1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/bpf_perf_event.h> 13 #include <linux/filter.h> 14 #include <linux/uaccess.h> 15 #include <linux/ctype.h> 16 #include <linux/kprobes.h> 17 #include <linux/error-injection.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 23 24 /** 25 * trace_call_bpf - invoke BPF program 26 * @call: tracepoint event 27 * @ctx: opaque context pointer 28 * 29 * kprobe handlers execute BPF programs via this helper. 30 * Can be used from static tracepoints in the future. 31 * 32 * Return: BPF programs always return an integer which is interpreted by 33 * kprobe handler as: 34 * 0 - return from kprobe (event is filtered out) 35 * 1 - store kprobe event into ring buffer 36 * Other values are reserved and currently alias to 1 37 */ 38 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 39 { 40 unsigned int ret; 41 42 if (in_nmi()) /* not supported yet */ 43 return 1; 44 45 preempt_disable(); 46 47 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 48 /* 49 * since some bpf program is already running on this cpu, 50 * don't call into another bpf program (same or different) 51 * and don't send kprobe event into ring-buffer, 52 * so return zero here 53 */ 54 ret = 0; 55 goto out; 56 } 57 58 /* 59 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 60 * to all call sites, we did a bpf_prog_array_valid() there to check 61 * whether call->prog_array is empty or not, which is 62 * a heurisitc to speed up execution. 63 * 64 * If bpf_prog_array_valid() fetched prog_array was 65 * non-NULL, we go into trace_call_bpf() and do the actual 66 * proper rcu_dereference() under RCU lock. 67 * If it turns out that prog_array is NULL then, we bail out. 68 * For the opposite, if the bpf_prog_array_valid() fetched pointer 69 * was NULL, you'll skip the prog_array with the risk of missing 70 * out of events when it was updated in between this and the 71 * rcu_dereference() which is accepted risk. 72 */ 73 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 74 75 out: 76 __this_cpu_dec(bpf_prog_active); 77 preempt_enable(); 78 79 return ret; 80 } 81 EXPORT_SYMBOL_GPL(trace_call_bpf); 82 83 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 84 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 85 { 86 regs_set_return_value(regs, rc); 87 override_function_with_return(regs); 88 return 0; 89 } 90 91 static const struct bpf_func_proto bpf_override_return_proto = { 92 .func = bpf_override_return, 93 .gpl_only = true, 94 .ret_type = RET_INTEGER, 95 .arg1_type = ARG_PTR_TO_CTX, 96 .arg2_type = ARG_ANYTHING, 97 }; 98 #endif 99 100 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr) 101 { 102 int ret; 103 104 ret = probe_kernel_read(dst, unsafe_ptr, size); 105 if (unlikely(ret < 0)) 106 memset(dst, 0, size); 107 108 return ret; 109 } 110 111 static const struct bpf_func_proto bpf_probe_read_proto = { 112 .func = bpf_probe_read, 113 .gpl_only = true, 114 .ret_type = RET_INTEGER, 115 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 116 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 117 .arg3_type = ARG_ANYTHING, 118 }; 119 120 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src, 121 u32, size) 122 { 123 /* 124 * Ensure we're in user context which is safe for the helper to 125 * run. This helper has no business in a kthread. 126 * 127 * access_ok() should prevent writing to non-user memory, but in 128 * some situations (nommu, temporary switch, etc) access_ok() does 129 * not provide enough validation, hence the check on KERNEL_DS. 130 */ 131 132 if (unlikely(in_interrupt() || 133 current->flags & (PF_KTHREAD | PF_EXITING))) 134 return -EPERM; 135 if (unlikely(uaccess_kernel())) 136 return -EPERM; 137 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size)) 138 return -EPERM; 139 140 return probe_kernel_write(unsafe_ptr, src, size); 141 } 142 143 static const struct bpf_func_proto bpf_probe_write_user_proto = { 144 .func = bpf_probe_write_user, 145 .gpl_only = true, 146 .ret_type = RET_INTEGER, 147 .arg1_type = ARG_ANYTHING, 148 .arg2_type = ARG_PTR_TO_MEM, 149 .arg3_type = ARG_CONST_SIZE, 150 }; 151 152 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 153 { 154 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 155 current->comm, task_pid_nr(current)); 156 157 return &bpf_probe_write_user_proto; 158 } 159 160 /* 161 * Only limited trace_printk() conversion specifiers allowed: 162 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 163 */ 164 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 165 u64, arg2, u64, arg3) 166 { 167 bool str_seen = false; 168 int mod[3] = {}; 169 int fmt_cnt = 0; 170 u64 unsafe_addr; 171 char buf[64]; 172 int i; 173 174 /* 175 * bpf_check()->check_func_arg()->check_stack_boundary() 176 * guarantees that fmt points to bpf program stack, 177 * fmt_size bytes of it were initialized and fmt_size > 0 178 */ 179 if (fmt[--fmt_size] != 0) 180 return -EINVAL; 181 182 /* check format string for allowed specifiers */ 183 for (i = 0; i < fmt_size; i++) { 184 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 185 return -EINVAL; 186 187 if (fmt[i] != '%') 188 continue; 189 190 if (fmt_cnt >= 3) 191 return -EINVAL; 192 193 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 194 i++; 195 if (fmt[i] == 'l') { 196 mod[fmt_cnt]++; 197 i++; 198 } else if (fmt[i] == 'p' || fmt[i] == 's') { 199 mod[fmt_cnt]++; 200 i++; 201 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0) 202 return -EINVAL; 203 fmt_cnt++; 204 if (fmt[i - 1] == 's') { 205 if (str_seen) 206 /* allow only one '%s' per fmt string */ 207 return -EINVAL; 208 str_seen = true; 209 210 switch (fmt_cnt) { 211 case 1: 212 unsafe_addr = arg1; 213 arg1 = (long) buf; 214 break; 215 case 2: 216 unsafe_addr = arg2; 217 arg2 = (long) buf; 218 break; 219 case 3: 220 unsafe_addr = arg3; 221 arg3 = (long) buf; 222 break; 223 } 224 buf[0] = 0; 225 strncpy_from_unsafe(buf, 226 (void *) (long) unsafe_addr, 227 sizeof(buf)); 228 } 229 continue; 230 } 231 232 if (fmt[i] == 'l') { 233 mod[fmt_cnt]++; 234 i++; 235 } 236 237 if (fmt[i] != 'i' && fmt[i] != 'd' && 238 fmt[i] != 'u' && fmt[i] != 'x') 239 return -EINVAL; 240 fmt_cnt++; 241 } 242 243 /* Horrid workaround for getting va_list handling working with different 244 * argument type combinations generically for 32 and 64 bit archs. 245 */ 246 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 247 #define __BPF_TP(...) \ 248 __trace_printk(0 /* Fake ip */, \ 249 fmt, ##__VA_ARGS__) 250 251 #define __BPF_ARG1_TP(...) \ 252 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 253 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 254 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 255 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 256 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 257 258 #define __BPF_ARG2_TP(...) \ 259 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 260 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 261 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 262 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 263 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 264 265 #define __BPF_ARG3_TP(...) \ 266 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 267 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 268 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 269 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 270 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 271 272 return __BPF_TP_EMIT(); 273 } 274 275 static const struct bpf_func_proto bpf_trace_printk_proto = { 276 .func = bpf_trace_printk, 277 .gpl_only = true, 278 .ret_type = RET_INTEGER, 279 .arg1_type = ARG_PTR_TO_MEM, 280 .arg2_type = ARG_CONST_SIZE, 281 }; 282 283 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 284 { 285 /* 286 * this program might be calling bpf_trace_printk, 287 * so allocate per-cpu printk buffers 288 */ 289 trace_printk_init_buffers(); 290 291 return &bpf_trace_printk_proto; 292 } 293 294 static __always_inline int 295 get_map_perf_counter(struct bpf_map *map, u64 flags, 296 u64 *value, u64 *enabled, u64 *running) 297 { 298 struct bpf_array *array = container_of(map, struct bpf_array, map); 299 unsigned int cpu = smp_processor_id(); 300 u64 index = flags & BPF_F_INDEX_MASK; 301 struct bpf_event_entry *ee; 302 303 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 304 return -EINVAL; 305 if (index == BPF_F_CURRENT_CPU) 306 index = cpu; 307 if (unlikely(index >= array->map.max_entries)) 308 return -E2BIG; 309 310 ee = READ_ONCE(array->ptrs[index]); 311 if (!ee) 312 return -ENOENT; 313 314 return perf_event_read_local(ee->event, value, enabled, running); 315 } 316 317 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 318 { 319 u64 value = 0; 320 int err; 321 322 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 323 /* 324 * this api is ugly since we miss [-22..-2] range of valid 325 * counter values, but that's uapi 326 */ 327 if (err) 328 return err; 329 return value; 330 } 331 332 static const struct bpf_func_proto bpf_perf_event_read_proto = { 333 .func = bpf_perf_event_read, 334 .gpl_only = true, 335 .ret_type = RET_INTEGER, 336 .arg1_type = ARG_CONST_MAP_PTR, 337 .arg2_type = ARG_ANYTHING, 338 }; 339 340 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 341 struct bpf_perf_event_value *, buf, u32, size) 342 { 343 int err = -EINVAL; 344 345 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 346 goto clear; 347 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 348 &buf->running); 349 if (unlikely(err)) 350 goto clear; 351 return 0; 352 clear: 353 memset(buf, 0, size); 354 return err; 355 } 356 357 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 358 .func = bpf_perf_event_read_value, 359 .gpl_only = true, 360 .ret_type = RET_INTEGER, 361 .arg1_type = ARG_CONST_MAP_PTR, 362 .arg2_type = ARG_ANYTHING, 363 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 364 .arg4_type = ARG_CONST_SIZE, 365 }; 366 367 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd); 368 369 static __always_inline u64 370 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 371 u64 flags, struct perf_sample_data *sd) 372 { 373 struct bpf_array *array = container_of(map, struct bpf_array, map); 374 unsigned int cpu = smp_processor_id(); 375 u64 index = flags & BPF_F_INDEX_MASK; 376 struct bpf_event_entry *ee; 377 struct perf_event *event; 378 379 if (index == BPF_F_CURRENT_CPU) 380 index = cpu; 381 if (unlikely(index >= array->map.max_entries)) 382 return -E2BIG; 383 384 ee = READ_ONCE(array->ptrs[index]); 385 if (!ee) 386 return -ENOENT; 387 388 event = ee->event; 389 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 390 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 391 return -EINVAL; 392 393 if (unlikely(event->oncpu != cpu)) 394 return -EOPNOTSUPP; 395 396 perf_event_output(event, sd, regs); 397 return 0; 398 } 399 400 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 401 u64, flags, void *, data, u64, size) 402 { 403 struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd); 404 struct perf_raw_record raw = { 405 .frag = { 406 .size = size, 407 .data = data, 408 }, 409 }; 410 411 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 412 return -EINVAL; 413 414 perf_sample_data_init(sd, 0, 0); 415 sd->raw = &raw; 416 417 return __bpf_perf_event_output(regs, map, flags, sd); 418 } 419 420 static const struct bpf_func_proto bpf_perf_event_output_proto = { 421 .func = bpf_perf_event_output, 422 .gpl_only = true, 423 .ret_type = RET_INTEGER, 424 .arg1_type = ARG_PTR_TO_CTX, 425 .arg2_type = ARG_CONST_MAP_PTR, 426 .arg3_type = ARG_ANYTHING, 427 .arg4_type = ARG_PTR_TO_MEM, 428 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 429 }; 430 431 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs); 432 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd); 433 434 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 435 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 436 { 437 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd); 438 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs); 439 struct perf_raw_frag frag = { 440 .copy = ctx_copy, 441 .size = ctx_size, 442 .data = ctx, 443 }; 444 struct perf_raw_record raw = { 445 .frag = { 446 { 447 .next = ctx_size ? &frag : NULL, 448 }, 449 .size = meta_size, 450 .data = meta, 451 }, 452 }; 453 454 perf_fetch_caller_regs(regs); 455 perf_sample_data_init(sd, 0, 0); 456 sd->raw = &raw; 457 458 return __bpf_perf_event_output(regs, map, flags, sd); 459 } 460 461 BPF_CALL_0(bpf_get_current_task) 462 { 463 return (long) current; 464 } 465 466 static const struct bpf_func_proto bpf_get_current_task_proto = { 467 .func = bpf_get_current_task, 468 .gpl_only = true, 469 .ret_type = RET_INTEGER, 470 }; 471 472 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 473 { 474 struct bpf_array *array = container_of(map, struct bpf_array, map); 475 struct cgroup *cgrp; 476 477 if (unlikely(in_interrupt())) 478 return -EINVAL; 479 if (unlikely(idx >= array->map.max_entries)) 480 return -E2BIG; 481 482 cgrp = READ_ONCE(array->ptrs[idx]); 483 if (unlikely(!cgrp)) 484 return -EAGAIN; 485 486 return task_under_cgroup_hierarchy(current, cgrp); 487 } 488 489 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 490 .func = bpf_current_task_under_cgroup, 491 .gpl_only = false, 492 .ret_type = RET_INTEGER, 493 .arg1_type = ARG_CONST_MAP_PTR, 494 .arg2_type = ARG_ANYTHING, 495 }; 496 497 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, 498 const void *, unsafe_ptr) 499 { 500 int ret; 501 502 /* 503 * The strncpy_from_unsafe() call will likely not fill the entire 504 * buffer, but that's okay in this circumstance as we're probing 505 * arbitrary memory anyway similar to bpf_probe_read() and might 506 * as well probe the stack. Thus, memory is explicitly cleared 507 * only in error case, so that improper users ignoring return 508 * code altogether don't copy garbage; otherwise length of string 509 * is returned that can be used for bpf_perf_event_output() et al. 510 */ 511 ret = strncpy_from_unsafe(dst, unsafe_ptr, size); 512 if (unlikely(ret < 0)) 513 memset(dst, 0, size); 514 515 return ret; 516 } 517 518 static const struct bpf_func_proto bpf_probe_read_str_proto = { 519 .func = bpf_probe_read_str, 520 .gpl_only = true, 521 .ret_type = RET_INTEGER, 522 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 523 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 524 .arg3_type = ARG_ANYTHING, 525 }; 526 527 static const struct bpf_func_proto * 528 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 529 { 530 switch (func_id) { 531 case BPF_FUNC_map_lookup_elem: 532 return &bpf_map_lookup_elem_proto; 533 case BPF_FUNC_map_update_elem: 534 return &bpf_map_update_elem_proto; 535 case BPF_FUNC_map_delete_elem: 536 return &bpf_map_delete_elem_proto; 537 case BPF_FUNC_probe_read: 538 return &bpf_probe_read_proto; 539 case BPF_FUNC_ktime_get_ns: 540 return &bpf_ktime_get_ns_proto; 541 case BPF_FUNC_tail_call: 542 return &bpf_tail_call_proto; 543 case BPF_FUNC_get_current_pid_tgid: 544 return &bpf_get_current_pid_tgid_proto; 545 case BPF_FUNC_get_current_task: 546 return &bpf_get_current_task_proto; 547 case BPF_FUNC_get_current_uid_gid: 548 return &bpf_get_current_uid_gid_proto; 549 case BPF_FUNC_get_current_comm: 550 return &bpf_get_current_comm_proto; 551 case BPF_FUNC_trace_printk: 552 return bpf_get_trace_printk_proto(); 553 case BPF_FUNC_get_smp_processor_id: 554 return &bpf_get_smp_processor_id_proto; 555 case BPF_FUNC_get_numa_node_id: 556 return &bpf_get_numa_node_id_proto; 557 case BPF_FUNC_perf_event_read: 558 return &bpf_perf_event_read_proto; 559 case BPF_FUNC_probe_write_user: 560 return bpf_get_probe_write_proto(); 561 case BPF_FUNC_current_task_under_cgroup: 562 return &bpf_current_task_under_cgroup_proto; 563 case BPF_FUNC_get_prandom_u32: 564 return &bpf_get_prandom_u32_proto; 565 case BPF_FUNC_probe_read_str: 566 return &bpf_probe_read_str_proto; 567 default: 568 return NULL; 569 } 570 } 571 572 static const struct bpf_func_proto * 573 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 574 { 575 switch (func_id) { 576 case BPF_FUNC_perf_event_output: 577 return &bpf_perf_event_output_proto; 578 case BPF_FUNC_get_stackid: 579 return &bpf_get_stackid_proto; 580 case BPF_FUNC_perf_event_read_value: 581 return &bpf_perf_event_read_value_proto; 582 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 583 case BPF_FUNC_override_return: 584 return &bpf_override_return_proto; 585 #endif 586 default: 587 return tracing_func_proto(func_id, prog); 588 } 589 } 590 591 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 592 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 593 const struct bpf_prog *prog, 594 struct bpf_insn_access_aux *info) 595 { 596 if (off < 0 || off >= sizeof(struct pt_regs)) 597 return false; 598 if (type != BPF_READ) 599 return false; 600 if (off % size != 0) 601 return false; 602 /* 603 * Assertion for 32 bit to make sure last 8 byte access 604 * (BPF_DW) to the last 4 byte member is disallowed. 605 */ 606 if (off + size > sizeof(struct pt_regs)) 607 return false; 608 609 return true; 610 } 611 612 const struct bpf_verifier_ops kprobe_verifier_ops = { 613 .get_func_proto = kprobe_prog_func_proto, 614 .is_valid_access = kprobe_prog_is_valid_access, 615 }; 616 617 const struct bpf_prog_ops kprobe_prog_ops = { 618 }; 619 620 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 621 u64, flags, void *, data, u64, size) 622 { 623 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 624 625 /* 626 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 627 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 628 * from there and call the same bpf_perf_event_output() helper inline. 629 */ 630 return ____bpf_perf_event_output(regs, map, flags, data, size); 631 } 632 633 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 634 .func = bpf_perf_event_output_tp, 635 .gpl_only = true, 636 .ret_type = RET_INTEGER, 637 .arg1_type = ARG_PTR_TO_CTX, 638 .arg2_type = ARG_CONST_MAP_PTR, 639 .arg3_type = ARG_ANYTHING, 640 .arg4_type = ARG_PTR_TO_MEM, 641 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 642 }; 643 644 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 645 u64, flags) 646 { 647 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 648 649 /* 650 * Same comment as in bpf_perf_event_output_tp(), only that this time 651 * the other helper's function body cannot be inlined due to being 652 * external, thus we need to call raw helper function. 653 */ 654 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 655 flags, 0, 0); 656 } 657 658 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 659 .func = bpf_get_stackid_tp, 660 .gpl_only = true, 661 .ret_type = RET_INTEGER, 662 .arg1_type = ARG_PTR_TO_CTX, 663 .arg2_type = ARG_CONST_MAP_PTR, 664 .arg3_type = ARG_ANYTHING, 665 }; 666 667 static const struct bpf_func_proto * 668 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 669 { 670 switch (func_id) { 671 case BPF_FUNC_perf_event_output: 672 return &bpf_perf_event_output_proto_tp; 673 case BPF_FUNC_get_stackid: 674 return &bpf_get_stackid_proto_tp; 675 default: 676 return tracing_func_proto(func_id, prog); 677 } 678 } 679 680 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 681 const struct bpf_prog *prog, 682 struct bpf_insn_access_aux *info) 683 { 684 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 685 return false; 686 if (type != BPF_READ) 687 return false; 688 if (off % size != 0) 689 return false; 690 691 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 692 return true; 693 } 694 695 const struct bpf_verifier_ops tracepoint_verifier_ops = { 696 .get_func_proto = tp_prog_func_proto, 697 .is_valid_access = tp_prog_is_valid_access, 698 }; 699 700 const struct bpf_prog_ops tracepoint_prog_ops = { 701 }; 702 703 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 704 struct bpf_perf_event_value *, buf, u32, size) 705 { 706 int err = -EINVAL; 707 708 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 709 goto clear; 710 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 711 &buf->running); 712 if (unlikely(err)) 713 goto clear; 714 return 0; 715 clear: 716 memset(buf, 0, size); 717 return err; 718 } 719 720 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 721 .func = bpf_perf_prog_read_value, 722 .gpl_only = true, 723 .ret_type = RET_INTEGER, 724 .arg1_type = ARG_PTR_TO_CTX, 725 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 726 .arg3_type = ARG_CONST_SIZE, 727 }; 728 729 static const struct bpf_func_proto * 730 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 731 { 732 switch (func_id) { 733 case BPF_FUNC_perf_event_output: 734 return &bpf_perf_event_output_proto_tp; 735 case BPF_FUNC_get_stackid: 736 return &bpf_get_stackid_proto_tp; 737 case BPF_FUNC_perf_prog_read_value: 738 return &bpf_perf_prog_read_value_proto; 739 default: 740 return tracing_func_proto(func_id, prog); 741 } 742 } 743 744 /* 745 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 746 * to avoid potential recursive reuse issue when/if tracepoints are added 747 * inside bpf_*_event_output and/or bpf_get_stack_id 748 */ 749 static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs); 750 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 751 struct bpf_map *, map, u64, flags, void *, data, u64, size) 752 { 753 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs); 754 755 perf_fetch_caller_regs(regs); 756 return ____bpf_perf_event_output(regs, map, flags, data, size); 757 } 758 759 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 760 .func = bpf_perf_event_output_raw_tp, 761 .gpl_only = true, 762 .ret_type = RET_INTEGER, 763 .arg1_type = ARG_PTR_TO_CTX, 764 .arg2_type = ARG_CONST_MAP_PTR, 765 .arg3_type = ARG_ANYTHING, 766 .arg4_type = ARG_PTR_TO_MEM, 767 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 768 }; 769 770 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 771 struct bpf_map *, map, u64, flags) 772 { 773 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs); 774 775 perf_fetch_caller_regs(regs); 776 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 777 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 778 flags, 0, 0); 779 } 780 781 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 782 .func = bpf_get_stackid_raw_tp, 783 .gpl_only = true, 784 .ret_type = RET_INTEGER, 785 .arg1_type = ARG_PTR_TO_CTX, 786 .arg2_type = ARG_CONST_MAP_PTR, 787 .arg3_type = ARG_ANYTHING, 788 }; 789 790 static const struct bpf_func_proto * 791 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 792 { 793 switch (func_id) { 794 case BPF_FUNC_perf_event_output: 795 return &bpf_perf_event_output_proto_raw_tp; 796 case BPF_FUNC_get_stackid: 797 return &bpf_get_stackid_proto_raw_tp; 798 default: 799 return tracing_func_proto(func_id, prog); 800 } 801 } 802 803 static bool raw_tp_prog_is_valid_access(int off, int size, 804 enum bpf_access_type type, 805 const struct bpf_prog *prog, 806 struct bpf_insn_access_aux *info) 807 { 808 /* largest tracepoint in the kernel has 12 args */ 809 if (off < 0 || off >= sizeof(__u64) * 12) 810 return false; 811 if (type != BPF_READ) 812 return false; 813 if (off % size != 0) 814 return false; 815 return true; 816 } 817 818 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 819 .get_func_proto = raw_tp_prog_func_proto, 820 .is_valid_access = raw_tp_prog_is_valid_access, 821 }; 822 823 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 824 }; 825 826 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 827 const struct bpf_prog *prog, 828 struct bpf_insn_access_aux *info) 829 { 830 const int size_u64 = sizeof(u64); 831 832 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 833 return false; 834 if (type != BPF_READ) 835 return false; 836 if (off % size != 0) 837 return false; 838 839 switch (off) { 840 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 841 bpf_ctx_record_field_size(info, size_u64); 842 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 843 return false; 844 break; 845 case bpf_ctx_range(struct bpf_perf_event_data, addr): 846 bpf_ctx_record_field_size(info, size_u64); 847 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 848 return false; 849 break; 850 default: 851 if (size != sizeof(long)) 852 return false; 853 } 854 855 return true; 856 } 857 858 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 859 const struct bpf_insn *si, 860 struct bpf_insn *insn_buf, 861 struct bpf_prog *prog, u32 *target_size) 862 { 863 struct bpf_insn *insn = insn_buf; 864 865 switch (si->off) { 866 case offsetof(struct bpf_perf_event_data, sample_period): 867 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 868 data), si->dst_reg, si->src_reg, 869 offsetof(struct bpf_perf_event_data_kern, data)); 870 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 871 bpf_target_off(struct perf_sample_data, period, 8, 872 target_size)); 873 break; 874 case offsetof(struct bpf_perf_event_data, addr): 875 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 876 data), si->dst_reg, si->src_reg, 877 offsetof(struct bpf_perf_event_data_kern, data)); 878 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 879 bpf_target_off(struct perf_sample_data, addr, 8, 880 target_size)); 881 break; 882 default: 883 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 884 regs), si->dst_reg, si->src_reg, 885 offsetof(struct bpf_perf_event_data_kern, regs)); 886 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 887 si->off); 888 break; 889 } 890 891 return insn - insn_buf; 892 } 893 894 const struct bpf_verifier_ops perf_event_verifier_ops = { 895 .get_func_proto = pe_prog_func_proto, 896 .is_valid_access = pe_prog_is_valid_access, 897 .convert_ctx_access = pe_prog_convert_ctx_access, 898 }; 899 900 const struct bpf_prog_ops perf_event_prog_ops = { 901 }; 902 903 static DEFINE_MUTEX(bpf_event_mutex); 904 905 #define BPF_TRACE_MAX_PROGS 64 906 907 int perf_event_attach_bpf_prog(struct perf_event *event, 908 struct bpf_prog *prog) 909 { 910 struct bpf_prog_array __rcu *old_array; 911 struct bpf_prog_array *new_array; 912 int ret = -EEXIST; 913 914 /* 915 * Kprobe override only works if they are on the function entry, 916 * and only if they are on the opt-in list. 917 */ 918 if (prog->kprobe_override && 919 (!trace_kprobe_on_func_entry(event->tp_event) || 920 !trace_kprobe_error_injectable(event->tp_event))) 921 return -EINVAL; 922 923 mutex_lock(&bpf_event_mutex); 924 925 if (event->prog) 926 goto unlock; 927 928 old_array = event->tp_event->prog_array; 929 if (old_array && 930 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 931 ret = -E2BIG; 932 goto unlock; 933 } 934 935 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 936 if (ret < 0) 937 goto unlock; 938 939 /* set the new array to event->tp_event and set event->prog */ 940 event->prog = prog; 941 rcu_assign_pointer(event->tp_event->prog_array, new_array); 942 bpf_prog_array_free(old_array); 943 944 unlock: 945 mutex_unlock(&bpf_event_mutex); 946 return ret; 947 } 948 949 void perf_event_detach_bpf_prog(struct perf_event *event) 950 { 951 struct bpf_prog_array __rcu *old_array; 952 struct bpf_prog_array *new_array; 953 int ret; 954 955 mutex_lock(&bpf_event_mutex); 956 957 if (!event->prog) 958 goto unlock; 959 960 old_array = event->tp_event->prog_array; 961 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 962 if (ret < 0) { 963 bpf_prog_array_delete_safe(old_array, event->prog); 964 } else { 965 rcu_assign_pointer(event->tp_event->prog_array, new_array); 966 bpf_prog_array_free(old_array); 967 } 968 969 bpf_prog_put(event->prog); 970 event->prog = NULL; 971 972 unlock: 973 mutex_unlock(&bpf_event_mutex); 974 } 975 976 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 977 { 978 struct perf_event_query_bpf __user *uquery = info; 979 struct perf_event_query_bpf query = {}; 980 u32 *ids, prog_cnt, ids_len; 981 int ret; 982 983 if (!capable(CAP_SYS_ADMIN)) 984 return -EPERM; 985 if (event->attr.type != PERF_TYPE_TRACEPOINT) 986 return -EINVAL; 987 if (copy_from_user(&query, uquery, sizeof(query))) 988 return -EFAULT; 989 990 ids_len = query.ids_len; 991 if (ids_len > BPF_TRACE_MAX_PROGS) 992 return -E2BIG; 993 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 994 if (!ids) 995 return -ENOMEM; 996 /* 997 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 998 * is required when user only wants to check for uquery->prog_cnt. 999 * There is no need to check for it since the case is handled 1000 * gracefully in bpf_prog_array_copy_info. 1001 */ 1002 1003 mutex_lock(&bpf_event_mutex); 1004 ret = bpf_prog_array_copy_info(event->tp_event->prog_array, 1005 ids, 1006 ids_len, 1007 &prog_cnt); 1008 mutex_unlock(&bpf_event_mutex); 1009 1010 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1011 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1012 ret = -EFAULT; 1013 1014 kfree(ids); 1015 return ret; 1016 } 1017 1018 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1019 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1020 1021 struct bpf_raw_event_map *bpf_find_raw_tracepoint(const char *name) 1022 { 1023 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1024 1025 for (; btp < __stop__bpf_raw_tp; btp++) { 1026 if (!strcmp(btp->tp->name, name)) 1027 return btp; 1028 } 1029 return NULL; 1030 } 1031 1032 static __always_inline 1033 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1034 { 1035 rcu_read_lock(); 1036 preempt_disable(); 1037 (void) BPF_PROG_RUN(prog, args); 1038 preempt_enable(); 1039 rcu_read_unlock(); 1040 } 1041 1042 #define UNPACK(...) __VA_ARGS__ 1043 #define REPEAT_1(FN, DL, X, ...) FN(X) 1044 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1045 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1046 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1047 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1048 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1049 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1050 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1051 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1052 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1053 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1054 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1055 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1056 1057 #define SARG(X) u64 arg##X 1058 #define COPY(X) args[X] = arg##X 1059 1060 #define __DL_COM (,) 1061 #define __DL_SEM (;) 1062 1063 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1064 1065 #define BPF_TRACE_DEFN_x(x) \ 1066 void bpf_trace_run##x(struct bpf_prog *prog, \ 1067 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1068 { \ 1069 u64 args[x]; \ 1070 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1071 __bpf_trace_run(prog, args); \ 1072 } \ 1073 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1074 BPF_TRACE_DEFN_x(1); 1075 BPF_TRACE_DEFN_x(2); 1076 BPF_TRACE_DEFN_x(3); 1077 BPF_TRACE_DEFN_x(4); 1078 BPF_TRACE_DEFN_x(5); 1079 BPF_TRACE_DEFN_x(6); 1080 BPF_TRACE_DEFN_x(7); 1081 BPF_TRACE_DEFN_x(8); 1082 BPF_TRACE_DEFN_x(9); 1083 BPF_TRACE_DEFN_x(10); 1084 BPF_TRACE_DEFN_x(11); 1085 BPF_TRACE_DEFN_x(12); 1086 1087 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1088 { 1089 struct tracepoint *tp = btp->tp; 1090 1091 /* 1092 * check that program doesn't access arguments beyond what's 1093 * available in this tracepoint 1094 */ 1095 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1096 return -EINVAL; 1097 1098 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1099 } 1100 1101 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1102 { 1103 int err; 1104 1105 mutex_lock(&bpf_event_mutex); 1106 err = __bpf_probe_register(btp, prog); 1107 mutex_unlock(&bpf_event_mutex); 1108 return err; 1109 } 1110 1111 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1112 { 1113 int err; 1114 1115 mutex_lock(&bpf_event_mutex); 1116 err = tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1117 mutex_unlock(&bpf_event_mutex); 1118 return err; 1119 } 1120