xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 680ef72a)
1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_perf_event.h>
13 #include <linux/filter.h>
14 #include <linux/uaccess.h>
15 #include <linux/ctype.h>
16 #include "trace.h"
17 
18 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
19 
20 /**
21  * trace_call_bpf - invoke BPF program
22  * @call: tracepoint event
23  * @ctx: opaque context pointer
24  *
25  * kprobe handlers execute BPF programs via this helper.
26  * Can be used from static tracepoints in the future.
27  *
28  * Return: BPF programs always return an integer which is interpreted by
29  * kprobe handler as:
30  * 0 - return from kprobe (event is filtered out)
31  * 1 - store kprobe event into ring buffer
32  * Other values are reserved and currently alias to 1
33  */
34 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
35 {
36 	unsigned int ret;
37 
38 	if (in_nmi()) /* not supported yet */
39 		return 1;
40 
41 	preempt_disable();
42 
43 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
44 		/*
45 		 * since some bpf program is already running on this cpu,
46 		 * don't call into another bpf program (same or different)
47 		 * and don't send kprobe event into ring-buffer,
48 		 * so return zero here
49 		 */
50 		ret = 0;
51 		goto out;
52 	}
53 
54 	/*
55 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
56 	 * to all call sites, we did a bpf_prog_array_valid() there to check
57 	 * whether call->prog_array is empty or not, which is
58 	 * a heurisitc to speed up execution.
59 	 *
60 	 * If bpf_prog_array_valid() fetched prog_array was
61 	 * non-NULL, we go into trace_call_bpf() and do the actual
62 	 * proper rcu_dereference() under RCU lock.
63 	 * If it turns out that prog_array is NULL then, we bail out.
64 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
65 	 * was NULL, you'll skip the prog_array with the risk of missing
66 	 * out of events when it was updated in between this and the
67 	 * rcu_dereference() which is accepted risk.
68 	 */
69 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
70 
71  out:
72 	__this_cpu_dec(bpf_prog_active);
73 	preempt_enable();
74 
75 	return ret;
76 }
77 EXPORT_SYMBOL_GPL(trace_call_bpf);
78 
79 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
80 {
81 	int ret;
82 
83 	ret = probe_kernel_read(dst, unsafe_ptr, size);
84 	if (unlikely(ret < 0))
85 		memset(dst, 0, size);
86 
87 	return ret;
88 }
89 
90 static const struct bpf_func_proto bpf_probe_read_proto = {
91 	.func		= bpf_probe_read,
92 	.gpl_only	= true,
93 	.ret_type	= RET_INTEGER,
94 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
95 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
96 	.arg3_type	= ARG_ANYTHING,
97 };
98 
99 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
100 	   u32, size)
101 {
102 	/*
103 	 * Ensure we're in user context which is safe for the helper to
104 	 * run. This helper has no business in a kthread.
105 	 *
106 	 * access_ok() should prevent writing to non-user memory, but in
107 	 * some situations (nommu, temporary switch, etc) access_ok() does
108 	 * not provide enough validation, hence the check on KERNEL_DS.
109 	 */
110 
111 	if (unlikely(in_interrupt() ||
112 		     current->flags & (PF_KTHREAD | PF_EXITING)))
113 		return -EPERM;
114 	if (unlikely(uaccess_kernel()))
115 		return -EPERM;
116 	if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
117 		return -EPERM;
118 
119 	return probe_kernel_write(unsafe_ptr, src, size);
120 }
121 
122 static const struct bpf_func_proto bpf_probe_write_user_proto = {
123 	.func		= bpf_probe_write_user,
124 	.gpl_only	= true,
125 	.ret_type	= RET_INTEGER,
126 	.arg1_type	= ARG_ANYTHING,
127 	.arg2_type	= ARG_PTR_TO_MEM,
128 	.arg3_type	= ARG_CONST_SIZE,
129 };
130 
131 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
132 {
133 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
134 			    current->comm, task_pid_nr(current));
135 
136 	return &bpf_probe_write_user_proto;
137 }
138 
139 /*
140  * Only limited trace_printk() conversion specifiers allowed:
141  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
142  */
143 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
144 	   u64, arg2, u64, arg3)
145 {
146 	bool str_seen = false;
147 	int mod[3] = {};
148 	int fmt_cnt = 0;
149 	u64 unsafe_addr;
150 	char buf[64];
151 	int i;
152 
153 	/*
154 	 * bpf_check()->check_func_arg()->check_stack_boundary()
155 	 * guarantees that fmt points to bpf program stack,
156 	 * fmt_size bytes of it were initialized and fmt_size > 0
157 	 */
158 	if (fmt[--fmt_size] != 0)
159 		return -EINVAL;
160 
161 	/* check format string for allowed specifiers */
162 	for (i = 0; i < fmt_size; i++) {
163 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
164 			return -EINVAL;
165 
166 		if (fmt[i] != '%')
167 			continue;
168 
169 		if (fmt_cnt >= 3)
170 			return -EINVAL;
171 
172 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
173 		i++;
174 		if (fmt[i] == 'l') {
175 			mod[fmt_cnt]++;
176 			i++;
177 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
178 			mod[fmt_cnt]++;
179 			i++;
180 			if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
181 				return -EINVAL;
182 			fmt_cnt++;
183 			if (fmt[i - 1] == 's') {
184 				if (str_seen)
185 					/* allow only one '%s' per fmt string */
186 					return -EINVAL;
187 				str_seen = true;
188 
189 				switch (fmt_cnt) {
190 				case 1:
191 					unsafe_addr = arg1;
192 					arg1 = (long) buf;
193 					break;
194 				case 2:
195 					unsafe_addr = arg2;
196 					arg2 = (long) buf;
197 					break;
198 				case 3:
199 					unsafe_addr = arg3;
200 					arg3 = (long) buf;
201 					break;
202 				}
203 				buf[0] = 0;
204 				strncpy_from_unsafe(buf,
205 						    (void *) (long) unsafe_addr,
206 						    sizeof(buf));
207 			}
208 			continue;
209 		}
210 
211 		if (fmt[i] == 'l') {
212 			mod[fmt_cnt]++;
213 			i++;
214 		}
215 
216 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
217 		    fmt[i] != 'u' && fmt[i] != 'x')
218 			return -EINVAL;
219 		fmt_cnt++;
220 	}
221 
222 /* Horrid workaround for getting va_list handling working with different
223  * argument type combinations generically for 32 and 64 bit archs.
224  */
225 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
226 #define __BPF_TP(...)							\
227 	__trace_printk(1 /* Fake ip will not be printed. */,		\
228 		       fmt, ##__VA_ARGS__)
229 
230 #define __BPF_ARG1_TP(...)						\
231 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
232 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
233 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
234 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
235 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
236 
237 #define __BPF_ARG2_TP(...)						\
238 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
239 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
240 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
241 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
242 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
243 
244 #define __BPF_ARG3_TP(...)						\
245 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
246 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
247 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
248 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
249 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
250 
251 	return __BPF_TP_EMIT();
252 }
253 
254 static const struct bpf_func_proto bpf_trace_printk_proto = {
255 	.func		= bpf_trace_printk,
256 	.gpl_only	= true,
257 	.ret_type	= RET_INTEGER,
258 	.arg1_type	= ARG_PTR_TO_MEM,
259 	.arg2_type	= ARG_CONST_SIZE,
260 };
261 
262 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
263 {
264 	/*
265 	 * this program might be calling bpf_trace_printk,
266 	 * so allocate per-cpu printk buffers
267 	 */
268 	trace_printk_init_buffers();
269 
270 	return &bpf_trace_printk_proto;
271 }
272 
273 static __always_inline int
274 get_map_perf_counter(struct bpf_map *map, u64 flags,
275 		     u64 *value, u64 *enabled, u64 *running)
276 {
277 	struct bpf_array *array = container_of(map, struct bpf_array, map);
278 	unsigned int cpu = smp_processor_id();
279 	u64 index = flags & BPF_F_INDEX_MASK;
280 	struct bpf_event_entry *ee;
281 
282 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
283 		return -EINVAL;
284 	if (index == BPF_F_CURRENT_CPU)
285 		index = cpu;
286 	if (unlikely(index >= array->map.max_entries))
287 		return -E2BIG;
288 
289 	ee = READ_ONCE(array->ptrs[index]);
290 	if (!ee)
291 		return -ENOENT;
292 
293 	return perf_event_read_local(ee->event, value, enabled, running);
294 }
295 
296 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
297 {
298 	u64 value = 0;
299 	int err;
300 
301 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
302 	/*
303 	 * this api is ugly since we miss [-22..-2] range of valid
304 	 * counter values, but that's uapi
305 	 */
306 	if (err)
307 		return err;
308 	return value;
309 }
310 
311 static const struct bpf_func_proto bpf_perf_event_read_proto = {
312 	.func		= bpf_perf_event_read,
313 	.gpl_only	= true,
314 	.ret_type	= RET_INTEGER,
315 	.arg1_type	= ARG_CONST_MAP_PTR,
316 	.arg2_type	= ARG_ANYTHING,
317 };
318 
319 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
320 	   struct bpf_perf_event_value *, buf, u32, size)
321 {
322 	int err = -EINVAL;
323 
324 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
325 		goto clear;
326 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
327 				   &buf->running);
328 	if (unlikely(err))
329 		goto clear;
330 	return 0;
331 clear:
332 	memset(buf, 0, size);
333 	return err;
334 }
335 
336 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
337 	.func		= bpf_perf_event_read_value,
338 	.gpl_only	= true,
339 	.ret_type	= RET_INTEGER,
340 	.arg1_type	= ARG_CONST_MAP_PTR,
341 	.arg2_type	= ARG_ANYTHING,
342 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
343 	.arg4_type	= ARG_CONST_SIZE,
344 };
345 
346 static DEFINE_PER_CPU(struct perf_sample_data, bpf_sd);
347 
348 static __always_inline u64
349 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
350 			u64 flags, struct perf_raw_record *raw)
351 {
352 	struct bpf_array *array = container_of(map, struct bpf_array, map);
353 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_sd);
354 	unsigned int cpu = smp_processor_id();
355 	u64 index = flags & BPF_F_INDEX_MASK;
356 	struct bpf_event_entry *ee;
357 	struct perf_event *event;
358 
359 	if (index == BPF_F_CURRENT_CPU)
360 		index = cpu;
361 	if (unlikely(index >= array->map.max_entries))
362 		return -E2BIG;
363 
364 	ee = READ_ONCE(array->ptrs[index]);
365 	if (!ee)
366 		return -ENOENT;
367 
368 	event = ee->event;
369 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
370 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
371 		return -EINVAL;
372 
373 	if (unlikely(event->oncpu != cpu))
374 		return -EOPNOTSUPP;
375 
376 	perf_sample_data_init(sd, 0, 0);
377 	sd->raw = raw;
378 	perf_event_output(event, sd, regs);
379 	return 0;
380 }
381 
382 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
383 	   u64, flags, void *, data, u64, size)
384 {
385 	struct perf_raw_record raw = {
386 		.frag = {
387 			.size = size,
388 			.data = data,
389 		},
390 	};
391 
392 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
393 		return -EINVAL;
394 
395 	return __bpf_perf_event_output(regs, map, flags, &raw);
396 }
397 
398 static const struct bpf_func_proto bpf_perf_event_output_proto = {
399 	.func		= bpf_perf_event_output,
400 	.gpl_only	= true,
401 	.ret_type	= RET_INTEGER,
402 	.arg1_type	= ARG_PTR_TO_CTX,
403 	.arg2_type	= ARG_CONST_MAP_PTR,
404 	.arg3_type	= ARG_ANYTHING,
405 	.arg4_type	= ARG_PTR_TO_MEM,
406 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
407 };
408 
409 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
410 
411 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
412 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
413 {
414 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
415 	struct perf_raw_frag frag = {
416 		.copy		= ctx_copy,
417 		.size		= ctx_size,
418 		.data		= ctx,
419 	};
420 	struct perf_raw_record raw = {
421 		.frag = {
422 			{
423 				.next	= ctx_size ? &frag : NULL,
424 			},
425 			.size	= meta_size,
426 			.data	= meta,
427 		},
428 	};
429 
430 	perf_fetch_caller_regs(regs);
431 
432 	return __bpf_perf_event_output(regs, map, flags, &raw);
433 }
434 
435 BPF_CALL_0(bpf_get_current_task)
436 {
437 	return (long) current;
438 }
439 
440 static const struct bpf_func_proto bpf_get_current_task_proto = {
441 	.func		= bpf_get_current_task,
442 	.gpl_only	= true,
443 	.ret_type	= RET_INTEGER,
444 };
445 
446 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
447 {
448 	struct bpf_array *array = container_of(map, struct bpf_array, map);
449 	struct cgroup *cgrp;
450 
451 	if (unlikely(in_interrupt()))
452 		return -EINVAL;
453 	if (unlikely(idx >= array->map.max_entries))
454 		return -E2BIG;
455 
456 	cgrp = READ_ONCE(array->ptrs[idx]);
457 	if (unlikely(!cgrp))
458 		return -EAGAIN;
459 
460 	return task_under_cgroup_hierarchy(current, cgrp);
461 }
462 
463 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
464 	.func           = bpf_current_task_under_cgroup,
465 	.gpl_only       = false,
466 	.ret_type       = RET_INTEGER,
467 	.arg1_type      = ARG_CONST_MAP_PTR,
468 	.arg2_type      = ARG_ANYTHING,
469 };
470 
471 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
472 	   const void *, unsafe_ptr)
473 {
474 	int ret;
475 
476 	/*
477 	 * The strncpy_from_unsafe() call will likely not fill the entire
478 	 * buffer, but that's okay in this circumstance as we're probing
479 	 * arbitrary memory anyway similar to bpf_probe_read() and might
480 	 * as well probe the stack. Thus, memory is explicitly cleared
481 	 * only in error case, so that improper users ignoring return
482 	 * code altogether don't copy garbage; otherwise length of string
483 	 * is returned that can be used for bpf_perf_event_output() et al.
484 	 */
485 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
486 	if (unlikely(ret < 0))
487 		memset(dst, 0, size);
488 
489 	return ret;
490 }
491 
492 static const struct bpf_func_proto bpf_probe_read_str_proto = {
493 	.func		= bpf_probe_read_str,
494 	.gpl_only	= true,
495 	.ret_type	= RET_INTEGER,
496 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
497 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
498 	.arg3_type	= ARG_ANYTHING,
499 };
500 
501 static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
502 {
503 	switch (func_id) {
504 	case BPF_FUNC_map_lookup_elem:
505 		return &bpf_map_lookup_elem_proto;
506 	case BPF_FUNC_map_update_elem:
507 		return &bpf_map_update_elem_proto;
508 	case BPF_FUNC_map_delete_elem:
509 		return &bpf_map_delete_elem_proto;
510 	case BPF_FUNC_probe_read:
511 		return &bpf_probe_read_proto;
512 	case BPF_FUNC_ktime_get_ns:
513 		return &bpf_ktime_get_ns_proto;
514 	case BPF_FUNC_tail_call:
515 		return &bpf_tail_call_proto;
516 	case BPF_FUNC_get_current_pid_tgid:
517 		return &bpf_get_current_pid_tgid_proto;
518 	case BPF_FUNC_get_current_task:
519 		return &bpf_get_current_task_proto;
520 	case BPF_FUNC_get_current_uid_gid:
521 		return &bpf_get_current_uid_gid_proto;
522 	case BPF_FUNC_get_current_comm:
523 		return &bpf_get_current_comm_proto;
524 	case BPF_FUNC_trace_printk:
525 		return bpf_get_trace_printk_proto();
526 	case BPF_FUNC_get_smp_processor_id:
527 		return &bpf_get_smp_processor_id_proto;
528 	case BPF_FUNC_get_numa_node_id:
529 		return &bpf_get_numa_node_id_proto;
530 	case BPF_FUNC_perf_event_read:
531 		return &bpf_perf_event_read_proto;
532 	case BPF_FUNC_probe_write_user:
533 		return bpf_get_probe_write_proto();
534 	case BPF_FUNC_current_task_under_cgroup:
535 		return &bpf_current_task_under_cgroup_proto;
536 	case BPF_FUNC_get_prandom_u32:
537 		return &bpf_get_prandom_u32_proto;
538 	case BPF_FUNC_probe_read_str:
539 		return &bpf_probe_read_str_proto;
540 	default:
541 		return NULL;
542 	}
543 }
544 
545 static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
546 {
547 	switch (func_id) {
548 	case BPF_FUNC_perf_event_output:
549 		return &bpf_perf_event_output_proto;
550 	case BPF_FUNC_get_stackid:
551 		return &bpf_get_stackid_proto;
552 	case BPF_FUNC_perf_event_read_value:
553 		return &bpf_perf_event_read_value_proto;
554 	default:
555 		return tracing_func_proto(func_id);
556 	}
557 }
558 
559 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
560 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
561 					struct bpf_insn_access_aux *info)
562 {
563 	if (off < 0 || off >= sizeof(struct pt_regs))
564 		return false;
565 	if (type != BPF_READ)
566 		return false;
567 	if (off % size != 0)
568 		return false;
569 	/*
570 	 * Assertion for 32 bit to make sure last 8 byte access
571 	 * (BPF_DW) to the last 4 byte member is disallowed.
572 	 */
573 	if (off + size > sizeof(struct pt_regs))
574 		return false;
575 
576 	return true;
577 }
578 
579 const struct bpf_verifier_ops kprobe_verifier_ops = {
580 	.get_func_proto  = kprobe_prog_func_proto,
581 	.is_valid_access = kprobe_prog_is_valid_access,
582 };
583 
584 const struct bpf_prog_ops kprobe_prog_ops = {
585 };
586 
587 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
588 	   u64, flags, void *, data, u64, size)
589 {
590 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
591 
592 	/*
593 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
594 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
595 	 * from there and call the same bpf_perf_event_output() helper inline.
596 	 */
597 	return ____bpf_perf_event_output(regs, map, flags, data, size);
598 }
599 
600 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
601 	.func		= bpf_perf_event_output_tp,
602 	.gpl_only	= true,
603 	.ret_type	= RET_INTEGER,
604 	.arg1_type	= ARG_PTR_TO_CTX,
605 	.arg2_type	= ARG_CONST_MAP_PTR,
606 	.arg3_type	= ARG_ANYTHING,
607 	.arg4_type	= ARG_PTR_TO_MEM,
608 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
609 };
610 
611 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
612 	   u64, flags)
613 {
614 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
615 
616 	/*
617 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
618 	 * the other helper's function body cannot be inlined due to being
619 	 * external, thus we need to call raw helper function.
620 	 */
621 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
622 			       flags, 0, 0);
623 }
624 
625 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
626 	.func		= bpf_get_stackid_tp,
627 	.gpl_only	= true,
628 	.ret_type	= RET_INTEGER,
629 	.arg1_type	= ARG_PTR_TO_CTX,
630 	.arg2_type	= ARG_CONST_MAP_PTR,
631 	.arg3_type	= ARG_ANYTHING,
632 };
633 
634 BPF_CALL_3(bpf_perf_prog_read_value_tp, struct bpf_perf_event_data_kern *, ctx,
635 	   struct bpf_perf_event_value *, buf, u32, size)
636 {
637 	int err = -EINVAL;
638 
639 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
640 		goto clear;
641 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
642 				    &buf->running);
643 	if (unlikely(err))
644 		goto clear;
645 	return 0;
646 clear:
647 	memset(buf, 0, size);
648 	return err;
649 }
650 
651 static const struct bpf_func_proto bpf_perf_prog_read_value_proto_tp = {
652          .func           = bpf_perf_prog_read_value_tp,
653          .gpl_only       = true,
654          .ret_type       = RET_INTEGER,
655          .arg1_type      = ARG_PTR_TO_CTX,
656          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
657          .arg3_type      = ARG_CONST_SIZE,
658 };
659 
660 static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id)
661 {
662 	switch (func_id) {
663 	case BPF_FUNC_perf_event_output:
664 		return &bpf_perf_event_output_proto_tp;
665 	case BPF_FUNC_get_stackid:
666 		return &bpf_get_stackid_proto_tp;
667 	case BPF_FUNC_perf_prog_read_value:
668 		return &bpf_perf_prog_read_value_proto_tp;
669 	default:
670 		return tracing_func_proto(func_id);
671 	}
672 }
673 
674 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
675 				    struct bpf_insn_access_aux *info)
676 {
677 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
678 		return false;
679 	if (type != BPF_READ)
680 		return false;
681 	if (off % size != 0)
682 		return false;
683 
684 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
685 	return true;
686 }
687 
688 const struct bpf_verifier_ops tracepoint_verifier_ops = {
689 	.get_func_proto  = tp_prog_func_proto,
690 	.is_valid_access = tp_prog_is_valid_access,
691 };
692 
693 const struct bpf_prog_ops tracepoint_prog_ops = {
694 };
695 
696 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
697 				    struct bpf_insn_access_aux *info)
698 {
699 	const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data,
700 					 sample_period);
701 
702 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
703 		return false;
704 	if (type != BPF_READ)
705 		return false;
706 	if (off % size != 0)
707 		return false;
708 
709 	switch (off) {
710 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
711 		bpf_ctx_record_field_size(info, size_sp);
712 		if (!bpf_ctx_narrow_access_ok(off, size, size_sp))
713 			return false;
714 		break;
715 	default:
716 		if (size != sizeof(long))
717 			return false;
718 	}
719 
720 	return true;
721 }
722 
723 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
724 				      const struct bpf_insn *si,
725 				      struct bpf_insn *insn_buf,
726 				      struct bpf_prog *prog, u32 *target_size)
727 {
728 	struct bpf_insn *insn = insn_buf;
729 
730 	switch (si->off) {
731 	case offsetof(struct bpf_perf_event_data, sample_period):
732 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
733 						       data), si->dst_reg, si->src_reg,
734 				      offsetof(struct bpf_perf_event_data_kern, data));
735 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
736 				      bpf_target_off(struct perf_sample_data, period, 8,
737 						     target_size));
738 		break;
739 	default:
740 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
741 						       regs), si->dst_reg, si->src_reg,
742 				      offsetof(struct bpf_perf_event_data_kern, regs));
743 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
744 				      si->off);
745 		break;
746 	}
747 
748 	return insn - insn_buf;
749 }
750 
751 const struct bpf_verifier_ops perf_event_verifier_ops = {
752 	.get_func_proto		= tp_prog_func_proto,
753 	.is_valid_access	= pe_prog_is_valid_access,
754 	.convert_ctx_access	= pe_prog_convert_ctx_access,
755 };
756 
757 const struct bpf_prog_ops perf_event_prog_ops = {
758 };
759 
760 static DEFINE_MUTEX(bpf_event_mutex);
761 
762 int perf_event_attach_bpf_prog(struct perf_event *event,
763 			       struct bpf_prog *prog)
764 {
765 	struct bpf_prog_array __rcu *old_array;
766 	struct bpf_prog_array *new_array;
767 	int ret = -EEXIST;
768 
769 	mutex_lock(&bpf_event_mutex);
770 
771 	if (event->prog)
772 		goto unlock;
773 
774 	old_array = event->tp_event->prog_array;
775 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
776 	if (ret < 0)
777 		goto unlock;
778 
779 	/* set the new array to event->tp_event and set event->prog */
780 	event->prog = prog;
781 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
782 	bpf_prog_array_free(old_array);
783 
784 unlock:
785 	mutex_unlock(&bpf_event_mutex);
786 	return ret;
787 }
788 
789 void perf_event_detach_bpf_prog(struct perf_event *event)
790 {
791 	struct bpf_prog_array __rcu *old_array;
792 	struct bpf_prog_array *new_array;
793 	int ret;
794 
795 	mutex_lock(&bpf_event_mutex);
796 
797 	if (!event->prog)
798 		goto unlock;
799 
800 	old_array = event->tp_event->prog_array;
801 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
802 	if (ret < 0) {
803 		bpf_prog_array_delete_safe(old_array, event->prog);
804 	} else {
805 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
806 		bpf_prog_array_free(old_array);
807 	}
808 
809 	bpf_prog_put(event->prog);
810 	event->prog = NULL;
811 
812 unlock:
813 	mutex_unlock(&bpf_event_mutex);
814 }
815