xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 3a83e4e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/syscalls.h>
16 #include <linux/error-injection.h>
17 #include <linux/btf_ids.h>
18 
19 #include <asm/tlb.h>
20 
21 #include "trace_probe.h"
22 #include "trace.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include "bpf_trace.h"
26 
27 #define bpf_event_rcu_dereference(p)					\
28 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
29 
30 #ifdef CONFIG_MODULES
31 struct bpf_trace_module {
32 	struct module *module;
33 	struct list_head list;
34 };
35 
36 static LIST_HEAD(bpf_trace_modules);
37 static DEFINE_MUTEX(bpf_module_mutex);
38 
39 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
40 {
41 	struct bpf_raw_event_map *btp, *ret = NULL;
42 	struct bpf_trace_module *btm;
43 	unsigned int i;
44 
45 	mutex_lock(&bpf_module_mutex);
46 	list_for_each_entry(btm, &bpf_trace_modules, list) {
47 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
48 			btp = &btm->module->bpf_raw_events[i];
49 			if (!strcmp(btp->tp->name, name)) {
50 				if (try_module_get(btm->module))
51 					ret = btp;
52 				goto out;
53 			}
54 		}
55 	}
56 out:
57 	mutex_unlock(&bpf_module_mutex);
58 	return ret;
59 }
60 #else
61 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
62 {
63 	return NULL;
64 }
65 #endif /* CONFIG_MODULES */
66 
67 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
68 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
69 
70 /**
71  * trace_call_bpf - invoke BPF program
72  * @call: tracepoint event
73  * @ctx: opaque context pointer
74  *
75  * kprobe handlers execute BPF programs via this helper.
76  * Can be used from static tracepoints in the future.
77  *
78  * Return: BPF programs always return an integer which is interpreted by
79  * kprobe handler as:
80  * 0 - return from kprobe (event is filtered out)
81  * 1 - store kprobe event into ring buffer
82  * Other values are reserved and currently alias to 1
83  */
84 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
85 {
86 	unsigned int ret;
87 
88 	if (in_nmi()) /* not supported yet */
89 		return 1;
90 
91 	cant_sleep();
92 
93 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
94 		/*
95 		 * since some bpf program is already running on this cpu,
96 		 * don't call into another bpf program (same or different)
97 		 * and don't send kprobe event into ring-buffer,
98 		 * so return zero here
99 		 */
100 		ret = 0;
101 		goto out;
102 	}
103 
104 	/*
105 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
106 	 * to all call sites, we did a bpf_prog_array_valid() there to check
107 	 * whether call->prog_array is empty or not, which is
108 	 * a heurisitc to speed up execution.
109 	 *
110 	 * If bpf_prog_array_valid() fetched prog_array was
111 	 * non-NULL, we go into trace_call_bpf() and do the actual
112 	 * proper rcu_dereference() under RCU lock.
113 	 * If it turns out that prog_array is NULL then, we bail out.
114 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
115 	 * was NULL, you'll skip the prog_array with the risk of missing
116 	 * out of events when it was updated in between this and the
117 	 * rcu_dereference() which is accepted risk.
118 	 */
119 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
120 
121  out:
122 	__this_cpu_dec(bpf_prog_active);
123 
124 	return ret;
125 }
126 
127 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
128 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
129 {
130 	regs_set_return_value(regs, rc);
131 	override_function_with_return(regs);
132 	return 0;
133 }
134 
135 static const struct bpf_func_proto bpf_override_return_proto = {
136 	.func		= bpf_override_return,
137 	.gpl_only	= true,
138 	.ret_type	= RET_INTEGER,
139 	.arg1_type	= ARG_PTR_TO_CTX,
140 	.arg2_type	= ARG_ANYTHING,
141 };
142 #endif
143 
144 static __always_inline int
145 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
146 {
147 	int ret;
148 
149 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
150 	if (unlikely(ret < 0))
151 		memset(dst, 0, size);
152 	return ret;
153 }
154 
155 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
156 	   const void __user *, unsafe_ptr)
157 {
158 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
159 }
160 
161 const struct bpf_func_proto bpf_probe_read_user_proto = {
162 	.func		= bpf_probe_read_user,
163 	.gpl_only	= true,
164 	.ret_type	= RET_INTEGER,
165 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
166 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
167 	.arg3_type	= ARG_ANYTHING,
168 };
169 
170 static __always_inline int
171 bpf_probe_read_user_str_common(void *dst, u32 size,
172 			       const void __user *unsafe_ptr)
173 {
174 	int ret;
175 
176 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
177 	if (unlikely(ret < 0))
178 		memset(dst, 0, size);
179 	return ret;
180 }
181 
182 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
183 	   const void __user *, unsafe_ptr)
184 {
185 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
186 }
187 
188 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
189 	.func		= bpf_probe_read_user_str,
190 	.gpl_only	= true,
191 	.ret_type	= RET_INTEGER,
192 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
193 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
194 	.arg3_type	= ARG_ANYTHING,
195 };
196 
197 static __always_inline int
198 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
199 {
200 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
201 
202 	if (unlikely(ret < 0))
203 		goto fail;
204 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
205 	if (unlikely(ret < 0))
206 		goto fail;
207 	return ret;
208 fail:
209 	memset(dst, 0, size);
210 	return ret;
211 }
212 
213 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
214 	   const void *, unsafe_ptr)
215 {
216 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
217 }
218 
219 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
220 	.func		= bpf_probe_read_kernel,
221 	.gpl_only	= true,
222 	.ret_type	= RET_INTEGER,
223 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
224 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
225 	.arg3_type	= ARG_ANYTHING,
226 };
227 
228 static __always_inline int
229 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
230 {
231 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
232 
233 	if (unlikely(ret < 0))
234 		goto fail;
235 
236 	/*
237 	 * The strncpy_from_kernel_nofault() call will likely not fill the
238 	 * entire buffer, but that's okay in this circumstance as we're probing
239 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
240 	 * as well probe the stack. Thus, memory is explicitly cleared
241 	 * only in error case, so that improper users ignoring return
242 	 * code altogether don't copy garbage; otherwise length of string
243 	 * is returned that can be used for bpf_perf_event_output() et al.
244 	 */
245 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
246 	if (unlikely(ret < 0))
247 		goto fail;
248 
249 	return ret;
250 fail:
251 	memset(dst, 0, size);
252 	return ret;
253 }
254 
255 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
256 	   const void *, unsafe_ptr)
257 {
258 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
259 }
260 
261 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
262 	.func		= bpf_probe_read_kernel_str,
263 	.gpl_only	= true,
264 	.ret_type	= RET_INTEGER,
265 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
266 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
267 	.arg3_type	= ARG_ANYTHING,
268 };
269 
270 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
271 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
272 	   const void *, unsafe_ptr)
273 {
274 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
275 		return bpf_probe_read_user_common(dst, size,
276 				(__force void __user *)unsafe_ptr);
277 	}
278 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
279 }
280 
281 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
282 	.func		= bpf_probe_read_compat,
283 	.gpl_only	= true,
284 	.ret_type	= RET_INTEGER,
285 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
286 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
287 	.arg3_type	= ARG_ANYTHING,
288 };
289 
290 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
291 	   const void *, unsafe_ptr)
292 {
293 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
294 		return bpf_probe_read_user_str_common(dst, size,
295 				(__force void __user *)unsafe_ptr);
296 	}
297 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
298 }
299 
300 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
301 	.func		= bpf_probe_read_compat_str,
302 	.gpl_only	= true,
303 	.ret_type	= RET_INTEGER,
304 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
305 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
306 	.arg3_type	= ARG_ANYTHING,
307 };
308 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
309 
310 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
311 	   u32, size)
312 {
313 	/*
314 	 * Ensure we're in user context which is safe for the helper to
315 	 * run. This helper has no business in a kthread.
316 	 *
317 	 * access_ok() should prevent writing to non-user memory, but in
318 	 * some situations (nommu, temporary switch, etc) access_ok() does
319 	 * not provide enough validation, hence the check on KERNEL_DS.
320 	 *
321 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
322 	 * state, when the task or mm are switched. This is specifically
323 	 * required to prevent the use of temporary mm.
324 	 */
325 
326 	if (unlikely(in_interrupt() ||
327 		     current->flags & (PF_KTHREAD | PF_EXITING)))
328 		return -EPERM;
329 	if (unlikely(uaccess_kernel()))
330 		return -EPERM;
331 	if (unlikely(!nmi_uaccess_okay()))
332 		return -EPERM;
333 
334 	return copy_to_user_nofault(unsafe_ptr, src, size);
335 }
336 
337 static const struct bpf_func_proto bpf_probe_write_user_proto = {
338 	.func		= bpf_probe_write_user,
339 	.gpl_only	= true,
340 	.ret_type	= RET_INTEGER,
341 	.arg1_type	= ARG_ANYTHING,
342 	.arg2_type	= ARG_PTR_TO_MEM,
343 	.arg3_type	= ARG_CONST_SIZE,
344 };
345 
346 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
347 {
348 	if (!capable(CAP_SYS_ADMIN))
349 		return NULL;
350 
351 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
352 			    current->comm, task_pid_nr(current));
353 
354 	return &bpf_probe_write_user_proto;
355 }
356 
357 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
358 		size_t bufsz)
359 {
360 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
361 
362 	buf[0] = 0;
363 
364 	switch (fmt_ptype) {
365 	case 's':
366 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
367 		if ((unsigned long)unsafe_ptr < TASK_SIZE) {
368 			strncpy_from_user_nofault(buf, user_ptr, bufsz);
369 			break;
370 		}
371 		fallthrough;
372 #endif
373 	case 'k':
374 		strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
375 		break;
376 	case 'u':
377 		strncpy_from_user_nofault(buf, user_ptr, bufsz);
378 		break;
379 	}
380 }
381 
382 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
383 
384 #define BPF_TRACE_PRINTK_SIZE   1024
385 
386 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
387 {
388 	static char buf[BPF_TRACE_PRINTK_SIZE];
389 	unsigned long flags;
390 	va_list ap;
391 	int ret;
392 
393 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
394 	va_start(ap, fmt);
395 	ret = vsnprintf(buf, sizeof(buf), fmt, ap);
396 	va_end(ap);
397 	/* vsnprintf() will not append null for zero-length strings */
398 	if (ret == 0)
399 		buf[0] = '\0';
400 	trace_bpf_trace_printk(buf);
401 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
402 
403 	return ret;
404 }
405 
406 /*
407  * Only limited trace_printk() conversion specifiers allowed:
408  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
409  */
410 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
411 	   u64, arg2, u64, arg3)
412 {
413 	int i, mod[3] = {}, fmt_cnt = 0;
414 	char buf[64], fmt_ptype;
415 	void *unsafe_ptr = NULL;
416 	bool str_seen = false;
417 
418 	/*
419 	 * bpf_check()->check_func_arg()->check_stack_boundary()
420 	 * guarantees that fmt points to bpf program stack,
421 	 * fmt_size bytes of it were initialized and fmt_size > 0
422 	 */
423 	if (fmt[--fmt_size] != 0)
424 		return -EINVAL;
425 
426 	/* check format string for allowed specifiers */
427 	for (i = 0; i < fmt_size; i++) {
428 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
429 			return -EINVAL;
430 
431 		if (fmt[i] != '%')
432 			continue;
433 
434 		if (fmt_cnt >= 3)
435 			return -EINVAL;
436 
437 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
438 		i++;
439 		if (fmt[i] == 'l') {
440 			mod[fmt_cnt]++;
441 			i++;
442 		} else if (fmt[i] == 'p') {
443 			mod[fmt_cnt]++;
444 			if ((fmt[i + 1] == 'k' ||
445 			     fmt[i + 1] == 'u') &&
446 			    fmt[i + 2] == 's') {
447 				fmt_ptype = fmt[i + 1];
448 				i += 2;
449 				goto fmt_str;
450 			}
451 
452 			if (fmt[i + 1] == 'B') {
453 				i++;
454 				goto fmt_next;
455 			}
456 
457 			/* disallow any further format extensions */
458 			if (fmt[i + 1] != 0 &&
459 			    !isspace(fmt[i + 1]) &&
460 			    !ispunct(fmt[i + 1]))
461 				return -EINVAL;
462 
463 			goto fmt_next;
464 		} else if (fmt[i] == 's') {
465 			mod[fmt_cnt]++;
466 			fmt_ptype = fmt[i];
467 fmt_str:
468 			if (str_seen)
469 				/* allow only one '%s' per fmt string */
470 				return -EINVAL;
471 			str_seen = true;
472 
473 			if (fmt[i + 1] != 0 &&
474 			    !isspace(fmt[i + 1]) &&
475 			    !ispunct(fmt[i + 1]))
476 				return -EINVAL;
477 
478 			switch (fmt_cnt) {
479 			case 0:
480 				unsafe_ptr = (void *)(long)arg1;
481 				arg1 = (long)buf;
482 				break;
483 			case 1:
484 				unsafe_ptr = (void *)(long)arg2;
485 				arg2 = (long)buf;
486 				break;
487 			case 2:
488 				unsafe_ptr = (void *)(long)arg3;
489 				arg3 = (long)buf;
490 				break;
491 			}
492 
493 			bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
494 					sizeof(buf));
495 			goto fmt_next;
496 		}
497 
498 		if (fmt[i] == 'l') {
499 			mod[fmt_cnt]++;
500 			i++;
501 		}
502 
503 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
504 		    fmt[i] != 'u' && fmt[i] != 'x')
505 			return -EINVAL;
506 fmt_next:
507 		fmt_cnt++;
508 	}
509 
510 /* Horrid workaround for getting va_list handling working with different
511  * argument type combinations generically for 32 and 64 bit archs.
512  */
513 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
514 #define __BPF_TP(...)							\
515 	bpf_do_trace_printk(fmt, ##__VA_ARGS__)
516 
517 #define __BPF_ARG1_TP(...)						\
518 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
519 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
520 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
521 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
522 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
523 
524 #define __BPF_ARG2_TP(...)						\
525 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
526 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
527 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
528 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
529 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
530 
531 #define __BPF_ARG3_TP(...)						\
532 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
533 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
534 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
535 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
536 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
537 
538 	return __BPF_TP_EMIT();
539 }
540 
541 static const struct bpf_func_proto bpf_trace_printk_proto = {
542 	.func		= bpf_trace_printk,
543 	.gpl_only	= true,
544 	.ret_type	= RET_INTEGER,
545 	.arg1_type	= ARG_PTR_TO_MEM,
546 	.arg2_type	= ARG_CONST_SIZE,
547 };
548 
549 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
550 {
551 	/*
552 	 * This program might be calling bpf_trace_printk,
553 	 * so enable the associated bpf_trace/bpf_trace_printk event.
554 	 * Repeat this each time as it is possible a user has
555 	 * disabled bpf_trace_printk events.  By loading a program
556 	 * calling bpf_trace_printk() however the user has expressed
557 	 * the intent to see such events.
558 	 */
559 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
560 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
561 
562 	return &bpf_trace_printk_proto;
563 }
564 
565 #define MAX_SEQ_PRINTF_VARARGS		12
566 #define MAX_SEQ_PRINTF_MAX_MEMCPY	6
567 #define MAX_SEQ_PRINTF_STR_LEN		128
568 
569 struct bpf_seq_printf_buf {
570 	char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
571 };
572 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
573 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
574 
575 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
576 	   const void *, data, u32, data_len)
577 {
578 	int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
579 	int i, buf_used, copy_size, num_args;
580 	u64 params[MAX_SEQ_PRINTF_VARARGS];
581 	struct bpf_seq_printf_buf *bufs;
582 	const u64 *args = data;
583 
584 	buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
585 	if (WARN_ON_ONCE(buf_used > 1)) {
586 		err = -EBUSY;
587 		goto out;
588 	}
589 
590 	bufs = this_cpu_ptr(&bpf_seq_printf_buf);
591 
592 	/*
593 	 * bpf_check()->check_func_arg()->check_stack_boundary()
594 	 * guarantees that fmt points to bpf program stack,
595 	 * fmt_size bytes of it were initialized and fmt_size > 0
596 	 */
597 	if (fmt[--fmt_size] != 0)
598 		goto out;
599 
600 	if (data_len & 7)
601 		goto out;
602 
603 	for (i = 0; i < fmt_size; i++) {
604 		if (fmt[i] == '%') {
605 			if (fmt[i + 1] == '%')
606 				i++;
607 			else if (!data || !data_len)
608 				goto out;
609 		}
610 	}
611 
612 	num_args = data_len / 8;
613 
614 	/* check format string for allowed specifiers */
615 	for (i = 0; i < fmt_size; i++) {
616 		/* only printable ascii for now. */
617 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
618 			err = -EINVAL;
619 			goto out;
620 		}
621 
622 		if (fmt[i] != '%')
623 			continue;
624 
625 		if (fmt[i + 1] == '%') {
626 			i++;
627 			continue;
628 		}
629 
630 		if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
631 			err = -E2BIG;
632 			goto out;
633 		}
634 
635 		if (fmt_cnt >= num_args) {
636 			err = -EINVAL;
637 			goto out;
638 		}
639 
640 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
641 		i++;
642 
643 		/* skip optional "[0 +-][num]" width formating field */
644 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
645 		       fmt[i] == ' ')
646 			i++;
647 		if (fmt[i] >= '1' && fmt[i] <= '9') {
648 			i++;
649 			while (fmt[i] >= '0' && fmt[i] <= '9')
650 				i++;
651 		}
652 
653 		if (fmt[i] == 's') {
654 			void *unsafe_ptr;
655 
656 			/* try our best to copy */
657 			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
658 				err = -E2BIG;
659 				goto out;
660 			}
661 
662 			unsafe_ptr = (void *)(long)args[fmt_cnt];
663 			err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
664 					unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
665 			if (err < 0)
666 				bufs->buf[memcpy_cnt][0] = '\0';
667 			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
668 
669 			fmt_cnt++;
670 			memcpy_cnt++;
671 			continue;
672 		}
673 
674 		if (fmt[i] == 'p') {
675 			if (fmt[i + 1] == 0 ||
676 			    fmt[i + 1] == 'K' ||
677 			    fmt[i + 1] == 'x' ||
678 			    fmt[i + 1] == 'B') {
679 				/* just kernel pointers */
680 				params[fmt_cnt] = args[fmt_cnt];
681 				fmt_cnt++;
682 				continue;
683 			}
684 
685 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
686 			if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
687 				err = -EINVAL;
688 				goto out;
689 			}
690 			if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
691 				err = -EINVAL;
692 				goto out;
693 			}
694 
695 			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
696 				err = -E2BIG;
697 				goto out;
698 			}
699 
700 
701 			copy_size = (fmt[i + 2] == '4') ? 4 : 16;
702 
703 			err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
704 						(void *) (long) args[fmt_cnt],
705 						copy_size);
706 			if (err < 0)
707 				memset(bufs->buf[memcpy_cnt], 0, copy_size);
708 			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
709 
710 			i += 2;
711 			fmt_cnt++;
712 			memcpy_cnt++;
713 			continue;
714 		}
715 
716 		if (fmt[i] == 'l') {
717 			i++;
718 			if (fmt[i] == 'l')
719 				i++;
720 		}
721 
722 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
723 		    fmt[i] != 'u' && fmt[i] != 'x' &&
724 		    fmt[i] != 'X') {
725 			err = -EINVAL;
726 			goto out;
727 		}
728 
729 		params[fmt_cnt] = args[fmt_cnt];
730 		fmt_cnt++;
731 	}
732 
733 	/* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
734 	 * all of them to seq_printf().
735 	 */
736 	seq_printf(m, fmt, params[0], params[1], params[2], params[3],
737 		   params[4], params[5], params[6], params[7], params[8],
738 		   params[9], params[10], params[11]);
739 
740 	err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
741 out:
742 	this_cpu_dec(bpf_seq_printf_buf_used);
743 	return err;
744 }
745 
746 BTF_ID_LIST(bpf_seq_printf_btf_ids)
747 BTF_ID(struct, seq_file)
748 
749 static const struct bpf_func_proto bpf_seq_printf_proto = {
750 	.func		= bpf_seq_printf,
751 	.gpl_only	= true,
752 	.ret_type	= RET_INTEGER,
753 	.arg1_type	= ARG_PTR_TO_BTF_ID,
754 	.arg2_type	= ARG_PTR_TO_MEM,
755 	.arg3_type	= ARG_CONST_SIZE,
756 	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
757 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
758 	.btf_id		= bpf_seq_printf_btf_ids,
759 };
760 
761 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
762 {
763 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
764 }
765 
766 BTF_ID_LIST(bpf_seq_write_btf_ids)
767 BTF_ID(struct, seq_file)
768 
769 static const struct bpf_func_proto bpf_seq_write_proto = {
770 	.func		= bpf_seq_write,
771 	.gpl_only	= true,
772 	.ret_type	= RET_INTEGER,
773 	.arg1_type	= ARG_PTR_TO_BTF_ID,
774 	.arg2_type	= ARG_PTR_TO_MEM,
775 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
776 	.btf_id		= bpf_seq_write_btf_ids,
777 };
778 
779 static __always_inline int
780 get_map_perf_counter(struct bpf_map *map, u64 flags,
781 		     u64 *value, u64 *enabled, u64 *running)
782 {
783 	struct bpf_array *array = container_of(map, struct bpf_array, map);
784 	unsigned int cpu = smp_processor_id();
785 	u64 index = flags & BPF_F_INDEX_MASK;
786 	struct bpf_event_entry *ee;
787 
788 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
789 		return -EINVAL;
790 	if (index == BPF_F_CURRENT_CPU)
791 		index = cpu;
792 	if (unlikely(index >= array->map.max_entries))
793 		return -E2BIG;
794 
795 	ee = READ_ONCE(array->ptrs[index]);
796 	if (!ee)
797 		return -ENOENT;
798 
799 	return perf_event_read_local(ee->event, value, enabled, running);
800 }
801 
802 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
803 {
804 	u64 value = 0;
805 	int err;
806 
807 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
808 	/*
809 	 * this api is ugly since we miss [-22..-2] range of valid
810 	 * counter values, but that's uapi
811 	 */
812 	if (err)
813 		return err;
814 	return value;
815 }
816 
817 static const struct bpf_func_proto bpf_perf_event_read_proto = {
818 	.func		= bpf_perf_event_read,
819 	.gpl_only	= true,
820 	.ret_type	= RET_INTEGER,
821 	.arg1_type	= ARG_CONST_MAP_PTR,
822 	.arg2_type	= ARG_ANYTHING,
823 };
824 
825 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
826 	   struct bpf_perf_event_value *, buf, u32, size)
827 {
828 	int err = -EINVAL;
829 
830 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
831 		goto clear;
832 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
833 				   &buf->running);
834 	if (unlikely(err))
835 		goto clear;
836 	return 0;
837 clear:
838 	memset(buf, 0, size);
839 	return err;
840 }
841 
842 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
843 	.func		= bpf_perf_event_read_value,
844 	.gpl_only	= true,
845 	.ret_type	= RET_INTEGER,
846 	.arg1_type	= ARG_CONST_MAP_PTR,
847 	.arg2_type	= ARG_ANYTHING,
848 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
849 	.arg4_type	= ARG_CONST_SIZE,
850 };
851 
852 static __always_inline u64
853 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
854 			u64 flags, struct perf_sample_data *sd)
855 {
856 	struct bpf_array *array = container_of(map, struct bpf_array, map);
857 	unsigned int cpu = smp_processor_id();
858 	u64 index = flags & BPF_F_INDEX_MASK;
859 	struct bpf_event_entry *ee;
860 	struct perf_event *event;
861 
862 	if (index == BPF_F_CURRENT_CPU)
863 		index = cpu;
864 	if (unlikely(index >= array->map.max_entries))
865 		return -E2BIG;
866 
867 	ee = READ_ONCE(array->ptrs[index]);
868 	if (!ee)
869 		return -ENOENT;
870 
871 	event = ee->event;
872 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
873 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
874 		return -EINVAL;
875 
876 	if (unlikely(event->oncpu != cpu))
877 		return -EOPNOTSUPP;
878 
879 	return perf_event_output(event, sd, regs);
880 }
881 
882 /*
883  * Support executing tracepoints in normal, irq, and nmi context that each call
884  * bpf_perf_event_output
885  */
886 struct bpf_trace_sample_data {
887 	struct perf_sample_data sds[3];
888 };
889 
890 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
891 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
892 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
893 	   u64, flags, void *, data, u64, size)
894 {
895 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
896 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
897 	struct perf_raw_record raw = {
898 		.frag = {
899 			.size = size,
900 			.data = data,
901 		},
902 	};
903 	struct perf_sample_data *sd;
904 	int err;
905 
906 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
907 		err = -EBUSY;
908 		goto out;
909 	}
910 
911 	sd = &sds->sds[nest_level - 1];
912 
913 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
914 		err = -EINVAL;
915 		goto out;
916 	}
917 
918 	perf_sample_data_init(sd, 0, 0);
919 	sd->raw = &raw;
920 
921 	err = __bpf_perf_event_output(regs, map, flags, sd);
922 
923 out:
924 	this_cpu_dec(bpf_trace_nest_level);
925 	return err;
926 }
927 
928 static const struct bpf_func_proto bpf_perf_event_output_proto = {
929 	.func		= bpf_perf_event_output,
930 	.gpl_only	= true,
931 	.ret_type	= RET_INTEGER,
932 	.arg1_type	= ARG_PTR_TO_CTX,
933 	.arg2_type	= ARG_CONST_MAP_PTR,
934 	.arg3_type	= ARG_ANYTHING,
935 	.arg4_type	= ARG_PTR_TO_MEM,
936 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
937 };
938 
939 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
940 struct bpf_nested_pt_regs {
941 	struct pt_regs regs[3];
942 };
943 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
944 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
945 
946 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
947 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
948 {
949 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
950 	struct perf_raw_frag frag = {
951 		.copy		= ctx_copy,
952 		.size		= ctx_size,
953 		.data		= ctx,
954 	};
955 	struct perf_raw_record raw = {
956 		.frag = {
957 			{
958 				.next	= ctx_size ? &frag : NULL,
959 			},
960 			.size	= meta_size,
961 			.data	= meta,
962 		},
963 	};
964 	struct perf_sample_data *sd;
965 	struct pt_regs *regs;
966 	u64 ret;
967 
968 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
969 		ret = -EBUSY;
970 		goto out;
971 	}
972 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
973 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
974 
975 	perf_fetch_caller_regs(regs);
976 	perf_sample_data_init(sd, 0, 0);
977 	sd->raw = &raw;
978 
979 	ret = __bpf_perf_event_output(regs, map, flags, sd);
980 out:
981 	this_cpu_dec(bpf_event_output_nest_level);
982 	return ret;
983 }
984 
985 BPF_CALL_0(bpf_get_current_task)
986 {
987 	return (long) current;
988 }
989 
990 const struct bpf_func_proto bpf_get_current_task_proto = {
991 	.func		= bpf_get_current_task,
992 	.gpl_only	= true,
993 	.ret_type	= RET_INTEGER,
994 };
995 
996 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
997 {
998 	struct bpf_array *array = container_of(map, struct bpf_array, map);
999 	struct cgroup *cgrp;
1000 
1001 	if (unlikely(idx >= array->map.max_entries))
1002 		return -E2BIG;
1003 
1004 	cgrp = READ_ONCE(array->ptrs[idx]);
1005 	if (unlikely(!cgrp))
1006 		return -EAGAIN;
1007 
1008 	return task_under_cgroup_hierarchy(current, cgrp);
1009 }
1010 
1011 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
1012 	.func           = bpf_current_task_under_cgroup,
1013 	.gpl_only       = false,
1014 	.ret_type       = RET_INTEGER,
1015 	.arg1_type      = ARG_CONST_MAP_PTR,
1016 	.arg2_type      = ARG_ANYTHING,
1017 };
1018 
1019 struct send_signal_irq_work {
1020 	struct irq_work irq_work;
1021 	struct task_struct *task;
1022 	u32 sig;
1023 	enum pid_type type;
1024 };
1025 
1026 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
1027 
1028 static void do_bpf_send_signal(struct irq_work *entry)
1029 {
1030 	struct send_signal_irq_work *work;
1031 
1032 	work = container_of(entry, struct send_signal_irq_work, irq_work);
1033 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
1034 }
1035 
1036 static int bpf_send_signal_common(u32 sig, enum pid_type type)
1037 {
1038 	struct send_signal_irq_work *work = NULL;
1039 
1040 	/* Similar to bpf_probe_write_user, task needs to be
1041 	 * in a sound condition and kernel memory access be
1042 	 * permitted in order to send signal to the current
1043 	 * task.
1044 	 */
1045 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1046 		return -EPERM;
1047 	if (unlikely(uaccess_kernel()))
1048 		return -EPERM;
1049 	if (unlikely(!nmi_uaccess_okay()))
1050 		return -EPERM;
1051 
1052 	if (irqs_disabled()) {
1053 		/* Do an early check on signal validity. Otherwise,
1054 		 * the error is lost in deferred irq_work.
1055 		 */
1056 		if (unlikely(!valid_signal(sig)))
1057 			return -EINVAL;
1058 
1059 		work = this_cpu_ptr(&send_signal_work);
1060 		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1061 			return -EBUSY;
1062 
1063 		/* Add the current task, which is the target of sending signal,
1064 		 * to the irq_work. The current task may change when queued
1065 		 * irq works get executed.
1066 		 */
1067 		work->task = current;
1068 		work->sig = sig;
1069 		work->type = type;
1070 		irq_work_queue(&work->irq_work);
1071 		return 0;
1072 	}
1073 
1074 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1075 }
1076 
1077 BPF_CALL_1(bpf_send_signal, u32, sig)
1078 {
1079 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
1080 }
1081 
1082 static const struct bpf_func_proto bpf_send_signal_proto = {
1083 	.func		= bpf_send_signal,
1084 	.gpl_only	= false,
1085 	.ret_type	= RET_INTEGER,
1086 	.arg1_type	= ARG_ANYTHING,
1087 };
1088 
1089 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1090 {
1091 	return bpf_send_signal_common(sig, PIDTYPE_PID);
1092 }
1093 
1094 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1095 	.func		= bpf_send_signal_thread,
1096 	.gpl_only	= false,
1097 	.ret_type	= RET_INTEGER,
1098 	.arg1_type	= ARG_ANYTHING,
1099 };
1100 
1101 const struct bpf_func_proto *
1102 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1103 {
1104 	switch (func_id) {
1105 	case BPF_FUNC_map_lookup_elem:
1106 		return &bpf_map_lookup_elem_proto;
1107 	case BPF_FUNC_map_update_elem:
1108 		return &bpf_map_update_elem_proto;
1109 	case BPF_FUNC_map_delete_elem:
1110 		return &bpf_map_delete_elem_proto;
1111 	case BPF_FUNC_map_push_elem:
1112 		return &bpf_map_push_elem_proto;
1113 	case BPF_FUNC_map_pop_elem:
1114 		return &bpf_map_pop_elem_proto;
1115 	case BPF_FUNC_map_peek_elem:
1116 		return &bpf_map_peek_elem_proto;
1117 	case BPF_FUNC_ktime_get_ns:
1118 		return &bpf_ktime_get_ns_proto;
1119 	case BPF_FUNC_ktime_get_boot_ns:
1120 		return &bpf_ktime_get_boot_ns_proto;
1121 	case BPF_FUNC_tail_call:
1122 		return &bpf_tail_call_proto;
1123 	case BPF_FUNC_get_current_pid_tgid:
1124 		return &bpf_get_current_pid_tgid_proto;
1125 	case BPF_FUNC_get_current_task:
1126 		return &bpf_get_current_task_proto;
1127 	case BPF_FUNC_get_current_uid_gid:
1128 		return &bpf_get_current_uid_gid_proto;
1129 	case BPF_FUNC_get_current_comm:
1130 		return &bpf_get_current_comm_proto;
1131 	case BPF_FUNC_trace_printk:
1132 		return bpf_get_trace_printk_proto();
1133 	case BPF_FUNC_get_smp_processor_id:
1134 		return &bpf_get_smp_processor_id_proto;
1135 	case BPF_FUNC_get_numa_node_id:
1136 		return &bpf_get_numa_node_id_proto;
1137 	case BPF_FUNC_perf_event_read:
1138 		return &bpf_perf_event_read_proto;
1139 	case BPF_FUNC_probe_write_user:
1140 		return bpf_get_probe_write_proto();
1141 	case BPF_FUNC_current_task_under_cgroup:
1142 		return &bpf_current_task_under_cgroup_proto;
1143 	case BPF_FUNC_get_prandom_u32:
1144 		return &bpf_get_prandom_u32_proto;
1145 	case BPF_FUNC_probe_read_user:
1146 		return &bpf_probe_read_user_proto;
1147 	case BPF_FUNC_probe_read_kernel:
1148 		return &bpf_probe_read_kernel_proto;
1149 	case BPF_FUNC_probe_read_user_str:
1150 		return &bpf_probe_read_user_str_proto;
1151 	case BPF_FUNC_probe_read_kernel_str:
1152 		return &bpf_probe_read_kernel_str_proto;
1153 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1154 	case BPF_FUNC_probe_read:
1155 		return &bpf_probe_read_compat_proto;
1156 	case BPF_FUNC_probe_read_str:
1157 		return &bpf_probe_read_compat_str_proto;
1158 #endif
1159 #ifdef CONFIG_CGROUPS
1160 	case BPF_FUNC_get_current_cgroup_id:
1161 		return &bpf_get_current_cgroup_id_proto;
1162 #endif
1163 	case BPF_FUNC_send_signal:
1164 		return &bpf_send_signal_proto;
1165 	case BPF_FUNC_send_signal_thread:
1166 		return &bpf_send_signal_thread_proto;
1167 	case BPF_FUNC_perf_event_read_value:
1168 		return &bpf_perf_event_read_value_proto;
1169 	case BPF_FUNC_get_ns_current_pid_tgid:
1170 		return &bpf_get_ns_current_pid_tgid_proto;
1171 	case BPF_FUNC_ringbuf_output:
1172 		return &bpf_ringbuf_output_proto;
1173 	case BPF_FUNC_ringbuf_reserve:
1174 		return &bpf_ringbuf_reserve_proto;
1175 	case BPF_FUNC_ringbuf_submit:
1176 		return &bpf_ringbuf_submit_proto;
1177 	case BPF_FUNC_ringbuf_discard:
1178 		return &bpf_ringbuf_discard_proto;
1179 	case BPF_FUNC_ringbuf_query:
1180 		return &bpf_ringbuf_query_proto;
1181 	case BPF_FUNC_jiffies64:
1182 		return &bpf_jiffies64_proto;
1183 	case BPF_FUNC_get_task_stack:
1184 		return &bpf_get_task_stack_proto;
1185 	default:
1186 		return NULL;
1187 	}
1188 }
1189 
1190 static const struct bpf_func_proto *
1191 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1192 {
1193 	switch (func_id) {
1194 	case BPF_FUNC_perf_event_output:
1195 		return &bpf_perf_event_output_proto;
1196 	case BPF_FUNC_get_stackid:
1197 		return &bpf_get_stackid_proto;
1198 	case BPF_FUNC_get_stack:
1199 		return &bpf_get_stack_proto;
1200 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1201 	case BPF_FUNC_override_return:
1202 		return &bpf_override_return_proto;
1203 #endif
1204 	default:
1205 		return bpf_tracing_func_proto(func_id, prog);
1206 	}
1207 }
1208 
1209 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1210 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1211 					const struct bpf_prog *prog,
1212 					struct bpf_insn_access_aux *info)
1213 {
1214 	if (off < 0 || off >= sizeof(struct pt_regs))
1215 		return false;
1216 	if (type != BPF_READ)
1217 		return false;
1218 	if (off % size != 0)
1219 		return false;
1220 	/*
1221 	 * Assertion for 32 bit to make sure last 8 byte access
1222 	 * (BPF_DW) to the last 4 byte member is disallowed.
1223 	 */
1224 	if (off + size > sizeof(struct pt_regs))
1225 		return false;
1226 
1227 	return true;
1228 }
1229 
1230 const struct bpf_verifier_ops kprobe_verifier_ops = {
1231 	.get_func_proto  = kprobe_prog_func_proto,
1232 	.is_valid_access = kprobe_prog_is_valid_access,
1233 };
1234 
1235 const struct bpf_prog_ops kprobe_prog_ops = {
1236 };
1237 
1238 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1239 	   u64, flags, void *, data, u64, size)
1240 {
1241 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1242 
1243 	/*
1244 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1245 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1246 	 * from there and call the same bpf_perf_event_output() helper inline.
1247 	 */
1248 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1249 }
1250 
1251 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1252 	.func		= bpf_perf_event_output_tp,
1253 	.gpl_only	= true,
1254 	.ret_type	= RET_INTEGER,
1255 	.arg1_type	= ARG_PTR_TO_CTX,
1256 	.arg2_type	= ARG_CONST_MAP_PTR,
1257 	.arg3_type	= ARG_ANYTHING,
1258 	.arg4_type	= ARG_PTR_TO_MEM,
1259 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1260 };
1261 
1262 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1263 	   u64, flags)
1264 {
1265 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1266 
1267 	/*
1268 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1269 	 * the other helper's function body cannot be inlined due to being
1270 	 * external, thus we need to call raw helper function.
1271 	 */
1272 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1273 			       flags, 0, 0);
1274 }
1275 
1276 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1277 	.func		= bpf_get_stackid_tp,
1278 	.gpl_only	= true,
1279 	.ret_type	= RET_INTEGER,
1280 	.arg1_type	= ARG_PTR_TO_CTX,
1281 	.arg2_type	= ARG_CONST_MAP_PTR,
1282 	.arg3_type	= ARG_ANYTHING,
1283 };
1284 
1285 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1286 	   u64, flags)
1287 {
1288 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1289 
1290 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1291 			     (unsigned long) size, flags, 0);
1292 }
1293 
1294 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1295 	.func		= bpf_get_stack_tp,
1296 	.gpl_only	= true,
1297 	.ret_type	= RET_INTEGER,
1298 	.arg1_type	= ARG_PTR_TO_CTX,
1299 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1300 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1301 	.arg4_type	= ARG_ANYTHING,
1302 };
1303 
1304 static const struct bpf_func_proto *
1305 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1306 {
1307 	switch (func_id) {
1308 	case BPF_FUNC_perf_event_output:
1309 		return &bpf_perf_event_output_proto_tp;
1310 	case BPF_FUNC_get_stackid:
1311 		return &bpf_get_stackid_proto_tp;
1312 	case BPF_FUNC_get_stack:
1313 		return &bpf_get_stack_proto_tp;
1314 	default:
1315 		return bpf_tracing_func_proto(func_id, prog);
1316 	}
1317 }
1318 
1319 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1320 				    const struct bpf_prog *prog,
1321 				    struct bpf_insn_access_aux *info)
1322 {
1323 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1324 		return false;
1325 	if (type != BPF_READ)
1326 		return false;
1327 	if (off % size != 0)
1328 		return false;
1329 
1330 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1331 	return true;
1332 }
1333 
1334 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1335 	.get_func_proto  = tp_prog_func_proto,
1336 	.is_valid_access = tp_prog_is_valid_access,
1337 };
1338 
1339 const struct bpf_prog_ops tracepoint_prog_ops = {
1340 };
1341 
1342 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1343 	   struct bpf_perf_event_value *, buf, u32, size)
1344 {
1345 	int err = -EINVAL;
1346 
1347 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1348 		goto clear;
1349 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1350 				    &buf->running);
1351 	if (unlikely(err))
1352 		goto clear;
1353 	return 0;
1354 clear:
1355 	memset(buf, 0, size);
1356 	return err;
1357 }
1358 
1359 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1360          .func           = bpf_perf_prog_read_value,
1361          .gpl_only       = true,
1362          .ret_type       = RET_INTEGER,
1363          .arg1_type      = ARG_PTR_TO_CTX,
1364          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1365          .arg3_type      = ARG_CONST_SIZE,
1366 };
1367 
1368 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1369 	   void *, buf, u32, size, u64, flags)
1370 {
1371 #ifndef CONFIG_X86
1372 	return -ENOENT;
1373 #else
1374 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1375 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1376 	u32 to_copy;
1377 
1378 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1379 		return -EINVAL;
1380 
1381 	if (unlikely(!br_stack))
1382 		return -EINVAL;
1383 
1384 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1385 		return br_stack->nr * br_entry_size;
1386 
1387 	if (!buf || (size % br_entry_size != 0))
1388 		return -EINVAL;
1389 
1390 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1391 	memcpy(buf, br_stack->entries, to_copy);
1392 
1393 	return to_copy;
1394 #endif
1395 }
1396 
1397 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1398 	.func           = bpf_read_branch_records,
1399 	.gpl_only       = true,
1400 	.ret_type       = RET_INTEGER,
1401 	.arg1_type      = ARG_PTR_TO_CTX,
1402 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1403 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1404 	.arg4_type      = ARG_ANYTHING,
1405 };
1406 
1407 static const struct bpf_func_proto *
1408 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1409 {
1410 	switch (func_id) {
1411 	case BPF_FUNC_perf_event_output:
1412 		return &bpf_perf_event_output_proto_tp;
1413 	case BPF_FUNC_get_stackid:
1414 		return &bpf_get_stackid_proto_pe;
1415 	case BPF_FUNC_get_stack:
1416 		return &bpf_get_stack_proto_pe;
1417 	case BPF_FUNC_perf_prog_read_value:
1418 		return &bpf_perf_prog_read_value_proto;
1419 	case BPF_FUNC_read_branch_records:
1420 		return &bpf_read_branch_records_proto;
1421 	default:
1422 		return bpf_tracing_func_proto(func_id, prog);
1423 	}
1424 }
1425 
1426 /*
1427  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1428  * to avoid potential recursive reuse issue when/if tracepoints are added
1429  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1430  *
1431  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1432  * in normal, irq, and nmi context.
1433  */
1434 struct bpf_raw_tp_regs {
1435 	struct pt_regs regs[3];
1436 };
1437 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1438 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1439 static struct pt_regs *get_bpf_raw_tp_regs(void)
1440 {
1441 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1442 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1443 
1444 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1445 		this_cpu_dec(bpf_raw_tp_nest_level);
1446 		return ERR_PTR(-EBUSY);
1447 	}
1448 
1449 	return &tp_regs->regs[nest_level - 1];
1450 }
1451 
1452 static void put_bpf_raw_tp_regs(void)
1453 {
1454 	this_cpu_dec(bpf_raw_tp_nest_level);
1455 }
1456 
1457 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1458 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1459 {
1460 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1461 	int ret;
1462 
1463 	if (IS_ERR(regs))
1464 		return PTR_ERR(regs);
1465 
1466 	perf_fetch_caller_regs(regs);
1467 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1468 
1469 	put_bpf_raw_tp_regs();
1470 	return ret;
1471 }
1472 
1473 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1474 	.func		= bpf_perf_event_output_raw_tp,
1475 	.gpl_only	= true,
1476 	.ret_type	= RET_INTEGER,
1477 	.arg1_type	= ARG_PTR_TO_CTX,
1478 	.arg2_type	= ARG_CONST_MAP_PTR,
1479 	.arg3_type	= ARG_ANYTHING,
1480 	.arg4_type	= ARG_PTR_TO_MEM,
1481 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1482 };
1483 
1484 extern const struct bpf_func_proto bpf_skb_output_proto;
1485 extern const struct bpf_func_proto bpf_xdp_output_proto;
1486 
1487 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1488 	   struct bpf_map *, map, u64, flags)
1489 {
1490 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1491 	int ret;
1492 
1493 	if (IS_ERR(regs))
1494 		return PTR_ERR(regs);
1495 
1496 	perf_fetch_caller_regs(regs);
1497 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1498 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1499 			      flags, 0, 0);
1500 	put_bpf_raw_tp_regs();
1501 	return ret;
1502 }
1503 
1504 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1505 	.func		= bpf_get_stackid_raw_tp,
1506 	.gpl_only	= true,
1507 	.ret_type	= RET_INTEGER,
1508 	.arg1_type	= ARG_PTR_TO_CTX,
1509 	.arg2_type	= ARG_CONST_MAP_PTR,
1510 	.arg3_type	= ARG_ANYTHING,
1511 };
1512 
1513 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1514 	   void *, buf, u32, size, u64, flags)
1515 {
1516 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1517 	int ret;
1518 
1519 	if (IS_ERR(regs))
1520 		return PTR_ERR(regs);
1521 
1522 	perf_fetch_caller_regs(regs);
1523 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1524 			    (unsigned long) size, flags, 0);
1525 	put_bpf_raw_tp_regs();
1526 	return ret;
1527 }
1528 
1529 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1530 	.func		= bpf_get_stack_raw_tp,
1531 	.gpl_only	= true,
1532 	.ret_type	= RET_INTEGER,
1533 	.arg1_type	= ARG_PTR_TO_CTX,
1534 	.arg2_type	= ARG_PTR_TO_MEM,
1535 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1536 	.arg4_type	= ARG_ANYTHING,
1537 };
1538 
1539 static const struct bpf_func_proto *
1540 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1541 {
1542 	switch (func_id) {
1543 	case BPF_FUNC_perf_event_output:
1544 		return &bpf_perf_event_output_proto_raw_tp;
1545 	case BPF_FUNC_get_stackid:
1546 		return &bpf_get_stackid_proto_raw_tp;
1547 	case BPF_FUNC_get_stack:
1548 		return &bpf_get_stack_proto_raw_tp;
1549 	default:
1550 		return bpf_tracing_func_proto(func_id, prog);
1551 	}
1552 }
1553 
1554 const struct bpf_func_proto *
1555 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1556 {
1557 	switch (func_id) {
1558 #ifdef CONFIG_NET
1559 	case BPF_FUNC_skb_output:
1560 		return &bpf_skb_output_proto;
1561 	case BPF_FUNC_xdp_output:
1562 		return &bpf_xdp_output_proto;
1563 	case BPF_FUNC_skc_to_tcp6_sock:
1564 		return &bpf_skc_to_tcp6_sock_proto;
1565 	case BPF_FUNC_skc_to_tcp_sock:
1566 		return &bpf_skc_to_tcp_sock_proto;
1567 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1568 		return &bpf_skc_to_tcp_timewait_sock_proto;
1569 	case BPF_FUNC_skc_to_tcp_request_sock:
1570 		return &bpf_skc_to_tcp_request_sock_proto;
1571 	case BPF_FUNC_skc_to_udp6_sock:
1572 		return &bpf_skc_to_udp6_sock_proto;
1573 #endif
1574 	case BPF_FUNC_seq_printf:
1575 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1576 		       &bpf_seq_printf_proto :
1577 		       NULL;
1578 	case BPF_FUNC_seq_write:
1579 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1580 		       &bpf_seq_write_proto :
1581 		       NULL;
1582 	default:
1583 		return raw_tp_prog_func_proto(func_id, prog);
1584 	}
1585 }
1586 
1587 static bool raw_tp_prog_is_valid_access(int off, int size,
1588 					enum bpf_access_type type,
1589 					const struct bpf_prog *prog,
1590 					struct bpf_insn_access_aux *info)
1591 {
1592 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1593 		return false;
1594 	if (type != BPF_READ)
1595 		return false;
1596 	if (off % size != 0)
1597 		return false;
1598 	return true;
1599 }
1600 
1601 static bool tracing_prog_is_valid_access(int off, int size,
1602 					 enum bpf_access_type type,
1603 					 const struct bpf_prog *prog,
1604 					 struct bpf_insn_access_aux *info)
1605 {
1606 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1607 		return false;
1608 	if (type != BPF_READ)
1609 		return false;
1610 	if (off % size != 0)
1611 		return false;
1612 	return btf_ctx_access(off, size, type, prog, info);
1613 }
1614 
1615 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1616 				     const union bpf_attr *kattr,
1617 				     union bpf_attr __user *uattr)
1618 {
1619 	return -ENOTSUPP;
1620 }
1621 
1622 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1623 	.get_func_proto  = raw_tp_prog_func_proto,
1624 	.is_valid_access = raw_tp_prog_is_valid_access,
1625 };
1626 
1627 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1628 };
1629 
1630 const struct bpf_verifier_ops tracing_verifier_ops = {
1631 	.get_func_proto  = tracing_prog_func_proto,
1632 	.is_valid_access = tracing_prog_is_valid_access,
1633 };
1634 
1635 const struct bpf_prog_ops tracing_prog_ops = {
1636 	.test_run = bpf_prog_test_run_tracing,
1637 };
1638 
1639 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1640 						 enum bpf_access_type type,
1641 						 const struct bpf_prog *prog,
1642 						 struct bpf_insn_access_aux *info)
1643 {
1644 	if (off == 0) {
1645 		if (size != sizeof(u64) || type != BPF_READ)
1646 			return false;
1647 		info->reg_type = PTR_TO_TP_BUFFER;
1648 	}
1649 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1650 }
1651 
1652 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1653 	.get_func_proto  = raw_tp_prog_func_proto,
1654 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1655 };
1656 
1657 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1658 };
1659 
1660 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1661 				    const struct bpf_prog *prog,
1662 				    struct bpf_insn_access_aux *info)
1663 {
1664 	const int size_u64 = sizeof(u64);
1665 
1666 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1667 		return false;
1668 	if (type != BPF_READ)
1669 		return false;
1670 	if (off % size != 0) {
1671 		if (sizeof(unsigned long) != 4)
1672 			return false;
1673 		if (size != 8)
1674 			return false;
1675 		if (off % size != 4)
1676 			return false;
1677 	}
1678 
1679 	switch (off) {
1680 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1681 		bpf_ctx_record_field_size(info, size_u64);
1682 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1683 			return false;
1684 		break;
1685 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1686 		bpf_ctx_record_field_size(info, size_u64);
1687 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1688 			return false;
1689 		break;
1690 	default:
1691 		if (size != sizeof(long))
1692 			return false;
1693 	}
1694 
1695 	return true;
1696 }
1697 
1698 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1699 				      const struct bpf_insn *si,
1700 				      struct bpf_insn *insn_buf,
1701 				      struct bpf_prog *prog, u32 *target_size)
1702 {
1703 	struct bpf_insn *insn = insn_buf;
1704 
1705 	switch (si->off) {
1706 	case offsetof(struct bpf_perf_event_data, sample_period):
1707 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1708 						       data), si->dst_reg, si->src_reg,
1709 				      offsetof(struct bpf_perf_event_data_kern, data));
1710 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1711 				      bpf_target_off(struct perf_sample_data, period, 8,
1712 						     target_size));
1713 		break;
1714 	case offsetof(struct bpf_perf_event_data, addr):
1715 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1716 						       data), si->dst_reg, si->src_reg,
1717 				      offsetof(struct bpf_perf_event_data_kern, data));
1718 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1719 				      bpf_target_off(struct perf_sample_data, addr, 8,
1720 						     target_size));
1721 		break;
1722 	default:
1723 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1724 						       regs), si->dst_reg, si->src_reg,
1725 				      offsetof(struct bpf_perf_event_data_kern, regs));
1726 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1727 				      si->off);
1728 		break;
1729 	}
1730 
1731 	return insn - insn_buf;
1732 }
1733 
1734 const struct bpf_verifier_ops perf_event_verifier_ops = {
1735 	.get_func_proto		= pe_prog_func_proto,
1736 	.is_valid_access	= pe_prog_is_valid_access,
1737 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1738 };
1739 
1740 const struct bpf_prog_ops perf_event_prog_ops = {
1741 };
1742 
1743 static DEFINE_MUTEX(bpf_event_mutex);
1744 
1745 #define BPF_TRACE_MAX_PROGS 64
1746 
1747 int perf_event_attach_bpf_prog(struct perf_event *event,
1748 			       struct bpf_prog *prog)
1749 {
1750 	struct bpf_prog_array *old_array;
1751 	struct bpf_prog_array *new_array;
1752 	int ret = -EEXIST;
1753 
1754 	/*
1755 	 * Kprobe override only works if they are on the function entry,
1756 	 * and only if they are on the opt-in list.
1757 	 */
1758 	if (prog->kprobe_override &&
1759 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1760 	     !trace_kprobe_error_injectable(event->tp_event)))
1761 		return -EINVAL;
1762 
1763 	mutex_lock(&bpf_event_mutex);
1764 
1765 	if (event->prog)
1766 		goto unlock;
1767 
1768 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1769 	if (old_array &&
1770 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1771 		ret = -E2BIG;
1772 		goto unlock;
1773 	}
1774 
1775 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1776 	if (ret < 0)
1777 		goto unlock;
1778 
1779 	/* set the new array to event->tp_event and set event->prog */
1780 	event->prog = prog;
1781 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1782 	bpf_prog_array_free(old_array);
1783 
1784 unlock:
1785 	mutex_unlock(&bpf_event_mutex);
1786 	return ret;
1787 }
1788 
1789 void perf_event_detach_bpf_prog(struct perf_event *event)
1790 {
1791 	struct bpf_prog_array *old_array;
1792 	struct bpf_prog_array *new_array;
1793 	int ret;
1794 
1795 	mutex_lock(&bpf_event_mutex);
1796 
1797 	if (!event->prog)
1798 		goto unlock;
1799 
1800 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1801 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1802 	if (ret == -ENOENT)
1803 		goto unlock;
1804 	if (ret < 0) {
1805 		bpf_prog_array_delete_safe(old_array, event->prog);
1806 	} else {
1807 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1808 		bpf_prog_array_free(old_array);
1809 	}
1810 
1811 	bpf_prog_put(event->prog);
1812 	event->prog = NULL;
1813 
1814 unlock:
1815 	mutex_unlock(&bpf_event_mutex);
1816 }
1817 
1818 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1819 {
1820 	struct perf_event_query_bpf __user *uquery = info;
1821 	struct perf_event_query_bpf query = {};
1822 	struct bpf_prog_array *progs;
1823 	u32 *ids, prog_cnt, ids_len;
1824 	int ret;
1825 
1826 	if (!perfmon_capable())
1827 		return -EPERM;
1828 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1829 		return -EINVAL;
1830 	if (copy_from_user(&query, uquery, sizeof(query)))
1831 		return -EFAULT;
1832 
1833 	ids_len = query.ids_len;
1834 	if (ids_len > BPF_TRACE_MAX_PROGS)
1835 		return -E2BIG;
1836 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1837 	if (!ids)
1838 		return -ENOMEM;
1839 	/*
1840 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1841 	 * is required when user only wants to check for uquery->prog_cnt.
1842 	 * There is no need to check for it since the case is handled
1843 	 * gracefully in bpf_prog_array_copy_info.
1844 	 */
1845 
1846 	mutex_lock(&bpf_event_mutex);
1847 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1848 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1849 	mutex_unlock(&bpf_event_mutex);
1850 
1851 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1852 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1853 		ret = -EFAULT;
1854 
1855 	kfree(ids);
1856 	return ret;
1857 }
1858 
1859 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1860 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1861 
1862 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1863 {
1864 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1865 
1866 	for (; btp < __stop__bpf_raw_tp; btp++) {
1867 		if (!strcmp(btp->tp->name, name))
1868 			return btp;
1869 	}
1870 
1871 	return bpf_get_raw_tracepoint_module(name);
1872 }
1873 
1874 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1875 {
1876 	struct module *mod = __module_address((unsigned long)btp);
1877 
1878 	if (mod)
1879 		module_put(mod);
1880 }
1881 
1882 static __always_inline
1883 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1884 {
1885 	cant_sleep();
1886 	rcu_read_lock();
1887 	(void) BPF_PROG_RUN(prog, args);
1888 	rcu_read_unlock();
1889 }
1890 
1891 #define UNPACK(...)			__VA_ARGS__
1892 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1893 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1894 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1895 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1896 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1897 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1898 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1899 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1900 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1901 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1902 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1903 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1904 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1905 
1906 #define SARG(X)		u64 arg##X
1907 #define COPY(X)		args[X] = arg##X
1908 
1909 #define __DL_COM	(,)
1910 #define __DL_SEM	(;)
1911 
1912 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1913 
1914 #define BPF_TRACE_DEFN_x(x)						\
1915 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1916 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1917 	{								\
1918 		u64 args[x];						\
1919 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1920 		__bpf_trace_run(prog, args);				\
1921 	}								\
1922 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1923 BPF_TRACE_DEFN_x(1);
1924 BPF_TRACE_DEFN_x(2);
1925 BPF_TRACE_DEFN_x(3);
1926 BPF_TRACE_DEFN_x(4);
1927 BPF_TRACE_DEFN_x(5);
1928 BPF_TRACE_DEFN_x(6);
1929 BPF_TRACE_DEFN_x(7);
1930 BPF_TRACE_DEFN_x(8);
1931 BPF_TRACE_DEFN_x(9);
1932 BPF_TRACE_DEFN_x(10);
1933 BPF_TRACE_DEFN_x(11);
1934 BPF_TRACE_DEFN_x(12);
1935 
1936 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1937 {
1938 	struct tracepoint *tp = btp->tp;
1939 
1940 	/*
1941 	 * check that program doesn't access arguments beyond what's
1942 	 * available in this tracepoint
1943 	 */
1944 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1945 		return -EINVAL;
1946 
1947 	if (prog->aux->max_tp_access > btp->writable_size)
1948 		return -EINVAL;
1949 
1950 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1951 }
1952 
1953 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1954 {
1955 	return __bpf_probe_register(btp, prog);
1956 }
1957 
1958 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1959 {
1960 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1961 }
1962 
1963 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1964 			    u32 *fd_type, const char **buf,
1965 			    u64 *probe_offset, u64 *probe_addr)
1966 {
1967 	bool is_tracepoint, is_syscall_tp;
1968 	struct bpf_prog *prog;
1969 	int flags, err = 0;
1970 
1971 	prog = event->prog;
1972 	if (!prog)
1973 		return -ENOENT;
1974 
1975 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1976 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1977 		return -EOPNOTSUPP;
1978 
1979 	*prog_id = prog->aux->id;
1980 	flags = event->tp_event->flags;
1981 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1982 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1983 
1984 	if (is_tracepoint || is_syscall_tp) {
1985 		*buf = is_tracepoint ? event->tp_event->tp->name
1986 				     : event->tp_event->name;
1987 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1988 		*probe_offset = 0x0;
1989 		*probe_addr = 0x0;
1990 	} else {
1991 		/* kprobe/uprobe */
1992 		err = -EOPNOTSUPP;
1993 #ifdef CONFIG_KPROBE_EVENTS
1994 		if (flags & TRACE_EVENT_FL_KPROBE)
1995 			err = bpf_get_kprobe_info(event, fd_type, buf,
1996 						  probe_offset, probe_addr,
1997 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1998 #endif
1999 #ifdef CONFIG_UPROBE_EVENTS
2000 		if (flags & TRACE_EVENT_FL_UPROBE)
2001 			err = bpf_get_uprobe_info(event, fd_type, buf,
2002 						  probe_offset,
2003 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2004 #endif
2005 	}
2006 
2007 	return err;
2008 }
2009 
2010 static int __init send_signal_irq_work_init(void)
2011 {
2012 	int cpu;
2013 	struct send_signal_irq_work *work;
2014 
2015 	for_each_possible_cpu(cpu) {
2016 		work = per_cpu_ptr(&send_signal_work, cpu);
2017 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2018 	}
2019 	return 0;
2020 }
2021 
2022 subsys_initcall(send_signal_irq_work_init);
2023 
2024 #ifdef CONFIG_MODULES
2025 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2026 			    void *module)
2027 {
2028 	struct bpf_trace_module *btm, *tmp;
2029 	struct module *mod = module;
2030 
2031 	if (mod->num_bpf_raw_events == 0 ||
2032 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2033 		return 0;
2034 
2035 	mutex_lock(&bpf_module_mutex);
2036 
2037 	switch (op) {
2038 	case MODULE_STATE_COMING:
2039 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2040 		if (btm) {
2041 			btm->module = module;
2042 			list_add(&btm->list, &bpf_trace_modules);
2043 		}
2044 		break;
2045 	case MODULE_STATE_GOING:
2046 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2047 			if (btm->module == module) {
2048 				list_del(&btm->list);
2049 				kfree(btm);
2050 				break;
2051 			}
2052 		}
2053 		break;
2054 	}
2055 
2056 	mutex_unlock(&bpf_module_mutex);
2057 
2058 	return 0;
2059 }
2060 
2061 static struct notifier_block bpf_module_nb = {
2062 	.notifier_call = bpf_event_notify,
2063 };
2064 
2065 static int __init bpf_event_init(void)
2066 {
2067 	register_module_notifier(&bpf_module_nb);
2068 	return 0;
2069 }
2070 
2071 fs_initcall(bpf_event_init);
2072 #endif /* CONFIG_MODULES */
2073