1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/filter.h> 11 #include <linux/uaccess.h> 12 #include <linux/ctype.h> 13 #include <linux/kprobes.h> 14 #include <linux/syscalls.h> 15 #include <linux/error-injection.h> 16 17 #include <asm/tlb.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 #ifdef CONFIG_MODULES 23 struct bpf_trace_module { 24 struct module *module; 25 struct list_head list; 26 }; 27 28 static LIST_HEAD(bpf_trace_modules); 29 static DEFINE_MUTEX(bpf_module_mutex); 30 31 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 32 { 33 struct bpf_raw_event_map *btp, *ret = NULL; 34 struct bpf_trace_module *btm; 35 unsigned int i; 36 37 mutex_lock(&bpf_module_mutex); 38 list_for_each_entry(btm, &bpf_trace_modules, list) { 39 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 40 btp = &btm->module->bpf_raw_events[i]; 41 if (!strcmp(btp->tp->name, name)) { 42 if (try_module_get(btm->module)) 43 ret = btp; 44 goto out; 45 } 46 } 47 } 48 out: 49 mutex_unlock(&bpf_module_mutex); 50 return ret; 51 } 52 #else 53 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 54 { 55 return NULL; 56 } 57 #endif /* CONFIG_MODULES */ 58 59 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 60 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 61 62 /** 63 * trace_call_bpf - invoke BPF program 64 * @call: tracepoint event 65 * @ctx: opaque context pointer 66 * 67 * kprobe handlers execute BPF programs via this helper. 68 * Can be used from static tracepoints in the future. 69 * 70 * Return: BPF programs always return an integer which is interpreted by 71 * kprobe handler as: 72 * 0 - return from kprobe (event is filtered out) 73 * 1 - store kprobe event into ring buffer 74 * Other values are reserved and currently alias to 1 75 */ 76 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 77 { 78 unsigned int ret; 79 80 if (in_nmi()) /* not supported yet */ 81 return 1; 82 83 preempt_disable(); 84 85 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 86 /* 87 * since some bpf program is already running on this cpu, 88 * don't call into another bpf program (same or different) 89 * and don't send kprobe event into ring-buffer, 90 * so return zero here 91 */ 92 ret = 0; 93 goto out; 94 } 95 96 /* 97 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 98 * to all call sites, we did a bpf_prog_array_valid() there to check 99 * whether call->prog_array is empty or not, which is 100 * a heurisitc to speed up execution. 101 * 102 * If bpf_prog_array_valid() fetched prog_array was 103 * non-NULL, we go into trace_call_bpf() and do the actual 104 * proper rcu_dereference() under RCU lock. 105 * If it turns out that prog_array is NULL then, we bail out. 106 * For the opposite, if the bpf_prog_array_valid() fetched pointer 107 * was NULL, you'll skip the prog_array with the risk of missing 108 * out of events when it was updated in between this and the 109 * rcu_dereference() which is accepted risk. 110 */ 111 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 112 113 out: 114 __this_cpu_dec(bpf_prog_active); 115 preempt_enable(); 116 117 return ret; 118 } 119 EXPORT_SYMBOL_GPL(trace_call_bpf); 120 121 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 122 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 123 { 124 regs_set_return_value(regs, rc); 125 override_function_with_return(regs); 126 return 0; 127 } 128 129 static const struct bpf_func_proto bpf_override_return_proto = { 130 .func = bpf_override_return, 131 .gpl_only = true, 132 .ret_type = RET_INTEGER, 133 .arg1_type = ARG_PTR_TO_CTX, 134 .arg2_type = ARG_ANYTHING, 135 }; 136 #endif 137 138 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr) 139 { 140 int ret; 141 142 ret = probe_kernel_read(dst, unsafe_ptr, size); 143 if (unlikely(ret < 0)) 144 memset(dst, 0, size); 145 146 return ret; 147 } 148 149 static const struct bpf_func_proto bpf_probe_read_proto = { 150 .func = bpf_probe_read, 151 .gpl_only = true, 152 .ret_type = RET_INTEGER, 153 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 154 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 155 .arg3_type = ARG_ANYTHING, 156 }; 157 158 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src, 159 u32, size) 160 { 161 /* 162 * Ensure we're in user context which is safe for the helper to 163 * run. This helper has no business in a kthread. 164 * 165 * access_ok() should prevent writing to non-user memory, but in 166 * some situations (nommu, temporary switch, etc) access_ok() does 167 * not provide enough validation, hence the check on KERNEL_DS. 168 * 169 * nmi_uaccess_okay() ensures the probe is not run in an interim 170 * state, when the task or mm are switched. This is specifically 171 * required to prevent the use of temporary mm. 172 */ 173 174 if (unlikely(in_interrupt() || 175 current->flags & (PF_KTHREAD | PF_EXITING))) 176 return -EPERM; 177 if (unlikely(uaccess_kernel())) 178 return -EPERM; 179 if (unlikely(!nmi_uaccess_okay())) 180 return -EPERM; 181 if (!access_ok(unsafe_ptr, size)) 182 return -EPERM; 183 184 return probe_kernel_write(unsafe_ptr, src, size); 185 } 186 187 static const struct bpf_func_proto bpf_probe_write_user_proto = { 188 .func = bpf_probe_write_user, 189 .gpl_only = true, 190 .ret_type = RET_INTEGER, 191 .arg1_type = ARG_ANYTHING, 192 .arg2_type = ARG_PTR_TO_MEM, 193 .arg3_type = ARG_CONST_SIZE, 194 }; 195 196 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 197 { 198 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 199 current->comm, task_pid_nr(current)); 200 201 return &bpf_probe_write_user_proto; 202 } 203 204 /* 205 * Only limited trace_printk() conversion specifiers allowed: 206 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 207 */ 208 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 209 u64, arg2, u64, arg3) 210 { 211 bool str_seen = false; 212 int mod[3] = {}; 213 int fmt_cnt = 0; 214 u64 unsafe_addr; 215 char buf[64]; 216 int i; 217 218 /* 219 * bpf_check()->check_func_arg()->check_stack_boundary() 220 * guarantees that fmt points to bpf program stack, 221 * fmt_size bytes of it were initialized and fmt_size > 0 222 */ 223 if (fmt[--fmt_size] != 0) 224 return -EINVAL; 225 226 /* check format string for allowed specifiers */ 227 for (i = 0; i < fmt_size; i++) { 228 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 229 return -EINVAL; 230 231 if (fmt[i] != '%') 232 continue; 233 234 if (fmt_cnt >= 3) 235 return -EINVAL; 236 237 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 238 i++; 239 if (fmt[i] == 'l') { 240 mod[fmt_cnt]++; 241 i++; 242 } else if (fmt[i] == 'p' || fmt[i] == 's') { 243 mod[fmt_cnt]++; 244 /* disallow any further format extensions */ 245 if (fmt[i + 1] != 0 && 246 !isspace(fmt[i + 1]) && 247 !ispunct(fmt[i + 1])) 248 return -EINVAL; 249 fmt_cnt++; 250 if (fmt[i] == 's') { 251 if (str_seen) 252 /* allow only one '%s' per fmt string */ 253 return -EINVAL; 254 str_seen = true; 255 256 switch (fmt_cnt) { 257 case 1: 258 unsafe_addr = arg1; 259 arg1 = (long) buf; 260 break; 261 case 2: 262 unsafe_addr = arg2; 263 arg2 = (long) buf; 264 break; 265 case 3: 266 unsafe_addr = arg3; 267 arg3 = (long) buf; 268 break; 269 } 270 buf[0] = 0; 271 strncpy_from_unsafe(buf, 272 (void *) (long) unsafe_addr, 273 sizeof(buf)); 274 } 275 continue; 276 } 277 278 if (fmt[i] == 'l') { 279 mod[fmt_cnt]++; 280 i++; 281 } 282 283 if (fmt[i] != 'i' && fmt[i] != 'd' && 284 fmt[i] != 'u' && fmt[i] != 'x') 285 return -EINVAL; 286 fmt_cnt++; 287 } 288 289 /* Horrid workaround for getting va_list handling working with different 290 * argument type combinations generically for 32 and 64 bit archs. 291 */ 292 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 293 #define __BPF_TP(...) \ 294 __trace_printk(0 /* Fake ip */, \ 295 fmt, ##__VA_ARGS__) 296 297 #define __BPF_ARG1_TP(...) \ 298 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 299 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 300 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 301 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 302 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 303 304 #define __BPF_ARG2_TP(...) \ 305 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 306 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 307 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 308 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 309 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 310 311 #define __BPF_ARG3_TP(...) \ 312 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 313 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 314 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 315 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 316 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 317 318 return __BPF_TP_EMIT(); 319 } 320 321 static const struct bpf_func_proto bpf_trace_printk_proto = { 322 .func = bpf_trace_printk, 323 .gpl_only = true, 324 .ret_type = RET_INTEGER, 325 .arg1_type = ARG_PTR_TO_MEM, 326 .arg2_type = ARG_CONST_SIZE, 327 }; 328 329 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 330 { 331 /* 332 * this program might be calling bpf_trace_printk, 333 * so allocate per-cpu printk buffers 334 */ 335 trace_printk_init_buffers(); 336 337 return &bpf_trace_printk_proto; 338 } 339 340 static __always_inline int 341 get_map_perf_counter(struct bpf_map *map, u64 flags, 342 u64 *value, u64 *enabled, u64 *running) 343 { 344 struct bpf_array *array = container_of(map, struct bpf_array, map); 345 unsigned int cpu = smp_processor_id(); 346 u64 index = flags & BPF_F_INDEX_MASK; 347 struct bpf_event_entry *ee; 348 349 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 350 return -EINVAL; 351 if (index == BPF_F_CURRENT_CPU) 352 index = cpu; 353 if (unlikely(index >= array->map.max_entries)) 354 return -E2BIG; 355 356 ee = READ_ONCE(array->ptrs[index]); 357 if (!ee) 358 return -ENOENT; 359 360 return perf_event_read_local(ee->event, value, enabled, running); 361 } 362 363 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 364 { 365 u64 value = 0; 366 int err; 367 368 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 369 /* 370 * this api is ugly since we miss [-22..-2] range of valid 371 * counter values, but that's uapi 372 */ 373 if (err) 374 return err; 375 return value; 376 } 377 378 static const struct bpf_func_proto bpf_perf_event_read_proto = { 379 .func = bpf_perf_event_read, 380 .gpl_only = true, 381 .ret_type = RET_INTEGER, 382 .arg1_type = ARG_CONST_MAP_PTR, 383 .arg2_type = ARG_ANYTHING, 384 }; 385 386 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 387 struct bpf_perf_event_value *, buf, u32, size) 388 { 389 int err = -EINVAL; 390 391 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 392 goto clear; 393 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 394 &buf->running); 395 if (unlikely(err)) 396 goto clear; 397 return 0; 398 clear: 399 memset(buf, 0, size); 400 return err; 401 } 402 403 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 404 .func = bpf_perf_event_read_value, 405 .gpl_only = true, 406 .ret_type = RET_INTEGER, 407 .arg1_type = ARG_CONST_MAP_PTR, 408 .arg2_type = ARG_ANYTHING, 409 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 410 .arg4_type = ARG_CONST_SIZE, 411 }; 412 413 static __always_inline u64 414 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 415 u64 flags, struct perf_sample_data *sd) 416 { 417 struct bpf_array *array = container_of(map, struct bpf_array, map); 418 unsigned int cpu = smp_processor_id(); 419 u64 index = flags & BPF_F_INDEX_MASK; 420 struct bpf_event_entry *ee; 421 struct perf_event *event; 422 423 if (index == BPF_F_CURRENT_CPU) 424 index = cpu; 425 if (unlikely(index >= array->map.max_entries)) 426 return -E2BIG; 427 428 ee = READ_ONCE(array->ptrs[index]); 429 if (!ee) 430 return -ENOENT; 431 432 event = ee->event; 433 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 434 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 435 return -EINVAL; 436 437 if (unlikely(event->oncpu != cpu)) 438 return -EOPNOTSUPP; 439 440 return perf_event_output(event, sd, regs); 441 } 442 443 /* 444 * Support executing tracepoints in normal, irq, and nmi context that each call 445 * bpf_perf_event_output 446 */ 447 struct bpf_trace_sample_data { 448 struct perf_sample_data sds[3]; 449 }; 450 451 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 452 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 453 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 454 u64, flags, void *, data, u64, size) 455 { 456 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 457 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 458 struct perf_raw_record raw = { 459 .frag = { 460 .size = size, 461 .data = data, 462 }, 463 }; 464 struct perf_sample_data *sd; 465 int err; 466 467 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 468 err = -EBUSY; 469 goto out; 470 } 471 472 sd = &sds->sds[nest_level - 1]; 473 474 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 475 err = -EINVAL; 476 goto out; 477 } 478 479 perf_sample_data_init(sd, 0, 0); 480 sd->raw = &raw; 481 482 err = __bpf_perf_event_output(regs, map, flags, sd); 483 484 out: 485 this_cpu_dec(bpf_trace_nest_level); 486 return err; 487 } 488 489 static const struct bpf_func_proto bpf_perf_event_output_proto = { 490 .func = bpf_perf_event_output, 491 .gpl_only = true, 492 .ret_type = RET_INTEGER, 493 .arg1_type = ARG_PTR_TO_CTX, 494 .arg2_type = ARG_CONST_MAP_PTR, 495 .arg3_type = ARG_ANYTHING, 496 .arg4_type = ARG_PTR_TO_MEM, 497 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 498 }; 499 500 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs); 501 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd); 502 503 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 504 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 505 { 506 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd); 507 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs); 508 struct perf_raw_frag frag = { 509 .copy = ctx_copy, 510 .size = ctx_size, 511 .data = ctx, 512 }; 513 struct perf_raw_record raw = { 514 .frag = { 515 { 516 .next = ctx_size ? &frag : NULL, 517 }, 518 .size = meta_size, 519 .data = meta, 520 }, 521 }; 522 523 perf_fetch_caller_regs(regs); 524 perf_sample_data_init(sd, 0, 0); 525 sd->raw = &raw; 526 527 return __bpf_perf_event_output(regs, map, flags, sd); 528 } 529 530 BPF_CALL_0(bpf_get_current_task) 531 { 532 return (long) current; 533 } 534 535 static const struct bpf_func_proto bpf_get_current_task_proto = { 536 .func = bpf_get_current_task, 537 .gpl_only = true, 538 .ret_type = RET_INTEGER, 539 }; 540 541 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 542 { 543 struct bpf_array *array = container_of(map, struct bpf_array, map); 544 struct cgroup *cgrp; 545 546 if (unlikely(idx >= array->map.max_entries)) 547 return -E2BIG; 548 549 cgrp = READ_ONCE(array->ptrs[idx]); 550 if (unlikely(!cgrp)) 551 return -EAGAIN; 552 553 return task_under_cgroup_hierarchy(current, cgrp); 554 } 555 556 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 557 .func = bpf_current_task_under_cgroup, 558 .gpl_only = false, 559 .ret_type = RET_INTEGER, 560 .arg1_type = ARG_CONST_MAP_PTR, 561 .arg2_type = ARG_ANYTHING, 562 }; 563 564 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, 565 const void *, unsafe_ptr) 566 { 567 int ret; 568 569 /* 570 * The strncpy_from_unsafe() call will likely not fill the entire 571 * buffer, but that's okay in this circumstance as we're probing 572 * arbitrary memory anyway similar to bpf_probe_read() and might 573 * as well probe the stack. Thus, memory is explicitly cleared 574 * only in error case, so that improper users ignoring return 575 * code altogether don't copy garbage; otherwise length of string 576 * is returned that can be used for bpf_perf_event_output() et al. 577 */ 578 ret = strncpy_from_unsafe(dst, unsafe_ptr, size); 579 if (unlikely(ret < 0)) 580 memset(dst, 0, size); 581 582 return ret; 583 } 584 585 static const struct bpf_func_proto bpf_probe_read_str_proto = { 586 .func = bpf_probe_read_str, 587 .gpl_only = true, 588 .ret_type = RET_INTEGER, 589 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 590 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 591 .arg3_type = ARG_ANYTHING, 592 }; 593 594 static const struct bpf_func_proto * 595 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 596 { 597 switch (func_id) { 598 case BPF_FUNC_map_lookup_elem: 599 return &bpf_map_lookup_elem_proto; 600 case BPF_FUNC_map_update_elem: 601 return &bpf_map_update_elem_proto; 602 case BPF_FUNC_map_delete_elem: 603 return &bpf_map_delete_elem_proto; 604 case BPF_FUNC_map_push_elem: 605 return &bpf_map_push_elem_proto; 606 case BPF_FUNC_map_pop_elem: 607 return &bpf_map_pop_elem_proto; 608 case BPF_FUNC_map_peek_elem: 609 return &bpf_map_peek_elem_proto; 610 case BPF_FUNC_probe_read: 611 return &bpf_probe_read_proto; 612 case BPF_FUNC_ktime_get_ns: 613 return &bpf_ktime_get_ns_proto; 614 case BPF_FUNC_tail_call: 615 return &bpf_tail_call_proto; 616 case BPF_FUNC_get_current_pid_tgid: 617 return &bpf_get_current_pid_tgid_proto; 618 case BPF_FUNC_get_current_task: 619 return &bpf_get_current_task_proto; 620 case BPF_FUNC_get_current_uid_gid: 621 return &bpf_get_current_uid_gid_proto; 622 case BPF_FUNC_get_current_comm: 623 return &bpf_get_current_comm_proto; 624 case BPF_FUNC_trace_printk: 625 return bpf_get_trace_printk_proto(); 626 case BPF_FUNC_get_smp_processor_id: 627 return &bpf_get_smp_processor_id_proto; 628 case BPF_FUNC_get_numa_node_id: 629 return &bpf_get_numa_node_id_proto; 630 case BPF_FUNC_perf_event_read: 631 return &bpf_perf_event_read_proto; 632 case BPF_FUNC_probe_write_user: 633 return bpf_get_probe_write_proto(); 634 case BPF_FUNC_current_task_under_cgroup: 635 return &bpf_current_task_under_cgroup_proto; 636 case BPF_FUNC_get_prandom_u32: 637 return &bpf_get_prandom_u32_proto; 638 case BPF_FUNC_probe_read_str: 639 return &bpf_probe_read_str_proto; 640 #ifdef CONFIG_CGROUPS 641 case BPF_FUNC_get_current_cgroup_id: 642 return &bpf_get_current_cgroup_id_proto; 643 #endif 644 default: 645 return NULL; 646 } 647 } 648 649 static const struct bpf_func_proto * 650 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 651 { 652 switch (func_id) { 653 case BPF_FUNC_perf_event_output: 654 return &bpf_perf_event_output_proto; 655 case BPF_FUNC_get_stackid: 656 return &bpf_get_stackid_proto; 657 case BPF_FUNC_get_stack: 658 return &bpf_get_stack_proto; 659 case BPF_FUNC_perf_event_read_value: 660 return &bpf_perf_event_read_value_proto; 661 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 662 case BPF_FUNC_override_return: 663 return &bpf_override_return_proto; 664 #endif 665 default: 666 return tracing_func_proto(func_id, prog); 667 } 668 } 669 670 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 671 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 672 const struct bpf_prog *prog, 673 struct bpf_insn_access_aux *info) 674 { 675 if (off < 0 || off >= sizeof(struct pt_regs)) 676 return false; 677 if (type != BPF_READ) 678 return false; 679 if (off % size != 0) 680 return false; 681 /* 682 * Assertion for 32 bit to make sure last 8 byte access 683 * (BPF_DW) to the last 4 byte member is disallowed. 684 */ 685 if (off + size > sizeof(struct pt_regs)) 686 return false; 687 688 return true; 689 } 690 691 const struct bpf_verifier_ops kprobe_verifier_ops = { 692 .get_func_proto = kprobe_prog_func_proto, 693 .is_valid_access = kprobe_prog_is_valid_access, 694 }; 695 696 const struct bpf_prog_ops kprobe_prog_ops = { 697 }; 698 699 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 700 u64, flags, void *, data, u64, size) 701 { 702 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 703 704 /* 705 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 706 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 707 * from there and call the same bpf_perf_event_output() helper inline. 708 */ 709 return ____bpf_perf_event_output(regs, map, flags, data, size); 710 } 711 712 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 713 .func = bpf_perf_event_output_tp, 714 .gpl_only = true, 715 .ret_type = RET_INTEGER, 716 .arg1_type = ARG_PTR_TO_CTX, 717 .arg2_type = ARG_CONST_MAP_PTR, 718 .arg3_type = ARG_ANYTHING, 719 .arg4_type = ARG_PTR_TO_MEM, 720 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 721 }; 722 723 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 724 u64, flags) 725 { 726 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 727 728 /* 729 * Same comment as in bpf_perf_event_output_tp(), only that this time 730 * the other helper's function body cannot be inlined due to being 731 * external, thus we need to call raw helper function. 732 */ 733 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 734 flags, 0, 0); 735 } 736 737 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 738 .func = bpf_get_stackid_tp, 739 .gpl_only = true, 740 .ret_type = RET_INTEGER, 741 .arg1_type = ARG_PTR_TO_CTX, 742 .arg2_type = ARG_CONST_MAP_PTR, 743 .arg3_type = ARG_ANYTHING, 744 }; 745 746 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 747 u64, flags) 748 { 749 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 750 751 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 752 (unsigned long) size, flags, 0); 753 } 754 755 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 756 .func = bpf_get_stack_tp, 757 .gpl_only = true, 758 .ret_type = RET_INTEGER, 759 .arg1_type = ARG_PTR_TO_CTX, 760 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 761 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 762 .arg4_type = ARG_ANYTHING, 763 }; 764 765 static const struct bpf_func_proto * 766 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 767 { 768 switch (func_id) { 769 case BPF_FUNC_perf_event_output: 770 return &bpf_perf_event_output_proto_tp; 771 case BPF_FUNC_get_stackid: 772 return &bpf_get_stackid_proto_tp; 773 case BPF_FUNC_get_stack: 774 return &bpf_get_stack_proto_tp; 775 default: 776 return tracing_func_proto(func_id, prog); 777 } 778 } 779 780 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 781 const struct bpf_prog *prog, 782 struct bpf_insn_access_aux *info) 783 { 784 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 785 return false; 786 if (type != BPF_READ) 787 return false; 788 if (off % size != 0) 789 return false; 790 791 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 792 return true; 793 } 794 795 const struct bpf_verifier_ops tracepoint_verifier_ops = { 796 .get_func_proto = tp_prog_func_proto, 797 .is_valid_access = tp_prog_is_valid_access, 798 }; 799 800 const struct bpf_prog_ops tracepoint_prog_ops = { 801 }; 802 803 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 804 struct bpf_perf_event_value *, buf, u32, size) 805 { 806 int err = -EINVAL; 807 808 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 809 goto clear; 810 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 811 &buf->running); 812 if (unlikely(err)) 813 goto clear; 814 return 0; 815 clear: 816 memset(buf, 0, size); 817 return err; 818 } 819 820 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 821 .func = bpf_perf_prog_read_value, 822 .gpl_only = true, 823 .ret_type = RET_INTEGER, 824 .arg1_type = ARG_PTR_TO_CTX, 825 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 826 .arg3_type = ARG_CONST_SIZE, 827 }; 828 829 static const struct bpf_func_proto * 830 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 831 { 832 switch (func_id) { 833 case BPF_FUNC_perf_event_output: 834 return &bpf_perf_event_output_proto_tp; 835 case BPF_FUNC_get_stackid: 836 return &bpf_get_stackid_proto_tp; 837 case BPF_FUNC_get_stack: 838 return &bpf_get_stack_proto_tp; 839 case BPF_FUNC_perf_prog_read_value: 840 return &bpf_perf_prog_read_value_proto; 841 default: 842 return tracing_func_proto(func_id, prog); 843 } 844 } 845 846 /* 847 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 848 * to avoid potential recursive reuse issue when/if tracepoints are added 849 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 850 * 851 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 852 * in normal, irq, and nmi context. 853 */ 854 struct bpf_raw_tp_regs { 855 struct pt_regs regs[3]; 856 }; 857 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 858 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 859 static struct pt_regs *get_bpf_raw_tp_regs(void) 860 { 861 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 862 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 863 864 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 865 this_cpu_dec(bpf_raw_tp_nest_level); 866 return ERR_PTR(-EBUSY); 867 } 868 869 return &tp_regs->regs[nest_level - 1]; 870 } 871 872 static void put_bpf_raw_tp_regs(void) 873 { 874 this_cpu_dec(bpf_raw_tp_nest_level); 875 } 876 877 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 878 struct bpf_map *, map, u64, flags, void *, data, u64, size) 879 { 880 struct pt_regs *regs = get_bpf_raw_tp_regs(); 881 int ret; 882 883 if (IS_ERR(regs)) 884 return PTR_ERR(regs); 885 886 perf_fetch_caller_regs(regs); 887 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 888 889 put_bpf_raw_tp_regs(); 890 return ret; 891 } 892 893 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 894 .func = bpf_perf_event_output_raw_tp, 895 .gpl_only = true, 896 .ret_type = RET_INTEGER, 897 .arg1_type = ARG_PTR_TO_CTX, 898 .arg2_type = ARG_CONST_MAP_PTR, 899 .arg3_type = ARG_ANYTHING, 900 .arg4_type = ARG_PTR_TO_MEM, 901 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 902 }; 903 904 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 905 struct bpf_map *, map, u64, flags) 906 { 907 struct pt_regs *regs = get_bpf_raw_tp_regs(); 908 int ret; 909 910 if (IS_ERR(regs)) 911 return PTR_ERR(regs); 912 913 perf_fetch_caller_regs(regs); 914 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 915 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 916 flags, 0, 0); 917 put_bpf_raw_tp_regs(); 918 return ret; 919 } 920 921 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 922 .func = bpf_get_stackid_raw_tp, 923 .gpl_only = true, 924 .ret_type = RET_INTEGER, 925 .arg1_type = ARG_PTR_TO_CTX, 926 .arg2_type = ARG_CONST_MAP_PTR, 927 .arg3_type = ARG_ANYTHING, 928 }; 929 930 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 931 void *, buf, u32, size, u64, flags) 932 { 933 struct pt_regs *regs = get_bpf_raw_tp_regs(); 934 int ret; 935 936 if (IS_ERR(regs)) 937 return PTR_ERR(regs); 938 939 perf_fetch_caller_regs(regs); 940 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 941 (unsigned long) size, flags, 0); 942 put_bpf_raw_tp_regs(); 943 return ret; 944 } 945 946 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 947 .func = bpf_get_stack_raw_tp, 948 .gpl_only = true, 949 .ret_type = RET_INTEGER, 950 .arg1_type = ARG_PTR_TO_CTX, 951 .arg2_type = ARG_PTR_TO_MEM, 952 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 953 .arg4_type = ARG_ANYTHING, 954 }; 955 956 static const struct bpf_func_proto * 957 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 958 { 959 switch (func_id) { 960 case BPF_FUNC_perf_event_output: 961 return &bpf_perf_event_output_proto_raw_tp; 962 case BPF_FUNC_get_stackid: 963 return &bpf_get_stackid_proto_raw_tp; 964 case BPF_FUNC_get_stack: 965 return &bpf_get_stack_proto_raw_tp; 966 default: 967 return tracing_func_proto(func_id, prog); 968 } 969 } 970 971 static bool raw_tp_prog_is_valid_access(int off, int size, 972 enum bpf_access_type type, 973 const struct bpf_prog *prog, 974 struct bpf_insn_access_aux *info) 975 { 976 /* largest tracepoint in the kernel has 12 args */ 977 if (off < 0 || off >= sizeof(__u64) * 12) 978 return false; 979 if (type != BPF_READ) 980 return false; 981 if (off % size != 0) 982 return false; 983 return true; 984 } 985 986 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 987 .get_func_proto = raw_tp_prog_func_proto, 988 .is_valid_access = raw_tp_prog_is_valid_access, 989 }; 990 991 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 992 }; 993 994 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 995 enum bpf_access_type type, 996 const struct bpf_prog *prog, 997 struct bpf_insn_access_aux *info) 998 { 999 if (off == 0) { 1000 if (size != sizeof(u64) || type != BPF_READ) 1001 return false; 1002 info->reg_type = PTR_TO_TP_BUFFER; 1003 } 1004 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1005 } 1006 1007 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1008 .get_func_proto = raw_tp_prog_func_proto, 1009 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1010 }; 1011 1012 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1013 }; 1014 1015 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1016 const struct bpf_prog *prog, 1017 struct bpf_insn_access_aux *info) 1018 { 1019 const int size_u64 = sizeof(u64); 1020 1021 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1022 return false; 1023 if (type != BPF_READ) 1024 return false; 1025 if (off % size != 0) { 1026 if (sizeof(unsigned long) != 4) 1027 return false; 1028 if (size != 8) 1029 return false; 1030 if (off % size != 4) 1031 return false; 1032 } 1033 1034 switch (off) { 1035 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1036 bpf_ctx_record_field_size(info, size_u64); 1037 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1038 return false; 1039 break; 1040 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1041 bpf_ctx_record_field_size(info, size_u64); 1042 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1043 return false; 1044 break; 1045 default: 1046 if (size != sizeof(long)) 1047 return false; 1048 } 1049 1050 return true; 1051 } 1052 1053 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1054 const struct bpf_insn *si, 1055 struct bpf_insn *insn_buf, 1056 struct bpf_prog *prog, u32 *target_size) 1057 { 1058 struct bpf_insn *insn = insn_buf; 1059 1060 switch (si->off) { 1061 case offsetof(struct bpf_perf_event_data, sample_period): 1062 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1063 data), si->dst_reg, si->src_reg, 1064 offsetof(struct bpf_perf_event_data_kern, data)); 1065 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1066 bpf_target_off(struct perf_sample_data, period, 8, 1067 target_size)); 1068 break; 1069 case offsetof(struct bpf_perf_event_data, addr): 1070 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1071 data), si->dst_reg, si->src_reg, 1072 offsetof(struct bpf_perf_event_data_kern, data)); 1073 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1074 bpf_target_off(struct perf_sample_data, addr, 8, 1075 target_size)); 1076 break; 1077 default: 1078 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1079 regs), si->dst_reg, si->src_reg, 1080 offsetof(struct bpf_perf_event_data_kern, regs)); 1081 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1082 si->off); 1083 break; 1084 } 1085 1086 return insn - insn_buf; 1087 } 1088 1089 const struct bpf_verifier_ops perf_event_verifier_ops = { 1090 .get_func_proto = pe_prog_func_proto, 1091 .is_valid_access = pe_prog_is_valid_access, 1092 .convert_ctx_access = pe_prog_convert_ctx_access, 1093 }; 1094 1095 const struct bpf_prog_ops perf_event_prog_ops = { 1096 }; 1097 1098 static DEFINE_MUTEX(bpf_event_mutex); 1099 1100 #define BPF_TRACE_MAX_PROGS 64 1101 1102 int perf_event_attach_bpf_prog(struct perf_event *event, 1103 struct bpf_prog *prog) 1104 { 1105 struct bpf_prog_array __rcu *old_array; 1106 struct bpf_prog_array *new_array; 1107 int ret = -EEXIST; 1108 1109 /* 1110 * Kprobe override only works if they are on the function entry, 1111 * and only if they are on the opt-in list. 1112 */ 1113 if (prog->kprobe_override && 1114 (!trace_kprobe_on_func_entry(event->tp_event) || 1115 !trace_kprobe_error_injectable(event->tp_event))) 1116 return -EINVAL; 1117 1118 mutex_lock(&bpf_event_mutex); 1119 1120 if (event->prog) 1121 goto unlock; 1122 1123 old_array = event->tp_event->prog_array; 1124 if (old_array && 1125 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1126 ret = -E2BIG; 1127 goto unlock; 1128 } 1129 1130 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1131 if (ret < 0) 1132 goto unlock; 1133 1134 /* set the new array to event->tp_event and set event->prog */ 1135 event->prog = prog; 1136 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1137 bpf_prog_array_free(old_array); 1138 1139 unlock: 1140 mutex_unlock(&bpf_event_mutex); 1141 return ret; 1142 } 1143 1144 void perf_event_detach_bpf_prog(struct perf_event *event) 1145 { 1146 struct bpf_prog_array __rcu *old_array; 1147 struct bpf_prog_array *new_array; 1148 int ret; 1149 1150 mutex_lock(&bpf_event_mutex); 1151 1152 if (!event->prog) 1153 goto unlock; 1154 1155 old_array = event->tp_event->prog_array; 1156 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1157 if (ret == -ENOENT) 1158 goto unlock; 1159 if (ret < 0) { 1160 bpf_prog_array_delete_safe(old_array, event->prog); 1161 } else { 1162 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1163 bpf_prog_array_free(old_array); 1164 } 1165 1166 bpf_prog_put(event->prog); 1167 event->prog = NULL; 1168 1169 unlock: 1170 mutex_unlock(&bpf_event_mutex); 1171 } 1172 1173 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1174 { 1175 struct perf_event_query_bpf __user *uquery = info; 1176 struct perf_event_query_bpf query = {}; 1177 u32 *ids, prog_cnt, ids_len; 1178 int ret; 1179 1180 if (!capable(CAP_SYS_ADMIN)) 1181 return -EPERM; 1182 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1183 return -EINVAL; 1184 if (copy_from_user(&query, uquery, sizeof(query))) 1185 return -EFAULT; 1186 1187 ids_len = query.ids_len; 1188 if (ids_len > BPF_TRACE_MAX_PROGS) 1189 return -E2BIG; 1190 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1191 if (!ids) 1192 return -ENOMEM; 1193 /* 1194 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1195 * is required when user only wants to check for uquery->prog_cnt. 1196 * There is no need to check for it since the case is handled 1197 * gracefully in bpf_prog_array_copy_info. 1198 */ 1199 1200 mutex_lock(&bpf_event_mutex); 1201 ret = bpf_prog_array_copy_info(event->tp_event->prog_array, 1202 ids, 1203 ids_len, 1204 &prog_cnt); 1205 mutex_unlock(&bpf_event_mutex); 1206 1207 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1208 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1209 ret = -EFAULT; 1210 1211 kfree(ids); 1212 return ret; 1213 } 1214 1215 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1216 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1217 1218 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1219 { 1220 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1221 1222 for (; btp < __stop__bpf_raw_tp; btp++) { 1223 if (!strcmp(btp->tp->name, name)) 1224 return btp; 1225 } 1226 1227 return bpf_get_raw_tracepoint_module(name); 1228 } 1229 1230 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1231 { 1232 struct module *mod = __module_address((unsigned long)btp); 1233 1234 if (mod) 1235 module_put(mod); 1236 } 1237 1238 static __always_inline 1239 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1240 { 1241 rcu_read_lock(); 1242 preempt_disable(); 1243 (void) BPF_PROG_RUN(prog, args); 1244 preempt_enable(); 1245 rcu_read_unlock(); 1246 } 1247 1248 #define UNPACK(...) __VA_ARGS__ 1249 #define REPEAT_1(FN, DL, X, ...) FN(X) 1250 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1251 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1252 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1253 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1254 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1255 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1256 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1257 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1258 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1259 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1260 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1261 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1262 1263 #define SARG(X) u64 arg##X 1264 #define COPY(X) args[X] = arg##X 1265 1266 #define __DL_COM (,) 1267 #define __DL_SEM (;) 1268 1269 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1270 1271 #define BPF_TRACE_DEFN_x(x) \ 1272 void bpf_trace_run##x(struct bpf_prog *prog, \ 1273 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1274 { \ 1275 u64 args[x]; \ 1276 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1277 __bpf_trace_run(prog, args); \ 1278 } \ 1279 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1280 BPF_TRACE_DEFN_x(1); 1281 BPF_TRACE_DEFN_x(2); 1282 BPF_TRACE_DEFN_x(3); 1283 BPF_TRACE_DEFN_x(4); 1284 BPF_TRACE_DEFN_x(5); 1285 BPF_TRACE_DEFN_x(6); 1286 BPF_TRACE_DEFN_x(7); 1287 BPF_TRACE_DEFN_x(8); 1288 BPF_TRACE_DEFN_x(9); 1289 BPF_TRACE_DEFN_x(10); 1290 BPF_TRACE_DEFN_x(11); 1291 BPF_TRACE_DEFN_x(12); 1292 1293 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1294 { 1295 struct tracepoint *tp = btp->tp; 1296 1297 /* 1298 * check that program doesn't access arguments beyond what's 1299 * available in this tracepoint 1300 */ 1301 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1302 return -EINVAL; 1303 1304 if (prog->aux->max_tp_access > btp->writable_size) 1305 return -EINVAL; 1306 1307 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1308 } 1309 1310 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1311 { 1312 return __bpf_probe_register(btp, prog); 1313 } 1314 1315 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1316 { 1317 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1318 } 1319 1320 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1321 u32 *fd_type, const char **buf, 1322 u64 *probe_offset, u64 *probe_addr) 1323 { 1324 bool is_tracepoint, is_syscall_tp; 1325 struct bpf_prog *prog; 1326 int flags, err = 0; 1327 1328 prog = event->prog; 1329 if (!prog) 1330 return -ENOENT; 1331 1332 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1333 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1334 return -EOPNOTSUPP; 1335 1336 *prog_id = prog->aux->id; 1337 flags = event->tp_event->flags; 1338 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1339 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1340 1341 if (is_tracepoint || is_syscall_tp) { 1342 *buf = is_tracepoint ? event->tp_event->tp->name 1343 : event->tp_event->name; 1344 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1345 *probe_offset = 0x0; 1346 *probe_addr = 0x0; 1347 } else { 1348 /* kprobe/uprobe */ 1349 err = -EOPNOTSUPP; 1350 #ifdef CONFIG_KPROBE_EVENTS 1351 if (flags & TRACE_EVENT_FL_KPROBE) 1352 err = bpf_get_kprobe_info(event, fd_type, buf, 1353 probe_offset, probe_addr, 1354 event->attr.type == PERF_TYPE_TRACEPOINT); 1355 #endif 1356 #ifdef CONFIG_UPROBE_EVENTS 1357 if (flags & TRACE_EVENT_FL_UPROBE) 1358 err = bpf_get_uprobe_info(event, fd_type, buf, 1359 probe_offset, 1360 event->attr.type == PERF_TYPE_TRACEPOINT); 1361 #endif 1362 } 1363 1364 return err; 1365 } 1366 1367 #ifdef CONFIG_MODULES 1368 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1369 void *module) 1370 { 1371 struct bpf_trace_module *btm, *tmp; 1372 struct module *mod = module; 1373 1374 if (mod->num_bpf_raw_events == 0 || 1375 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1376 return 0; 1377 1378 mutex_lock(&bpf_module_mutex); 1379 1380 switch (op) { 1381 case MODULE_STATE_COMING: 1382 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1383 if (btm) { 1384 btm->module = module; 1385 list_add(&btm->list, &bpf_trace_modules); 1386 } 1387 break; 1388 case MODULE_STATE_GOING: 1389 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1390 if (btm->module == module) { 1391 list_del(&btm->list); 1392 kfree(btm); 1393 break; 1394 } 1395 } 1396 break; 1397 } 1398 1399 mutex_unlock(&bpf_module_mutex); 1400 1401 return 0; 1402 } 1403 1404 static struct notifier_block bpf_module_nb = { 1405 .notifier_call = bpf_event_notify, 1406 }; 1407 1408 static int __init bpf_event_init(void) 1409 { 1410 register_module_notifier(&bpf_module_nb); 1411 return 0; 1412 } 1413 1414 fs_initcall(bpf_event_init); 1415 #endif /* CONFIG_MODULES */ 1416