xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #ifdef CONFIG_MODULES
23 struct bpf_trace_module {
24 	struct module *module;
25 	struct list_head list;
26 };
27 
28 static LIST_HEAD(bpf_trace_modules);
29 static DEFINE_MUTEX(bpf_module_mutex);
30 
31 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
32 {
33 	struct bpf_raw_event_map *btp, *ret = NULL;
34 	struct bpf_trace_module *btm;
35 	unsigned int i;
36 
37 	mutex_lock(&bpf_module_mutex);
38 	list_for_each_entry(btm, &bpf_trace_modules, list) {
39 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
40 			btp = &btm->module->bpf_raw_events[i];
41 			if (!strcmp(btp->tp->name, name)) {
42 				if (try_module_get(btm->module))
43 					ret = btp;
44 				goto out;
45 			}
46 		}
47 	}
48 out:
49 	mutex_unlock(&bpf_module_mutex);
50 	return ret;
51 }
52 #else
53 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
54 {
55 	return NULL;
56 }
57 #endif /* CONFIG_MODULES */
58 
59 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
60 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
61 
62 /**
63  * trace_call_bpf - invoke BPF program
64  * @call: tracepoint event
65  * @ctx: opaque context pointer
66  *
67  * kprobe handlers execute BPF programs via this helper.
68  * Can be used from static tracepoints in the future.
69  *
70  * Return: BPF programs always return an integer which is interpreted by
71  * kprobe handler as:
72  * 0 - return from kprobe (event is filtered out)
73  * 1 - store kprobe event into ring buffer
74  * Other values are reserved and currently alias to 1
75  */
76 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
77 {
78 	unsigned int ret;
79 
80 	if (in_nmi()) /* not supported yet */
81 		return 1;
82 
83 	preempt_disable();
84 
85 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
86 		/*
87 		 * since some bpf program is already running on this cpu,
88 		 * don't call into another bpf program (same or different)
89 		 * and don't send kprobe event into ring-buffer,
90 		 * so return zero here
91 		 */
92 		ret = 0;
93 		goto out;
94 	}
95 
96 	/*
97 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
98 	 * to all call sites, we did a bpf_prog_array_valid() there to check
99 	 * whether call->prog_array is empty or not, which is
100 	 * a heurisitc to speed up execution.
101 	 *
102 	 * If bpf_prog_array_valid() fetched prog_array was
103 	 * non-NULL, we go into trace_call_bpf() and do the actual
104 	 * proper rcu_dereference() under RCU lock.
105 	 * If it turns out that prog_array is NULL then, we bail out.
106 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
107 	 * was NULL, you'll skip the prog_array with the risk of missing
108 	 * out of events when it was updated in between this and the
109 	 * rcu_dereference() which is accepted risk.
110 	 */
111 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
112 
113  out:
114 	__this_cpu_dec(bpf_prog_active);
115 	preempt_enable();
116 
117 	return ret;
118 }
119 EXPORT_SYMBOL_GPL(trace_call_bpf);
120 
121 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
122 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
123 {
124 	regs_set_return_value(regs, rc);
125 	override_function_with_return(regs);
126 	return 0;
127 }
128 
129 static const struct bpf_func_proto bpf_override_return_proto = {
130 	.func		= bpf_override_return,
131 	.gpl_only	= true,
132 	.ret_type	= RET_INTEGER,
133 	.arg1_type	= ARG_PTR_TO_CTX,
134 	.arg2_type	= ARG_ANYTHING,
135 };
136 #endif
137 
138 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
139 {
140 	int ret;
141 
142 	ret = probe_kernel_read(dst, unsafe_ptr, size);
143 	if (unlikely(ret < 0))
144 		memset(dst, 0, size);
145 
146 	return ret;
147 }
148 
149 static const struct bpf_func_proto bpf_probe_read_proto = {
150 	.func		= bpf_probe_read,
151 	.gpl_only	= true,
152 	.ret_type	= RET_INTEGER,
153 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
154 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
155 	.arg3_type	= ARG_ANYTHING,
156 };
157 
158 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
159 	   u32, size)
160 {
161 	/*
162 	 * Ensure we're in user context which is safe for the helper to
163 	 * run. This helper has no business in a kthread.
164 	 *
165 	 * access_ok() should prevent writing to non-user memory, but in
166 	 * some situations (nommu, temporary switch, etc) access_ok() does
167 	 * not provide enough validation, hence the check on KERNEL_DS.
168 	 *
169 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
170 	 * state, when the task or mm are switched. This is specifically
171 	 * required to prevent the use of temporary mm.
172 	 */
173 
174 	if (unlikely(in_interrupt() ||
175 		     current->flags & (PF_KTHREAD | PF_EXITING)))
176 		return -EPERM;
177 	if (unlikely(uaccess_kernel()))
178 		return -EPERM;
179 	if (unlikely(!nmi_uaccess_okay()))
180 		return -EPERM;
181 	if (!access_ok(unsafe_ptr, size))
182 		return -EPERM;
183 
184 	return probe_kernel_write(unsafe_ptr, src, size);
185 }
186 
187 static const struct bpf_func_proto bpf_probe_write_user_proto = {
188 	.func		= bpf_probe_write_user,
189 	.gpl_only	= true,
190 	.ret_type	= RET_INTEGER,
191 	.arg1_type	= ARG_ANYTHING,
192 	.arg2_type	= ARG_PTR_TO_MEM,
193 	.arg3_type	= ARG_CONST_SIZE,
194 };
195 
196 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
197 {
198 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
199 			    current->comm, task_pid_nr(current));
200 
201 	return &bpf_probe_write_user_proto;
202 }
203 
204 /*
205  * Only limited trace_printk() conversion specifiers allowed:
206  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
207  */
208 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
209 	   u64, arg2, u64, arg3)
210 {
211 	bool str_seen = false;
212 	int mod[3] = {};
213 	int fmt_cnt = 0;
214 	u64 unsafe_addr;
215 	char buf[64];
216 	int i;
217 
218 	/*
219 	 * bpf_check()->check_func_arg()->check_stack_boundary()
220 	 * guarantees that fmt points to bpf program stack,
221 	 * fmt_size bytes of it were initialized and fmt_size > 0
222 	 */
223 	if (fmt[--fmt_size] != 0)
224 		return -EINVAL;
225 
226 	/* check format string for allowed specifiers */
227 	for (i = 0; i < fmt_size; i++) {
228 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
229 			return -EINVAL;
230 
231 		if (fmt[i] != '%')
232 			continue;
233 
234 		if (fmt_cnt >= 3)
235 			return -EINVAL;
236 
237 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
238 		i++;
239 		if (fmt[i] == 'l') {
240 			mod[fmt_cnt]++;
241 			i++;
242 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
243 			mod[fmt_cnt]++;
244 			/* disallow any further format extensions */
245 			if (fmt[i + 1] != 0 &&
246 			    !isspace(fmt[i + 1]) &&
247 			    !ispunct(fmt[i + 1]))
248 				return -EINVAL;
249 			fmt_cnt++;
250 			if (fmt[i] == 's') {
251 				if (str_seen)
252 					/* allow only one '%s' per fmt string */
253 					return -EINVAL;
254 				str_seen = true;
255 
256 				switch (fmt_cnt) {
257 				case 1:
258 					unsafe_addr = arg1;
259 					arg1 = (long) buf;
260 					break;
261 				case 2:
262 					unsafe_addr = arg2;
263 					arg2 = (long) buf;
264 					break;
265 				case 3:
266 					unsafe_addr = arg3;
267 					arg3 = (long) buf;
268 					break;
269 				}
270 				buf[0] = 0;
271 				strncpy_from_unsafe(buf,
272 						    (void *) (long) unsafe_addr,
273 						    sizeof(buf));
274 			}
275 			continue;
276 		}
277 
278 		if (fmt[i] == 'l') {
279 			mod[fmt_cnt]++;
280 			i++;
281 		}
282 
283 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
284 		    fmt[i] != 'u' && fmt[i] != 'x')
285 			return -EINVAL;
286 		fmt_cnt++;
287 	}
288 
289 /* Horrid workaround for getting va_list handling working with different
290  * argument type combinations generically for 32 and 64 bit archs.
291  */
292 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
293 #define __BPF_TP(...)							\
294 	__trace_printk(0 /* Fake ip */,					\
295 		       fmt, ##__VA_ARGS__)
296 
297 #define __BPF_ARG1_TP(...)						\
298 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
299 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
300 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
301 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
302 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
303 
304 #define __BPF_ARG2_TP(...)						\
305 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
306 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
307 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
308 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
309 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
310 
311 #define __BPF_ARG3_TP(...)						\
312 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
313 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
314 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
315 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
316 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
317 
318 	return __BPF_TP_EMIT();
319 }
320 
321 static const struct bpf_func_proto bpf_trace_printk_proto = {
322 	.func		= bpf_trace_printk,
323 	.gpl_only	= true,
324 	.ret_type	= RET_INTEGER,
325 	.arg1_type	= ARG_PTR_TO_MEM,
326 	.arg2_type	= ARG_CONST_SIZE,
327 };
328 
329 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
330 {
331 	/*
332 	 * this program might be calling bpf_trace_printk,
333 	 * so allocate per-cpu printk buffers
334 	 */
335 	trace_printk_init_buffers();
336 
337 	return &bpf_trace_printk_proto;
338 }
339 
340 static __always_inline int
341 get_map_perf_counter(struct bpf_map *map, u64 flags,
342 		     u64 *value, u64 *enabled, u64 *running)
343 {
344 	struct bpf_array *array = container_of(map, struct bpf_array, map);
345 	unsigned int cpu = smp_processor_id();
346 	u64 index = flags & BPF_F_INDEX_MASK;
347 	struct bpf_event_entry *ee;
348 
349 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
350 		return -EINVAL;
351 	if (index == BPF_F_CURRENT_CPU)
352 		index = cpu;
353 	if (unlikely(index >= array->map.max_entries))
354 		return -E2BIG;
355 
356 	ee = READ_ONCE(array->ptrs[index]);
357 	if (!ee)
358 		return -ENOENT;
359 
360 	return perf_event_read_local(ee->event, value, enabled, running);
361 }
362 
363 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
364 {
365 	u64 value = 0;
366 	int err;
367 
368 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
369 	/*
370 	 * this api is ugly since we miss [-22..-2] range of valid
371 	 * counter values, but that's uapi
372 	 */
373 	if (err)
374 		return err;
375 	return value;
376 }
377 
378 static const struct bpf_func_proto bpf_perf_event_read_proto = {
379 	.func		= bpf_perf_event_read,
380 	.gpl_only	= true,
381 	.ret_type	= RET_INTEGER,
382 	.arg1_type	= ARG_CONST_MAP_PTR,
383 	.arg2_type	= ARG_ANYTHING,
384 };
385 
386 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
387 	   struct bpf_perf_event_value *, buf, u32, size)
388 {
389 	int err = -EINVAL;
390 
391 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
392 		goto clear;
393 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
394 				   &buf->running);
395 	if (unlikely(err))
396 		goto clear;
397 	return 0;
398 clear:
399 	memset(buf, 0, size);
400 	return err;
401 }
402 
403 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
404 	.func		= bpf_perf_event_read_value,
405 	.gpl_only	= true,
406 	.ret_type	= RET_INTEGER,
407 	.arg1_type	= ARG_CONST_MAP_PTR,
408 	.arg2_type	= ARG_ANYTHING,
409 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
410 	.arg4_type	= ARG_CONST_SIZE,
411 };
412 
413 static __always_inline u64
414 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
415 			u64 flags, struct perf_sample_data *sd)
416 {
417 	struct bpf_array *array = container_of(map, struct bpf_array, map);
418 	unsigned int cpu = smp_processor_id();
419 	u64 index = flags & BPF_F_INDEX_MASK;
420 	struct bpf_event_entry *ee;
421 	struct perf_event *event;
422 
423 	if (index == BPF_F_CURRENT_CPU)
424 		index = cpu;
425 	if (unlikely(index >= array->map.max_entries))
426 		return -E2BIG;
427 
428 	ee = READ_ONCE(array->ptrs[index]);
429 	if (!ee)
430 		return -ENOENT;
431 
432 	event = ee->event;
433 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
434 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
435 		return -EINVAL;
436 
437 	if (unlikely(event->oncpu != cpu))
438 		return -EOPNOTSUPP;
439 
440 	return perf_event_output(event, sd, regs);
441 }
442 
443 /*
444  * Support executing tracepoints in normal, irq, and nmi context that each call
445  * bpf_perf_event_output
446  */
447 struct bpf_trace_sample_data {
448 	struct perf_sample_data sds[3];
449 };
450 
451 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
452 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
453 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
454 	   u64, flags, void *, data, u64, size)
455 {
456 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
457 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
458 	struct perf_raw_record raw = {
459 		.frag = {
460 			.size = size,
461 			.data = data,
462 		},
463 	};
464 	struct perf_sample_data *sd;
465 	int err;
466 
467 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
468 		err = -EBUSY;
469 		goto out;
470 	}
471 
472 	sd = &sds->sds[nest_level - 1];
473 
474 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
475 		err = -EINVAL;
476 		goto out;
477 	}
478 
479 	perf_sample_data_init(sd, 0, 0);
480 	sd->raw = &raw;
481 
482 	err = __bpf_perf_event_output(regs, map, flags, sd);
483 
484 out:
485 	this_cpu_dec(bpf_trace_nest_level);
486 	return err;
487 }
488 
489 static const struct bpf_func_proto bpf_perf_event_output_proto = {
490 	.func		= bpf_perf_event_output,
491 	.gpl_only	= true,
492 	.ret_type	= RET_INTEGER,
493 	.arg1_type	= ARG_PTR_TO_CTX,
494 	.arg2_type	= ARG_CONST_MAP_PTR,
495 	.arg3_type	= ARG_ANYTHING,
496 	.arg4_type	= ARG_PTR_TO_MEM,
497 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
498 };
499 
500 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
501 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
502 
503 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
504 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
505 {
506 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
507 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
508 	struct perf_raw_frag frag = {
509 		.copy		= ctx_copy,
510 		.size		= ctx_size,
511 		.data		= ctx,
512 	};
513 	struct perf_raw_record raw = {
514 		.frag = {
515 			{
516 				.next	= ctx_size ? &frag : NULL,
517 			},
518 			.size	= meta_size,
519 			.data	= meta,
520 		},
521 	};
522 
523 	perf_fetch_caller_regs(regs);
524 	perf_sample_data_init(sd, 0, 0);
525 	sd->raw = &raw;
526 
527 	return __bpf_perf_event_output(regs, map, flags, sd);
528 }
529 
530 BPF_CALL_0(bpf_get_current_task)
531 {
532 	return (long) current;
533 }
534 
535 static const struct bpf_func_proto bpf_get_current_task_proto = {
536 	.func		= bpf_get_current_task,
537 	.gpl_only	= true,
538 	.ret_type	= RET_INTEGER,
539 };
540 
541 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
542 {
543 	struct bpf_array *array = container_of(map, struct bpf_array, map);
544 	struct cgroup *cgrp;
545 
546 	if (unlikely(idx >= array->map.max_entries))
547 		return -E2BIG;
548 
549 	cgrp = READ_ONCE(array->ptrs[idx]);
550 	if (unlikely(!cgrp))
551 		return -EAGAIN;
552 
553 	return task_under_cgroup_hierarchy(current, cgrp);
554 }
555 
556 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
557 	.func           = bpf_current_task_under_cgroup,
558 	.gpl_only       = false,
559 	.ret_type       = RET_INTEGER,
560 	.arg1_type      = ARG_CONST_MAP_PTR,
561 	.arg2_type      = ARG_ANYTHING,
562 };
563 
564 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
565 	   const void *, unsafe_ptr)
566 {
567 	int ret;
568 
569 	/*
570 	 * The strncpy_from_unsafe() call will likely not fill the entire
571 	 * buffer, but that's okay in this circumstance as we're probing
572 	 * arbitrary memory anyway similar to bpf_probe_read() and might
573 	 * as well probe the stack. Thus, memory is explicitly cleared
574 	 * only in error case, so that improper users ignoring return
575 	 * code altogether don't copy garbage; otherwise length of string
576 	 * is returned that can be used for bpf_perf_event_output() et al.
577 	 */
578 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
579 	if (unlikely(ret < 0))
580 		memset(dst, 0, size);
581 
582 	return ret;
583 }
584 
585 static const struct bpf_func_proto bpf_probe_read_str_proto = {
586 	.func		= bpf_probe_read_str,
587 	.gpl_only	= true,
588 	.ret_type	= RET_INTEGER,
589 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
590 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
591 	.arg3_type	= ARG_ANYTHING,
592 };
593 
594 static const struct bpf_func_proto *
595 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
596 {
597 	switch (func_id) {
598 	case BPF_FUNC_map_lookup_elem:
599 		return &bpf_map_lookup_elem_proto;
600 	case BPF_FUNC_map_update_elem:
601 		return &bpf_map_update_elem_proto;
602 	case BPF_FUNC_map_delete_elem:
603 		return &bpf_map_delete_elem_proto;
604 	case BPF_FUNC_map_push_elem:
605 		return &bpf_map_push_elem_proto;
606 	case BPF_FUNC_map_pop_elem:
607 		return &bpf_map_pop_elem_proto;
608 	case BPF_FUNC_map_peek_elem:
609 		return &bpf_map_peek_elem_proto;
610 	case BPF_FUNC_probe_read:
611 		return &bpf_probe_read_proto;
612 	case BPF_FUNC_ktime_get_ns:
613 		return &bpf_ktime_get_ns_proto;
614 	case BPF_FUNC_tail_call:
615 		return &bpf_tail_call_proto;
616 	case BPF_FUNC_get_current_pid_tgid:
617 		return &bpf_get_current_pid_tgid_proto;
618 	case BPF_FUNC_get_current_task:
619 		return &bpf_get_current_task_proto;
620 	case BPF_FUNC_get_current_uid_gid:
621 		return &bpf_get_current_uid_gid_proto;
622 	case BPF_FUNC_get_current_comm:
623 		return &bpf_get_current_comm_proto;
624 	case BPF_FUNC_trace_printk:
625 		return bpf_get_trace_printk_proto();
626 	case BPF_FUNC_get_smp_processor_id:
627 		return &bpf_get_smp_processor_id_proto;
628 	case BPF_FUNC_get_numa_node_id:
629 		return &bpf_get_numa_node_id_proto;
630 	case BPF_FUNC_perf_event_read:
631 		return &bpf_perf_event_read_proto;
632 	case BPF_FUNC_probe_write_user:
633 		return bpf_get_probe_write_proto();
634 	case BPF_FUNC_current_task_under_cgroup:
635 		return &bpf_current_task_under_cgroup_proto;
636 	case BPF_FUNC_get_prandom_u32:
637 		return &bpf_get_prandom_u32_proto;
638 	case BPF_FUNC_probe_read_str:
639 		return &bpf_probe_read_str_proto;
640 #ifdef CONFIG_CGROUPS
641 	case BPF_FUNC_get_current_cgroup_id:
642 		return &bpf_get_current_cgroup_id_proto;
643 #endif
644 	default:
645 		return NULL;
646 	}
647 }
648 
649 static const struct bpf_func_proto *
650 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
651 {
652 	switch (func_id) {
653 	case BPF_FUNC_perf_event_output:
654 		return &bpf_perf_event_output_proto;
655 	case BPF_FUNC_get_stackid:
656 		return &bpf_get_stackid_proto;
657 	case BPF_FUNC_get_stack:
658 		return &bpf_get_stack_proto;
659 	case BPF_FUNC_perf_event_read_value:
660 		return &bpf_perf_event_read_value_proto;
661 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
662 	case BPF_FUNC_override_return:
663 		return &bpf_override_return_proto;
664 #endif
665 	default:
666 		return tracing_func_proto(func_id, prog);
667 	}
668 }
669 
670 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
671 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
672 					const struct bpf_prog *prog,
673 					struct bpf_insn_access_aux *info)
674 {
675 	if (off < 0 || off >= sizeof(struct pt_regs))
676 		return false;
677 	if (type != BPF_READ)
678 		return false;
679 	if (off % size != 0)
680 		return false;
681 	/*
682 	 * Assertion for 32 bit to make sure last 8 byte access
683 	 * (BPF_DW) to the last 4 byte member is disallowed.
684 	 */
685 	if (off + size > sizeof(struct pt_regs))
686 		return false;
687 
688 	return true;
689 }
690 
691 const struct bpf_verifier_ops kprobe_verifier_ops = {
692 	.get_func_proto  = kprobe_prog_func_proto,
693 	.is_valid_access = kprobe_prog_is_valid_access,
694 };
695 
696 const struct bpf_prog_ops kprobe_prog_ops = {
697 };
698 
699 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
700 	   u64, flags, void *, data, u64, size)
701 {
702 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
703 
704 	/*
705 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
706 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
707 	 * from there and call the same bpf_perf_event_output() helper inline.
708 	 */
709 	return ____bpf_perf_event_output(regs, map, flags, data, size);
710 }
711 
712 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
713 	.func		= bpf_perf_event_output_tp,
714 	.gpl_only	= true,
715 	.ret_type	= RET_INTEGER,
716 	.arg1_type	= ARG_PTR_TO_CTX,
717 	.arg2_type	= ARG_CONST_MAP_PTR,
718 	.arg3_type	= ARG_ANYTHING,
719 	.arg4_type	= ARG_PTR_TO_MEM,
720 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
721 };
722 
723 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
724 	   u64, flags)
725 {
726 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
727 
728 	/*
729 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
730 	 * the other helper's function body cannot be inlined due to being
731 	 * external, thus we need to call raw helper function.
732 	 */
733 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
734 			       flags, 0, 0);
735 }
736 
737 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
738 	.func		= bpf_get_stackid_tp,
739 	.gpl_only	= true,
740 	.ret_type	= RET_INTEGER,
741 	.arg1_type	= ARG_PTR_TO_CTX,
742 	.arg2_type	= ARG_CONST_MAP_PTR,
743 	.arg3_type	= ARG_ANYTHING,
744 };
745 
746 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
747 	   u64, flags)
748 {
749 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
750 
751 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
752 			     (unsigned long) size, flags, 0);
753 }
754 
755 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
756 	.func		= bpf_get_stack_tp,
757 	.gpl_only	= true,
758 	.ret_type	= RET_INTEGER,
759 	.arg1_type	= ARG_PTR_TO_CTX,
760 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
761 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
762 	.arg4_type	= ARG_ANYTHING,
763 };
764 
765 static const struct bpf_func_proto *
766 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
767 {
768 	switch (func_id) {
769 	case BPF_FUNC_perf_event_output:
770 		return &bpf_perf_event_output_proto_tp;
771 	case BPF_FUNC_get_stackid:
772 		return &bpf_get_stackid_proto_tp;
773 	case BPF_FUNC_get_stack:
774 		return &bpf_get_stack_proto_tp;
775 	default:
776 		return tracing_func_proto(func_id, prog);
777 	}
778 }
779 
780 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
781 				    const struct bpf_prog *prog,
782 				    struct bpf_insn_access_aux *info)
783 {
784 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
785 		return false;
786 	if (type != BPF_READ)
787 		return false;
788 	if (off % size != 0)
789 		return false;
790 
791 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
792 	return true;
793 }
794 
795 const struct bpf_verifier_ops tracepoint_verifier_ops = {
796 	.get_func_proto  = tp_prog_func_proto,
797 	.is_valid_access = tp_prog_is_valid_access,
798 };
799 
800 const struct bpf_prog_ops tracepoint_prog_ops = {
801 };
802 
803 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
804 	   struct bpf_perf_event_value *, buf, u32, size)
805 {
806 	int err = -EINVAL;
807 
808 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
809 		goto clear;
810 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
811 				    &buf->running);
812 	if (unlikely(err))
813 		goto clear;
814 	return 0;
815 clear:
816 	memset(buf, 0, size);
817 	return err;
818 }
819 
820 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
821          .func           = bpf_perf_prog_read_value,
822          .gpl_only       = true,
823          .ret_type       = RET_INTEGER,
824          .arg1_type      = ARG_PTR_TO_CTX,
825          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
826          .arg3_type      = ARG_CONST_SIZE,
827 };
828 
829 static const struct bpf_func_proto *
830 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
831 {
832 	switch (func_id) {
833 	case BPF_FUNC_perf_event_output:
834 		return &bpf_perf_event_output_proto_tp;
835 	case BPF_FUNC_get_stackid:
836 		return &bpf_get_stackid_proto_tp;
837 	case BPF_FUNC_get_stack:
838 		return &bpf_get_stack_proto_tp;
839 	case BPF_FUNC_perf_prog_read_value:
840 		return &bpf_perf_prog_read_value_proto;
841 	default:
842 		return tracing_func_proto(func_id, prog);
843 	}
844 }
845 
846 /*
847  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
848  * to avoid potential recursive reuse issue when/if tracepoints are added
849  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
850  *
851  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
852  * in normal, irq, and nmi context.
853  */
854 struct bpf_raw_tp_regs {
855 	struct pt_regs regs[3];
856 };
857 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
858 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
859 static struct pt_regs *get_bpf_raw_tp_regs(void)
860 {
861 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
862 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
863 
864 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
865 		this_cpu_dec(bpf_raw_tp_nest_level);
866 		return ERR_PTR(-EBUSY);
867 	}
868 
869 	return &tp_regs->regs[nest_level - 1];
870 }
871 
872 static void put_bpf_raw_tp_regs(void)
873 {
874 	this_cpu_dec(bpf_raw_tp_nest_level);
875 }
876 
877 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
878 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
879 {
880 	struct pt_regs *regs = get_bpf_raw_tp_regs();
881 	int ret;
882 
883 	if (IS_ERR(regs))
884 		return PTR_ERR(regs);
885 
886 	perf_fetch_caller_regs(regs);
887 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
888 
889 	put_bpf_raw_tp_regs();
890 	return ret;
891 }
892 
893 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
894 	.func		= bpf_perf_event_output_raw_tp,
895 	.gpl_only	= true,
896 	.ret_type	= RET_INTEGER,
897 	.arg1_type	= ARG_PTR_TO_CTX,
898 	.arg2_type	= ARG_CONST_MAP_PTR,
899 	.arg3_type	= ARG_ANYTHING,
900 	.arg4_type	= ARG_PTR_TO_MEM,
901 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
902 };
903 
904 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
905 	   struct bpf_map *, map, u64, flags)
906 {
907 	struct pt_regs *regs = get_bpf_raw_tp_regs();
908 	int ret;
909 
910 	if (IS_ERR(regs))
911 		return PTR_ERR(regs);
912 
913 	perf_fetch_caller_regs(regs);
914 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
915 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
916 			      flags, 0, 0);
917 	put_bpf_raw_tp_regs();
918 	return ret;
919 }
920 
921 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
922 	.func		= bpf_get_stackid_raw_tp,
923 	.gpl_only	= true,
924 	.ret_type	= RET_INTEGER,
925 	.arg1_type	= ARG_PTR_TO_CTX,
926 	.arg2_type	= ARG_CONST_MAP_PTR,
927 	.arg3_type	= ARG_ANYTHING,
928 };
929 
930 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
931 	   void *, buf, u32, size, u64, flags)
932 {
933 	struct pt_regs *regs = get_bpf_raw_tp_regs();
934 	int ret;
935 
936 	if (IS_ERR(regs))
937 		return PTR_ERR(regs);
938 
939 	perf_fetch_caller_regs(regs);
940 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
941 			    (unsigned long) size, flags, 0);
942 	put_bpf_raw_tp_regs();
943 	return ret;
944 }
945 
946 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
947 	.func		= bpf_get_stack_raw_tp,
948 	.gpl_only	= true,
949 	.ret_type	= RET_INTEGER,
950 	.arg1_type	= ARG_PTR_TO_CTX,
951 	.arg2_type	= ARG_PTR_TO_MEM,
952 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
953 	.arg4_type	= ARG_ANYTHING,
954 };
955 
956 static const struct bpf_func_proto *
957 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
958 {
959 	switch (func_id) {
960 	case BPF_FUNC_perf_event_output:
961 		return &bpf_perf_event_output_proto_raw_tp;
962 	case BPF_FUNC_get_stackid:
963 		return &bpf_get_stackid_proto_raw_tp;
964 	case BPF_FUNC_get_stack:
965 		return &bpf_get_stack_proto_raw_tp;
966 	default:
967 		return tracing_func_proto(func_id, prog);
968 	}
969 }
970 
971 static bool raw_tp_prog_is_valid_access(int off, int size,
972 					enum bpf_access_type type,
973 					const struct bpf_prog *prog,
974 					struct bpf_insn_access_aux *info)
975 {
976 	/* largest tracepoint in the kernel has 12 args */
977 	if (off < 0 || off >= sizeof(__u64) * 12)
978 		return false;
979 	if (type != BPF_READ)
980 		return false;
981 	if (off % size != 0)
982 		return false;
983 	return true;
984 }
985 
986 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
987 	.get_func_proto  = raw_tp_prog_func_proto,
988 	.is_valid_access = raw_tp_prog_is_valid_access,
989 };
990 
991 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
992 };
993 
994 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
995 						 enum bpf_access_type type,
996 						 const struct bpf_prog *prog,
997 						 struct bpf_insn_access_aux *info)
998 {
999 	if (off == 0) {
1000 		if (size != sizeof(u64) || type != BPF_READ)
1001 			return false;
1002 		info->reg_type = PTR_TO_TP_BUFFER;
1003 	}
1004 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1005 }
1006 
1007 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1008 	.get_func_proto  = raw_tp_prog_func_proto,
1009 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1010 };
1011 
1012 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1013 };
1014 
1015 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1016 				    const struct bpf_prog *prog,
1017 				    struct bpf_insn_access_aux *info)
1018 {
1019 	const int size_u64 = sizeof(u64);
1020 
1021 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1022 		return false;
1023 	if (type != BPF_READ)
1024 		return false;
1025 	if (off % size != 0) {
1026 		if (sizeof(unsigned long) != 4)
1027 			return false;
1028 		if (size != 8)
1029 			return false;
1030 		if (off % size != 4)
1031 			return false;
1032 	}
1033 
1034 	switch (off) {
1035 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1036 		bpf_ctx_record_field_size(info, size_u64);
1037 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1038 			return false;
1039 		break;
1040 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1041 		bpf_ctx_record_field_size(info, size_u64);
1042 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1043 			return false;
1044 		break;
1045 	default:
1046 		if (size != sizeof(long))
1047 			return false;
1048 	}
1049 
1050 	return true;
1051 }
1052 
1053 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1054 				      const struct bpf_insn *si,
1055 				      struct bpf_insn *insn_buf,
1056 				      struct bpf_prog *prog, u32 *target_size)
1057 {
1058 	struct bpf_insn *insn = insn_buf;
1059 
1060 	switch (si->off) {
1061 	case offsetof(struct bpf_perf_event_data, sample_period):
1062 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1063 						       data), si->dst_reg, si->src_reg,
1064 				      offsetof(struct bpf_perf_event_data_kern, data));
1065 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1066 				      bpf_target_off(struct perf_sample_data, period, 8,
1067 						     target_size));
1068 		break;
1069 	case offsetof(struct bpf_perf_event_data, addr):
1070 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1071 						       data), si->dst_reg, si->src_reg,
1072 				      offsetof(struct bpf_perf_event_data_kern, data));
1073 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1074 				      bpf_target_off(struct perf_sample_data, addr, 8,
1075 						     target_size));
1076 		break;
1077 	default:
1078 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1079 						       regs), si->dst_reg, si->src_reg,
1080 				      offsetof(struct bpf_perf_event_data_kern, regs));
1081 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1082 				      si->off);
1083 		break;
1084 	}
1085 
1086 	return insn - insn_buf;
1087 }
1088 
1089 const struct bpf_verifier_ops perf_event_verifier_ops = {
1090 	.get_func_proto		= pe_prog_func_proto,
1091 	.is_valid_access	= pe_prog_is_valid_access,
1092 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1093 };
1094 
1095 const struct bpf_prog_ops perf_event_prog_ops = {
1096 };
1097 
1098 static DEFINE_MUTEX(bpf_event_mutex);
1099 
1100 #define BPF_TRACE_MAX_PROGS 64
1101 
1102 int perf_event_attach_bpf_prog(struct perf_event *event,
1103 			       struct bpf_prog *prog)
1104 {
1105 	struct bpf_prog_array __rcu *old_array;
1106 	struct bpf_prog_array *new_array;
1107 	int ret = -EEXIST;
1108 
1109 	/*
1110 	 * Kprobe override only works if they are on the function entry,
1111 	 * and only if they are on the opt-in list.
1112 	 */
1113 	if (prog->kprobe_override &&
1114 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1115 	     !trace_kprobe_error_injectable(event->tp_event)))
1116 		return -EINVAL;
1117 
1118 	mutex_lock(&bpf_event_mutex);
1119 
1120 	if (event->prog)
1121 		goto unlock;
1122 
1123 	old_array = event->tp_event->prog_array;
1124 	if (old_array &&
1125 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1126 		ret = -E2BIG;
1127 		goto unlock;
1128 	}
1129 
1130 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1131 	if (ret < 0)
1132 		goto unlock;
1133 
1134 	/* set the new array to event->tp_event and set event->prog */
1135 	event->prog = prog;
1136 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1137 	bpf_prog_array_free(old_array);
1138 
1139 unlock:
1140 	mutex_unlock(&bpf_event_mutex);
1141 	return ret;
1142 }
1143 
1144 void perf_event_detach_bpf_prog(struct perf_event *event)
1145 {
1146 	struct bpf_prog_array __rcu *old_array;
1147 	struct bpf_prog_array *new_array;
1148 	int ret;
1149 
1150 	mutex_lock(&bpf_event_mutex);
1151 
1152 	if (!event->prog)
1153 		goto unlock;
1154 
1155 	old_array = event->tp_event->prog_array;
1156 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1157 	if (ret == -ENOENT)
1158 		goto unlock;
1159 	if (ret < 0) {
1160 		bpf_prog_array_delete_safe(old_array, event->prog);
1161 	} else {
1162 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1163 		bpf_prog_array_free(old_array);
1164 	}
1165 
1166 	bpf_prog_put(event->prog);
1167 	event->prog = NULL;
1168 
1169 unlock:
1170 	mutex_unlock(&bpf_event_mutex);
1171 }
1172 
1173 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1174 {
1175 	struct perf_event_query_bpf __user *uquery = info;
1176 	struct perf_event_query_bpf query = {};
1177 	u32 *ids, prog_cnt, ids_len;
1178 	int ret;
1179 
1180 	if (!capable(CAP_SYS_ADMIN))
1181 		return -EPERM;
1182 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1183 		return -EINVAL;
1184 	if (copy_from_user(&query, uquery, sizeof(query)))
1185 		return -EFAULT;
1186 
1187 	ids_len = query.ids_len;
1188 	if (ids_len > BPF_TRACE_MAX_PROGS)
1189 		return -E2BIG;
1190 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1191 	if (!ids)
1192 		return -ENOMEM;
1193 	/*
1194 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1195 	 * is required when user only wants to check for uquery->prog_cnt.
1196 	 * There is no need to check for it since the case is handled
1197 	 * gracefully in bpf_prog_array_copy_info.
1198 	 */
1199 
1200 	mutex_lock(&bpf_event_mutex);
1201 	ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
1202 				       ids,
1203 				       ids_len,
1204 				       &prog_cnt);
1205 	mutex_unlock(&bpf_event_mutex);
1206 
1207 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1208 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1209 		ret = -EFAULT;
1210 
1211 	kfree(ids);
1212 	return ret;
1213 }
1214 
1215 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1216 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1217 
1218 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1219 {
1220 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1221 
1222 	for (; btp < __stop__bpf_raw_tp; btp++) {
1223 		if (!strcmp(btp->tp->name, name))
1224 			return btp;
1225 	}
1226 
1227 	return bpf_get_raw_tracepoint_module(name);
1228 }
1229 
1230 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1231 {
1232 	struct module *mod = __module_address((unsigned long)btp);
1233 
1234 	if (mod)
1235 		module_put(mod);
1236 }
1237 
1238 static __always_inline
1239 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1240 {
1241 	rcu_read_lock();
1242 	preempt_disable();
1243 	(void) BPF_PROG_RUN(prog, args);
1244 	preempt_enable();
1245 	rcu_read_unlock();
1246 }
1247 
1248 #define UNPACK(...)			__VA_ARGS__
1249 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1250 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1251 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1252 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1253 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1254 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1255 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1256 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1257 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1258 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1259 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1260 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1261 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1262 
1263 #define SARG(X)		u64 arg##X
1264 #define COPY(X)		args[X] = arg##X
1265 
1266 #define __DL_COM	(,)
1267 #define __DL_SEM	(;)
1268 
1269 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1270 
1271 #define BPF_TRACE_DEFN_x(x)						\
1272 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1273 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1274 	{								\
1275 		u64 args[x];						\
1276 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1277 		__bpf_trace_run(prog, args);				\
1278 	}								\
1279 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1280 BPF_TRACE_DEFN_x(1);
1281 BPF_TRACE_DEFN_x(2);
1282 BPF_TRACE_DEFN_x(3);
1283 BPF_TRACE_DEFN_x(4);
1284 BPF_TRACE_DEFN_x(5);
1285 BPF_TRACE_DEFN_x(6);
1286 BPF_TRACE_DEFN_x(7);
1287 BPF_TRACE_DEFN_x(8);
1288 BPF_TRACE_DEFN_x(9);
1289 BPF_TRACE_DEFN_x(10);
1290 BPF_TRACE_DEFN_x(11);
1291 BPF_TRACE_DEFN_x(12);
1292 
1293 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1294 {
1295 	struct tracepoint *tp = btp->tp;
1296 
1297 	/*
1298 	 * check that program doesn't access arguments beyond what's
1299 	 * available in this tracepoint
1300 	 */
1301 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1302 		return -EINVAL;
1303 
1304 	if (prog->aux->max_tp_access > btp->writable_size)
1305 		return -EINVAL;
1306 
1307 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1308 }
1309 
1310 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1311 {
1312 	return __bpf_probe_register(btp, prog);
1313 }
1314 
1315 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1316 {
1317 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1318 }
1319 
1320 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1321 			    u32 *fd_type, const char **buf,
1322 			    u64 *probe_offset, u64 *probe_addr)
1323 {
1324 	bool is_tracepoint, is_syscall_tp;
1325 	struct bpf_prog *prog;
1326 	int flags, err = 0;
1327 
1328 	prog = event->prog;
1329 	if (!prog)
1330 		return -ENOENT;
1331 
1332 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1333 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1334 		return -EOPNOTSUPP;
1335 
1336 	*prog_id = prog->aux->id;
1337 	flags = event->tp_event->flags;
1338 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1339 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1340 
1341 	if (is_tracepoint || is_syscall_tp) {
1342 		*buf = is_tracepoint ? event->tp_event->tp->name
1343 				     : event->tp_event->name;
1344 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1345 		*probe_offset = 0x0;
1346 		*probe_addr = 0x0;
1347 	} else {
1348 		/* kprobe/uprobe */
1349 		err = -EOPNOTSUPP;
1350 #ifdef CONFIG_KPROBE_EVENTS
1351 		if (flags & TRACE_EVENT_FL_KPROBE)
1352 			err = bpf_get_kprobe_info(event, fd_type, buf,
1353 						  probe_offset, probe_addr,
1354 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1355 #endif
1356 #ifdef CONFIG_UPROBE_EVENTS
1357 		if (flags & TRACE_EVENT_FL_UPROBE)
1358 			err = bpf_get_uprobe_info(event, fd_type, buf,
1359 						  probe_offset,
1360 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1361 #endif
1362 	}
1363 
1364 	return err;
1365 }
1366 
1367 #ifdef CONFIG_MODULES
1368 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1369 			    void *module)
1370 {
1371 	struct bpf_trace_module *btm, *tmp;
1372 	struct module *mod = module;
1373 
1374 	if (mod->num_bpf_raw_events == 0 ||
1375 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1376 		return 0;
1377 
1378 	mutex_lock(&bpf_module_mutex);
1379 
1380 	switch (op) {
1381 	case MODULE_STATE_COMING:
1382 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1383 		if (btm) {
1384 			btm->module = module;
1385 			list_add(&btm->list, &bpf_trace_modules);
1386 		}
1387 		break;
1388 	case MODULE_STATE_GOING:
1389 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1390 			if (btm->module == module) {
1391 				list_del(&btm->list);
1392 				kfree(btm);
1393 				break;
1394 			}
1395 		}
1396 		break;
1397 	}
1398 
1399 	mutex_unlock(&bpf_module_mutex);
1400 
1401 	return 0;
1402 }
1403 
1404 static struct notifier_block bpf_module_nb = {
1405 	.notifier_call = bpf_event_notify,
1406 };
1407 
1408 static int __init bpf_event_init(void)
1409 {
1410 	register_module_notifier(&bpf_module_nb);
1411 	return 0;
1412 }
1413 
1414 fs_initcall(bpf_event_init);
1415 #endif /* CONFIG_MODULES */
1416