xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 4419617e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #ifdef CONFIG_MODULES
23 struct bpf_trace_module {
24 	struct module *module;
25 	struct list_head list;
26 };
27 
28 static LIST_HEAD(bpf_trace_modules);
29 static DEFINE_MUTEX(bpf_module_mutex);
30 
31 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
32 {
33 	struct bpf_raw_event_map *btp, *ret = NULL;
34 	struct bpf_trace_module *btm;
35 	unsigned int i;
36 
37 	mutex_lock(&bpf_module_mutex);
38 	list_for_each_entry(btm, &bpf_trace_modules, list) {
39 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
40 			btp = &btm->module->bpf_raw_events[i];
41 			if (!strcmp(btp->tp->name, name)) {
42 				if (try_module_get(btm->module))
43 					ret = btp;
44 				goto out;
45 			}
46 		}
47 	}
48 out:
49 	mutex_unlock(&bpf_module_mutex);
50 	return ret;
51 }
52 #else
53 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
54 {
55 	return NULL;
56 }
57 #endif /* CONFIG_MODULES */
58 
59 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
60 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
61 
62 /**
63  * trace_call_bpf - invoke BPF program
64  * @call: tracepoint event
65  * @ctx: opaque context pointer
66  *
67  * kprobe handlers execute BPF programs via this helper.
68  * Can be used from static tracepoints in the future.
69  *
70  * Return: BPF programs always return an integer which is interpreted by
71  * kprobe handler as:
72  * 0 - return from kprobe (event is filtered out)
73  * 1 - store kprobe event into ring buffer
74  * Other values are reserved and currently alias to 1
75  */
76 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
77 {
78 	unsigned int ret;
79 
80 	if (in_nmi()) /* not supported yet */
81 		return 1;
82 
83 	preempt_disable();
84 
85 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
86 		/*
87 		 * since some bpf program is already running on this cpu,
88 		 * don't call into another bpf program (same or different)
89 		 * and don't send kprobe event into ring-buffer,
90 		 * so return zero here
91 		 */
92 		ret = 0;
93 		goto out;
94 	}
95 
96 	/*
97 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
98 	 * to all call sites, we did a bpf_prog_array_valid() there to check
99 	 * whether call->prog_array is empty or not, which is
100 	 * a heurisitc to speed up execution.
101 	 *
102 	 * If bpf_prog_array_valid() fetched prog_array was
103 	 * non-NULL, we go into trace_call_bpf() and do the actual
104 	 * proper rcu_dereference() under RCU lock.
105 	 * If it turns out that prog_array is NULL then, we bail out.
106 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
107 	 * was NULL, you'll skip the prog_array with the risk of missing
108 	 * out of events when it was updated in between this and the
109 	 * rcu_dereference() which is accepted risk.
110 	 */
111 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
112 
113  out:
114 	__this_cpu_dec(bpf_prog_active);
115 	preempt_enable();
116 
117 	return ret;
118 }
119 EXPORT_SYMBOL_GPL(trace_call_bpf);
120 
121 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
122 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
123 {
124 	regs_set_return_value(regs, rc);
125 	override_function_with_return(regs);
126 	return 0;
127 }
128 
129 static const struct bpf_func_proto bpf_override_return_proto = {
130 	.func		= bpf_override_return,
131 	.gpl_only	= true,
132 	.ret_type	= RET_INTEGER,
133 	.arg1_type	= ARG_PTR_TO_CTX,
134 	.arg2_type	= ARG_ANYTHING,
135 };
136 #endif
137 
138 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
139 {
140 	int ret;
141 
142 	ret = probe_kernel_read(dst, unsafe_ptr, size);
143 	if (unlikely(ret < 0))
144 		memset(dst, 0, size);
145 
146 	return ret;
147 }
148 
149 static const struct bpf_func_proto bpf_probe_read_proto = {
150 	.func		= bpf_probe_read,
151 	.gpl_only	= true,
152 	.ret_type	= RET_INTEGER,
153 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
154 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
155 	.arg3_type	= ARG_ANYTHING,
156 };
157 
158 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
159 	   u32, size)
160 {
161 	/*
162 	 * Ensure we're in user context which is safe for the helper to
163 	 * run. This helper has no business in a kthread.
164 	 *
165 	 * access_ok() should prevent writing to non-user memory, but in
166 	 * some situations (nommu, temporary switch, etc) access_ok() does
167 	 * not provide enough validation, hence the check on KERNEL_DS.
168 	 *
169 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
170 	 * state, when the task or mm are switched. This is specifically
171 	 * required to prevent the use of temporary mm.
172 	 */
173 
174 	if (unlikely(in_interrupt() ||
175 		     current->flags & (PF_KTHREAD | PF_EXITING)))
176 		return -EPERM;
177 	if (unlikely(uaccess_kernel()))
178 		return -EPERM;
179 	if (unlikely(!nmi_uaccess_okay()))
180 		return -EPERM;
181 	if (!access_ok(unsafe_ptr, size))
182 		return -EPERM;
183 
184 	return probe_kernel_write(unsafe_ptr, src, size);
185 }
186 
187 static const struct bpf_func_proto bpf_probe_write_user_proto = {
188 	.func		= bpf_probe_write_user,
189 	.gpl_only	= true,
190 	.ret_type	= RET_INTEGER,
191 	.arg1_type	= ARG_ANYTHING,
192 	.arg2_type	= ARG_PTR_TO_MEM,
193 	.arg3_type	= ARG_CONST_SIZE,
194 };
195 
196 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
197 {
198 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
199 			    current->comm, task_pid_nr(current));
200 
201 	return &bpf_probe_write_user_proto;
202 }
203 
204 /*
205  * Only limited trace_printk() conversion specifiers allowed:
206  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
207  */
208 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
209 	   u64, arg2, u64, arg3)
210 {
211 	bool str_seen = false;
212 	int mod[3] = {};
213 	int fmt_cnt = 0;
214 	u64 unsafe_addr;
215 	char buf[64];
216 	int i;
217 
218 	/*
219 	 * bpf_check()->check_func_arg()->check_stack_boundary()
220 	 * guarantees that fmt points to bpf program stack,
221 	 * fmt_size bytes of it were initialized and fmt_size > 0
222 	 */
223 	if (fmt[--fmt_size] != 0)
224 		return -EINVAL;
225 
226 	/* check format string for allowed specifiers */
227 	for (i = 0; i < fmt_size; i++) {
228 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
229 			return -EINVAL;
230 
231 		if (fmt[i] != '%')
232 			continue;
233 
234 		if (fmt_cnt >= 3)
235 			return -EINVAL;
236 
237 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
238 		i++;
239 		if (fmt[i] == 'l') {
240 			mod[fmt_cnt]++;
241 			i++;
242 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
243 			mod[fmt_cnt]++;
244 			/* disallow any further format extensions */
245 			if (fmt[i + 1] != 0 &&
246 			    !isspace(fmt[i + 1]) &&
247 			    !ispunct(fmt[i + 1]))
248 				return -EINVAL;
249 			fmt_cnt++;
250 			if (fmt[i] == 's') {
251 				if (str_seen)
252 					/* allow only one '%s' per fmt string */
253 					return -EINVAL;
254 				str_seen = true;
255 
256 				switch (fmt_cnt) {
257 				case 1:
258 					unsafe_addr = arg1;
259 					arg1 = (long) buf;
260 					break;
261 				case 2:
262 					unsafe_addr = arg2;
263 					arg2 = (long) buf;
264 					break;
265 				case 3:
266 					unsafe_addr = arg3;
267 					arg3 = (long) buf;
268 					break;
269 				}
270 				buf[0] = 0;
271 				strncpy_from_unsafe(buf,
272 						    (void *) (long) unsafe_addr,
273 						    sizeof(buf));
274 			}
275 			continue;
276 		}
277 
278 		if (fmt[i] == 'l') {
279 			mod[fmt_cnt]++;
280 			i++;
281 		}
282 
283 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
284 		    fmt[i] != 'u' && fmt[i] != 'x')
285 			return -EINVAL;
286 		fmt_cnt++;
287 	}
288 
289 /* Horrid workaround for getting va_list handling working with different
290  * argument type combinations generically for 32 and 64 bit archs.
291  */
292 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
293 #define __BPF_TP(...)							\
294 	__trace_printk(0 /* Fake ip */,					\
295 		       fmt, ##__VA_ARGS__)
296 
297 #define __BPF_ARG1_TP(...)						\
298 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
299 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
300 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
301 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
302 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
303 
304 #define __BPF_ARG2_TP(...)						\
305 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
306 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
307 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
308 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
309 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
310 
311 #define __BPF_ARG3_TP(...)						\
312 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
313 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
314 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
315 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
316 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
317 
318 	return __BPF_TP_EMIT();
319 }
320 
321 static const struct bpf_func_proto bpf_trace_printk_proto = {
322 	.func		= bpf_trace_printk,
323 	.gpl_only	= true,
324 	.ret_type	= RET_INTEGER,
325 	.arg1_type	= ARG_PTR_TO_MEM,
326 	.arg2_type	= ARG_CONST_SIZE,
327 };
328 
329 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
330 {
331 	/*
332 	 * this program might be calling bpf_trace_printk,
333 	 * so allocate per-cpu printk buffers
334 	 */
335 	trace_printk_init_buffers();
336 
337 	return &bpf_trace_printk_proto;
338 }
339 
340 static __always_inline int
341 get_map_perf_counter(struct bpf_map *map, u64 flags,
342 		     u64 *value, u64 *enabled, u64 *running)
343 {
344 	struct bpf_array *array = container_of(map, struct bpf_array, map);
345 	unsigned int cpu = smp_processor_id();
346 	u64 index = flags & BPF_F_INDEX_MASK;
347 	struct bpf_event_entry *ee;
348 
349 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
350 		return -EINVAL;
351 	if (index == BPF_F_CURRENT_CPU)
352 		index = cpu;
353 	if (unlikely(index >= array->map.max_entries))
354 		return -E2BIG;
355 
356 	ee = READ_ONCE(array->ptrs[index]);
357 	if (!ee)
358 		return -ENOENT;
359 
360 	return perf_event_read_local(ee->event, value, enabled, running);
361 }
362 
363 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
364 {
365 	u64 value = 0;
366 	int err;
367 
368 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
369 	/*
370 	 * this api is ugly since we miss [-22..-2] range of valid
371 	 * counter values, but that's uapi
372 	 */
373 	if (err)
374 		return err;
375 	return value;
376 }
377 
378 static const struct bpf_func_proto bpf_perf_event_read_proto = {
379 	.func		= bpf_perf_event_read,
380 	.gpl_only	= true,
381 	.ret_type	= RET_INTEGER,
382 	.arg1_type	= ARG_CONST_MAP_PTR,
383 	.arg2_type	= ARG_ANYTHING,
384 };
385 
386 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
387 	   struct bpf_perf_event_value *, buf, u32, size)
388 {
389 	int err = -EINVAL;
390 
391 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
392 		goto clear;
393 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
394 				   &buf->running);
395 	if (unlikely(err))
396 		goto clear;
397 	return 0;
398 clear:
399 	memset(buf, 0, size);
400 	return err;
401 }
402 
403 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
404 	.func		= bpf_perf_event_read_value,
405 	.gpl_only	= true,
406 	.ret_type	= RET_INTEGER,
407 	.arg1_type	= ARG_CONST_MAP_PTR,
408 	.arg2_type	= ARG_ANYTHING,
409 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
410 	.arg4_type	= ARG_CONST_SIZE,
411 };
412 
413 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
414 
415 static __always_inline u64
416 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
417 			u64 flags, struct perf_sample_data *sd)
418 {
419 	struct bpf_array *array = container_of(map, struct bpf_array, map);
420 	unsigned int cpu = smp_processor_id();
421 	u64 index = flags & BPF_F_INDEX_MASK;
422 	struct bpf_event_entry *ee;
423 	struct perf_event *event;
424 
425 	if (index == BPF_F_CURRENT_CPU)
426 		index = cpu;
427 	if (unlikely(index >= array->map.max_entries))
428 		return -E2BIG;
429 
430 	ee = READ_ONCE(array->ptrs[index]);
431 	if (!ee)
432 		return -ENOENT;
433 
434 	event = ee->event;
435 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
436 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
437 		return -EINVAL;
438 
439 	if (unlikely(event->oncpu != cpu))
440 		return -EOPNOTSUPP;
441 
442 	return perf_event_output(event, sd, regs);
443 }
444 
445 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
446 	   u64, flags, void *, data, u64, size)
447 {
448 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
449 	struct perf_raw_record raw = {
450 		.frag = {
451 			.size = size,
452 			.data = data,
453 		},
454 	};
455 
456 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
457 		return -EINVAL;
458 
459 	perf_sample_data_init(sd, 0, 0);
460 	sd->raw = &raw;
461 
462 	return __bpf_perf_event_output(regs, map, flags, sd);
463 }
464 
465 static const struct bpf_func_proto bpf_perf_event_output_proto = {
466 	.func		= bpf_perf_event_output,
467 	.gpl_only	= true,
468 	.ret_type	= RET_INTEGER,
469 	.arg1_type	= ARG_PTR_TO_CTX,
470 	.arg2_type	= ARG_CONST_MAP_PTR,
471 	.arg3_type	= ARG_ANYTHING,
472 	.arg4_type	= ARG_PTR_TO_MEM,
473 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
474 };
475 
476 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
477 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
478 
479 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
480 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
481 {
482 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
483 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
484 	struct perf_raw_frag frag = {
485 		.copy		= ctx_copy,
486 		.size		= ctx_size,
487 		.data		= ctx,
488 	};
489 	struct perf_raw_record raw = {
490 		.frag = {
491 			{
492 				.next	= ctx_size ? &frag : NULL,
493 			},
494 			.size	= meta_size,
495 			.data	= meta,
496 		},
497 	};
498 
499 	perf_fetch_caller_regs(regs);
500 	perf_sample_data_init(sd, 0, 0);
501 	sd->raw = &raw;
502 
503 	return __bpf_perf_event_output(regs, map, flags, sd);
504 }
505 
506 BPF_CALL_0(bpf_get_current_task)
507 {
508 	return (long) current;
509 }
510 
511 static const struct bpf_func_proto bpf_get_current_task_proto = {
512 	.func		= bpf_get_current_task,
513 	.gpl_only	= true,
514 	.ret_type	= RET_INTEGER,
515 };
516 
517 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
518 {
519 	struct bpf_array *array = container_of(map, struct bpf_array, map);
520 	struct cgroup *cgrp;
521 
522 	if (unlikely(idx >= array->map.max_entries))
523 		return -E2BIG;
524 
525 	cgrp = READ_ONCE(array->ptrs[idx]);
526 	if (unlikely(!cgrp))
527 		return -EAGAIN;
528 
529 	return task_under_cgroup_hierarchy(current, cgrp);
530 }
531 
532 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
533 	.func           = bpf_current_task_under_cgroup,
534 	.gpl_only       = false,
535 	.ret_type       = RET_INTEGER,
536 	.arg1_type      = ARG_CONST_MAP_PTR,
537 	.arg2_type      = ARG_ANYTHING,
538 };
539 
540 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
541 	   const void *, unsafe_ptr)
542 {
543 	int ret;
544 
545 	/*
546 	 * The strncpy_from_unsafe() call will likely not fill the entire
547 	 * buffer, but that's okay in this circumstance as we're probing
548 	 * arbitrary memory anyway similar to bpf_probe_read() and might
549 	 * as well probe the stack. Thus, memory is explicitly cleared
550 	 * only in error case, so that improper users ignoring return
551 	 * code altogether don't copy garbage; otherwise length of string
552 	 * is returned that can be used for bpf_perf_event_output() et al.
553 	 */
554 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
555 	if (unlikely(ret < 0))
556 		memset(dst, 0, size);
557 
558 	return ret;
559 }
560 
561 static const struct bpf_func_proto bpf_probe_read_str_proto = {
562 	.func		= bpf_probe_read_str,
563 	.gpl_only	= true,
564 	.ret_type	= RET_INTEGER,
565 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
566 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
567 	.arg3_type	= ARG_ANYTHING,
568 };
569 
570 static const struct bpf_func_proto *
571 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
572 {
573 	switch (func_id) {
574 	case BPF_FUNC_map_lookup_elem:
575 		return &bpf_map_lookup_elem_proto;
576 	case BPF_FUNC_map_update_elem:
577 		return &bpf_map_update_elem_proto;
578 	case BPF_FUNC_map_delete_elem:
579 		return &bpf_map_delete_elem_proto;
580 	case BPF_FUNC_map_push_elem:
581 		return &bpf_map_push_elem_proto;
582 	case BPF_FUNC_map_pop_elem:
583 		return &bpf_map_pop_elem_proto;
584 	case BPF_FUNC_map_peek_elem:
585 		return &bpf_map_peek_elem_proto;
586 	case BPF_FUNC_probe_read:
587 		return &bpf_probe_read_proto;
588 	case BPF_FUNC_ktime_get_ns:
589 		return &bpf_ktime_get_ns_proto;
590 	case BPF_FUNC_tail_call:
591 		return &bpf_tail_call_proto;
592 	case BPF_FUNC_get_current_pid_tgid:
593 		return &bpf_get_current_pid_tgid_proto;
594 	case BPF_FUNC_get_current_task:
595 		return &bpf_get_current_task_proto;
596 	case BPF_FUNC_get_current_uid_gid:
597 		return &bpf_get_current_uid_gid_proto;
598 	case BPF_FUNC_get_current_comm:
599 		return &bpf_get_current_comm_proto;
600 	case BPF_FUNC_trace_printk:
601 		return bpf_get_trace_printk_proto();
602 	case BPF_FUNC_get_smp_processor_id:
603 		return &bpf_get_smp_processor_id_proto;
604 	case BPF_FUNC_get_numa_node_id:
605 		return &bpf_get_numa_node_id_proto;
606 	case BPF_FUNC_perf_event_read:
607 		return &bpf_perf_event_read_proto;
608 	case BPF_FUNC_probe_write_user:
609 		return bpf_get_probe_write_proto();
610 	case BPF_FUNC_current_task_under_cgroup:
611 		return &bpf_current_task_under_cgroup_proto;
612 	case BPF_FUNC_get_prandom_u32:
613 		return &bpf_get_prandom_u32_proto;
614 	case BPF_FUNC_probe_read_str:
615 		return &bpf_probe_read_str_proto;
616 #ifdef CONFIG_CGROUPS
617 	case BPF_FUNC_get_current_cgroup_id:
618 		return &bpf_get_current_cgroup_id_proto;
619 #endif
620 	default:
621 		return NULL;
622 	}
623 }
624 
625 static const struct bpf_func_proto *
626 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
627 {
628 	switch (func_id) {
629 	case BPF_FUNC_perf_event_output:
630 		return &bpf_perf_event_output_proto;
631 	case BPF_FUNC_get_stackid:
632 		return &bpf_get_stackid_proto;
633 	case BPF_FUNC_get_stack:
634 		return &bpf_get_stack_proto;
635 	case BPF_FUNC_perf_event_read_value:
636 		return &bpf_perf_event_read_value_proto;
637 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
638 	case BPF_FUNC_override_return:
639 		return &bpf_override_return_proto;
640 #endif
641 	default:
642 		return tracing_func_proto(func_id, prog);
643 	}
644 }
645 
646 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
647 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
648 					const struct bpf_prog *prog,
649 					struct bpf_insn_access_aux *info)
650 {
651 	if (off < 0 || off >= sizeof(struct pt_regs))
652 		return false;
653 	if (type != BPF_READ)
654 		return false;
655 	if (off % size != 0)
656 		return false;
657 	/*
658 	 * Assertion for 32 bit to make sure last 8 byte access
659 	 * (BPF_DW) to the last 4 byte member is disallowed.
660 	 */
661 	if (off + size > sizeof(struct pt_regs))
662 		return false;
663 
664 	return true;
665 }
666 
667 const struct bpf_verifier_ops kprobe_verifier_ops = {
668 	.get_func_proto  = kprobe_prog_func_proto,
669 	.is_valid_access = kprobe_prog_is_valid_access,
670 };
671 
672 const struct bpf_prog_ops kprobe_prog_ops = {
673 };
674 
675 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
676 	   u64, flags, void *, data, u64, size)
677 {
678 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
679 
680 	/*
681 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
682 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
683 	 * from there and call the same bpf_perf_event_output() helper inline.
684 	 */
685 	return ____bpf_perf_event_output(regs, map, flags, data, size);
686 }
687 
688 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
689 	.func		= bpf_perf_event_output_tp,
690 	.gpl_only	= true,
691 	.ret_type	= RET_INTEGER,
692 	.arg1_type	= ARG_PTR_TO_CTX,
693 	.arg2_type	= ARG_CONST_MAP_PTR,
694 	.arg3_type	= ARG_ANYTHING,
695 	.arg4_type	= ARG_PTR_TO_MEM,
696 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
697 };
698 
699 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
700 	   u64, flags)
701 {
702 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
703 
704 	/*
705 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
706 	 * the other helper's function body cannot be inlined due to being
707 	 * external, thus we need to call raw helper function.
708 	 */
709 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
710 			       flags, 0, 0);
711 }
712 
713 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
714 	.func		= bpf_get_stackid_tp,
715 	.gpl_only	= true,
716 	.ret_type	= RET_INTEGER,
717 	.arg1_type	= ARG_PTR_TO_CTX,
718 	.arg2_type	= ARG_CONST_MAP_PTR,
719 	.arg3_type	= ARG_ANYTHING,
720 };
721 
722 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
723 	   u64, flags)
724 {
725 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
726 
727 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
728 			     (unsigned long) size, flags, 0);
729 }
730 
731 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
732 	.func		= bpf_get_stack_tp,
733 	.gpl_only	= true,
734 	.ret_type	= RET_INTEGER,
735 	.arg1_type	= ARG_PTR_TO_CTX,
736 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
737 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
738 	.arg4_type	= ARG_ANYTHING,
739 };
740 
741 static const struct bpf_func_proto *
742 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
743 {
744 	switch (func_id) {
745 	case BPF_FUNC_perf_event_output:
746 		return &bpf_perf_event_output_proto_tp;
747 	case BPF_FUNC_get_stackid:
748 		return &bpf_get_stackid_proto_tp;
749 	case BPF_FUNC_get_stack:
750 		return &bpf_get_stack_proto_tp;
751 	default:
752 		return tracing_func_proto(func_id, prog);
753 	}
754 }
755 
756 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
757 				    const struct bpf_prog *prog,
758 				    struct bpf_insn_access_aux *info)
759 {
760 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
761 		return false;
762 	if (type != BPF_READ)
763 		return false;
764 	if (off % size != 0)
765 		return false;
766 
767 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
768 	return true;
769 }
770 
771 const struct bpf_verifier_ops tracepoint_verifier_ops = {
772 	.get_func_proto  = tp_prog_func_proto,
773 	.is_valid_access = tp_prog_is_valid_access,
774 };
775 
776 const struct bpf_prog_ops tracepoint_prog_ops = {
777 };
778 
779 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
780 	   struct bpf_perf_event_value *, buf, u32, size)
781 {
782 	int err = -EINVAL;
783 
784 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
785 		goto clear;
786 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
787 				    &buf->running);
788 	if (unlikely(err))
789 		goto clear;
790 	return 0;
791 clear:
792 	memset(buf, 0, size);
793 	return err;
794 }
795 
796 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
797          .func           = bpf_perf_prog_read_value,
798          .gpl_only       = true,
799          .ret_type       = RET_INTEGER,
800          .arg1_type      = ARG_PTR_TO_CTX,
801          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
802          .arg3_type      = ARG_CONST_SIZE,
803 };
804 
805 static const struct bpf_func_proto *
806 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
807 {
808 	switch (func_id) {
809 	case BPF_FUNC_perf_event_output:
810 		return &bpf_perf_event_output_proto_tp;
811 	case BPF_FUNC_get_stackid:
812 		return &bpf_get_stackid_proto_tp;
813 	case BPF_FUNC_get_stack:
814 		return &bpf_get_stack_proto_tp;
815 	case BPF_FUNC_perf_prog_read_value:
816 		return &bpf_perf_prog_read_value_proto;
817 	default:
818 		return tracing_func_proto(func_id, prog);
819 	}
820 }
821 
822 /*
823  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
824  * to avoid potential recursive reuse issue when/if tracepoints are added
825  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack
826  */
827 static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs);
828 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
829 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
830 {
831 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
832 
833 	perf_fetch_caller_regs(regs);
834 	return ____bpf_perf_event_output(regs, map, flags, data, size);
835 }
836 
837 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
838 	.func		= bpf_perf_event_output_raw_tp,
839 	.gpl_only	= true,
840 	.ret_type	= RET_INTEGER,
841 	.arg1_type	= ARG_PTR_TO_CTX,
842 	.arg2_type	= ARG_CONST_MAP_PTR,
843 	.arg3_type	= ARG_ANYTHING,
844 	.arg4_type	= ARG_PTR_TO_MEM,
845 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
846 };
847 
848 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
849 	   struct bpf_map *, map, u64, flags)
850 {
851 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
852 
853 	perf_fetch_caller_regs(regs);
854 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
855 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
856 			       flags, 0, 0);
857 }
858 
859 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
860 	.func		= bpf_get_stackid_raw_tp,
861 	.gpl_only	= true,
862 	.ret_type	= RET_INTEGER,
863 	.arg1_type	= ARG_PTR_TO_CTX,
864 	.arg2_type	= ARG_CONST_MAP_PTR,
865 	.arg3_type	= ARG_ANYTHING,
866 };
867 
868 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
869 	   void *, buf, u32, size, u64, flags)
870 {
871 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
872 
873 	perf_fetch_caller_regs(regs);
874 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
875 			     (unsigned long) size, flags, 0);
876 }
877 
878 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
879 	.func		= bpf_get_stack_raw_tp,
880 	.gpl_only	= true,
881 	.ret_type	= RET_INTEGER,
882 	.arg1_type	= ARG_PTR_TO_CTX,
883 	.arg2_type	= ARG_PTR_TO_MEM,
884 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
885 	.arg4_type	= ARG_ANYTHING,
886 };
887 
888 static const struct bpf_func_proto *
889 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
890 {
891 	switch (func_id) {
892 	case BPF_FUNC_perf_event_output:
893 		return &bpf_perf_event_output_proto_raw_tp;
894 	case BPF_FUNC_get_stackid:
895 		return &bpf_get_stackid_proto_raw_tp;
896 	case BPF_FUNC_get_stack:
897 		return &bpf_get_stack_proto_raw_tp;
898 	default:
899 		return tracing_func_proto(func_id, prog);
900 	}
901 }
902 
903 static bool raw_tp_prog_is_valid_access(int off, int size,
904 					enum bpf_access_type type,
905 					const struct bpf_prog *prog,
906 					struct bpf_insn_access_aux *info)
907 {
908 	/* largest tracepoint in the kernel has 12 args */
909 	if (off < 0 || off >= sizeof(__u64) * 12)
910 		return false;
911 	if (type != BPF_READ)
912 		return false;
913 	if (off % size != 0)
914 		return false;
915 	return true;
916 }
917 
918 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
919 	.get_func_proto  = raw_tp_prog_func_proto,
920 	.is_valid_access = raw_tp_prog_is_valid_access,
921 };
922 
923 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
924 };
925 
926 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
927 						 enum bpf_access_type type,
928 						 const struct bpf_prog *prog,
929 						 struct bpf_insn_access_aux *info)
930 {
931 	if (off == 0) {
932 		if (size != sizeof(u64) || type != BPF_READ)
933 			return false;
934 		info->reg_type = PTR_TO_TP_BUFFER;
935 	}
936 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
937 }
938 
939 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
940 	.get_func_proto  = raw_tp_prog_func_proto,
941 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
942 };
943 
944 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
945 };
946 
947 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
948 				    const struct bpf_prog *prog,
949 				    struct bpf_insn_access_aux *info)
950 {
951 	const int size_u64 = sizeof(u64);
952 
953 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
954 		return false;
955 	if (type != BPF_READ)
956 		return false;
957 	if (off % size != 0) {
958 		if (sizeof(unsigned long) != 4)
959 			return false;
960 		if (size != 8)
961 			return false;
962 		if (off % size != 4)
963 			return false;
964 	}
965 
966 	switch (off) {
967 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
968 		bpf_ctx_record_field_size(info, size_u64);
969 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
970 			return false;
971 		break;
972 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
973 		bpf_ctx_record_field_size(info, size_u64);
974 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
975 			return false;
976 		break;
977 	default:
978 		if (size != sizeof(long))
979 			return false;
980 	}
981 
982 	return true;
983 }
984 
985 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
986 				      const struct bpf_insn *si,
987 				      struct bpf_insn *insn_buf,
988 				      struct bpf_prog *prog, u32 *target_size)
989 {
990 	struct bpf_insn *insn = insn_buf;
991 
992 	switch (si->off) {
993 	case offsetof(struct bpf_perf_event_data, sample_period):
994 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
995 						       data), si->dst_reg, si->src_reg,
996 				      offsetof(struct bpf_perf_event_data_kern, data));
997 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
998 				      bpf_target_off(struct perf_sample_data, period, 8,
999 						     target_size));
1000 		break;
1001 	case offsetof(struct bpf_perf_event_data, addr):
1002 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1003 						       data), si->dst_reg, si->src_reg,
1004 				      offsetof(struct bpf_perf_event_data_kern, data));
1005 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1006 				      bpf_target_off(struct perf_sample_data, addr, 8,
1007 						     target_size));
1008 		break;
1009 	default:
1010 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1011 						       regs), si->dst_reg, si->src_reg,
1012 				      offsetof(struct bpf_perf_event_data_kern, regs));
1013 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1014 				      si->off);
1015 		break;
1016 	}
1017 
1018 	return insn - insn_buf;
1019 }
1020 
1021 const struct bpf_verifier_ops perf_event_verifier_ops = {
1022 	.get_func_proto		= pe_prog_func_proto,
1023 	.is_valid_access	= pe_prog_is_valid_access,
1024 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1025 };
1026 
1027 const struct bpf_prog_ops perf_event_prog_ops = {
1028 };
1029 
1030 static DEFINE_MUTEX(bpf_event_mutex);
1031 
1032 #define BPF_TRACE_MAX_PROGS 64
1033 
1034 int perf_event_attach_bpf_prog(struct perf_event *event,
1035 			       struct bpf_prog *prog)
1036 {
1037 	struct bpf_prog_array __rcu *old_array;
1038 	struct bpf_prog_array *new_array;
1039 	int ret = -EEXIST;
1040 
1041 	/*
1042 	 * Kprobe override only works if they are on the function entry,
1043 	 * and only if they are on the opt-in list.
1044 	 */
1045 	if (prog->kprobe_override &&
1046 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1047 	     !trace_kprobe_error_injectable(event->tp_event)))
1048 		return -EINVAL;
1049 
1050 	mutex_lock(&bpf_event_mutex);
1051 
1052 	if (event->prog)
1053 		goto unlock;
1054 
1055 	old_array = event->tp_event->prog_array;
1056 	if (old_array &&
1057 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1058 		ret = -E2BIG;
1059 		goto unlock;
1060 	}
1061 
1062 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1063 	if (ret < 0)
1064 		goto unlock;
1065 
1066 	/* set the new array to event->tp_event and set event->prog */
1067 	event->prog = prog;
1068 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1069 	bpf_prog_array_free(old_array);
1070 
1071 unlock:
1072 	mutex_unlock(&bpf_event_mutex);
1073 	return ret;
1074 }
1075 
1076 void perf_event_detach_bpf_prog(struct perf_event *event)
1077 {
1078 	struct bpf_prog_array __rcu *old_array;
1079 	struct bpf_prog_array *new_array;
1080 	int ret;
1081 
1082 	mutex_lock(&bpf_event_mutex);
1083 
1084 	if (!event->prog)
1085 		goto unlock;
1086 
1087 	old_array = event->tp_event->prog_array;
1088 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1089 	if (ret == -ENOENT)
1090 		goto unlock;
1091 	if (ret < 0) {
1092 		bpf_prog_array_delete_safe(old_array, event->prog);
1093 	} else {
1094 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1095 		bpf_prog_array_free(old_array);
1096 	}
1097 
1098 	bpf_prog_put(event->prog);
1099 	event->prog = NULL;
1100 
1101 unlock:
1102 	mutex_unlock(&bpf_event_mutex);
1103 }
1104 
1105 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1106 {
1107 	struct perf_event_query_bpf __user *uquery = info;
1108 	struct perf_event_query_bpf query = {};
1109 	u32 *ids, prog_cnt, ids_len;
1110 	int ret;
1111 
1112 	if (!capable(CAP_SYS_ADMIN))
1113 		return -EPERM;
1114 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1115 		return -EINVAL;
1116 	if (copy_from_user(&query, uquery, sizeof(query)))
1117 		return -EFAULT;
1118 
1119 	ids_len = query.ids_len;
1120 	if (ids_len > BPF_TRACE_MAX_PROGS)
1121 		return -E2BIG;
1122 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1123 	if (!ids)
1124 		return -ENOMEM;
1125 	/*
1126 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1127 	 * is required when user only wants to check for uquery->prog_cnt.
1128 	 * There is no need to check for it since the case is handled
1129 	 * gracefully in bpf_prog_array_copy_info.
1130 	 */
1131 
1132 	mutex_lock(&bpf_event_mutex);
1133 	ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
1134 				       ids,
1135 				       ids_len,
1136 				       &prog_cnt);
1137 	mutex_unlock(&bpf_event_mutex);
1138 
1139 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1140 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1141 		ret = -EFAULT;
1142 
1143 	kfree(ids);
1144 	return ret;
1145 }
1146 
1147 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1148 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1149 
1150 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1151 {
1152 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1153 
1154 	for (; btp < __stop__bpf_raw_tp; btp++) {
1155 		if (!strcmp(btp->tp->name, name))
1156 			return btp;
1157 	}
1158 
1159 	return bpf_get_raw_tracepoint_module(name);
1160 }
1161 
1162 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1163 {
1164 	struct module *mod = __module_address((unsigned long)btp);
1165 
1166 	if (mod)
1167 		module_put(mod);
1168 }
1169 
1170 static __always_inline
1171 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1172 {
1173 	rcu_read_lock();
1174 	preempt_disable();
1175 	(void) BPF_PROG_RUN(prog, args);
1176 	preempt_enable();
1177 	rcu_read_unlock();
1178 }
1179 
1180 #define UNPACK(...)			__VA_ARGS__
1181 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1182 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1183 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1184 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1185 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1186 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1187 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1188 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1189 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1190 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1191 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1192 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1193 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1194 
1195 #define SARG(X)		u64 arg##X
1196 #define COPY(X)		args[X] = arg##X
1197 
1198 #define __DL_COM	(,)
1199 #define __DL_SEM	(;)
1200 
1201 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1202 
1203 #define BPF_TRACE_DEFN_x(x)						\
1204 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1205 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1206 	{								\
1207 		u64 args[x];						\
1208 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1209 		__bpf_trace_run(prog, args);				\
1210 	}								\
1211 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1212 BPF_TRACE_DEFN_x(1);
1213 BPF_TRACE_DEFN_x(2);
1214 BPF_TRACE_DEFN_x(3);
1215 BPF_TRACE_DEFN_x(4);
1216 BPF_TRACE_DEFN_x(5);
1217 BPF_TRACE_DEFN_x(6);
1218 BPF_TRACE_DEFN_x(7);
1219 BPF_TRACE_DEFN_x(8);
1220 BPF_TRACE_DEFN_x(9);
1221 BPF_TRACE_DEFN_x(10);
1222 BPF_TRACE_DEFN_x(11);
1223 BPF_TRACE_DEFN_x(12);
1224 
1225 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1226 {
1227 	struct tracepoint *tp = btp->tp;
1228 
1229 	/*
1230 	 * check that program doesn't access arguments beyond what's
1231 	 * available in this tracepoint
1232 	 */
1233 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1234 		return -EINVAL;
1235 
1236 	if (prog->aux->max_tp_access > btp->writable_size)
1237 		return -EINVAL;
1238 
1239 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1240 }
1241 
1242 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1243 {
1244 	return __bpf_probe_register(btp, prog);
1245 }
1246 
1247 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1248 {
1249 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1250 }
1251 
1252 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1253 			    u32 *fd_type, const char **buf,
1254 			    u64 *probe_offset, u64 *probe_addr)
1255 {
1256 	bool is_tracepoint, is_syscall_tp;
1257 	struct bpf_prog *prog;
1258 	int flags, err = 0;
1259 
1260 	prog = event->prog;
1261 	if (!prog)
1262 		return -ENOENT;
1263 
1264 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1265 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1266 		return -EOPNOTSUPP;
1267 
1268 	*prog_id = prog->aux->id;
1269 	flags = event->tp_event->flags;
1270 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1271 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1272 
1273 	if (is_tracepoint || is_syscall_tp) {
1274 		*buf = is_tracepoint ? event->tp_event->tp->name
1275 				     : event->tp_event->name;
1276 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1277 		*probe_offset = 0x0;
1278 		*probe_addr = 0x0;
1279 	} else {
1280 		/* kprobe/uprobe */
1281 		err = -EOPNOTSUPP;
1282 #ifdef CONFIG_KPROBE_EVENTS
1283 		if (flags & TRACE_EVENT_FL_KPROBE)
1284 			err = bpf_get_kprobe_info(event, fd_type, buf,
1285 						  probe_offset, probe_addr,
1286 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1287 #endif
1288 #ifdef CONFIG_UPROBE_EVENTS
1289 		if (flags & TRACE_EVENT_FL_UPROBE)
1290 			err = bpf_get_uprobe_info(event, fd_type, buf,
1291 						  probe_offset,
1292 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1293 #endif
1294 	}
1295 
1296 	return err;
1297 }
1298 
1299 #ifdef CONFIG_MODULES
1300 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1301 			    void *module)
1302 {
1303 	struct bpf_trace_module *btm, *tmp;
1304 	struct module *mod = module;
1305 
1306 	if (mod->num_bpf_raw_events == 0 ||
1307 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1308 		return 0;
1309 
1310 	mutex_lock(&bpf_module_mutex);
1311 
1312 	switch (op) {
1313 	case MODULE_STATE_COMING:
1314 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1315 		if (btm) {
1316 			btm->module = module;
1317 			list_add(&btm->list, &bpf_trace_modules);
1318 		}
1319 		break;
1320 	case MODULE_STATE_GOING:
1321 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1322 			if (btm->module == module) {
1323 				list_del(&btm->list);
1324 				kfree(btm);
1325 				break;
1326 			}
1327 		}
1328 		break;
1329 	}
1330 
1331 	mutex_unlock(&bpf_module_mutex);
1332 
1333 	return 0;
1334 }
1335 
1336 static struct notifier_block bpf_module_nb = {
1337 	.notifier_call = bpf_event_notify,
1338 };
1339 
1340 static int __init bpf_event_init(void)
1341 {
1342 	register_module_notifier(&bpf_module_nb);
1343 	return 0;
1344 }
1345 
1346 fs_initcall(bpf_event_init);
1347 #endif /* CONFIG_MODULES */
1348