1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/btf.h> 11 #include <linux/filter.h> 12 #include <linux/uaccess.h> 13 #include <linux/ctype.h> 14 #include <linux/kprobes.h> 15 #include <linux/spinlock.h> 16 #include <linux/syscalls.h> 17 #include <linux/error-injection.h> 18 #include <linux/btf_ids.h> 19 #include <linux/bpf_lsm.h> 20 21 #include <net/bpf_sk_storage.h> 22 23 #include <uapi/linux/bpf.h> 24 #include <uapi/linux/btf.h> 25 26 #include <asm/tlb.h> 27 28 #include "trace_probe.h" 29 #include "trace.h" 30 31 #define CREATE_TRACE_POINTS 32 #include "bpf_trace.h" 33 34 #define bpf_event_rcu_dereference(p) \ 35 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 36 37 #ifdef CONFIG_MODULES 38 struct bpf_trace_module { 39 struct module *module; 40 struct list_head list; 41 }; 42 43 static LIST_HEAD(bpf_trace_modules); 44 static DEFINE_MUTEX(bpf_module_mutex); 45 46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 47 { 48 struct bpf_raw_event_map *btp, *ret = NULL; 49 struct bpf_trace_module *btm; 50 unsigned int i; 51 52 mutex_lock(&bpf_module_mutex); 53 list_for_each_entry(btm, &bpf_trace_modules, list) { 54 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 55 btp = &btm->module->bpf_raw_events[i]; 56 if (!strcmp(btp->tp->name, name)) { 57 if (try_module_get(btm->module)) 58 ret = btp; 59 goto out; 60 } 61 } 62 } 63 out: 64 mutex_unlock(&bpf_module_mutex); 65 return ret; 66 } 67 #else 68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 69 { 70 return NULL; 71 } 72 #endif /* CONFIG_MODULES */ 73 74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 76 77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 78 u64 flags, const struct btf **btf, 79 s32 *btf_id); 80 81 /** 82 * trace_call_bpf - invoke BPF program 83 * @call: tracepoint event 84 * @ctx: opaque context pointer 85 * 86 * kprobe handlers execute BPF programs via this helper. 87 * Can be used from static tracepoints in the future. 88 * 89 * Return: BPF programs always return an integer which is interpreted by 90 * kprobe handler as: 91 * 0 - return from kprobe (event is filtered out) 92 * 1 - store kprobe event into ring buffer 93 * Other values are reserved and currently alias to 1 94 */ 95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 96 { 97 unsigned int ret; 98 99 cant_sleep(); 100 101 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 102 /* 103 * since some bpf program is already running on this cpu, 104 * don't call into another bpf program (same or different) 105 * and don't send kprobe event into ring-buffer, 106 * so return zero here 107 */ 108 ret = 0; 109 goto out; 110 } 111 112 /* 113 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 114 * to all call sites, we did a bpf_prog_array_valid() there to check 115 * whether call->prog_array is empty or not, which is 116 * a heuristic to speed up execution. 117 * 118 * If bpf_prog_array_valid() fetched prog_array was 119 * non-NULL, we go into trace_call_bpf() and do the actual 120 * proper rcu_dereference() under RCU lock. 121 * If it turns out that prog_array is NULL then, we bail out. 122 * For the opposite, if the bpf_prog_array_valid() fetched pointer 123 * was NULL, you'll skip the prog_array with the risk of missing 124 * out of events when it was updated in between this and the 125 * rcu_dereference() which is accepted risk. 126 */ 127 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 128 129 out: 130 __this_cpu_dec(bpf_prog_active); 131 132 return ret; 133 } 134 135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 137 { 138 regs_set_return_value(regs, rc); 139 override_function_with_return(regs); 140 return 0; 141 } 142 143 static const struct bpf_func_proto bpf_override_return_proto = { 144 .func = bpf_override_return, 145 .gpl_only = true, 146 .ret_type = RET_INTEGER, 147 .arg1_type = ARG_PTR_TO_CTX, 148 .arg2_type = ARG_ANYTHING, 149 }; 150 #endif 151 152 static __always_inline int 153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 154 { 155 int ret; 156 157 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 158 if (unlikely(ret < 0)) 159 memset(dst, 0, size); 160 return ret; 161 } 162 163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 164 const void __user *, unsafe_ptr) 165 { 166 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 167 } 168 169 const struct bpf_func_proto bpf_probe_read_user_proto = { 170 .func = bpf_probe_read_user, 171 .gpl_only = true, 172 .ret_type = RET_INTEGER, 173 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 174 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 175 .arg3_type = ARG_ANYTHING, 176 }; 177 178 static __always_inline int 179 bpf_probe_read_user_str_common(void *dst, u32 size, 180 const void __user *unsafe_ptr) 181 { 182 int ret; 183 184 /* 185 * NB: We rely on strncpy_from_user() not copying junk past the NUL 186 * terminator into `dst`. 187 * 188 * strncpy_from_user() does long-sized strides in the fast path. If the 189 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 190 * then there could be junk after the NUL in `dst`. If user takes `dst` 191 * and keys a hash map with it, then semantically identical strings can 192 * occupy multiple entries in the map. 193 */ 194 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 195 if (unlikely(ret < 0)) 196 memset(dst, 0, size); 197 return ret; 198 } 199 200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 201 const void __user *, unsafe_ptr) 202 { 203 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 204 } 205 206 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 207 .func = bpf_probe_read_user_str, 208 .gpl_only = true, 209 .ret_type = RET_INTEGER, 210 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 211 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 212 .arg3_type = ARG_ANYTHING, 213 }; 214 215 static __always_inline int 216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 217 { 218 int ret; 219 220 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 221 if (unlikely(ret < 0)) 222 memset(dst, 0, size); 223 return ret; 224 } 225 226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 227 const void *, unsafe_ptr) 228 { 229 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 230 } 231 232 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 233 .func = bpf_probe_read_kernel, 234 .gpl_only = true, 235 .ret_type = RET_INTEGER, 236 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 237 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 238 .arg3_type = ARG_ANYTHING, 239 }; 240 241 static __always_inline int 242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 243 { 244 int ret; 245 246 /* 247 * The strncpy_from_kernel_nofault() call will likely not fill the 248 * entire buffer, but that's okay in this circumstance as we're probing 249 * arbitrary memory anyway similar to bpf_probe_read_*() and might 250 * as well probe the stack. Thus, memory is explicitly cleared 251 * only in error case, so that improper users ignoring return 252 * code altogether don't copy garbage; otherwise length of string 253 * is returned that can be used for bpf_perf_event_output() et al. 254 */ 255 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 256 if (unlikely(ret < 0)) 257 memset(dst, 0, size); 258 return ret; 259 } 260 261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 262 const void *, unsafe_ptr) 263 { 264 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 265 } 266 267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 268 .func = bpf_probe_read_kernel_str, 269 .gpl_only = true, 270 .ret_type = RET_INTEGER, 271 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 272 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 273 .arg3_type = ARG_ANYTHING, 274 }; 275 276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 278 const void *, unsafe_ptr) 279 { 280 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 281 return bpf_probe_read_user_common(dst, size, 282 (__force void __user *)unsafe_ptr); 283 } 284 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 285 } 286 287 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 288 .func = bpf_probe_read_compat, 289 .gpl_only = true, 290 .ret_type = RET_INTEGER, 291 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 292 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 293 .arg3_type = ARG_ANYTHING, 294 }; 295 296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 297 const void *, unsafe_ptr) 298 { 299 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 300 return bpf_probe_read_user_str_common(dst, size, 301 (__force void __user *)unsafe_ptr); 302 } 303 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 304 } 305 306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 307 .func = bpf_probe_read_compat_str, 308 .gpl_only = true, 309 .ret_type = RET_INTEGER, 310 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 311 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 312 .arg3_type = ARG_ANYTHING, 313 }; 314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 315 316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 317 u32, size) 318 { 319 /* 320 * Ensure we're in user context which is safe for the helper to 321 * run. This helper has no business in a kthread. 322 * 323 * access_ok() should prevent writing to non-user memory, but in 324 * some situations (nommu, temporary switch, etc) access_ok() does 325 * not provide enough validation, hence the check on KERNEL_DS. 326 * 327 * nmi_uaccess_okay() ensures the probe is not run in an interim 328 * state, when the task or mm are switched. This is specifically 329 * required to prevent the use of temporary mm. 330 */ 331 332 if (unlikely(in_interrupt() || 333 current->flags & (PF_KTHREAD | PF_EXITING))) 334 return -EPERM; 335 if (unlikely(uaccess_kernel())) 336 return -EPERM; 337 if (unlikely(!nmi_uaccess_okay())) 338 return -EPERM; 339 340 return copy_to_user_nofault(unsafe_ptr, src, size); 341 } 342 343 static const struct bpf_func_proto bpf_probe_write_user_proto = { 344 .func = bpf_probe_write_user, 345 .gpl_only = true, 346 .ret_type = RET_INTEGER, 347 .arg1_type = ARG_ANYTHING, 348 .arg2_type = ARG_PTR_TO_MEM, 349 .arg3_type = ARG_CONST_SIZE, 350 }; 351 352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 353 { 354 if (!capable(CAP_SYS_ADMIN)) 355 return NULL; 356 357 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 358 current->comm, task_pid_nr(current)); 359 360 return &bpf_probe_write_user_proto; 361 } 362 363 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 364 365 #define MAX_TRACE_PRINTK_VARARGS 3 366 #define BPF_TRACE_PRINTK_SIZE 1024 367 368 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 369 u64, arg2, u64, arg3) 370 { 371 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 372 u32 *bin_args; 373 static char buf[BPF_TRACE_PRINTK_SIZE]; 374 unsigned long flags; 375 int ret; 376 377 ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args, 378 MAX_TRACE_PRINTK_VARARGS); 379 if (ret < 0) 380 return ret; 381 382 raw_spin_lock_irqsave(&trace_printk_lock, flags); 383 ret = bstr_printf(buf, sizeof(buf), fmt, bin_args); 384 385 trace_bpf_trace_printk(buf); 386 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 387 388 bpf_bprintf_cleanup(); 389 390 return ret; 391 } 392 393 static const struct bpf_func_proto bpf_trace_printk_proto = { 394 .func = bpf_trace_printk, 395 .gpl_only = true, 396 .ret_type = RET_INTEGER, 397 .arg1_type = ARG_PTR_TO_MEM, 398 .arg2_type = ARG_CONST_SIZE, 399 }; 400 401 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 402 { 403 /* 404 * This program might be calling bpf_trace_printk, 405 * so enable the associated bpf_trace/bpf_trace_printk event. 406 * Repeat this each time as it is possible a user has 407 * disabled bpf_trace_printk events. By loading a program 408 * calling bpf_trace_printk() however the user has expressed 409 * the intent to see such events. 410 */ 411 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 412 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 413 414 return &bpf_trace_printk_proto; 415 } 416 417 #define MAX_SEQ_PRINTF_VARARGS 12 418 419 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 420 const void *, data, u32, data_len) 421 { 422 int err, num_args; 423 u32 *bin_args; 424 425 if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 || 426 (data_len && !data)) 427 return -EINVAL; 428 num_args = data_len / 8; 429 430 err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args); 431 if (err < 0) 432 return err; 433 434 seq_bprintf(m, fmt, bin_args); 435 436 bpf_bprintf_cleanup(); 437 438 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 439 } 440 441 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 442 443 static const struct bpf_func_proto bpf_seq_printf_proto = { 444 .func = bpf_seq_printf, 445 .gpl_only = true, 446 .ret_type = RET_INTEGER, 447 .arg1_type = ARG_PTR_TO_BTF_ID, 448 .arg1_btf_id = &btf_seq_file_ids[0], 449 .arg2_type = ARG_PTR_TO_MEM, 450 .arg3_type = ARG_CONST_SIZE, 451 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 452 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 453 }; 454 455 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 456 { 457 return seq_write(m, data, len) ? -EOVERFLOW : 0; 458 } 459 460 static const struct bpf_func_proto bpf_seq_write_proto = { 461 .func = bpf_seq_write, 462 .gpl_only = true, 463 .ret_type = RET_INTEGER, 464 .arg1_type = ARG_PTR_TO_BTF_ID, 465 .arg1_btf_id = &btf_seq_file_ids[0], 466 .arg2_type = ARG_PTR_TO_MEM, 467 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 468 }; 469 470 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 471 u32, btf_ptr_size, u64, flags) 472 { 473 const struct btf *btf; 474 s32 btf_id; 475 int ret; 476 477 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 478 if (ret) 479 return ret; 480 481 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 482 } 483 484 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 485 .func = bpf_seq_printf_btf, 486 .gpl_only = true, 487 .ret_type = RET_INTEGER, 488 .arg1_type = ARG_PTR_TO_BTF_ID, 489 .arg1_btf_id = &btf_seq_file_ids[0], 490 .arg2_type = ARG_PTR_TO_MEM, 491 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 492 .arg4_type = ARG_ANYTHING, 493 }; 494 495 static __always_inline int 496 get_map_perf_counter(struct bpf_map *map, u64 flags, 497 u64 *value, u64 *enabled, u64 *running) 498 { 499 struct bpf_array *array = container_of(map, struct bpf_array, map); 500 unsigned int cpu = smp_processor_id(); 501 u64 index = flags & BPF_F_INDEX_MASK; 502 struct bpf_event_entry *ee; 503 504 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 505 return -EINVAL; 506 if (index == BPF_F_CURRENT_CPU) 507 index = cpu; 508 if (unlikely(index >= array->map.max_entries)) 509 return -E2BIG; 510 511 ee = READ_ONCE(array->ptrs[index]); 512 if (!ee) 513 return -ENOENT; 514 515 return perf_event_read_local(ee->event, value, enabled, running); 516 } 517 518 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 519 { 520 u64 value = 0; 521 int err; 522 523 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 524 /* 525 * this api is ugly since we miss [-22..-2] range of valid 526 * counter values, but that's uapi 527 */ 528 if (err) 529 return err; 530 return value; 531 } 532 533 static const struct bpf_func_proto bpf_perf_event_read_proto = { 534 .func = bpf_perf_event_read, 535 .gpl_only = true, 536 .ret_type = RET_INTEGER, 537 .arg1_type = ARG_CONST_MAP_PTR, 538 .arg2_type = ARG_ANYTHING, 539 }; 540 541 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 542 struct bpf_perf_event_value *, buf, u32, size) 543 { 544 int err = -EINVAL; 545 546 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 547 goto clear; 548 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 549 &buf->running); 550 if (unlikely(err)) 551 goto clear; 552 return 0; 553 clear: 554 memset(buf, 0, size); 555 return err; 556 } 557 558 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 559 .func = bpf_perf_event_read_value, 560 .gpl_only = true, 561 .ret_type = RET_INTEGER, 562 .arg1_type = ARG_CONST_MAP_PTR, 563 .arg2_type = ARG_ANYTHING, 564 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 565 .arg4_type = ARG_CONST_SIZE, 566 }; 567 568 static __always_inline u64 569 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 570 u64 flags, struct perf_sample_data *sd) 571 { 572 struct bpf_array *array = container_of(map, struct bpf_array, map); 573 unsigned int cpu = smp_processor_id(); 574 u64 index = flags & BPF_F_INDEX_MASK; 575 struct bpf_event_entry *ee; 576 struct perf_event *event; 577 578 if (index == BPF_F_CURRENT_CPU) 579 index = cpu; 580 if (unlikely(index >= array->map.max_entries)) 581 return -E2BIG; 582 583 ee = READ_ONCE(array->ptrs[index]); 584 if (!ee) 585 return -ENOENT; 586 587 event = ee->event; 588 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 589 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 590 return -EINVAL; 591 592 if (unlikely(event->oncpu != cpu)) 593 return -EOPNOTSUPP; 594 595 return perf_event_output(event, sd, regs); 596 } 597 598 /* 599 * Support executing tracepoints in normal, irq, and nmi context that each call 600 * bpf_perf_event_output 601 */ 602 struct bpf_trace_sample_data { 603 struct perf_sample_data sds[3]; 604 }; 605 606 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 607 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 608 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 609 u64, flags, void *, data, u64, size) 610 { 611 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 612 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 613 struct perf_raw_record raw = { 614 .frag = { 615 .size = size, 616 .data = data, 617 }, 618 }; 619 struct perf_sample_data *sd; 620 int err; 621 622 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 623 err = -EBUSY; 624 goto out; 625 } 626 627 sd = &sds->sds[nest_level - 1]; 628 629 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 630 err = -EINVAL; 631 goto out; 632 } 633 634 perf_sample_data_init(sd, 0, 0); 635 sd->raw = &raw; 636 637 err = __bpf_perf_event_output(regs, map, flags, sd); 638 639 out: 640 this_cpu_dec(bpf_trace_nest_level); 641 return err; 642 } 643 644 static const struct bpf_func_proto bpf_perf_event_output_proto = { 645 .func = bpf_perf_event_output, 646 .gpl_only = true, 647 .ret_type = RET_INTEGER, 648 .arg1_type = ARG_PTR_TO_CTX, 649 .arg2_type = ARG_CONST_MAP_PTR, 650 .arg3_type = ARG_ANYTHING, 651 .arg4_type = ARG_PTR_TO_MEM, 652 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 653 }; 654 655 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 656 struct bpf_nested_pt_regs { 657 struct pt_regs regs[3]; 658 }; 659 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 661 662 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 663 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 664 { 665 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 666 struct perf_raw_frag frag = { 667 .copy = ctx_copy, 668 .size = ctx_size, 669 .data = ctx, 670 }; 671 struct perf_raw_record raw = { 672 .frag = { 673 { 674 .next = ctx_size ? &frag : NULL, 675 }, 676 .size = meta_size, 677 .data = meta, 678 }, 679 }; 680 struct perf_sample_data *sd; 681 struct pt_regs *regs; 682 u64 ret; 683 684 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 685 ret = -EBUSY; 686 goto out; 687 } 688 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 689 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 690 691 perf_fetch_caller_regs(regs); 692 perf_sample_data_init(sd, 0, 0); 693 sd->raw = &raw; 694 695 ret = __bpf_perf_event_output(regs, map, flags, sd); 696 out: 697 this_cpu_dec(bpf_event_output_nest_level); 698 return ret; 699 } 700 701 BPF_CALL_0(bpf_get_current_task) 702 { 703 return (long) current; 704 } 705 706 const struct bpf_func_proto bpf_get_current_task_proto = { 707 .func = bpf_get_current_task, 708 .gpl_only = true, 709 .ret_type = RET_INTEGER, 710 }; 711 712 BPF_CALL_0(bpf_get_current_task_btf) 713 { 714 return (unsigned long) current; 715 } 716 717 BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct) 718 719 static const struct bpf_func_proto bpf_get_current_task_btf_proto = { 720 .func = bpf_get_current_task_btf, 721 .gpl_only = true, 722 .ret_type = RET_PTR_TO_BTF_ID, 723 .ret_btf_id = &bpf_get_current_btf_ids[0], 724 }; 725 726 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 727 { 728 struct bpf_array *array = container_of(map, struct bpf_array, map); 729 struct cgroup *cgrp; 730 731 if (unlikely(idx >= array->map.max_entries)) 732 return -E2BIG; 733 734 cgrp = READ_ONCE(array->ptrs[idx]); 735 if (unlikely(!cgrp)) 736 return -EAGAIN; 737 738 return task_under_cgroup_hierarchy(current, cgrp); 739 } 740 741 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 742 .func = bpf_current_task_under_cgroup, 743 .gpl_only = false, 744 .ret_type = RET_INTEGER, 745 .arg1_type = ARG_CONST_MAP_PTR, 746 .arg2_type = ARG_ANYTHING, 747 }; 748 749 struct send_signal_irq_work { 750 struct irq_work irq_work; 751 struct task_struct *task; 752 u32 sig; 753 enum pid_type type; 754 }; 755 756 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 757 758 static void do_bpf_send_signal(struct irq_work *entry) 759 { 760 struct send_signal_irq_work *work; 761 762 work = container_of(entry, struct send_signal_irq_work, irq_work); 763 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 764 } 765 766 static int bpf_send_signal_common(u32 sig, enum pid_type type) 767 { 768 struct send_signal_irq_work *work = NULL; 769 770 /* Similar to bpf_probe_write_user, task needs to be 771 * in a sound condition and kernel memory access be 772 * permitted in order to send signal to the current 773 * task. 774 */ 775 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 776 return -EPERM; 777 if (unlikely(uaccess_kernel())) 778 return -EPERM; 779 if (unlikely(!nmi_uaccess_okay())) 780 return -EPERM; 781 782 if (irqs_disabled()) { 783 /* Do an early check on signal validity. Otherwise, 784 * the error is lost in deferred irq_work. 785 */ 786 if (unlikely(!valid_signal(sig))) 787 return -EINVAL; 788 789 work = this_cpu_ptr(&send_signal_work); 790 if (irq_work_is_busy(&work->irq_work)) 791 return -EBUSY; 792 793 /* Add the current task, which is the target of sending signal, 794 * to the irq_work. The current task may change when queued 795 * irq works get executed. 796 */ 797 work->task = current; 798 work->sig = sig; 799 work->type = type; 800 irq_work_queue(&work->irq_work); 801 return 0; 802 } 803 804 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 805 } 806 807 BPF_CALL_1(bpf_send_signal, u32, sig) 808 { 809 return bpf_send_signal_common(sig, PIDTYPE_TGID); 810 } 811 812 static const struct bpf_func_proto bpf_send_signal_proto = { 813 .func = bpf_send_signal, 814 .gpl_only = false, 815 .ret_type = RET_INTEGER, 816 .arg1_type = ARG_ANYTHING, 817 }; 818 819 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 820 { 821 return bpf_send_signal_common(sig, PIDTYPE_PID); 822 } 823 824 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 825 .func = bpf_send_signal_thread, 826 .gpl_only = false, 827 .ret_type = RET_INTEGER, 828 .arg1_type = ARG_ANYTHING, 829 }; 830 831 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 832 { 833 long len; 834 char *p; 835 836 if (!sz) 837 return 0; 838 839 p = d_path(path, buf, sz); 840 if (IS_ERR(p)) { 841 len = PTR_ERR(p); 842 } else { 843 len = buf + sz - p; 844 memmove(buf, p, len); 845 } 846 847 return len; 848 } 849 850 BTF_SET_START(btf_allowlist_d_path) 851 #ifdef CONFIG_SECURITY 852 BTF_ID(func, security_file_permission) 853 BTF_ID(func, security_inode_getattr) 854 BTF_ID(func, security_file_open) 855 #endif 856 #ifdef CONFIG_SECURITY_PATH 857 BTF_ID(func, security_path_truncate) 858 #endif 859 BTF_ID(func, vfs_truncate) 860 BTF_ID(func, vfs_fallocate) 861 BTF_ID(func, dentry_open) 862 BTF_ID(func, vfs_getattr) 863 BTF_ID(func, filp_close) 864 BTF_SET_END(btf_allowlist_d_path) 865 866 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 867 { 868 if (prog->type == BPF_PROG_TYPE_TRACING && 869 prog->expected_attach_type == BPF_TRACE_ITER) 870 return true; 871 872 if (prog->type == BPF_PROG_TYPE_LSM) 873 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 874 875 return btf_id_set_contains(&btf_allowlist_d_path, 876 prog->aux->attach_btf_id); 877 } 878 879 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 880 881 static const struct bpf_func_proto bpf_d_path_proto = { 882 .func = bpf_d_path, 883 .gpl_only = false, 884 .ret_type = RET_INTEGER, 885 .arg1_type = ARG_PTR_TO_BTF_ID, 886 .arg1_btf_id = &bpf_d_path_btf_ids[0], 887 .arg2_type = ARG_PTR_TO_MEM, 888 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 889 .allowed = bpf_d_path_allowed, 890 }; 891 892 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 893 BTF_F_PTR_RAW | BTF_F_ZERO) 894 895 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 896 u64 flags, const struct btf **btf, 897 s32 *btf_id) 898 { 899 const struct btf_type *t; 900 901 if (unlikely(flags & ~(BTF_F_ALL))) 902 return -EINVAL; 903 904 if (btf_ptr_size != sizeof(struct btf_ptr)) 905 return -EINVAL; 906 907 *btf = bpf_get_btf_vmlinux(); 908 909 if (IS_ERR_OR_NULL(*btf)) 910 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 911 912 if (ptr->type_id > 0) 913 *btf_id = ptr->type_id; 914 else 915 return -EINVAL; 916 917 if (*btf_id > 0) 918 t = btf_type_by_id(*btf, *btf_id); 919 if (*btf_id <= 0 || !t) 920 return -ENOENT; 921 922 return 0; 923 } 924 925 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 926 u32, btf_ptr_size, u64, flags) 927 { 928 const struct btf *btf; 929 s32 btf_id; 930 int ret; 931 932 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 933 if (ret) 934 return ret; 935 936 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 937 flags); 938 } 939 940 const struct bpf_func_proto bpf_snprintf_btf_proto = { 941 .func = bpf_snprintf_btf, 942 .gpl_only = false, 943 .ret_type = RET_INTEGER, 944 .arg1_type = ARG_PTR_TO_MEM, 945 .arg2_type = ARG_CONST_SIZE, 946 .arg3_type = ARG_PTR_TO_MEM, 947 .arg4_type = ARG_CONST_SIZE, 948 .arg5_type = ARG_ANYTHING, 949 }; 950 951 const struct bpf_func_proto * 952 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 953 { 954 switch (func_id) { 955 case BPF_FUNC_map_lookup_elem: 956 return &bpf_map_lookup_elem_proto; 957 case BPF_FUNC_map_update_elem: 958 return &bpf_map_update_elem_proto; 959 case BPF_FUNC_map_delete_elem: 960 return &bpf_map_delete_elem_proto; 961 case BPF_FUNC_map_push_elem: 962 return &bpf_map_push_elem_proto; 963 case BPF_FUNC_map_pop_elem: 964 return &bpf_map_pop_elem_proto; 965 case BPF_FUNC_map_peek_elem: 966 return &bpf_map_peek_elem_proto; 967 case BPF_FUNC_ktime_get_ns: 968 return &bpf_ktime_get_ns_proto; 969 case BPF_FUNC_ktime_get_boot_ns: 970 return &bpf_ktime_get_boot_ns_proto; 971 case BPF_FUNC_ktime_get_coarse_ns: 972 return &bpf_ktime_get_coarse_ns_proto; 973 case BPF_FUNC_tail_call: 974 return &bpf_tail_call_proto; 975 case BPF_FUNC_get_current_pid_tgid: 976 return &bpf_get_current_pid_tgid_proto; 977 case BPF_FUNC_get_current_task: 978 return &bpf_get_current_task_proto; 979 case BPF_FUNC_get_current_task_btf: 980 return &bpf_get_current_task_btf_proto; 981 case BPF_FUNC_get_current_uid_gid: 982 return &bpf_get_current_uid_gid_proto; 983 case BPF_FUNC_get_current_comm: 984 return &bpf_get_current_comm_proto; 985 case BPF_FUNC_trace_printk: 986 return bpf_get_trace_printk_proto(); 987 case BPF_FUNC_get_smp_processor_id: 988 return &bpf_get_smp_processor_id_proto; 989 case BPF_FUNC_get_numa_node_id: 990 return &bpf_get_numa_node_id_proto; 991 case BPF_FUNC_perf_event_read: 992 return &bpf_perf_event_read_proto; 993 case BPF_FUNC_current_task_under_cgroup: 994 return &bpf_current_task_under_cgroup_proto; 995 case BPF_FUNC_get_prandom_u32: 996 return &bpf_get_prandom_u32_proto; 997 case BPF_FUNC_probe_write_user: 998 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 999 NULL : bpf_get_probe_write_proto(); 1000 case BPF_FUNC_probe_read_user: 1001 return &bpf_probe_read_user_proto; 1002 case BPF_FUNC_probe_read_kernel: 1003 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1004 NULL : &bpf_probe_read_kernel_proto; 1005 case BPF_FUNC_probe_read_user_str: 1006 return &bpf_probe_read_user_str_proto; 1007 case BPF_FUNC_probe_read_kernel_str: 1008 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1009 NULL : &bpf_probe_read_kernel_str_proto; 1010 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1011 case BPF_FUNC_probe_read: 1012 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1013 NULL : &bpf_probe_read_compat_proto; 1014 case BPF_FUNC_probe_read_str: 1015 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1016 NULL : &bpf_probe_read_compat_str_proto; 1017 #endif 1018 #ifdef CONFIG_CGROUPS 1019 case BPF_FUNC_get_current_cgroup_id: 1020 return &bpf_get_current_cgroup_id_proto; 1021 case BPF_FUNC_get_current_ancestor_cgroup_id: 1022 return &bpf_get_current_ancestor_cgroup_id_proto; 1023 #endif 1024 case BPF_FUNC_send_signal: 1025 return &bpf_send_signal_proto; 1026 case BPF_FUNC_send_signal_thread: 1027 return &bpf_send_signal_thread_proto; 1028 case BPF_FUNC_perf_event_read_value: 1029 return &bpf_perf_event_read_value_proto; 1030 case BPF_FUNC_get_ns_current_pid_tgid: 1031 return &bpf_get_ns_current_pid_tgid_proto; 1032 case BPF_FUNC_ringbuf_output: 1033 return &bpf_ringbuf_output_proto; 1034 case BPF_FUNC_ringbuf_reserve: 1035 return &bpf_ringbuf_reserve_proto; 1036 case BPF_FUNC_ringbuf_submit: 1037 return &bpf_ringbuf_submit_proto; 1038 case BPF_FUNC_ringbuf_discard: 1039 return &bpf_ringbuf_discard_proto; 1040 case BPF_FUNC_ringbuf_query: 1041 return &bpf_ringbuf_query_proto; 1042 case BPF_FUNC_jiffies64: 1043 return &bpf_jiffies64_proto; 1044 case BPF_FUNC_get_task_stack: 1045 return &bpf_get_task_stack_proto; 1046 case BPF_FUNC_copy_from_user: 1047 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL; 1048 case BPF_FUNC_snprintf_btf: 1049 return &bpf_snprintf_btf_proto; 1050 case BPF_FUNC_per_cpu_ptr: 1051 return &bpf_per_cpu_ptr_proto; 1052 case BPF_FUNC_this_cpu_ptr: 1053 return &bpf_this_cpu_ptr_proto; 1054 case BPF_FUNC_task_storage_get: 1055 return &bpf_task_storage_get_proto; 1056 case BPF_FUNC_task_storage_delete: 1057 return &bpf_task_storage_delete_proto; 1058 case BPF_FUNC_for_each_map_elem: 1059 return &bpf_for_each_map_elem_proto; 1060 case BPF_FUNC_snprintf: 1061 return &bpf_snprintf_proto; 1062 default: 1063 return NULL; 1064 } 1065 } 1066 1067 static const struct bpf_func_proto * 1068 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1069 { 1070 switch (func_id) { 1071 case BPF_FUNC_perf_event_output: 1072 return &bpf_perf_event_output_proto; 1073 case BPF_FUNC_get_stackid: 1074 return &bpf_get_stackid_proto; 1075 case BPF_FUNC_get_stack: 1076 return &bpf_get_stack_proto; 1077 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1078 case BPF_FUNC_override_return: 1079 return &bpf_override_return_proto; 1080 #endif 1081 default: 1082 return bpf_tracing_func_proto(func_id, prog); 1083 } 1084 } 1085 1086 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1087 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1088 const struct bpf_prog *prog, 1089 struct bpf_insn_access_aux *info) 1090 { 1091 if (off < 0 || off >= sizeof(struct pt_regs)) 1092 return false; 1093 if (type != BPF_READ) 1094 return false; 1095 if (off % size != 0) 1096 return false; 1097 /* 1098 * Assertion for 32 bit to make sure last 8 byte access 1099 * (BPF_DW) to the last 4 byte member is disallowed. 1100 */ 1101 if (off + size > sizeof(struct pt_regs)) 1102 return false; 1103 1104 return true; 1105 } 1106 1107 const struct bpf_verifier_ops kprobe_verifier_ops = { 1108 .get_func_proto = kprobe_prog_func_proto, 1109 .is_valid_access = kprobe_prog_is_valid_access, 1110 }; 1111 1112 const struct bpf_prog_ops kprobe_prog_ops = { 1113 }; 1114 1115 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1116 u64, flags, void *, data, u64, size) 1117 { 1118 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1119 1120 /* 1121 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1122 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1123 * from there and call the same bpf_perf_event_output() helper inline. 1124 */ 1125 return ____bpf_perf_event_output(regs, map, flags, data, size); 1126 } 1127 1128 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1129 .func = bpf_perf_event_output_tp, 1130 .gpl_only = true, 1131 .ret_type = RET_INTEGER, 1132 .arg1_type = ARG_PTR_TO_CTX, 1133 .arg2_type = ARG_CONST_MAP_PTR, 1134 .arg3_type = ARG_ANYTHING, 1135 .arg4_type = ARG_PTR_TO_MEM, 1136 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1137 }; 1138 1139 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1140 u64, flags) 1141 { 1142 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1143 1144 /* 1145 * Same comment as in bpf_perf_event_output_tp(), only that this time 1146 * the other helper's function body cannot be inlined due to being 1147 * external, thus we need to call raw helper function. 1148 */ 1149 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1150 flags, 0, 0); 1151 } 1152 1153 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1154 .func = bpf_get_stackid_tp, 1155 .gpl_only = true, 1156 .ret_type = RET_INTEGER, 1157 .arg1_type = ARG_PTR_TO_CTX, 1158 .arg2_type = ARG_CONST_MAP_PTR, 1159 .arg3_type = ARG_ANYTHING, 1160 }; 1161 1162 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1163 u64, flags) 1164 { 1165 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1166 1167 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1168 (unsigned long) size, flags, 0); 1169 } 1170 1171 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1172 .func = bpf_get_stack_tp, 1173 .gpl_only = true, 1174 .ret_type = RET_INTEGER, 1175 .arg1_type = ARG_PTR_TO_CTX, 1176 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1177 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1178 .arg4_type = ARG_ANYTHING, 1179 }; 1180 1181 static const struct bpf_func_proto * 1182 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1183 { 1184 switch (func_id) { 1185 case BPF_FUNC_perf_event_output: 1186 return &bpf_perf_event_output_proto_tp; 1187 case BPF_FUNC_get_stackid: 1188 return &bpf_get_stackid_proto_tp; 1189 case BPF_FUNC_get_stack: 1190 return &bpf_get_stack_proto_tp; 1191 default: 1192 return bpf_tracing_func_proto(func_id, prog); 1193 } 1194 } 1195 1196 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1197 const struct bpf_prog *prog, 1198 struct bpf_insn_access_aux *info) 1199 { 1200 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1201 return false; 1202 if (type != BPF_READ) 1203 return false; 1204 if (off % size != 0) 1205 return false; 1206 1207 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1208 return true; 1209 } 1210 1211 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1212 .get_func_proto = tp_prog_func_proto, 1213 .is_valid_access = tp_prog_is_valid_access, 1214 }; 1215 1216 const struct bpf_prog_ops tracepoint_prog_ops = { 1217 }; 1218 1219 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1220 struct bpf_perf_event_value *, buf, u32, size) 1221 { 1222 int err = -EINVAL; 1223 1224 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1225 goto clear; 1226 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1227 &buf->running); 1228 if (unlikely(err)) 1229 goto clear; 1230 return 0; 1231 clear: 1232 memset(buf, 0, size); 1233 return err; 1234 } 1235 1236 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1237 .func = bpf_perf_prog_read_value, 1238 .gpl_only = true, 1239 .ret_type = RET_INTEGER, 1240 .arg1_type = ARG_PTR_TO_CTX, 1241 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1242 .arg3_type = ARG_CONST_SIZE, 1243 }; 1244 1245 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1246 void *, buf, u32, size, u64, flags) 1247 { 1248 #ifndef CONFIG_X86 1249 return -ENOENT; 1250 #else 1251 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1252 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1253 u32 to_copy; 1254 1255 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1256 return -EINVAL; 1257 1258 if (unlikely(!br_stack)) 1259 return -EINVAL; 1260 1261 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1262 return br_stack->nr * br_entry_size; 1263 1264 if (!buf || (size % br_entry_size != 0)) 1265 return -EINVAL; 1266 1267 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1268 memcpy(buf, br_stack->entries, to_copy); 1269 1270 return to_copy; 1271 #endif 1272 } 1273 1274 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1275 .func = bpf_read_branch_records, 1276 .gpl_only = true, 1277 .ret_type = RET_INTEGER, 1278 .arg1_type = ARG_PTR_TO_CTX, 1279 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1280 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1281 .arg4_type = ARG_ANYTHING, 1282 }; 1283 1284 static const struct bpf_func_proto * 1285 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1286 { 1287 switch (func_id) { 1288 case BPF_FUNC_perf_event_output: 1289 return &bpf_perf_event_output_proto_tp; 1290 case BPF_FUNC_get_stackid: 1291 return &bpf_get_stackid_proto_pe; 1292 case BPF_FUNC_get_stack: 1293 return &bpf_get_stack_proto_pe; 1294 case BPF_FUNC_perf_prog_read_value: 1295 return &bpf_perf_prog_read_value_proto; 1296 case BPF_FUNC_read_branch_records: 1297 return &bpf_read_branch_records_proto; 1298 default: 1299 return bpf_tracing_func_proto(func_id, prog); 1300 } 1301 } 1302 1303 /* 1304 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1305 * to avoid potential recursive reuse issue when/if tracepoints are added 1306 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1307 * 1308 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1309 * in normal, irq, and nmi context. 1310 */ 1311 struct bpf_raw_tp_regs { 1312 struct pt_regs regs[3]; 1313 }; 1314 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1315 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1316 static struct pt_regs *get_bpf_raw_tp_regs(void) 1317 { 1318 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1319 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1320 1321 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1322 this_cpu_dec(bpf_raw_tp_nest_level); 1323 return ERR_PTR(-EBUSY); 1324 } 1325 1326 return &tp_regs->regs[nest_level - 1]; 1327 } 1328 1329 static void put_bpf_raw_tp_regs(void) 1330 { 1331 this_cpu_dec(bpf_raw_tp_nest_level); 1332 } 1333 1334 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1335 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1336 { 1337 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1338 int ret; 1339 1340 if (IS_ERR(regs)) 1341 return PTR_ERR(regs); 1342 1343 perf_fetch_caller_regs(regs); 1344 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1345 1346 put_bpf_raw_tp_regs(); 1347 return ret; 1348 } 1349 1350 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1351 .func = bpf_perf_event_output_raw_tp, 1352 .gpl_only = true, 1353 .ret_type = RET_INTEGER, 1354 .arg1_type = ARG_PTR_TO_CTX, 1355 .arg2_type = ARG_CONST_MAP_PTR, 1356 .arg3_type = ARG_ANYTHING, 1357 .arg4_type = ARG_PTR_TO_MEM, 1358 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1359 }; 1360 1361 extern const struct bpf_func_proto bpf_skb_output_proto; 1362 extern const struct bpf_func_proto bpf_xdp_output_proto; 1363 1364 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1365 struct bpf_map *, map, u64, flags) 1366 { 1367 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1368 int ret; 1369 1370 if (IS_ERR(regs)) 1371 return PTR_ERR(regs); 1372 1373 perf_fetch_caller_regs(regs); 1374 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1375 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1376 flags, 0, 0); 1377 put_bpf_raw_tp_regs(); 1378 return ret; 1379 } 1380 1381 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1382 .func = bpf_get_stackid_raw_tp, 1383 .gpl_only = true, 1384 .ret_type = RET_INTEGER, 1385 .arg1_type = ARG_PTR_TO_CTX, 1386 .arg2_type = ARG_CONST_MAP_PTR, 1387 .arg3_type = ARG_ANYTHING, 1388 }; 1389 1390 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1391 void *, buf, u32, size, u64, flags) 1392 { 1393 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1394 int ret; 1395 1396 if (IS_ERR(regs)) 1397 return PTR_ERR(regs); 1398 1399 perf_fetch_caller_regs(regs); 1400 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1401 (unsigned long) size, flags, 0); 1402 put_bpf_raw_tp_regs(); 1403 return ret; 1404 } 1405 1406 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1407 .func = bpf_get_stack_raw_tp, 1408 .gpl_only = true, 1409 .ret_type = RET_INTEGER, 1410 .arg1_type = ARG_PTR_TO_CTX, 1411 .arg2_type = ARG_PTR_TO_MEM, 1412 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1413 .arg4_type = ARG_ANYTHING, 1414 }; 1415 1416 static const struct bpf_func_proto * 1417 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1418 { 1419 switch (func_id) { 1420 case BPF_FUNC_perf_event_output: 1421 return &bpf_perf_event_output_proto_raw_tp; 1422 case BPF_FUNC_get_stackid: 1423 return &bpf_get_stackid_proto_raw_tp; 1424 case BPF_FUNC_get_stack: 1425 return &bpf_get_stack_proto_raw_tp; 1426 default: 1427 return bpf_tracing_func_proto(func_id, prog); 1428 } 1429 } 1430 1431 const struct bpf_func_proto * 1432 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1433 { 1434 switch (func_id) { 1435 #ifdef CONFIG_NET 1436 case BPF_FUNC_skb_output: 1437 return &bpf_skb_output_proto; 1438 case BPF_FUNC_xdp_output: 1439 return &bpf_xdp_output_proto; 1440 case BPF_FUNC_skc_to_tcp6_sock: 1441 return &bpf_skc_to_tcp6_sock_proto; 1442 case BPF_FUNC_skc_to_tcp_sock: 1443 return &bpf_skc_to_tcp_sock_proto; 1444 case BPF_FUNC_skc_to_tcp_timewait_sock: 1445 return &bpf_skc_to_tcp_timewait_sock_proto; 1446 case BPF_FUNC_skc_to_tcp_request_sock: 1447 return &bpf_skc_to_tcp_request_sock_proto; 1448 case BPF_FUNC_skc_to_udp6_sock: 1449 return &bpf_skc_to_udp6_sock_proto; 1450 case BPF_FUNC_sk_storage_get: 1451 return &bpf_sk_storage_get_tracing_proto; 1452 case BPF_FUNC_sk_storage_delete: 1453 return &bpf_sk_storage_delete_tracing_proto; 1454 case BPF_FUNC_sock_from_file: 1455 return &bpf_sock_from_file_proto; 1456 case BPF_FUNC_get_socket_cookie: 1457 return &bpf_get_socket_ptr_cookie_proto; 1458 #endif 1459 case BPF_FUNC_seq_printf: 1460 return prog->expected_attach_type == BPF_TRACE_ITER ? 1461 &bpf_seq_printf_proto : 1462 NULL; 1463 case BPF_FUNC_seq_write: 1464 return prog->expected_attach_type == BPF_TRACE_ITER ? 1465 &bpf_seq_write_proto : 1466 NULL; 1467 case BPF_FUNC_seq_printf_btf: 1468 return prog->expected_attach_type == BPF_TRACE_ITER ? 1469 &bpf_seq_printf_btf_proto : 1470 NULL; 1471 case BPF_FUNC_d_path: 1472 return &bpf_d_path_proto; 1473 default: 1474 return raw_tp_prog_func_proto(func_id, prog); 1475 } 1476 } 1477 1478 static bool raw_tp_prog_is_valid_access(int off, int size, 1479 enum bpf_access_type type, 1480 const struct bpf_prog *prog, 1481 struct bpf_insn_access_aux *info) 1482 { 1483 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1484 return false; 1485 if (type != BPF_READ) 1486 return false; 1487 if (off % size != 0) 1488 return false; 1489 return true; 1490 } 1491 1492 static bool tracing_prog_is_valid_access(int off, int size, 1493 enum bpf_access_type type, 1494 const struct bpf_prog *prog, 1495 struct bpf_insn_access_aux *info) 1496 { 1497 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1498 return false; 1499 if (type != BPF_READ) 1500 return false; 1501 if (off % size != 0) 1502 return false; 1503 return btf_ctx_access(off, size, type, prog, info); 1504 } 1505 1506 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1507 const union bpf_attr *kattr, 1508 union bpf_attr __user *uattr) 1509 { 1510 return -ENOTSUPP; 1511 } 1512 1513 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1514 .get_func_proto = raw_tp_prog_func_proto, 1515 .is_valid_access = raw_tp_prog_is_valid_access, 1516 }; 1517 1518 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1519 #ifdef CONFIG_NET 1520 .test_run = bpf_prog_test_run_raw_tp, 1521 #endif 1522 }; 1523 1524 const struct bpf_verifier_ops tracing_verifier_ops = { 1525 .get_func_proto = tracing_prog_func_proto, 1526 .is_valid_access = tracing_prog_is_valid_access, 1527 }; 1528 1529 const struct bpf_prog_ops tracing_prog_ops = { 1530 .test_run = bpf_prog_test_run_tracing, 1531 }; 1532 1533 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1534 enum bpf_access_type type, 1535 const struct bpf_prog *prog, 1536 struct bpf_insn_access_aux *info) 1537 { 1538 if (off == 0) { 1539 if (size != sizeof(u64) || type != BPF_READ) 1540 return false; 1541 info->reg_type = PTR_TO_TP_BUFFER; 1542 } 1543 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1544 } 1545 1546 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1547 .get_func_proto = raw_tp_prog_func_proto, 1548 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1549 }; 1550 1551 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1552 }; 1553 1554 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1555 const struct bpf_prog *prog, 1556 struct bpf_insn_access_aux *info) 1557 { 1558 const int size_u64 = sizeof(u64); 1559 1560 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1561 return false; 1562 if (type != BPF_READ) 1563 return false; 1564 if (off % size != 0) { 1565 if (sizeof(unsigned long) != 4) 1566 return false; 1567 if (size != 8) 1568 return false; 1569 if (off % size != 4) 1570 return false; 1571 } 1572 1573 switch (off) { 1574 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1575 bpf_ctx_record_field_size(info, size_u64); 1576 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1577 return false; 1578 break; 1579 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1580 bpf_ctx_record_field_size(info, size_u64); 1581 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1582 return false; 1583 break; 1584 default: 1585 if (size != sizeof(long)) 1586 return false; 1587 } 1588 1589 return true; 1590 } 1591 1592 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1593 const struct bpf_insn *si, 1594 struct bpf_insn *insn_buf, 1595 struct bpf_prog *prog, u32 *target_size) 1596 { 1597 struct bpf_insn *insn = insn_buf; 1598 1599 switch (si->off) { 1600 case offsetof(struct bpf_perf_event_data, sample_period): 1601 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1602 data), si->dst_reg, si->src_reg, 1603 offsetof(struct bpf_perf_event_data_kern, data)); 1604 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1605 bpf_target_off(struct perf_sample_data, period, 8, 1606 target_size)); 1607 break; 1608 case offsetof(struct bpf_perf_event_data, addr): 1609 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1610 data), si->dst_reg, si->src_reg, 1611 offsetof(struct bpf_perf_event_data_kern, data)); 1612 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1613 bpf_target_off(struct perf_sample_data, addr, 8, 1614 target_size)); 1615 break; 1616 default: 1617 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1618 regs), si->dst_reg, si->src_reg, 1619 offsetof(struct bpf_perf_event_data_kern, regs)); 1620 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1621 si->off); 1622 break; 1623 } 1624 1625 return insn - insn_buf; 1626 } 1627 1628 const struct bpf_verifier_ops perf_event_verifier_ops = { 1629 .get_func_proto = pe_prog_func_proto, 1630 .is_valid_access = pe_prog_is_valid_access, 1631 .convert_ctx_access = pe_prog_convert_ctx_access, 1632 }; 1633 1634 const struct bpf_prog_ops perf_event_prog_ops = { 1635 }; 1636 1637 static DEFINE_MUTEX(bpf_event_mutex); 1638 1639 #define BPF_TRACE_MAX_PROGS 64 1640 1641 int perf_event_attach_bpf_prog(struct perf_event *event, 1642 struct bpf_prog *prog) 1643 { 1644 struct bpf_prog_array *old_array; 1645 struct bpf_prog_array *new_array; 1646 int ret = -EEXIST; 1647 1648 /* 1649 * Kprobe override only works if they are on the function entry, 1650 * and only if they are on the opt-in list. 1651 */ 1652 if (prog->kprobe_override && 1653 (!trace_kprobe_on_func_entry(event->tp_event) || 1654 !trace_kprobe_error_injectable(event->tp_event))) 1655 return -EINVAL; 1656 1657 mutex_lock(&bpf_event_mutex); 1658 1659 if (event->prog) 1660 goto unlock; 1661 1662 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1663 if (old_array && 1664 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1665 ret = -E2BIG; 1666 goto unlock; 1667 } 1668 1669 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1670 if (ret < 0) 1671 goto unlock; 1672 1673 /* set the new array to event->tp_event and set event->prog */ 1674 event->prog = prog; 1675 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1676 bpf_prog_array_free(old_array); 1677 1678 unlock: 1679 mutex_unlock(&bpf_event_mutex); 1680 return ret; 1681 } 1682 1683 void perf_event_detach_bpf_prog(struct perf_event *event) 1684 { 1685 struct bpf_prog_array *old_array; 1686 struct bpf_prog_array *new_array; 1687 int ret; 1688 1689 mutex_lock(&bpf_event_mutex); 1690 1691 if (!event->prog) 1692 goto unlock; 1693 1694 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1695 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1696 if (ret == -ENOENT) 1697 goto unlock; 1698 if (ret < 0) { 1699 bpf_prog_array_delete_safe(old_array, event->prog); 1700 } else { 1701 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1702 bpf_prog_array_free(old_array); 1703 } 1704 1705 bpf_prog_put(event->prog); 1706 event->prog = NULL; 1707 1708 unlock: 1709 mutex_unlock(&bpf_event_mutex); 1710 } 1711 1712 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1713 { 1714 struct perf_event_query_bpf __user *uquery = info; 1715 struct perf_event_query_bpf query = {}; 1716 struct bpf_prog_array *progs; 1717 u32 *ids, prog_cnt, ids_len; 1718 int ret; 1719 1720 if (!perfmon_capable()) 1721 return -EPERM; 1722 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1723 return -EINVAL; 1724 if (copy_from_user(&query, uquery, sizeof(query))) 1725 return -EFAULT; 1726 1727 ids_len = query.ids_len; 1728 if (ids_len > BPF_TRACE_MAX_PROGS) 1729 return -E2BIG; 1730 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1731 if (!ids) 1732 return -ENOMEM; 1733 /* 1734 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1735 * is required when user only wants to check for uquery->prog_cnt. 1736 * There is no need to check for it since the case is handled 1737 * gracefully in bpf_prog_array_copy_info. 1738 */ 1739 1740 mutex_lock(&bpf_event_mutex); 1741 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1742 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1743 mutex_unlock(&bpf_event_mutex); 1744 1745 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1746 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1747 ret = -EFAULT; 1748 1749 kfree(ids); 1750 return ret; 1751 } 1752 1753 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1754 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1755 1756 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1757 { 1758 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1759 1760 for (; btp < __stop__bpf_raw_tp; btp++) { 1761 if (!strcmp(btp->tp->name, name)) 1762 return btp; 1763 } 1764 1765 return bpf_get_raw_tracepoint_module(name); 1766 } 1767 1768 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1769 { 1770 struct module *mod; 1771 1772 preempt_disable(); 1773 mod = __module_address((unsigned long)btp); 1774 module_put(mod); 1775 preempt_enable(); 1776 } 1777 1778 static __always_inline 1779 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1780 { 1781 cant_sleep(); 1782 rcu_read_lock(); 1783 (void) BPF_PROG_RUN(prog, args); 1784 rcu_read_unlock(); 1785 } 1786 1787 #define UNPACK(...) __VA_ARGS__ 1788 #define REPEAT_1(FN, DL, X, ...) FN(X) 1789 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1790 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1791 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1792 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1793 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1794 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1795 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1796 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1797 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1798 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1799 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1800 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1801 1802 #define SARG(X) u64 arg##X 1803 #define COPY(X) args[X] = arg##X 1804 1805 #define __DL_COM (,) 1806 #define __DL_SEM (;) 1807 1808 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1809 1810 #define BPF_TRACE_DEFN_x(x) \ 1811 void bpf_trace_run##x(struct bpf_prog *prog, \ 1812 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1813 { \ 1814 u64 args[x]; \ 1815 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1816 __bpf_trace_run(prog, args); \ 1817 } \ 1818 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1819 BPF_TRACE_DEFN_x(1); 1820 BPF_TRACE_DEFN_x(2); 1821 BPF_TRACE_DEFN_x(3); 1822 BPF_TRACE_DEFN_x(4); 1823 BPF_TRACE_DEFN_x(5); 1824 BPF_TRACE_DEFN_x(6); 1825 BPF_TRACE_DEFN_x(7); 1826 BPF_TRACE_DEFN_x(8); 1827 BPF_TRACE_DEFN_x(9); 1828 BPF_TRACE_DEFN_x(10); 1829 BPF_TRACE_DEFN_x(11); 1830 BPF_TRACE_DEFN_x(12); 1831 1832 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1833 { 1834 struct tracepoint *tp = btp->tp; 1835 1836 /* 1837 * check that program doesn't access arguments beyond what's 1838 * available in this tracepoint 1839 */ 1840 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1841 return -EINVAL; 1842 1843 if (prog->aux->max_tp_access > btp->writable_size) 1844 return -EINVAL; 1845 1846 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, 1847 prog); 1848 } 1849 1850 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1851 { 1852 return __bpf_probe_register(btp, prog); 1853 } 1854 1855 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1856 { 1857 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1858 } 1859 1860 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1861 u32 *fd_type, const char **buf, 1862 u64 *probe_offset, u64 *probe_addr) 1863 { 1864 bool is_tracepoint, is_syscall_tp; 1865 struct bpf_prog *prog; 1866 int flags, err = 0; 1867 1868 prog = event->prog; 1869 if (!prog) 1870 return -ENOENT; 1871 1872 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1873 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1874 return -EOPNOTSUPP; 1875 1876 *prog_id = prog->aux->id; 1877 flags = event->tp_event->flags; 1878 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1879 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1880 1881 if (is_tracepoint || is_syscall_tp) { 1882 *buf = is_tracepoint ? event->tp_event->tp->name 1883 : event->tp_event->name; 1884 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1885 *probe_offset = 0x0; 1886 *probe_addr = 0x0; 1887 } else { 1888 /* kprobe/uprobe */ 1889 err = -EOPNOTSUPP; 1890 #ifdef CONFIG_KPROBE_EVENTS 1891 if (flags & TRACE_EVENT_FL_KPROBE) 1892 err = bpf_get_kprobe_info(event, fd_type, buf, 1893 probe_offset, probe_addr, 1894 event->attr.type == PERF_TYPE_TRACEPOINT); 1895 #endif 1896 #ifdef CONFIG_UPROBE_EVENTS 1897 if (flags & TRACE_EVENT_FL_UPROBE) 1898 err = bpf_get_uprobe_info(event, fd_type, buf, 1899 probe_offset, 1900 event->attr.type == PERF_TYPE_TRACEPOINT); 1901 #endif 1902 } 1903 1904 return err; 1905 } 1906 1907 static int __init send_signal_irq_work_init(void) 1908 { 1909 int cpu; 1910 struct send_signal_irq_work *work; 1911 1912 for_each_possible_cpu(cpu) { 1913 work = per_cpu_ptr(&send_signal_work, cpu); 1914 init_irq_work(&work->irq_work, do_bpf_send_signal); 1915 } 1916 return 0; 1917 } 1918 1919 subsys_initcall(send_signal_irq_work_init); 1920 1921 #ifdef CONFIG_MODULES 1922 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1923 void *module) 1924 { 1925 struct bpf_trace_module *btm, *tmp; 1926 struct module *mod = module; 1927 int ret = 0; 1928 1929 if (mod->num_bpf_raw_events == 0 || 1930 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1931 goto out; 1932 1933 mutex_lock(&bpf_module_mutex); 1934 1935 switch (op) { 1936 case MODULE_STATE_COMING: 1937 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1938 if (btm) { 1939 btm->module = module; 1940 list_add(&btm->list, &bpf_trace_modules); 1941 } else { 1942 ret = -ENOMEM; 1943 } 1944 break; 1945 case MODULE_STATE_GOING: 1946 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1947 if (btm->module == module) { 1948 list_del(&btm->list); 1949 kfree(btm); 1950 break; 1951 } 1952 } 1953 break; 1954 } 1955 1956 mutex_unlock(&bpf_module_mutex); 1957 1958 out: 1959 return notifier_from_errno(ret); 1960 } 1961 1962 static struct notifier_block bpf_module_nb = { 1963 .notifier_call = bpf_event_notify, 1964 }; 1965 1966 static int __init bpf_event_init(void) 1967 { 1968 register_module_notifier(&bpf_module_nb); 1969 return 0; 1970 } 1971 1972 fs_initcall(bpf_event_init); 1973 #endif /* CONFIG_MODULES */ 1974