1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/bpf_perf_event.h> 13 #include <linux/filter.h> 14 #include <linux/uaccess.h> 15 #include <linux/ctype.h> 16 #include "trace.h" 17 18 /** 19 * trace_call_bpf - invoke BPF program 20 * @prog: BPF program 21 * @ctx: opaque context pointer 22 * 23 * kprobe handlers execute BPF programs via this helper. 24 * Can be used from static tracepoints in the future. 25 * 26 * Return: BPF programs always return an integer which is interpreted by 27 * kprobe handler as: 28 * 0 - return from kprobe (event is filtered out) 29 * 1 - store kprobe event into ring buffer 30 * Other values are reserved and currently alias to 1 31 */ 32 unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx) 33 { 34 unsigned int ret; 35 36 if (in_nmi()) /* not supported yet */ 37 return 1; 38 39 preempt_disable(); 40 41 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 42 /* 43 * since some bpf program is already running on this cpu, 44 * don't call into another bpf program (same or different) 45 * and don't send kprobe event into ring-buffer, 46 * so return zero here 47 */ 48 ret = 0; 49 goto out; 50 } 51 52 rcu_read_lock(); 53 ret = BPF_PROG_RUN(prog, ctx); 54 rcu_read_unlock(); 55 56 out: 57 __this_cpu_dec(bpf_prog_active); 58 preempt_enable(); 59 60 return ret; 61 } 62 EXPORT_SYMBOL_GPL(trace_call_bpf); 63 64 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr) 65 { 66 int ret; 67 68 ret = probe_kernel_read(dst, unsafe_ptr, size); 69 if (unlikely(ret < 0)) 70 memset(dst, 0, size); 71 72 return ret; 73 } 74 75 static const struct bpf_func_proto bpf_probe_read_proto = { 76 .func = bpf_probe_read, 77 .gpl_only = true, 78 .ret_type = RET_INTEGER, 79 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 80 .arg2_type = ARG_CONST_SIZE, 81 .arg3_type = ARG_ANYTHING, 82 }; 83 84 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src, 85 u32, size) 86 { 87 /* 88 * Ensure we're in user context which is safe for the helper to 89 * run. This helper has no business in a kthread. 90 * 91 * access_ok() should prevent writing to non-user memory, but in 92 * some situations (nommu, temporary switch, etc) access_ok() does 93 * not provide enough validation, hence the check on KERNEL_DS. 94 */ 95 96 if (unlikely(in_interrupt() || 97 current->flags & (PF_KTHREAD | PF_EXITING))) 98 return -EPERM; 99 if (unlikely(uaccess_kernel())) 100 return -EPERM; 101 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size)) 102 return -EPERM; 103 104 return probe_kernel_write(unsafe_ptr, src, size); 105 } 106 107 static const struct bpf_func_proto bpf_probe_write_user_proto = { 108 .func = bpf_probe_write_user, 109 .gpl_only = true, 110 .ret_type = RET_INTEGER, 111 .arg1_type = ARG_ANYTHING, 112 .arg2_type = ARG_PTR_TO_MEM, 113 .arg3_type = ARG_CONST_SIZE, 114 }; 115 116 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 117 { 118 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 119 current->comm, task_pid_nr(current)); 120 121 return &bpf_probe_write_user_proto; 122 } 123 124 /* 125 * Only limited trace_printk() conversion specifiers allowed: 126 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 127 */ 128 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 129 u64, arg2, u64, arg3) 130 { 131 bool str_seen = false; 132 int mod[3] = {}; 133 int fmt_cnt = 0; 134 u64 unsafe_addr; 135 char buf[64]; 136 int i; 137 138 /* 139 * bpf_check()->check_func_arg()->check_stack_boundary() 140 * guarantees that fmt points to bpf program stack, 141 * fmt_size bytes of it were initialized and fmt_size > 0 142 */ 143 if (fmt[--fmt_size] != 0) 144 return -EINVAL; 145 146 /* check format string for allowed specifiers */ 147 for (i = 0; i < fmt_size; i++) { 148 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 149 return -EINVAL; 150 151 if (fmt[i] != '%') 152 continue; 153 154 if (fmt_cnt >= 3) 155 return -EINVAL; 156 157 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 158 i++; 159 if (fmt[i] == 'l') { 160 mod[fmt_cnt]++; 161 i++; 162 } else if (fmt[i] == 'p' || fmt[i] == 's') { 163 mod[fmt_cnt]++; 164 i++; 165 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0) 166 return -EINVAL; 167 fmt_cnt++; 168 if (fmt[i - 1] == 's') { 169 if (str_seen) 170 /* allow only one '%s' per fmt string */ 171 return -EINVAL; 172 str_seen = true; 173 174 switch (fmt_cnt) { 175 case 1: 176 unsafe_addr = arg1; 177 arg1 = (long) buf; 178 break; 179 case 2: 180 unsafe_addr = arg2; 181 arg2 = (long) buf; 182 break; 183 case 3: 184 unsafe_addr = arg3; 185 arg3 = (long) buf; 186 break; 187 } 188 buf[0] = 0; 189 strncpy_from_unsafe(buf, 190 (void *) (long) unsafe_addr, 191 sizeof(buf)); 192 } 193 continue; 194 } 195 196 if (fmt[i] == 'l') { 197 mod[fmt_cnt]++; 198 i++; 199 } 200 201 if (fmt[i] != 'i' && fmt[i] != 'd' && 202 fmt[i] != 'u' && fmt[i] != 'x') 203 return -EINVAL; 204 fmt_cnt++; 205 } 206 207 /* Horrid workaround for getting va_list handling working with different 208 * argument type combinations generically for 32 and 64 bit archs. 209 */ 210 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 211 #define __BPF_TP(...) \ 212 __trace_printk(1 /* Fake ip will not be printed. */, \ 213 fmt, ##__VA_ARGS__) 214 215 #define __BPF_ARG1_TP(...) \ 216 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 217 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 218 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 219 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 220 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 221 222 #define __BPF_ARG2_TP(...) \ 223 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 224 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 225 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 226 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 227 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 228 229 #define __BPF_ARG3_TP(...) \ 230 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 231 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 232 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 233 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 234 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 235 236 return __BPF_TP_EMIT(); 237 } 238 239 static const struct bpf_func_proto bpf_trace_printk_proto = { 240 .func = bpf_trace_printk, 241 .gpl_only = true, 242 .ret_type = RET_INTEGER, 243 .arg1_type = ARG_PTR_TO_MEM, 244 .arg2_type = ARG_CONST_SIZE, 245 }; 246 247 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 248 { 249 /* 250 * this program might be calling bpf_trace_printk, 251 * so allocate per-cpu printk buffers 252 */ 253 trace_printk_init_buffers(); 254 255 return &bpf_trace_printk_proto; 256 } 257 258 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 259 { 260 struct bpf_array *array = container_of(map, struct bpf_array, map); 261 unsigned int cpu = smp_processor_id(); 262 u64 index = flags & BPF_F_INDEX_MASK; 263 struct bpf_event_entry *ee; 264 u64 value = 0; 265 int err; 266 267 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 268 return -EINVAL; 269 if (index == BPF_F_CURRENT_CPU) 270 index = cpu; 271 if (unlikely(index >= array->map.max_entries)) 272 return -E2BIG; 273 274 ee = READ_ONCE(array->ptrs[index]); 275 if (!ee) 276 return -ENOENT; 277 278 err = perf_event_read_local(ee->event, &value); 279 /* 280 * this api is ugly since we miss [-22..-2] range of valid 281 * counter values, but that's uapi 282 */ 283 if (err) 284 return err; 285 return value; 286 } 287 288 static const struct bpf_func_proto bpf_perf_event_read_proto = { 289 .func = bpf_perf_event_read, 290 .gpl_only = true, 291 .ret_type = RET_INTEGER, 292 .arg1_type = ARG_CONST_MAP_PTR, 293 .arg2_type = ARG_ANYTHING, 294 }; 295 296 static DEFINE_PER_CPU(struct perf_sample_data, bpf_sd); 297 298 static __always_inline u64 299 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 300 u64 flags, struct perf_raw_record *raw) 301 { 302 struct bpf_array *array = container_of(map, struct bpf_array, map); 303 struct perf_sample_data *sd = this_cpu_ptr(&bpf_sd); 304 unsigned int cpu = smp_processor_id(); 305 u64 index = flags & BPF_F_INDEX_MASK; 306 struct bpf_event_entry *ee; 307 struct perf_event *event; 308 309 if (index == BPF_F_CURRENT_CPU) 310 index = cpu; 311 if (unlikely(index >= array->map.max_entries)) 312 return -E2BIG; 313 314 ee = READ_ONCE(array->ptrs[index]); 315 if (!ee) 316 return -ENOENT; 317 318 event = ee->event; 319 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 320 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 321 return -EINVAL; 322 323 if (unlikely(event->oncpu != cpu)) 324 return -EOPNOTSUPP; 325 326 perf_sample_data_init(sd, 0, 0); 327 sd->raw = raw; 328 perf_event_output(event, sd, regs); 329 return 0; 330 } 331 332 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 333 u64, flags, void *, data, u64, size) 334 { 335 struct perf_raw_record raw = { 336 .frag = { 337 .size = size, 338 .data = data, 339 }, 340 }; 341 342 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 343 return -EINVAL; 344 345 return __bpf_perf_event_output(regs, map, flags, &raw); 346 } 347 348 static const struct bpf_func_proto bpf_perf_event_output_proto = { 349 .func = bpf_perf_event_output, 350 .gpl_only = true, 351 .ret_type = RET_INTEGER, 352 .arg1_type = ARG_PTR_TO_CTX, 353 .arg2_type = ARG_CONST_MAP_PTR, 354 .arg3_type = ARG_ANYTHING, 355 .arg4_type = ARG_PTR_TO_MEM, 356 .arg5_type = ARG_CONST_SIZE, 357 }; 358 359 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs); 360 361 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 362 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 363 { 364 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs); 365 struct perf_raw_frag frag = { 366 .copy = ctx_copy, 367 .size = ctx_size, 368 .data = ctx, 369 }; 370 struct perf_raw_record raw = { 371 .frag = { 372 { 373 .next = ctx_size ? &frag : NULL, 374 }, 375 .size = meta_size, 376 .data = meta, 377 }, 378 }; 379 380 perf_fetch_caller_regs(regs); 381 382 return __bpf_perf_event_output(regs, map, flags, &raw); 383 } 384 385 BPF_CALL_0(bpf_get_current_task) 386 { 387 return (long) current; 388 } 389 390 static const struct bpf_func_proto bpf_get_current_task_proto = { 391 .func = bpf_get_current_task, 392 .gpl_only = true, 393 .ret_type = RET_INTEGER, 394 }; 395 396 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 397 { 398 struct bpf_array *array = container_of(map, struct bpf_array, map); 399 struct cgroup *cgrp; 400 401 if (unlikely(in_interrupt())) 402 return -EINVAL; 403 if (unlikely(idx >= array->map.max_entries)) 404 return -E2BIG; 405 406 cgrp = READ_ONCE(array->ptrs[idx]); 407 if (unlikely(!cgrp)) 408 return -EAGAIN; 409 410 return task_under_cgroup_hierarchy(current, cgrp); 411 } 412 413 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 414 .func = bpf_current_task_under_cgroup, 415 .gpl_only = false, 416 .ret_type = RET_INTEGER, 417 .arg1_type = ARG_CONST_MAP_PTR, 418 .arg2_type = ARG_ANYTHING, 419 }; 420 421 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, 422 const void *, unsafe_ptr) 423 { 424 int ret; 425 426 /* 427 * The strncpy_from_unsafe() call will likely not fill the entire 428 * buffer, but that's okay in this circumstance as we're probing 429 * arbitrary memory anyway similar to bpf_probe_read() and might 430 * as well probe the stack. Thus, memory is explicitly cleared 431 * only in error case, so that improper users ignoring return 432 * code altogether don't copy garbage; otherwise length of string 433 * is returned that can be used for bpf_perf_event_output() et al. 434 */ 435 ret = strncpy_from_unsafe(dst, unsafe_ptr, size); 436 if (unlikely(ret < 0)) 437 memset(dst, 0, size); 438 439 return ret; 440 } 441 442 static const struct bpf_func_proto bpf_probe_read_str_proto = { 443 .func = bpf_probe_read_str, 444 .gpl_only = true, 445 .ret_type = RET_INTEGER, 446 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 447 .arg2_type = ARG_CONST_SIZE, 448 .arg3_type = ARG_ANYTHING, 449 }; 450 451 static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id) 452 { 453 switch (func_id) { 454 case BPF_FUNC_map_lookup_elem: 455 return &bpf_map_lookup_elem_proto; 456 case BPF_FUNC_map_update_elem: 457 return &bpf_map_update_elem_proto; 458 case BPF_FUNC_map_delete_elem: 459 return &bpf_map_delete_elem_proto; 460 case BPF_FUNC_probe_read: 461 return &bpf_probe_read_proto; 462 case BPF_FUNC_ktime_get_ns: 463 return &bpf_ktime_get_ns_proto; 464 case BPF_FUNC_tail_call: 465 return &bpf_tail_call_proto; 466 case BPF_FUNC_get_current_pid_tgid: 467 return &bpf_get_current_pid_tgid_proto; 468 case BPF_FUNC_get_current_task: 469 return &bpf_get_current_task_proto; 470 case BPF_FUNC_get_current_uid_gid: 471 return &bpf_get_current_uid_gid_proto; 472 case BPF_FUNC_get_current_comm: 473 return &bpf_get_current_comm_proto; 474 case BPF_FUNC_trace_printk: 475 return bpf_get_trace_printk_proto(); 476 case BPF_FUNC_get_smp_processor_id: 477 return &bpf_get_smp_processor_id_proto; 478 case BPF_FUNC_get_numa_node_id: 479 return &bpf_get_numa_node_id_proto; 480 case BPF_FUNC_perf_event_read: 481 return &bpf_perf_event_read_proto; 482 case BPF_FUNC_probe_write_user: 483 return bpf_get_probe_write_proto(); 484 case BPF_FUNC_current_task_under_cgroup: 485 return &bpf_current_task_under_cgroup_proto; 486 case BPF_FUNC_get_prandom_u32: 487 return &bpf_get_prandom_u32_proto; 488 case BPF_FUNC_probe_read_str: 489 return &bpf_probe_read_str_proto; 490 default: 491 return NULL; 492 } 493 } 494 495 static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id) 496 { 497 switch (func_id) { 498 case BPF_FUNC_perf_event_output: 499 return &bpf_perf_event_output_proto; 500 case BPF_FUNC_get_stackid: 501 return &bpf_get_stackid_proto; 502 default: 503 return tracing_func_proto(func_id); 504 } 505 } 506 507 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 508 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 509 struct bpf_insn_access_aux *info) 510 { 511 if (off < 0 || off >= sizeof(struct pt_regs)) 512 return false; 513 if (type != BPF_READ) 514 return false; 515 if (off % size != 0) 516 return false; 517 /* 518 * Assertion for 32 bit to make sure last 8 byte access 519 * (BPF_DW) to the last 4 byte member is disallowed. 520 */ 521 if (off + size > sizeof(struct pt_regs)) 522 return false; 523 524 return true; 525 } 526 527 const struct bpf_verifier_ops kprobe_prog_ops = { 528 .get_func_proto = kprobe_prog_func_proto, 529 .is_valid_access = kprobe_prog_is_valid_access, 530 }; 531 532 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 533 u64, flags, void *, data, u64, size) 534 { 535 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 536 537 /* 538 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 539 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 540 * from there and call the same bpf_perf_event_output() helper inline. 541 */ 542 return ____bpf_perf_event_output(regs, map, flags, data, size); 543 } 544 545 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 546 .func = bpf_perf_event_output_tp, 547 .gpl_only = true, 548 .ret_type = RET_INTEGER, 549 .arg1_type = ARG_PTR_TO_CTX, 550 .arg2_type = ARG_CONST_MAP_PTR, 551 .arg3_type = ARG_ANYTHING, 552 .arg4_type = ARG_PTR_TO_MEM, 553 .arg5_type = ARG_CONST_SIZE, 554 }; 555 556 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 557 u64, flags) 558 { 559 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 560 561 /* 562 * Same comment as in bpf_perf_event_output_tp(), only that this time 563 * the other helper's function body cannot be inlined due to being 564 * external, thus we need to call raw helper function. 565 */ 566 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 567 flags, 0, 0); 568 } 569 570 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 571 .func = bpf_get_stackid_tp, 572 .gpl_only = true, 573 .ret_type = RET_INTEGER, 574 .arg1_type = ARG_PTR_TO_CTX, 575 .arg2_type = ARG_CONST_MAP_PTR, 576 .arg3_type = ARG_ANYTHING, 577 }; 578 579 static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id) 580 { 581 switch (func_id) { 582 case BPF_FUNC_perf_event_output: 583 return &bpf_perf_event_output_proto_tp; 584 case BPF_FUNC_get_stackid: 585 return &bpf_get_stackid_proto_tp; 586 default: 587 return tracing_func_proto(func_id); 588 } 589 } 590 591 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 592 struct bpf_insn_access_aux *info) 593 { 594 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 595 return false; 596 if (type != BPF_READ) 597 return false; 598 if (off % size != 0) 599 return false; 600 601 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 602 return true; 603 } 604 605 const struct bpf_verifier_ops tracepoint_prog_ops = { 606 .get_func_proto = tp_prog_func_proto, 607 .is_valid_access = tp_prog_is_valid_access, 608 }; 609 610 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 611 struct bpf_insn_access_aux *info) 612 { 613 const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data, 614 sample_period); 615 616 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 617 return false; 618 if (type != BPF_READ) 619 return false; 620 if (off % size != 0) 621 return false; 622 623 switch (off) { 624 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 625 bpf_ctx_record_field_size(info, size_sp); 626 if (!bpf_ctx_narrow_access_ok(off, size, size_sp)) 627 return false; 628 break; 629 default: 630 if (size != sizeof(long)) 631 return false; 632 } 633 634 return true; 635 } 636 637 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 638 const struct bpf_insn *si, 639 struct bpf_insn *insn_buf, 640 struct bpf_prog *prog, u32 *target_size) 641 { 642 struct bpf_insn *insn = insn_buf; 643 644 switch (si->off) { 645 case offsetof(struct bpf_perf_event_data, sample_period): 646 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 647 data), si->dst_reg, si->src_reg, 648 offsetof(struct bpf_perf_event_data_kern, data)); 649 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 650 bpf_target_off(struct perf_sample_data, period, 8, 651 target_size)); 652 break; 653 default: 654 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 655 regs), si->dst_reg, si->src_reg, 656 offsetof(struct bpf_perf_event_data_kern, regs)); 657 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 658 si->off); 659 break; 660 } 661 662 return insn - insn_buf; 663 } 664 665 const struct bpf_verifier_ops perf_event_prog_ops = { 666 .get_func_proto = tp_prog_func_proto, 667 .is_valid_access = pe_prog_is_valid_access, 668 .convert_ctx_access = pe_prog_convert_ctx_access, 669 }; 670