struct bpf_array, map);
278 	unsigned int cpu = smp_processor_id();
279 	u64 index = flags & BPF_F_INDEX_MASK;
280 	struct bpf_event_entry *ee;
281 
282 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
283 		return -EINVAL;
284 	if (index == BPF_F_CURRENT_CPU)
285 		index = cpu;
286 	if (unlikely(index >= array->map.max_entries))
287 		return -E2BIG;
288 
289 	ee = READ_ONCE(array->ptrs[index]);
290 	if (!ee)
291 		return -ENOENT;
292 
293 	return perf_event_read_local(ee->event, value, enabled, running);
294 }
295 
296 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
297 {
298 	u64 value = 0;
299 	int err;
300 
301 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
302 	/*
303 	 * this api is ugly since we miss [-22..-2] range of valid
304 	 * counter values, but that's uapi
305 	 */
306 	if (err)
307 		return err;
308 	return value;
309 }
310 
311 static const struct bpf_func_proto bpf_perf_event_read_proto = {
312 	.func		= bpf_perf_event_read,
313 	.gpl_only	= true,
314 	.ret_type	= RET_INTEGER,
315 	.arg1_type	= ARG_CONST_MAP_PTR,
316 	.arg2_type	= ARG_ANYTHING,
317 };
318 
319 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
320 	   struct bpf_perf_event_value *, buf, u32, size)
321 {
322 	int err = -EINVAL;
323 
324 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
325 		goto clear;
326 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
327 				   &buf->running);
328 	if (unlikely(err))
329 		goto clear;
330 	return 0;
331 clear:
332 	memset(buf, 0, size);
333 	return err;
334 }
335 
336 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
337 	.func		= bpf_perf_event_read_value,
338 	.gpl_only	= true,
339 	.ret_type	= RET_INTEGER,
340 	.arg1_type	= ARG_CONST_MAP_PTR,
341 	.arg2_type	= ARG_ANYTHING,
342 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
343 	.arg4_type	= ARG_CONST_SIZE,
344 };
345 
346 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
347 
348 static __always_inline u64
349 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
350 			u64 flags, struct perf_sample_data *sd)
351 {
352 	struct bpf_array *array = container_of(map, struct bpf_array, map);
353 	unsigned int cpu = smp_processor_id();
354 	u64 index = flags & BPF_F_INDEX_MASK;
355 	struct bpf_event_entry *ee;
356 	struct perf_event *event;
357 
358 	if (index == BPF_F_CURRENT_CPU)
359 		index = cpu;
360 	if (unlikely(index >= array->map.max_entries))
361 		return -E2BIG;
362 
363 	ee = READ_ONCE(array->ptrs[index]);
364 	if (!ee)
365 		return -ENOENT;
366 
367 	event = ee->event;
368 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
369 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
370 		return -EINVAL;
371 
372 	if (unlikely(event->oncpu != cpu))
373 		return -EOPNOTSUPP;
374 
375 	perf_event_output(event, sd, regs);
376 	return 0;
377 }
378 
379 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
380 	   u64, flags, void *, data, u64, size)
381 {
382 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
383 	struct perf_raw_record raw = {
384 		.frag = {
385 			.size = size,
386 			.data = data,
387 		},
388 	};
389 
390 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
391 		return -EINVAL;
392 
393 	perf_sample_data_init(sd, 0, 0);
394 	sd->raw = &raw;
395 
396 	return __bpf_perf_event_output(regs, map, flags, sd);
397 }
398 
399 static const struct bpf_func_proto bpf_perf_event_output_proto = {
400 	.func		= bpf_perf_event_output,
401 	.gpl_only	= true,
402 	.ret_type	= RET_INTEGER,
403 	.arg1_type	= ARG_PTR_TO_CTX,
404 	.arg2_type	= ARG_CONST_MAP_PTR,
405 	.arg3_type	= ARG_ANYTHING,
406 	.arg4_type	= ARG_PTR_TO_MEM,
407 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
408 };
409 
410 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
411 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
412 
413 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
414 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
415 {
416 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
417 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
418 	struct perf_raw_frag frag = {
419 		.copy		= ctx_copy,
420 		.size		= ctx_size,
421 		.data		= ctx,
422 	};
423 	struct perf_raw_record raw = {
424 		.frag = {
425 			{
426 				.next	= ctx_size ? &frag : NULL,
427 			},
428 			.size	= meta_size,
429 			.data	= meta,
430 		},
431 	};
432 
433 	perf_fetch_caller_regs(regs);
434 	perf_sample_data_init(sd, 0, 0);
435 	sd->raw = &raw;
436 
437 	return __bpf_perf_event_output(regs, map, flags, sd);
438 }
439 
440 BPF_CALL_0(bpf_get_current_task)
441 {
442 	return (long) current;
443 }
444 
445 static const struct bpf_func_proto bpf_get_current_task_proto = {
446 	.func		= bpf_get_current_task,
447 	.gpl_only	= true,
448 	.ret_type	= RET_INTEGER,
449 };
450 
451 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
452 {
453 	struct bpf_array *array = container_of(map, struct bpf_array, map);
454 	struct cgroup *cgrp;
455 
456 	if (unlikely(in_interrupt()))
457 		return -EINVAL;
458 	if (unlikely(idx >= array->map.max_entries))
459 		return -E2BIG;
460 
461 	cgrp = READ_ONCE(array->ptrs[idx]);
462 	if (unlikely(!cgrp))
463 		return -EAGAIN;
464 
465 	return task_under_cgroup_hierarchy(current, cgrp);
466 }
467 
468 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
469 	.func           = bpf_current_task_under_cgroup,
470 	.gpl_only       = false,
471 	.ret_type       = RET_INTEGER,
472 	.arg1_type      = ARG_CONST_MAP_PTR,
473 	.arg2_type      = ARG_ANYTHING,
474 };
475 
476 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
477 	   const void *, unsafe_ptr)
478 {
479 	int ret;
480 
481 	/*
482 	 * The strncpy_from_unsafe() call will likely not fill the entire
483 	 * buffer, but that's okay in this circumstance as we're probing
484 	 * arbitrary memory anyway similar to bpf_probe_read() and might
485 	 * as well probe the stack. Thus, memory is explicitly cleared
486 	 * only in error case, so that improper users ignoring return
487 	 * code altogether don't copy garbage; otherwise length of string
488 	 * is returned that can be used for bpf_perf_event_output() et al.
489 	 */
490 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
491 	if (unlikely(ret < 0))
492 		memset(dst, 0, size);
493 
494 	return ret;
495 }
496 
497 static const struct bpf_func_proto bpf_probe_read_str_proto = {
498 	.func		= bpf_probe_read_str,
499 	.gpl_only	= true,
500 	.ret_type	= RET_INTEGER,
501 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
502 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
503 	.arg3_type	= ARG_ANYTHING,
504 };
505 
506 static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
507 {
508 	switch (func_id) {
509 	case BPF_FUNC_map_lookup_elem:
510 		return &bpf_map_lookup_elem_proto;
511 	case BPF_FUNC_map_update_elem:
512 		return &bpf_map_update_elem_proto;
513 	case BPF_FUNC_map_delete_elem:
514 		return &bpf_map_delete_elem_proto;
515 	case BPF_FUNC_probe_read:
516 		return &bpf_probe_read_proto;
517 	case BPF_FUNC_ktime_get_ns:
518 		return &bpf_ktime_get_ns_proto;
519 	case BPF_FUNC_tail_call:
520 		return &bpf_tail_call_proto;
521 	case BPF_FUNC_get_current_pid_tgid:
522 		return &bpf_get_current_pid_tgid_proto;
523 	case BPF_FUNC_get_current_task:
524 		return &bpf_get_current_task_proto;
525 	case BPF_FUNC_get_current_uid_gid:
526 		return &bpf_get_current_uid_gid_proto;
527 	case BPF_FUNC_get_current_comm:
528 		return &bpf_get_current_comm_proto;
529 	case BPF_FUNC_trace_printk:
530 		return bpf_get_trace_printk_proto();
531 	case BPF_FUNC_get_smp_processor_id:
532 		return &bpf_get_smp_processor_id_proto;
533 	case BPF_FUNC_get_numa_node_id:
534 		return &bpf_get_numa_node_id_proto;
535 	case BPF_FUNC_perf_event_read:
536 		return &bpf_perf_event_read_proto;
537 	case BPF_FUNC_probe_write_user:
538 		return bpf_get_probe_write_proto();
539 	case BPF_FUNC_current_task_under_cgroup:
540 		return &bpf_current_task_under_cgroup_proto;
541 	case BPF_FUNC_get_prandom_u32:
542 		return &bpf_get_prandom_u32_proto;
543 	case BPF_FUNC_probe_read_str:
544 		return &bpf_probe_read_str_proto;
545 	default:
546 		return NULL;
547 	}
548 }
549 
550 static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
551 {
552 	switch (func_id) {
553 	case BPF_FUNC_perf_event_output:
554 		return &bpf_perf_event_output_proto;
555 	case BPF_FUNC_get_stackid:
556 		return &bpf_get_stackid_proto;
557 	case BPF_FUNC_perf_event_read_value:
558 		return &bpf_perf_event_read_value_proto;
559 	default:
560 		return tracing_func_proto(func_id);
561 	}
562 }
563 
564 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
565 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
566 					struct bpf_insn_access_aux *info)
567 {
568 	if (off < 0 || off >= sizeof(struct pt_regs))
569 		return false;
570 	if (type != BPF_READ)
571 		return false;
572 	if (off % size != 0)
573 		return false;
574 	/*
575 	 * Assertion for 32 bit to make sure last 8 byte access
576 	 * (BPF_DW) to the last 4 byte member is disallowed.
577 	 */
578 	if (off + size > sizeof(struct pt_regs))
579 		return false;
580 
581 	return true;
582 }
583 
584 const struct bpf_verifier_ops kprobe_verifier_ops = {
585 	.get_func_proto  = kprobe_prog_func_proto,
586 	.is_valid_access = kprobe_prog_is_valid_access,
587 };
588 
589 const struct bpf_prog_ops kprobe_prog_ops = {
590 };
591 
592 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
593 	   u64, flags, void *, data, u64, size)
594 {
595 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
596 
597 	/*
598 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
599 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
600 	 * from there and call the same bpf_perf_event_output() helper inline.
601 	 */
602 	return ____bpf_perf_event_output(regs, map, flags, data, size);
603 }
604 
605 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
606 	.func		= bpf_perf_event_output_tp,
607 	.gpl_only	= true,
608 	.ret_type	= RET_INTEGER,
609 	.arg1_type	= ARG_PTR_TO_CTX,
610 	.arg2_type	= ARG_CONST_MAP_PTR,
611 	.arg3_type	= ARG_ANYTHING,
612 	.arg4_type	= ARG_PTR_TO_MEM,
613 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
614 };
615 
616 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
617 	   u64, flags)
618 {
619 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
620 
621 	/*
622 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
623 	 * the other helper's function body cannot be inlined due to being
624 	 * external, thus we need to call raw helper function.
625 	 */
626 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
627 			       flags, 0, 0);
628 }
629 
630 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
631 	.func		= bpf_get_stackid_tp,
632 	.gpl_only	= true,
633 	.ret_type	= RET_INTEGER,
634 	.arg1_type	= ARG_PTR_TO_CTX,
635 	.arg2_type	= ARG_CONST_MAP_PTR,
636 	.arg3_type	= ARG_ANYTHING,
637 };
638 
639 BPF_CALL_3(bpf_perf_prog_read_value_tp, struct bpf_perf_event_data_kern *, ctx,
640 	   struct bpf_perf_event_value *, buf, u32, size)
641 {
642 	int err = -EINVAL;
643 
644 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
645 		goto clear;
646 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
647 				    &buf->running);
648 	if (unlikely(err))
649 		goto clear;
650 	return 0;
651 clear:
652 	memset(buf, 0, size);
653 	return err;
654 }
655 
656 static const struct bpf_func_proto bpf_perf_prog_read_value_proto_tp = {
657          .func           = bpf_perf_prog_read_value_tp,
658          .gpl_only       = true,
659          .ret_type       = RET_INTEGER,
660          .arg1_type      = ARG_PTR_TO_CTX,
661          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
662          .arg3_type      = ARG_CONST_SIZE,
663 };
664 
665 static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id)
666 {
667 	switch (func_id) {
668 	case BPF_FUNC_perf_event_output:
669 		return &bpf_perf_event_output_proto_tp;
670 	case BPF_FUNC_get_stackid:
671 		return &bpf_get_stackid_proto_tp;
672 	case BPF_FUNC_perf_prog_read_value:
673 		return &bpf_perf_prog_read_value_proto_tp;
674 	default:
675 		return tracing_func_proto(func_id);
676 	}
677 }
678 
679 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
680 				    struct bpf_insn_access_aux *info)
681 {
682 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
683 		return false;
684 	if (type != BPF_READ)
685 		return false;
686 	if (off % size != 0)
687 		return false;
688 
689 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
690 	return true;
691 }
692 
693 const struct bpf_verifier_ops tracepoint_verifier_ops = {
694 	.get_func_proto  = tp_prog_func_proto,
695 	.is_valid_access = tp_prog_is_valid_access,
696 };
697 
698 const struct bpf_prog_ops tracepoint_prog_ops = {
699 };
700 
701 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
702 				    struct bpf_insn_access_aux *info)
703 {
704 	const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data,
705 					 sample_period);
706 
707 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
708 		return false;
709 	if (type != BPF_READ)
710 		return false;
711 	if (off % size != 0)
712 		return false;
713 
714 	switch (off) {
715 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
716 		bpf_ctx_record_field_size(info, size_sp);
717 		if (!bpf_ctx_narrow_access_ok(off, size, size_sp))
718 			return false;
719 		break;
720 	default:
721 		if (size != sizeof(long))
722 			return false;
723 	}
724 
725 	return true;
726 }
727 
728 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
729 				      const struct bpf_insn *si,
730 				      struct bpf_insn *insn_buf,
731 				      struct bpf_prog *prog, u32 *target_size)
732 {
733 	struct bpf_insn *insn = insn_buf;
734 
735 	switch (si->off) {
736 	case offsetof(struct bpf_perf_event_data, sample_period):
737 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
738 						       data), si->dst_reg, si->src_reg,
739 				      offsetof(struct bpf_perf_event_data_kern, data));
740 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
741 				      bpf_target_off(struct perf_sample_data, period, 8,
742 						     target_size));
743 		break;
744 	default:
745 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
746 						       regs), si->dst_reg, si->src_reg,
747 				      offsetof(struct bpf_perf_event_data_kern, regs));
748 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
749 				      si->off);
750 		break;
751 	}
752 
753 	return insn - insn_buf;
754 }
755 
756 const struct bpf_verifier_ops perf_event_verifier_ops = {
757 	.get_func_proto		= tp_prog_func_proto,
758 	.is_valid_access	= pe_prog_is_valid_access,
759 	.convert_ctx_access	= pe_prog_convert_ctx_access,
760 };
761 
762 const struct bpf_prog_ops perf_event_prog_ops = {
763 };
764 
765 static DEFINE_MUTEX(bpf_event_mutex);
766 
767 #define BPF_TRACE_MAX_PROGS 64
768 
769 int perf_event_attach_bpf_prog(struct perf_event *event,
770 			       struct bpf_prog *prog)
771 {
772 	struct bpf_prog_array __rcu *old_array;
773 	struct bpf_prog_array *new_array;
774 	int ret = -EEXIST;
775 
776 	mutex_lock(&bpf_event_mutex);
777 
778 	if (event->prog)
779 		goto unlock;
780 
781 	old_array = event->tp_event->prog_array;
782 	if (old_array &&
783 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
784 		ret = -E2BIG;
785 		goto unlock;
786 	}
787 
788 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
789 	if (ret < 0)
790 		goto unlock;
791 
792 	/* set the new array to event->tp_event and set event->prog */
793 	event->prog = prog;
794 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
795 	bpf_prog_array_free(old_array);
796 
797 unlock:
798 	mutex_unlock(&bpf_event_mutex);
799 	return ret;
800 }
801 
802 void perf_event_detach_bpf_prog(struct perf_event *event)
803 {
804 	struct bpf_prog_array __rcu *old_array;
805 	struct bpf_prog_array *new_array;
806 	int ret;
807 
808 	mutex_lock(&bpf_event_mutex);
809 
810 	if (!event->prog)
811 		goto unlock;
812 
813 	old_array = event->tp_event->prog_array;
814 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
815 	if (ret < 0) {
816 		bpf_prog_array_delete_safe(old_array, event->prog);
817 	} else {
818 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
819 		bpf_prog_array_free(old_array);
820 	}
821 
822 	bpf_prog_put(event->prog);
823 	event->prog = NULL;
824 
825 unlock:
826 	mutex_unlock(&bpf_event_mutex);
827 }
828