1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/filter.h> 11 #include <linux/uaccess.h> 12 #include <linux/ctype.h> 13 #include <linux/kprobes.h> 14 #include <linux/spinlock.h> 15 #include <linux/syscalls.h> 16 #include <linux/error-injection.h> 17 #include <linux/btf_ids.h> 18 19 #include <asm/tlb.h> 20 21 #include "trace_probe.h" 22 #include "trace.h" 23 24 #define CREATE_TRACE_POINTS 25 #include "bpf_trace.h" 26 27 #define bpf_event_rcu_dereference(p) \ 28 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 29 30 #ifdef CONFIG_MODULES 31 struct bpf_trace_module { 32 struct module *module; 33 struct list_head list; 34 }; 35 36 static LIST_HEAD(bpf_trace_modules); 37 static DEFINE_MUTEX(bpf_module_mutex); 38 39 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 40 { 41 struct bpf_raw_event_map *btp, *ret = NULL; 42 struct bpf_trace_module *btm; 43 unsigned int i; 44 45 mutex_lock(&bpf_module_mutex); 46 list_for_each_entry(btm, &bpf_trace_modules, list) { 47 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 48 btp = &btm->module->bpf_raw_events[i]; 49 if (!strcmp(btp->tp->name, name)) { 50 if (try_module_get(btm->module)) 51 ret = btp; 52 goto out; 53 } 54 } 55 } 56 out: 57 mutex_unlock(&bpf_module_mutex); 58 return ret; 59 } 60 #else 61 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 62 { 63 return NULL; 64 } 65 #endif /* CONFIG_MODULES */ 66 67 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 68 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 69 70 /** 71 * trace_call_bpf - invoke BPF program 72 * @call: tracepoint event 73 * @ctx: opaque context pointer 74 * 75 * kprobe handlers execute BPF programs via this helper. 76 * Can be used from static tracepoints in the future. 77 * 78 * Return: BPF programs always return an integer which is interpreted by 79 * kprobe handler as: 80 * 0 - return from kprobe (event is filtered out) 81 * 1 - store kprobe event into ring buffer 82 * Other values are reserved and currently alias to 1 83 */ 84 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 85 { 86 unsigned int ret; 87 88 if (in_nmi()) /* not supported yet */ 89 return 1; 90 91 cant_sleep(); 92 93 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 94 /* 95 * since some bpf program is already running on this cpu, 96 * don't call into another bpf program (same or different) 97 * and don't send kprobe event into ring-buffer, 98 * so return zero here 99 */ 100 ret = 0; 101 goto out; 102 } 103 104 /* 105 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 106 * to all call sites, we did a bpf_prog_array_valid() there to check 107 * whether call->prog_array is empty or not, which is 108 * a heurisitc to speed up execution. 109 * 110 * If bpf_prog_array_valid() fetched prog_array was 111 * non-NULL, we go into trace_call_bpf() and do the actual 112 * proper rcu_dereference() under RCU lock. 113 * If it turns out that prog_array is NULL then, we bail out. 114 * For the opposite, if the bpf_prog_array_valid() fetched pointer 115 * was NULL, you'll skip the prog_array with the risk of missing 116 * out of events when it was updated in between this and the 117 * rcu_dereference() which is accepted risk. 118 */ 119 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 120 121 out: 122 __this_cpu_dec(bpf_prog_active); 123 124 return ret; 125 } 126 127 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 128 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 129 { 130 regs_set_return_value(regs, rc); 131 override_function_with_return(regs); 132 return 0; 133 } 134 135 static const struct bpf_func_proto bpf_override_return_proto = { 136 .func = bpf_override_return, 137 .gpl_only = true, 138 .ret_type = RET_INTEGER, 139 .arg1_type = ARG_PTR_TO_CTX, 140 .arg2_type = ARG_ANYTHING, 141 }; 142 #endif 143 144 static __always_inline int 145 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 146 { 147 int ret; 148 149 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 150 if (unlikely(ret < 0)) 151 memset(dst, 0, size); 152 return ret; 153 } 154 155 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 156 const void __user *, unsafe_ptr) 157 { 158 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 159 } 160 161 const struct bpf_func_proto bpf_probe_read_user_proto = { 162 .func = bpf_probe_read_user, 163 .gpl_only = true, 164 .ret_type = RET_INTEGER, 165 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 166 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 167 .arg3_type = ARG_ANYTHING, 168 }; 169 170 static __always_inline int 171 bpf_probe_read_user_str_common(void *dst, u32 size, 172 const void __user *unsafe_ptr) 173 { 174 int ret; 175 176 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 177 if (unlikely(ret < 0)) 178 memset(dst, 0, size); 179 return ret; 180 } 181 182 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 183 const void __user *, unsafe_ptr) 184 { 185 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 186 } 187 188 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 189 .func = bpf_probe_read_user_str, 190 .gpl_only = true, 191 .ret_type = RET_INTEGER, 192 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 193 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 194 .arg3_type = ARG_ANYTHING, 195 }; 196 197 static __always_inline int 198 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 199 { 200 int ret = security_locked_down(LOCKDOWN_BPF_READ); 201 202 if (unlikely(ret < 0)) 203 goto fail; 204 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 205 if (unlikely(ret < 0)) 206 goto fail; 207 return ret; 208 fail: 209 memset(dst, 0, size); 210 return ret; 211 } 212 213 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 214 const void *, unsafe_ptr) 215 { 216 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 217 } 218 219 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 220 .func = bpf_probe_read_kernel, 221 .gpl_only = true, 222 .ret_type = RET_INTEGER, 223 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 224 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 225 .arg3_type = ARG_ANYTHING, 226 }; 227 228 static __always_inline int 229 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 230 { 231 int ret = security_locked_down(LOCKDOWN_BPF_READ); 232 233 if (unlikely(ret < 0)) 234 goto fail; 235 236 /* 237 * The strncpy_from_kernel_nofault() call will likely not fill the 238 * entire buffer, but that's okay in this circumstance as we're probing 239 * arbitrary memory anyway similar to bpf_probe_read_*() and might 240 * as well probe the stack. Thus, memory is explicitly cleared 241 * only in error case, so that improper users ignoring return 242 * code altogether don't copy garbage; otherwise length of string 243 * is returned that can be used for bpf_perf_event_output() et al. 244 */ 245 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 246 if (unlikely(ret < 0)) 247 goto fail; 248 249 return ret; 250 fail: 251 memset(dst, 0, size); 252 return ret; 253 } 254 255 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 256 const void *, unsafe_ptr) 257 { 258 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 259 } 260 261 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 262 .func = bpf_probe_read_kernel_str, 263 .gpl_only = true, 264 .ret_type = RET_INTEGER, 265 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 266 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 267 .arg3_type = ARG_ANYTHING, 268 }; 269 270 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 271 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 272 const void *, unsafe_ptr) 273 { 274 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 275 return bpf_probe_read_user_common(dst, size, 276 (__force void __user *)unsafe_ptr); 277 } 278 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 279 } 280 281 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 282 .func = bpf_probe_read_compat, 283 .gpl_only = true, 284 .ret_type = RET_INTEGER, 285 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 286 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 287 .arg3_type = ARG_ANYTHING, 288 }; 289 290 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 291 const void *, unsafe_ptr) 292 { 293 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 294 return bpf_probe_read_user_str_common(dst, size, 295 (__force void __user *)unsafe_ptr); 296 } 297 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 298 } 299 300 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 301 .func = bpf_probe_read_compat_str, 302 .gpl_only = true, 303 .ret_type = RET_INTEGER, 304 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 305 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 306 .arg3_type = ARG_ANYTHING, 307 }; 308 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 309 310 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 311 u32, size) 312 { 313 /* 314 * Ensure we're in user context which is safe for the helper to 315 * run. This helper has no business in a kthread. 316 * 317 * access_ok() should prevent writing to non-user memory, but in 318 * some situations (nommu, temporary switch, etc) access_ok() does 319 * not provide enough validation, hence the check on KERNEL_DS. 320 * 321 * nmi_uaccess_okay() ensures the probe is not run in an interim 322 * state, when the task or mm are switched. This is specifically 323 * required to prevent the use of temporary mm. 324 */ 325 326 if (unlikely(in_interrupt() || 327 current->flags & (PF_KTHREAD | PF_EXITING))) 328 return -EPERM; 329 if (unlikely(uaccess_kernel())) 330 return -EPERM; 331 if (unlikely(!nmi_uaccess_okay())) 332 return -EPERM; 333 334 return copy_to_user_nofault(unsafe_ptr, src, size); 335 } 336 337 static const struct bpf_func_proto bpf_probe_write_user_proto = { 338 .func = bpf_probe_write_user, 339 .gpl_only = true, 340 .ret_type = RET_INTEGER, 341 .arg1_type = ARG_ANYTHING, 342 .arg2_type = ARG_PTR_TO_MEM, 343 .arg3_type = ARG_CONST_SIZE, 344 }; 345 346 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 347 { 348 if (!capable(CAP_SYS_ADMIN)) 349 return NULL; 350 351 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 352 current->comm, task_pid_nr(current)); 353 354 return &bpf_probe_write_user_proto; 355 } 356 357 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 358 size_t bufsz) 359 { 360 void __user *user_ptr = (__force void __user *)unsafe_ptr; 361 362 buf[0] = 0; 363 364 switch (fmt_ptype) { 365 case 's': 366 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 367 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 368 strncpy_from_user_nofault(buf, user_ptr, bufsz); 369 break; 370 } 371 fallthrough; 372 #endif 373 case 'k': 374 strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 375 break; 376 case 'u': 377 strncpy_from_user_nofault(buf, user_ptr, bufsz); 378 break; 379 } 380 } 381 382 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 383 384 #define BPF_TRACE_PRINTK_SIZE 1024 385 386 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...) 387 { 388 static char buf[BPF_TRACE_PRINTK_SIZE]; 389 unsigned long flags; 390 va_list ap; 391 int ret; 392 393 raw_spin_lock_irqsave(&trace_printk_lock, flags); 394 va_start(ap, fmt); 395 ret = vsnprintf(buf, sizeof(buf), fmt, ap); 396 va_end(ap); 397 /* vsnprintf() will not append null for zero-length strings */ 398 if (ret == 0) 399 buf[0] = '\0'; 400 trace_bpf_trace_printk(buf); 401 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 402 403 return ret; 404 } 405 406 /* 407 * Only limited trace_printk() conversion specifiers allowed: 408 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s 409 */ 410 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 411 u64, arg2, u64, arg3) 412 { 413 int i, mod[3] = {}, fmt_cnt = 0; 414 char buf[64], fmt_ptype; 415 void *unsafe_ptr = NULL; 416 bool str_seen = false; 417 418 /* 419 * bpf_check()->check_func_arg()->check_stack_boundary() 420 * guarantees that fmt points to bpf program stack, 421 * fmt_size bytes of it were initialized and fmt_size > 0 422 */ 423 if (fmt[--fmt_size] != 0) 424 return -EINVAL; 425 426 /* check format string for allowed specifiers */ 427 for (i = 0; i < fmt_size; i++) { 428 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 429 return -EINVAL; 430 431 if (fmt[i] != '%') 432 continue; 433 434 if (fmt_cnt >= 3) 435 return -EINVAL; 436 437 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 438 i++; 439 if (fmt[i] == 'l') { 440 mod[fmt_cnt]++; 441 i++; 442 } else if (fmt[i] == 'p') { 443 mod[fmt_cnt]++; 444 if ((fmt[i + 1] == 'k' || 445 fmt[i + 1] == 'u') && 446 fmt[i + 2] == 's') { 447 fmt_ptype = fmt[i + 1]; 448 i += 2; 449 goto fmt_str; 450 } 451 452 if (fmt[i + 1] == 'B') { 453 i++; 454 goto fmt_next; 455 } 456 457 /* disallow any further format extensions */ 458 if (fmt[i + 1] != 0 && 459 !isspace(fmt[i + 1]) && 460 !ispunct(fmt[i + 1])) 461 return -EINVAL; 462 463 goto fmt_next; 464 } else if (fmt[i] == 's') { 465 mod[fmt_cnt]++; 466 fmt_ptype = fmt[i]; 467 fmt_str: 468 if (str_seen) 469 /* allow only one '%s' per fmt string */ 470 return -EINVAL; 471 str_seen = true; 472 473 if (fmt[i + 1] != 0 && 474 !isspace(fmt[i + 1]) && 475 !ispunct(fmt[i + 1])) 476 return -EINVAL; 477 478 switch (fmt_cnt) { 479 case 0: 480 unsafe_ptr = (void *)(long)arg1; 481 arg1 = (long)buf; 482 break; 483 case 1: 484 unsafe_ptr = (void *)(long)arg2; 485 arg2 = (long)buf; 486 break; 487 case 2: 488 unsafe_ptr = (void *)(long)arg3; 489 arg3 = (long)buf; 490 break; 491 } 492 493 bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype, 494 sizeof(buf)); 495 goto fmt_next; 496 } 497 498 if (fmt[i] == 'l') { 499 mod[fmt_cnt]++; 500 i++; 501 } 502 503 if (fmt[i] != 'i' && fmt[i] != 'd' && 504 fmt[i] != 'u' && fmt[i] != 'x') 505 return -EINVAL; 506 fmt_next: 507 fmt_cnt++; 508 } 509 510 /* Horrid workaround for getting va_list handling working with different 511 * argument type combinations generically for 32 and 64 bit archs. 512 */ 513 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 514 #define __BPF_TP(...) \ 515 bpf_do_trace_printk(fmt, ##__VA_ARGS__) 516 517 #define __BPF_ARG1_TP(...) \ 518 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 519 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 520 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 521 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 522 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 523 524 #define __BPF_ARG2_TP(...) \ 525 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 526 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 527 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 528 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 529 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 530 531 #define __BPF_ARG3_TP(...) \ 532 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 533 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 534 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 535 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 536 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 537 538 return __BPF_TP_EMIT(); 539 } 540 541 static const struct bpf_func_proto bpf_trace_printk_proto = { 542 .func = bpf_trace_printk, 543 .gpl_only = true, 544 .ret_type = RET_INTEGER, 545 .arg1_type = ARG_PTR_TO_MEM, 546 .arg2_type = ARG_CONST_SIZE, 547 }; 548 549 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 550 { 551 /* 552 * This program might be calling bpf_trace_printk, 553 * so enable the associated bpf_trace/bpf_trace_printk event. 554 * Repeat this each time as it is possible a user has 555 * disabled bpf_trace_printk events. By loading a program 556 * calling bpf_trace_printk() however the user has expressed 557 * the intent to see such events. 558 */ 559 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 560 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 561 562 return &bpf_trace_printk_proto; 563 } 564 565 #define MAX_SEQ_PRINTF_VARARGS 12 566 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6 567 #define MAX_SEQ_PRINTF_STR_LEN 128 568 569 struct bpf_seq_printf_buf { 570 char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN]; 571 }; 572 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf); 573 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used); 574 575 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 576 const void *, data, u32, data_len) 577 { 578 int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0; 579 int i, buf_used, copy_size, num_args; 580 u64 params[MAX_SEQ_PRINTF_VARARGS]; 581 struct bpf_seq_printf_buf *bufs; 582 const u64 *args = data; 583 584 buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used); 585 if (WARN_ON_ONCE(buf_used > 1)) { 586 err = -EBUSY; 587 goto out; 588 } 589 590 bufs = this_cpu_ptr(&bpf_seq_printf_buf); 591 592 /* 593 * bpf_check()->check_func_arg()->check_stack_boundary() 594 * guarantees that fmt points to bpf program stack, 595 * fmt_size bytes of it were initialized and fmt_size > 0 596 */ 597 if (fmt[--fmt_size] != 0) 598 goto out; 599 600 if (data_len & 7) 601 goto out; 602 603 for (i = 0; i < fmt_size; i++) { 604 if (fmt[i] == '%') { 605 if (fmt[i + 1] == '%') 606 i++; 607 else if (!data || !data_len) 608 goto out; 609 } 610 } 611 612 num_args = data_len / 8; 613 614 /* check format string for allowed specifiers */ 615 for (i = 0; i < fmt_size; i++) { 616 /* only printable ascii for now. */ 617 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 618 err = -EINVAL; 619 goto out; 620 } 621 622 if (fmt[i] != '%') 623 continue; 624 625 if (fmt[i + 1] == '%') { 626 i++; 627 continue; 628 } 629 630 if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) { 631 err = -E2BIG; 632 goto out; 633 } 634 635 if (fmt_cnt >= num_args) { 636 err = -EINVAL; 637 goto out; 638 } 639 640 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 641 i++; 642 643 /* skip optional "[0 +-][num]" width formating field */ 644 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 645 fmt[i] == ' ') 646 i++; 647 if (fmt[i] >= '1' && fmt[i] <= '9') { 648 i++; 649 while (fmt[i] >= '0' && fmt[i] <= '9') 650 i++; 651 } 652 653 if (fmt[i] == 's') { 654 void *unsafe_ptr; 655 656 /* try our best to copy */ 657 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 658 err = -E2BIG; 659 goto out; 660 } 661 662 unsafe_ptr = (void *)(long)args[fmt_cnt]; 663 err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt], 664 unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN); 665 if (err < 0) 666 bufs->buf[memcpy_cnt][0] = '\0'; 667 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 668 669 fmt_cnt++; 670 memcpy_cnt++; 671 continue; 672 } 673 674 if (fmt[i] == 'p') { 675 if (fmt[i + 1] == 0 || 676 fmt[i + 1] == 'K' || 677 fmt[i + 1] == 'x' || 678 fmt[i + 1] == 'B') { 679 /* just kernel pointers */ 680 params[fmt_cnt] = args[fmt_cnt]; 681 fmt_cnt++; 682 continue; 683 } 684 685 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 686 if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') { 687 err = -EINVAL; 688 goto out; 689 } 690 if (fmt[i + 2] != '4' && fmt[i + 2] != '6') { 691 err = -EINVAL; 692 goto out; 693 } 694 695 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 696 err = -E2BIG; 697 goto out; 698 } 699 700 701 copy_size = (fmt[i + 2] == '4') ? 4 : 16; 702 703 err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt], 704 (void *) (long) args[fmt_cnt], 705 copy_size); 706 if (err < 0) 707 memset(bufs->buf[memcpy_cnt], 0, copy_size); 708 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 709 710 i += 2; 711 fmt_cnt++; 712 memcpy_cnt++; 713 continue; 714 } 715 716 if (fmt[i] == 'l') { 717 i++; 718 if (fmt[i] == 'l') 719 i++; 720 } 721 722 if (fmt[i] != 'i' && fmt[i] != 'd' && 723 fmt[i] != 'u' && fmt[i] != 'x' && 724 fmt[i] != 'X') { 725 err = -EINVAL; 726 goto out; 727 } 728 729 params[fmt_cnt] = args[fmt_cnt]; 730 fmt_cnt++; 731 } 732 733 /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give 734 * all of them to seq_printf(). 735 */ 736 seq_printf(m, fmt, params[0], params[1], params[2], params[3], 737 params[4], params[5], params[6], params[7], params[8], 738 params[9], params[10], params[11]); 739 740 err = seq_has_overflowed(m) ? -EOVERFLOW : 0; 741 out: 742 this_cpu_dec(bpf_seq_printf_buf_used); 743 return err; 744 } 745 746 BTF_ID_LIST(bpf_seq_printf_btf_ids) 747 BTF_ID(struct, seq_file) 748 749 static const struct bpf_func_proto bpf_seq_printf_proto = { 750 .func = bpf_seq_printf, 751 .gpl_only = true, 752 .ret_type = RET_INTEGER, 753 .arg1_type = ARG_PTR_TO_BTF_ID, 754 .arg2_type = ARG_PTR_TO_MEM, 755 .arg3_type = ARG_CONST_SIZE, 756 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 757 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 758 .btf_id = bpf_seq_printf_btf_ids, 759 }; 760 761 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 762 { 763 return seq_write(m, data, len) ? -EOVERFLOW : 0; 764 } 765 766 BTF_ID_LIST(bpf_seq_write_btf_ids) 767 BTF_ID(struct, seq_file) 768 769 static const struct bpf_func_proto bpf_seq_write_proto = { 770 .func = bpf_seq_write, 771 .gpl_only = true, 772 .ret_type = RET_INTEGER, 773 .arg1_type = ARG_PTR_TO_BTF_ID, 774 .arg2_type = ARG_PTR_TO_MEM, 775 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 776 .btf_id = bpf_seq_write_btf_ids, 777 }; 778 779 static __always_inline int 780 get_map_perf_counter(struct bpf_map *map, u64 flags, 781 u64 *value, u64 *enabled, u64 *running) 782 { 783 struct bpf_array *array = container_of(map, struct bpf_array, map); 784 unsigned int cpu = smp_processor_id(); 785 u64 index = flags & BPF_F_INDEX_MASK; 786 struct bpf_event_entry *ee; 787 788 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 789 return -EINVAL; 790 if (index == BPF_F_CURRENT_CPU) 791 index = cpu; 792 if (unlikely(index >= array->map.max_entries)) 793 return -E2BIG; 794 795 ee = READ_ONCE(array->ptrs[index]); 796 if (!ee) 797 return -ENOENT; 798 799 return perf_event_read_local(ee->event, value, enabled, running); 800 } 801 802 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 803 { 804 u64 value = 0; 805 int err; 806 807 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 808 /* 809 * this api is ugly since we miss [-22..-2] range of valid 810 * counter values, but that's uapi 811 */ 812 if (err) 813 return err; 814 return value; 815 } 816 817 static const struct bpf_func_proto bpf_perf_event_read_proto = { 818 .func = bpf_perf_event_read, 819 .gpl_only = true, 820 .ret_type = RET_INTEGER, 821 .arg1_type = ARG_CONST_MAP_PTR, 822 .arg2_type = ARG_ANYTHING, 823 }; 824 825 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 826 struct bpf_perf_event_value *, buf, u32, size) 827 { 828 int err = -EINVAL; 829 830 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 831 goto clear; 832 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 833 &buf->running); 834 if (unlikely(err)) 835 goto clear; 836 return 0; 837 clear: 838 memset(buf, 0, size); 839 return err; 840 } 841 842 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 843 .func = bpf_perf_event_read_value, 844 .gpl_only = true, 845 .ret_type = RET_INTEGER, 846 .arg1_type = ARG_CONST_MAP_PTR, 847 .arg2_type = ARG_ANYTHING, 848 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 849 .arg4_type = ARG_CONST_SIZE, 850 }; 851 852 static __always_inline u64 853 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 854 u64 flags, struct perf_sample_data *sd) 855 { 856 struct bpf_array *array = container_of(map, struct bpf_array, map); 857 unsigned int cpu = smp_processor_id(); 858 u64 index = flags & BPF_F_INDEX_MASK; 859 struct bpf_event_entry *ee; 860 struct perf_event *event; 861 862 if (index == BPF_F_CURRENT_CPU) 863 index = cpu; 864 if (unlikely(index >= array->map.max_entries)) 865 return -E2BIG; 866 867 ee = READ_ONCE(array->ptrs[index]); 868 if (!ee) 869 return -ENOENT; 870 871 event = ee->event; 872 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 873 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 874 return -EINVAL; 875 876 if (unlikely(event->oncpu != cpu)) 877 return -EOPNOTSUPP; 878 879 return perf_event_output(event, sd, regs); 880 } 881 882 /* 883 * Support executing tracepoints in normal, irq, and nmi context that each call 884 * bpf_perf_event_output 885 */ 886 struct bpf_trace_sample_data { 887 struct perf_sample_data sds[3]; 888 }; 889 890 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 891 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 892 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 893 u64, flags, void *, data, u64, size) 894 { 895 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 896 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 897 struct perf_raw_record raw = { 898 .frag = { 899 .size = size, 900 .data = data, 901 }, 902 }; 903 struct perf_sample_data *sd; 904 int err; 905 906 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 907 err = -EBUSY; 908 goto out; 909 } 910 911 sd = &sds->sds[nest_level - 1]; 912 913 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 914 err = -EINVAL; 915 goto out; 916 } 917 918 perf_sample_data_init(sd, 0, 0); 919 sd->raw = &raw; 920 921 err = __bpf_perf_event_output(regs, map, flags, sd); 922 923 out: 924 this_cpu_dec(bpf_trace_nest_level); 925 return err; 926 } 927 928 static const struct bpf_func_proto bpf_perf_event_output_proto = { 929 .func = bpf_perf_event_output, 930 .gpl_only = true, 931 .ret_type = RET_INTEGER, 932 .arg1_type = ARG_PTR_TO_CTX, 933 .arg2_type = ARG_CONST_MAP_PTR, 934 .arg3_type = ARG_ANYTHING, 935 .arg4_type = ARG_PTR_TO_MEM, 936 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 937 }; 938 939 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 940 struct bpf_nested_pt_regs { 941 struct pt_regs regs[3]; 942 }; 943 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 944 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 945 946 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 947 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 948 { 949 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 950 struct perf_raw_frag frag = { 951 .copy = ctx_copy, 952 .size = ctx_size, 953 .data = ctx, 954 }; 955 struct perf_raw_record raw = { 956 .frag = { 957 { 958 .next = ctx_size ? &frag : NULL, 959 }, 960 .size = meta_size, 961 .data = meta, 962 }, 963 }; 964 struct perf_sample_data *sd; 965 struct pt_regs *regs; 966 u64 ret; 967 968 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 969 ret = -EBUSY; 970 goto out; 971 } 972 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 973 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 974 975 perf_fetch_caller_regs(regs); 976 perf_sample_data_init(sd, 0, 0); 977 sd->raw = &raw; 978 979 ret = __bpf_perf_event_output(regs, map, flags, sd); 980 out: 981 this_cpu_dec(bpf_event_output_nest_level); 982 return ret; 983 } 984 985 BPF_CALL_0(bpf_get_current_task) 986 { 987 return (long) current; 988 } 989 990 const struct bpf_func_proto bpf_get_current_task_proto = { 991 .func = bpf_get_current_task, 992 .gpl_only = true, 993 .ret_type = RET_INTEGER, 994 }; 995 996 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 997 { 998 struct bpf_array *array = container_of(map, struct bpf_array, map); 999 struct cgroup *cgrp; 1000 1001 if (unlikely(idx >= array->map.max_entries)) 1002 return -E2BIG; 1003 1004 cgrp = READ_ONCE(array->ptrs[idx]); 1005 if (unlikely(!cgrp)) 1006 return -EAGAIN; 1007 1008 return task_under_cgroup_hierarchy(current, cgrp); 1009 } 1010 1011 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 1012 .func = bpf_current_task_under_cgroup, 1013 .gpl_only = false, 1014 .ret_type = RET_INTEGER, 1015 .arg1_type = ARG_CONST_MAP_PTR, 1016 .arg2_type = ARG_ANYTHING, 1017 }; 1018 1019 struct send_signal_irq_work { 1020 struct irq_work irq_work; 1021 struct task_struct *task; 1022 u32 sig; 1023 enum pid_type type; 1024 }; 1025 1026 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 1027 1028 static void do_bpf_send_signal(struct irq_work *entry) 1029 { 1030 struct send_signal_irq_work *work; 1031 1032 work = container_of(entry, struct send_signal_irq_work, irq_work); 1033 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 1034 } 1035 1036 static int bpf_send_signal_common(u32 sig, enum pid_type type) 1037 { 1038 struct send_signal_irq_work *work = NULL; 1039 1040 /* Similar to bpf_probe_write_user, task needs to be 1041 * in a sound condition and kernel memory access be 1042 * permitted in order to send signal to the current 1043 * task. 1044 */ 1045 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 1046 return -EPERM; 1047 if (unlikely(uaccess_kernel())) 1048 return -EPERM; 1049 if (unlikely(!nmi_uaccess_okay())) 1050 return -EPERM; 1051 1052 if (irqs_disabled()) { 1053 /* Do an early check on signal validity. Otherwise, 1054 * the error is lost in deferred irq_work. 1055 */ 1056 if (unlikely(!valid_signal(sig))) 1057 return -EINVAL; 1058 1059 work = this_cpu_ptr(&send_signal_work); 1060 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) 1061 return -EBUSY; 1062 1063 /* Add the current task, which is the target of sending signal, 1064 * to the irq_work. The current task may change when queued 1065 * irq works get executed. 1066 */ 1067 work->task = current; 1068 work->sig = sig; 1069 work->type = type; 1070 irq_work_queue(&work->irq_work); 1071 return 0; 1072 } 1073 1074 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 1075 } 1076 1077 BPF_CALL_1(bpf_send_signal, u32, sig) 1078 { 1079 return bpf_send_signal_common(sig, PIDTYPE_TGID); 1080 } 1081 1082 static const struct bpf_func_proto bpf_send_signal_proto = { 1083 .func = bpf_send_signal, 1084 .gpl_only = false, 1085 .ret_type = RET_INTEGER, 1086 .arg1_type = ARG_ANYTHING, 1087 }; 1088 1089 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 1090 { 1091 return bpf_send_signal_common(sig, PIDTYPE_PID); 1092 } 1093 1094 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 1095 .func = bpf_send_signal_thread, 1096 .gpl_only = false, 1097 .ret_type = RET_INTEGER, 1098 .arg1_type = ARG_ANYTHING, 1099 }; 1100 1101 const struct bpf_func_proto * 1102 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1103 { 1104 switch (func_id) { 1105 case BPF_FUNC_map_lookup_elem: 1106 return &bpf_map_lookup_elem_proto; 1107 case BPF_FUNC_map_update_elem: 1108 return &bpf_map_update_elem_proto; 1109 case BPF_FUNC_map_delete_elem: 1110 return &bpf_map_delete_elem_proto; 1111 case BPF_FUNC_map_push_elem: 1112 return &bpf_map_push_elem_proto; 1113 case BPF_FUNC_map_pop_elem: 1114 return &bpf_map_pop_elem_proto; 1115 case BPF_FUNC_map_peek_elem: 1116 return &bpf_map_peek_elem_proto; 1117 case BPF_FUNC_ktime_get_ns: 1118 return &bpf_ktime_get_ns_proto; 1119 case BPF_FUNC_ktime_get_boot_ns: 1120 return &bpf_ktime_get_boot_ns_proto; 1121 case BPF_FUNC_tail_call: 1122 return &bpf_tail_call_proto; 1123 case BPF_FUNC_get_current_pid_tgid: 1124 return &bpf_get_current_pid_tgid_proto; 1125 case BPF_FUNC_get_current_task: 1126 return &bpf_get_current_task_proto; 1127 case BPF_FUNC_get_current_uid_gid: 1128 return &bpf_get_current_uid_gid_proto; 1129 case BPF_FUNC_get_current_comm: 1130 return &bpf_get_current_comm_proto; 1131 case BPF_FUNC_trace_printk: 1132 return bpf_get_trace_printk_proto(); 1133 case BPF_FUNC_get_smp_processor_id: 1134 return &bpf_get_smp_processor_id_proto; 1135 case BPF_FUNC_get_numa_node_id: 1136 return &bpf_get_numa_node_id_proto; 1137 case BPF_FUNC_perf_event_read: 1138 return &bpf_perf_event_read_proto; 1139 case BPF_FUNC_probe_write_user: 1140 return bpf_get_probe_write_proto(); 1141 case BPF_FUNC_current_task_under_cgroup: 1142 return &bpf_current_task_under_cgroup_proto; 1143 case BPF_FUNC_get_prandom_u32: 1144 return &bpf_get_prandom_u32_proto; 1145 case BPF_FUNC_probe_read_user: 1146 return &bpf_probe_read_user_proto; 1147 case BPF_FUNC_probe_read_kernel: 1148 return &bpf_probe_read_kernel_proto; 1149 case BPF_FUNC_probe_read_user_str: 1150 return &bpf_probe_read_user_str_proto; 1151 case BPF_FUNC_probe_read_kernel_str: 1152 return &bpf_probe_read_kernel_str_proto; 1153 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1154 case BPF_FUNC_probe_read: 1155 return &bpf_probe_read_compat_proto; 1156 case BPF_FUNC_probe_read_str: 1157 return &bpf_probe_read_compat_str_proto; 1158 #endif 1159 #ifdef CONFIG_CGROUPS 1160 case BPF_FUNC_get_current_cgroup_id: 1161 return &bpf_get_current_cgroup_id_proto; 1162 #endif 1163 case BPF_FUNC_send_signal: 1164 return &bpf_send_signal_proto; 1165 case BPF_FUNC_send_signal_thread: 1166 return &bpf_send_signal_thread_proto; 1167 case BPF_FUNC_perf_event_read_value: 1168 return &bpf_perf_event_read_value_proto; 1169 case BPF_FUNC_get_ns_current_pid_tgid: 1170 return &bpf_get_ns_current_pid_tgid_proto; 1171 case BPF_FUNC_ringbuf_output: 1172 return &bpf_ringbuf_output_proto; 1173 case BPF_FUNC_ringbuf_reserve: 1174 return &bpf_ringbuf_reserve_proto; 1175 case BPF_FUNC_ringbuf_submit: 1176 return &bpf_ringbuf_submit_proto; 1177 case BPF_FUNC_ringbuf_discard: 1178 return &bpf_ringbuf_discard_proto; 1179 case BPF_FUNC_ringbuf_query: 1180 return &bpf_ringbuf_query_proto; 1181 case BPF_FUNC_jiffies64: 1182 return &bpf_jiffies64_proto; 1183 case BPF_FUNC_get_task_stack: 1184 return &bpf_get_task_stack_proto; 1185 default: 1186 return NULL; 1187 } 1188 } 1189 1190 static const struct bpf_func_proto * 1191 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1192 { 1193 switch (func_id) { 1194 case BPF_FUNC_perf_event_output: 1195 return &bpf_perf_event_output_proto; 1196 case BPF_FUNC_get_stackid: 1197 return &bpf_get_stackid_proto; 1198 case BPF_FUNC_get_stack: 1199 return &bpf_get_stack_proto; 1200 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1201 case BPF_FUNC_override_return: 1202 return &bpf_override_return_proto; 1203 #endif 1204 default: 1205 return bpf_tracing_func_proto(func_id, prog); 1206 } 1207 } 1208 1209 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1210 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1211 const struct bpf_prog *prog, 1212 struct bpf_insn_access_aux *info) 1213 { 1214 if (off < 0 || off >= sizeof(struct pt_regs)) 1215 return false; 1216 if (type != BPF_READ) 1217 return false; 1218 if (off % size != 0) 1219 return false; 1220 /* 1221 * Assertion for 32 bit to make sure last 8 byte access 1222 * (BPF_DW) to the last 4 byte member is disallowed. 1223 */ 1224 if (off + size > sizeof(struct pt_regs)) 1225 return false; 1226 1227 return true; 1228 } 1229 1230 const struct bpf_verifier_ops kprobe_verifier_ops = { 1231 .get_func_proto = kprobe_prog_func_proto, 1232 .is_valid_access = kprobe_prog_is_valid_access, 1233 }; 1234 1235 const struct bpf_prog_ops kprobe_prog_ops = { 1236 }; 1237 1238 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1239 u64, flags, void *, data, u64, size) 1240 { 1241 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1242 1243 /* 1244 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1245 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1246 * from there and call the same bpf_perf_event_output() helper inline. 1247 */ 1248 return ____bpf_perf_event_output(regs, map, flags, data, size); 1249 } 1250 1251 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1252 .func = bpf_perf_event_output_tp, 1253 .gpl_only = true, 1254 .ret_type = RET_INTEGER, 1255 .arg1_type = ARG_PTR_TO_CTX, 1256 .arg2_type = ARG_CONST_MAP_PTR, 1257 .arg3_type = ARG_ANYTHING, 1258 .arg4_type = ARG_PTR_TO_MEM, 1259 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1260 }; 1261 1262 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1263 u64, flags) 1264 { 1265 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1266 1267 /* 1268 * Same comment as in bpf_perf_event_output_tp(), only that this time 1269 * the other helper's function body cannot be inlined due to being 1270 * external, thus we need to call raw helper function. 1271 */ 1272 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1273 flags, 0, 0); 1274 } 1275 1276 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1277 .func = bpf_get_stackid_tp, 1278 .gpl_only = true, 1279 .ret_type = RET_INTEGER, 1280 .arg1_type = ARG_PTR_TO_CTX, 1281 .arg2_type = ARG_CONST_MAP_PTR, 1282 .arg3_type = ARG_ANYTHING, 1283 }; 1284 1285 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1286 u64, flags) 1287 { 1288 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1289 1290 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1291 (unsigned long) size, flags, 0); 1292 } 1293 1294 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1295 .func = bpf_get_stack_tp, 1296 .gpl_only = true, 1297 .ret_type = RET_INTEGER, 1298 .arg1_type = ARG_PTR_TO_CTX, 1299 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1300 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1301 .arg4_type = ARG_ANYTHING, 1302 }; 1303 1304 static const struct bpf_func_proto * 1305 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1306 { 1307 switch (func_id) { 1308 case BPF_FUNC_perf_event_output: 1309 return &bpf_perf_event_output_proto_tp; 1310 case BPF_FUNC_get_stackid: 1311 return &bpf_get_stackid_proto_tp; 1312 case BPF_FUNC_get_stack: 1313 return &bpf_get_stack_proto_tp; 1314 default: 1315 return bpf_tracing_func_proto(func_id, prog); 1316 } 1317 } 1318 1319 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1320 const struct bpf_prog *prog, 1321 struct bpf_insn_access_aux *info) 1322 { 1323 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1324 return false; 1325 if (type != BPF_READ) 1326 return false; 1327 if (off % size != 0) 1328 return false; 1329 1330 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1331 return true; 1332 } 1333 1334 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1335 .get_func_proto = tp_prog_func_proto, 1336 .is_valid_access = tp_prog_is_valid_access, 1337 }; 1338 1339 const struct bpf_prog_ops tracepoint_prog_ops = { 1340 }; 1341 1342 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1343 struct bpf_perf_event_value *, buf, u32, size) 1344 { 1345 int err = -EINVAL; 1346 1347 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1348 goto clear; 1349 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1350 &buf->running); 1351 if (unlikely(err)) 1352 goto clear; 1353 return 0; 1354 clear: 1355 memset(buf, 0, size); 1356 return err; 1357 } 1358 1359 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1360 .func = bpf_perf_prog_read_value, 1361 .gpl_only = true, 1362 .ret_type = RET_INTEGER, 1363 .arg1_type = ARG_PTR_TO_CTX, 1364 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1365 .arg3_type = ARG_CONST_SIZE, 1366 }; 1367 1368 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1369 void *, buf, u32, size, u64, flags) 1370 { 1371 #ifndef CONFIG_X86 1372 return -ENOENT; 1373 #else 1374 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1375 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1376 u32 to_copy; 1377 1378 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1379 return -EINVAL; 1380 1381 if (unlikely(!br_stack)) 1382 return -EINVAL; 1383 1384 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1385 return br_stack->nr * br_entry_size; 1386 1387 if (!buf || (size % br_entry_size != 0)) 1388 return -EINVAL; 1389 1390 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1391 memcpy(buf, br_stack->entries, to_copy); 1392 1393 return to_copy; 1394 #endif 1395 } 1396 1397 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1398 .func = bpf_read_branch_records, 1399 .gpl_only = true, 1400 .ret_type = RET_INTEGER, 1401 .arg1_type = ARG_PTR_TO_CTX, 1402 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1403 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1404 .arg4_type = ARG_ANYTHING, 1405 }; 1406 1407 static const struct bpf_func_proto * 1408 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1409 { 1410 switch (func_id) { 1411 case BPF_FUNC_perf_event_output: 1412 return &bpf_perf_event_output_proto_tp; 1413 case BPF_FUNC_get_stackid: 1414 return &bpf_get_stackid_proto_pe; 1415 case BPF_FUNC_get_stack: 1416 return &bpf_get_stack_proto_pe; 1417 case BPF_FUNC_perf_prog_read_value: 1418 return &bpf_perf_prog_read_value_proto; 1419 case BPF_FUNC_read_branch_records: 1420 return &bpf_read_branch_records_proto; 1421 default: 1422 return bpf_tracing_func_proto(func_id, prog); 1423 } 1424 } 1425 1426 /* 1427 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1428 * to avoid potential recursive reuse issue when/if tracepoints are added 1429 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1430 * 1431 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1432 * in normal, irq, and nmi context. 1433 */ 1434 struct bpf_raw_tp_regs { 1435 struct pt_regs regs[3]; 1436 }; 1437 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1438 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1439 static struct pt_regs *get_bpf_raw_tp_regs(void) 1440 { 1441 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1442 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1443 1444 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1445 this_cpu_dec(bpf_raw_tp_nest_level); 1446 return ERR_PTR(-EBUSY); 1447 } 1448 1449 return &tp_regs->regs[nest_level - 1]; 1450 } 1451 1452 static void put_bpf_raw_tp_regs(void) 1453 { 1454 this_cpu_dec(bpf_raw_tp_nest_level); 1455 } 1456 1457 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1458 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1459 { 1460 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1461 int ret; 1462 1463 if (IS_ERR(regs)) 1464 return PTR_ERR(regs); 1465 1466 perf_fetch_caller_regs(regs); 1467 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1468 1469 put_bpf_raw_tp_regs(); 1470 return ret; 1471 } 1472 1473 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1474 .func = bpf_perf_event_output_raw_tp, 1475 .gpl_only = true, 1476 .ret_type = RET_INTEGER, 1477 .arg1_type = ARG_PTR_TO_CTX, 1478 .arg2_type = ARG_CONST_MAP_PTR, 1479 .arg3_type = ARG_ANYTHING, 1480 .arg4_type = ARG_PTR_TO_MEM, 1481 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1482 }; 1483 1484 extern const struct bpf_func_proto bpf_skb_output_proto; 1485 extern const struct bpf_func_proto bpf_xdp_output_proto; 1486 1487 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1488 struct bpf_map *, map, u64, flags) 1489 { 1490 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1491 int ret; 1492 1493 if (IS_ERR(regs)) 1494 return PTR_ERR(regs); 1495 1496 perf_fetch_caller_regs(regs); 1497 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1498 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1499 flags, 0, 0); 1500 put_bpf_raw_tp_regs(); 1501 return ret; 1502 } 1503 1504 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1505 .func = bpf_get_stackid_raw_tp, 1506 .gpl_only = true, 1507 .ret_type = RET_INTEGER, 1508 .arg1_type = ARG_PTR_TO_CTX, 1509 .arg2_type = ARG_CONST_MAP_PTR, 1510 .arg3_type = ARG_ANYTHING, 1511 }; 1512 1513 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1514 void *, buf, u32, size, u64, flags) 1515 { 1516 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1517 int ret; 1518 1519 if (IS_ERR(regs)) 1520 return PTR_ERR(regs); 1521 1522 perf_fetch_caller_regs(regs); 1523 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1524 (unsigned long) size, flags, 0); 1525 put_bpf_raw_tp_regs(); 1526 return ret; 1527 } 1528 1529 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1530 .func = bpf_get_stack_raw_tp, 1531 .gpl_only = true, 1532 .ret_type = RET_INTEGER, 1533 .arg1_type = ARG_PTR_TO_CTX, 1534 .arg2_type = ARG_PTR_TO_MEM, 1535 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1536 .arg4_type = ARG_ANYTHING, 1537 }; 1538 1539 static const struct bpf_func_proto * 1540 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1541 { 1542 switch (func_id) { 1543 case BPF_FUNC_perf_event_output: 1544 return &bpf_perf_event_output_proto_raw_tp; 1545 case BPF_FUNC_get_stackid: 1546 return &bpf_get_stackid_proto_raw_tp; 1547 case BPF_FUNC_get_stack: 1548 return &bpf_get_stack_proto_raw_tp; 1549 default: 1550 return bpf_tracing_func_proto(func_id, prog); 1551 } 1552 } 1553 1554 const struct bpf_func_proto * 1555 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1556 { 1557 switch (func_id) { 1558 #ifdef CONFIG_NET 1559 case BPF_FUNC_skb_output: 1560 return &bpf_skb_output_proto; 1561 case BPF_FUNC_xdp_output: 1562 return &bpf_xdp_output_proto; 1563 case BPF_FUNC_skc_to_tcp6_sock: 1564 return &bpf_skc_to_tcp6_sock_proto; 1565 case BPF_FUNC_skc_to_tcp_sock: 1566 return &bpf_skc_to_tcp_sock_proto; 1567 case BPF_FUNC_skc_to_tcp_timewait_sock: 1568 return &bpf_skc_to_tcp_timewait_sock_proto; 1569 case BPF_FUNC_skc_to_tcp_request_sock: 1570 return &bpf_skc_to_tcp_request_sock_proto; 1571 case BPF_FUNC_skc_to_udp6_sock: 1572 return &bpf_skc_to_udp6_sock_proto; 1573 #endif 1574 case BPF_FUNC_seq_printf: 1575 return prog->expected_attach_type == BPF_TRACE_ITER ? 1576 &bpf_seq_printf_proto : 1577 NULL; 1578 case BPF_FUNC_seq_write: 1579 return prog->expected_attach_type == BPF_TRACE_ITER ? 1580 &bpf_seq_write_proto : 1581 NULL; 1582 default: 1583 return raw_tp_prog_func_proto(func_id, prog); 1584 } 1585 } 1586 1587 static bool raw_tp_prog_is_valid_access(int off, int size, 1588 enum bpf_access_type type, 1589 const struct bpf_prog *prog, 1590 struct bpf_insn_access_aux *info) 1591 { 1592 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1593 return false; 1594 if (type != BPF_READ) 1595 return false; 1596 if (off % size != 0) 1597 return false; 1598 return true; 1599 } 1600 1601 static bool tracing_prog_is_valid_access(int off, int size, 1602 enum bpf_access_type type, 1603 const struct bpf_prog *prog, 1604 struct bpf_insn_access_aux *info) 1605 { 1606 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1607 return false; 1608 if (type != BPF_READ) 1609 return false; 1610 if (off % size != 0) 1611 return false; 1612 return btf_ctx_access(off, size, type, prog, info); 1613 } 1614 1615 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1616 const union bpf_attr *kattr, 1617 union bpf_attr __user *uattr) 1618 { 1619 return -ENOTSUPP; 1620 } 1621 1622 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1623 .get_func_proto = raw_tp_prog_func_proto, 1624 .is_valid_access = raw_tp_prog_is_valid_access, 1625 }; 1626 1627 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1628 }; 1629 1630 const struct bpf_verifier_ops tracing_verifier_ops = { 1631 .get_func_proto = tracing_prog_func_proto, 1632 .is_valid_access = tracing_prog_is_valid_access, 1633 }; 1634 1635 const struct bpf_prog_ops tracing_prog_ops = { 1636 .test_run = bpf_prog_test_run_tracing, 1637 }; 1638 1639 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1640 enum bpf_access_type type, 1641 const struct bpf_prog *prog, 1642 struct bpf_insn_access_aux *info) 1643 { 1644 if (off == 0) { 1645 if (size != sizeof(u64) || type != BPF_READ) 1646 return false; 1647 info->reg_type = PTR_TO_TP_BUFFER; 1648 } 1649 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1650 } 1651 1652 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1653 .get_func_proto = raw_tp_prog_func_proto, 1654 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1655 }; 1656 1657 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1658 }; 1659 1660 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1661 const struct bpf_prog *prog, 1662 struct bpf_insn_access_aux *info) 1663 { 1664 const int size_u64 = sizeof(u64); 1665 1666 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1667 return false; 1668 if (type != BPF_READ) 1669 return false; 1670 if (off % size != 0) { 1671 if (sizeof(unsigned long) != 4) 1672 return false; 1673 if (size != 8) 1674 return false; 1675 if (off % size != 4) 1676 return false; 1677 } 1678 1679 switch (off) { 1680 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1681 bpf_ctx_record_field_size(info, size_u64); 1682 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1683 return false; 1684 break; 1685 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1686 bpf_ctx_record_field_size(info, size_u64); 1687 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1688 return false; 1689 break; 1690 default: 1691 if (size != sizeof(long)) 1692 return false; 1693 } 1694 1695 return true; 1696 } 1697 1698 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1699 const struct bpf_insn *si, 1700 struct bpf_insn *insn_buf, 1701 struct bpf_prog *prog, u32 *target_size) 1702 { 1703 struct bpf_insn *insn = insn_buf; 1704 1705 switch (si->off) { 1706 case offsetof(struct bpf_perf_event_data, sample_period): 1707 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1708 data), si->dst_reg, si->src_reg, 1709 offsetof(struct bpf_perf_event_data_kern, data)); 1710 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1711 bpf_target_off(struct perf_sample_data, period, 8, 1712 target_size)); 1713 break; 1714 case offsetof(struct bpf_perf_event_data, addr): 1715 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1716 data), si->dst_reg, si->src_reg, 1717 offsetof(struct bpf_perf_event_data_kern, data)); 1718 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1719 bpf_target_off(struct perf_sample_data, addr, 8, 1720 target_size)); 1721 break; 1722 default: 1723 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1724 regs), si->dst_reg, si->src_reg, 1725 offsetof(struct bpf_perf_event_data_kern, regs)); 1726 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1727 si->off); 1728 break; 1729 } 1730 1731 return insn - insn_buf; 1732 } 1733 1734 const struct bpf_verifier_ops perf_event_verifier_ops = { 1735 .get_func_proto = pe_prog_func_proto, 1736 .is_valid_access = pe_prog_is_valid_access, 1737 .convert_ctx_access = pe_prog_convert_ctx_access, 1738 }; 1739 1740 const struct bpf_prog_ops perf_event_prog_ops = { 1741 }; 1742 1743 static DEFINE_MUTEX(bpf_event_mutex); 1744 1745 #define BPF_TRACE_MAX_PROGS 64 1746 1747 int perf_event_attach_bpf_prog(struct perf_event *event, 1748 struct bpf_prog *prog) 1749 { 1750 struct bpf_prog_array *old_array; 1751 struct bpf_prog_array *new_array; 1752 int ret = -EEXIST; 1753 1754 /* 1755 * Kprobe override only works if they are on the function entry, 1756 * and only if they are on the opt-in list. 1757 */ 1758 if (prog->kprobe_override && 1759 (!trace_kprobe_on_func_entry(event->tp_event) || 1760 !trace_kprobe_error_injectable(event->tp_event))) 1761 return -EINVAL; 1762 1763 mutex_lock(&bpf_event_mutex); 1764 1765 if (event->prog) 1766 goto unlock; 1767 1768 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1769 if (old_array && 1770 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1771 ret = -E2BIG; 1772 goto unlock; 1773 } 1774 1775 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1776 if (ret < 0) 1777 goto unlock; 1778 1779 /* set the new array to event->tp_event and set event->prog */ 1780 event->prog = prog; 1781 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1782 bpf_prog_array_free(old_array); 1783 1784 unlock: 1785 mutex_unlock(&bpf_event_mutex); 1786 return ret; 1787 } 1788 1789 void perf_event_detach_bpf_prog(struct perf_event *event) 1790 { 1791 struct bpf_prog_array *old_array; 1792 struct bpf_prog_array *new_array; 1793 int ret; 1794 1795 mutex_lock(&bpf_event_mutex); 1796 1797 if (!event->prog) 1798 goto unlock; 1799 1800 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1801 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1802 if (ret == -ENOENT) 1803 goto unlock; 1804 if (ret < 0) { 1805 bpf_prog_array_delete_safe(old_array, event->prog); 1806 } else { 1807 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1808 bpf_prog_array_free(old_array); 1809 } 1810 1811 bpf_prog_put(event->prog); 1812 event->prog = NULL; 1813 1814 unlock: 1815 mutex_unlock(&bpf_event_mutex); 1816 } 1817 1818 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1819 { 1820 struct perf_event_query_bpf __user *uquery = info; 1821 struct perf_event_query_bpf query = {}; 1822 struct bpf_prog_array *progs; 1823 u32 *ids, prog_cnt, ids_len; 1824 int ret; 1825 1826 if (!perfmon_capable()) 1827 return -EPERM; 1828 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1829 return -EINVAL; 1830 if (copy_from_user(&query, uquery, sizeof(query))) 1831 return -EFAULT; 1832 1833 ids_len = query.ids_len; 1834 if (ids_len > BPF_TRACE_MAX_PROGS) 1835 return -E2BIG; 1836 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1837 if (!ids) 1838 return -ENOMEM; 1839 /* 1840 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1841 * is required when user only wants to check for uquery->prog_cnt. 1842 * There is no need to check for it since the case is handled 1843 * gracefully in bpf_prog_array_copy_info. 1844 */ 1845 1846 mutex_lock(&bpf_event_mutex); 1847 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1848 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1849 mutex_unlock(&bpf_event_mutex); 1850 1851 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1852 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1853 ret = -EFAULT; 1854 1855 kfree(ids); 1856 return ret; 1857 } 1858 1859 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1860 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1861 1862 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1863 { 1864 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1865 1866 for (; btp < __stop__bpf_raw_tp; btp++) { 1867 if (!strcmp(btp->tp->name, name)) 1868 return btp; 1869 } 1870 1871 return bpf_get_raw_tracepoint_module(name); 1872 } 1873 1874 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1875 { 1876 struct module *mod = __module_address((unsigned long)btp); 1877 1878 if (mod) 1879 module_put(mod); 1880 } 1881 1882 static __always_inline 1883 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1884 { 1885 cant_sleep(); 1886 rcu_read_lock(); 1887 (void) BPF_PROG_RUN(prog, args); 1888 rcu_read_unlock(); 1889 } 1890 1891 #define UNPACK(...) __VA_ARGS__ 1892 #define REPEAT_1(FN, DL, X, ...) FN(X) 1893 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1894 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1895 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1896 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1897 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1898 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1899 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1900 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1901 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1902 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1903 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1904 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1905 1906 #define SARG(X) u64 arg##X 1907 #define COPY(X) args[X] = arg##X 1908 1909 #define __DL_COM (,) 1910 #define __DL_SEM (;) 1911 1912 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1913 1914 #define BPF_TRACE_DEFN_x(x) \ 1915 void bpf_trace_run##x(struct bpf_prog *prog, \ 1916 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1917 { \ 1918 u64 args[x]; \ 1919 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1920 __bpf_trace_run(prog, args); \ 1921 } \ 1922 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1923 BPF_TRACE_DEFN_x(1); 1924 BPF_TRACE_DEFN_x(2); 1925 BPF_TRACE_DEFN_x(3); 1926 BPF_TRACE_DEFN_x(4); 1927 BPF_TRACE_DEFN_x(5); 1928 BPF_TRACE_DEFN_x(6); 1929 BPF_TRACE_DEFN_x(7); 1930 BPF_TRACE_DEFN_x(8); 1931 BPF_TRACE_DEFN_x(9); 1932 BPF_TRACE_DEFN_x(10); 1933 BPF_TRACE_DEFN_x(11); 1934 BPF_TRACE_DEFN_x(12); 1935 1936 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1937 { 1938 struct tracepoint *tp = btp->tp; 1939 1940 /* 1941 * check that program doesn't access arguments beyond what's 1942 * available in this tracepoint 1943 */ 1944 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1945 return -EINVAL; 1946 1947 if (prog->aux->max_tp_access > btp->writable_size) 1948 return -EINVAL; 1949 1950 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1951 } 1952 1953 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1954 { 1955 return __bpf_probe_register(btp, prog); 1956 } 1957 1958 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1959 { 1960 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1961 } 1962 1963 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1964 u32 *fd_type, const char **buf, 1965 u64 *probe_offset, u64 *probe_addr) 1966 { 1967 bool is_tracepoint, is_syscall_tp; 1968 struct bpf_prog *prog; 1969 int flags, err = 0; 1970 1971 prog = event->prog; 1972 if (!prog) 1973 return -ENOENT; 1974 1975 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1976 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1977 return -EOPNOTSUPP; 1978 1979 *prog_id = prog->aux->id; 1980 flags = event->tp_event->flags; 1981 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1982 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1983 1984 if (is_tracepoint || is_syscall_tp) { 1985 *buf = is_tracepoint ? event->tp_event->tp->name 1986 : event->tp_event->name; 1987 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1988 *probe_offset = 0x0; 1989 *probe_addr = 0x0; 1990 } else { 1991 /* kprobe/uprobe */ 1992 err = -EOPNOTSUPP; 1993 #ifdef CONFIG_KPROBE_EVENTS 1994 if (flags & TRACE_EVENT_FL_KPROBE) 1995 err = bpf_get_kprobe_info(event, fd_type, buf, 1996 probe_offset, probe_addr, 1997 event->attr.type == PERF_TYPE_TRACEPOINT); 1998 #endif 1999 #ifdef CONFIG_UPROBE_EVENTS 2000 if (flags & TRACE_EVENT_FL_UPROBE) 2001 err = bpf_get_uprobe_info(event, fd_type, buf, 2002 probe_offset, 2003 event->attr.type == PERF_TYPE_TRACEPOINT); 2004 #endif 2005 } 2006 2007 return err; 2008 } 2009 2010 static int __init send_signal_irq_work_init(void) 2011 { 2012 int cpu; 2013 struct send_signal_irq_work *work; 2014 2015 for_each_possible_cpu(cpu) { 2016 work = per_cpu_ptr(&send_signal_work, cpu); 2017 init_irq_work(&work->irq_work, do_bpf_send_signal); 2018 } 2019 return 0; 2020 } 2021 2022 subsys_initcall(send_signal_irq_work_init); 2023 2024 #ifdef CONFIG_MODULES 2025 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2026 void *module) 2027 { 2028 struct bpf_trace_module *btm, *tmp; 2029 struct module *mod = module; 2030 2031 if (mod->num_bpf_raw_events == 0 || 2032 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2033 return 0; 2034 2035 mutex_lock(&bpf_module_mutex); 2036 2037 switch (op) { 2038 case MODULE_STATE_COMING: 2039 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2040 if (btm) { 2041 btm->module = module; 2042 list_add(&btm->list, &bpf_trace_modules); 2043 } 2044 break; 2045 case MODULE_STATE_GOING: 2046 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2047 if (btm->module == module) { 2048 list_del(&btm->list); 2049 kfree(btm); 2050 break; 2051 } 2052 } 2053 break; 2054 } 2055 2056 mutex_unlock(&bpf_module_mutex); 2057 2058 return 0; 2059 } 2060 2061 static struct notifier_block bpf_module_nb = { 2062 .notifier_call = bpf_event_notify, 2063 }; 2064 2065 static int __init bpf_event_init(void) 2066 { 2067 register_module_notifier(&bpf_module_nb); 2068 return 0; 2069 } 2070 2071 fs_initcall(bpf_event_init); 2072 #endif /* CONFIG_MODULES */ 2073