1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/bpf_perf_event.h> 13 #include <linux/filter.h> 14 #include <linux/uaccess.h> 15 #include <linux/ctype.h> 16 #include <linux/kprobes.h> 17 #include <linux/error-injection.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 23 24 /** 25 * trace_call_bpf - invoke BPF program 26 * @call: tracepoint event 27 * @ctx: opaque context pointer 28 * 29 * kprobe handlers execute BPF programs via this helper. 30 * Can be used from static tracepoints in the future. 31 * 32 * Return: BPF programs always return an integer which is interpreted by 33 * kprobe handler as: 34 * 0 - return from kprobe (event is filtered out) 35 * 1 - store kprobe event into ring buffer 36 * Other values are reserved and currently alias to 1 37 */ 38 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 39 { 40 unsigned int ret; 41 42 if (in_nmi()) /* not supported yet */ 43 return 1; 44 45 preempt_disable(); 46 47 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 48 /* 49 * since some bpf program is already running on this cpu, 50 * don't call into another bpf program (same or different) 51 * and don't send kprobe event into ring-buffer, 52 * so return zero here 53 */ 54 ret = 0; 55 goto out; 56 } 57 58 /* 59 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 60 * to all call sites, we did a bpf_prog_array_valid() there to check 61 * whether call->prog_array is empty or not, which is 62 * a heurisitc to speed up execution. 63 * 64 * If bpf_prog_array_valid() fetched prog_array was 65 * non-NULL, we go into trace_call_bpf() and do the actual 66 * proper rcu_dereference() under RCU lock. 67 * If it turns out that prog_array is NULL then, we bail out. 68 * For the opposite, if the bpf_prog_array_valid() fetched pointer 69 * was NULL, you'll skip the prog_array with the risk of missing 70 * out of events when it was updated in between this and the 71 * rcu_dereference() which is accepted risk. 72 */ 73 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 74 75 out: 76 __this_cpu_dec(bpf_prog_active); 77 preempt_enable(); 78 79 return ret; 80 } 81 EXPORT_SYMBOL_GPL(trace_call_bpf); 82 83 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 84 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 85 { 86 regs_set_return_value(regs, rc); 87 override_function_with_return(regs); 88 return 0; 89 } 90 91 static const struct bpf_func_proto bpf_override_return_proto = { 92 .func = bpf_override_return, 93 .gpl_only = true, 94 .ret_type = RET_INTEGER, 95 .arg1_type = ARG_PTR_TO_CTX, 96 .arg2_type = ARG_ANYTHING, 97 }; 98 #endif 99 100 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr) 101 { 102 int ret; 103 104 ret = probe_kernel_read(dst, unsafe_ptr, size); 105 if (unlikely(ret < 0)) 106 memset(dst, 0, size); 107 108 return ret; 109 } 110 111 static const struct bpf_func_proto bpf_probe_read_proto = { 112 .func = bpf_probe_read, 113 .gpl_only = true, 114 .ret_type = RET_INTEGER, 115 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 116 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 117 .arg3_type = ARG_ANYTHING, 118 }; 119 120 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src, 121 u32, size) 122 { 123 /* 124 * Ensure we're in user context which is safe for the helper to 125 * run. This helper has no business in a kthread. 126 * 127 * access_ok() should prevent writing to non-user memory, but in 128 * some situations (nommu, temporary switch, etc) access_ok() does 129 * not provide enough validation, hence the check on KERNEL_DS. 130 */ 131 132 if (unlikely(in_interrupt() || 133 current->flags & (PF_KTHREAD | PF_EXITING))) 134 return -EPERM; 135 if (unlikely(uaccess_kernel())) 136 return -EPERM; 137 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size)) 138 return -EPERM; 139 140 return probe_kernel_write(unsafe_ptr, src, size); 141 } 142 143 static const struct bpf_func_proto bpf_probe_write_user_proto = { 144 .func = bpf_probe_write_user, 145 .gpl_only = true, 146 .ret_type = RET_INTEGER, 147 .arg1_type = ARG_ANYTHING, 148 .arg2_type = ARG_PTR_TO_MEM, 149 .arg3_type = ARG_CONST_SIZE, 150 }; 151 152 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 153 { 154 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 155 current->comm, task_pid_nr(current)); 156 157 return &bpf_probe_write_user_proto; 158 } 159 160 /* 161 * Only limited trace_printk() conversion specifiers allowed: 162 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 163 */ 164 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 165 u64, arg2, u64, arg3) 166 { 167 bool str_seen = false; 168 int mod[3] = {}; 169 int fmt_cnt = 0; 170 u64 unsafe_addr; 171 char buf[64]; 172 int i; 173 174 /* 175 * bpf_check()->check_func_arg()->check_stack_boundary() 176 * guarantees that fmt points to bpf program stack, 177 * fmt_size bytes of it were initialized and fmt_size > 0 178 */ 179 if (fmt[--fmt_size] != 0) 180 return -EINVAL; 181 182 /* check format string for allowed specifiers */ 183 for (i = 0; i < fmt_size; i++) { 184 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 185 return -EINVAL; 186 187 if (fmt[i] != '%') 188 continue; 189 190 if (fmt_cnt >= 3) 191 return -EINVAL; 192 193 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 194 i++; 195 if (fmt[i] == 'l') { 196 mod[fmt_cnt]++; 197 i++; 198 } else if (fmt[i] == 'p' || fmt[i] == 's') { 199 mod[fmt_cnt]++; 200 i++; 201 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0) 202 return -EINVAL; 203 fmt_cnt++; 204 if (fmt[i - 1] == 's') { 205 if (str_seen) 206 /* allow only one '%s' per fmt string */ 207 return -EINVAL; 208 str_seen = true; 209 210 switch (fmt_cnt) { 211 case 1: 212 unsafe_addr = arg1; 213 arg1 = (long) buf; 214 break; 215 case 2: 216 unsafe_addr = arg2; 217 arg2 = (long) buf; 218 break; 219 case 3: 220 unsafe_addr = arg3; 221 arg3 = (long) buf; 222 break; 223 } 224 buf[0] = 0; 225 strncpy_from_unsafe(buf, 226 (void *) (long) unsafe_addr, 227 sizeof(buf)); 228 } 229 continue; 230 } 231 232 if (fmt[i] == 'l') { 233 mod[fmt_cnt]++; 234 i++; 235 } 236 237 if (fmt[i] != 'i' && fmt[i] != 'd' && 238 fmt[i] != 'u' && fmt[i] != 'x') 239 return -EINVAL; 240 fmt_cnt++; 241 } 242 243 /* Horrid workaround for getting va_list handling working with different 244 * argument type combinations generically for 32 and 64 bit archs. 245 */ 246 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 247 #define __BPF_TP(...) \ 248 __trace_printk(0 /* Fake ip */, \ 249 fmt, ##__VA_ARGS__) 250 251 #define __BPF_ARG1_TP(...) \ 252 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 253 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 254 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 255 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 256 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 257 258 #define __BPF_ARG2_TP(...) \ 259 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 260 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 261 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 262 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 263 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 264 265 #define __BPF_ARG3_TP(...) \ 266 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 267 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 268 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 269 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 270 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 271 272 return __BPF_TP_EMIT(); 273 } 274 275 static const struct bpf_func_proto bpf_trace_printk_proto = { 276 .func = bpf_trace_printk, 277 .gpl_only = true, 278 .ret_type = RET_INTEGER, 279 .arg1_type = ARG_PTR_TO_MEM, 280 .arg2_type = ARG_CONST_SIZE, 281 }; 282 283 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 284 { 285 /* 286 * this program might be calling bpf_trace_printk, 287 * so allocate per-cpu printk buffers 288 */ 289 trace_printk_init_buffers(); 290 291 return &bpf_trace_printk_proto; 292 } 293 294 static __always_inline int 295 get_map_perf_counter(struct bpf_map *map, u64 flags, 296 u64 *value, u64 *enabled, u64 *running) 297 { 298 struct bpf_array *array = container_of(map, struct bpf_array, map); 299 unsigned int cpu = smp_processor_id(); 300 u64 index = flags & BPF_F_INDEX_MASK; 301 struct bpf_event_entry *ee; 302 303 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 304 return -EINVAL; 305 if (index == BPF_F_CURRENT_CPU) 306 index = cpu; 307 if (unlikely(index >= array->map.max_entries)) 308 return -E2BIG; 309 310 ee = READ_ONCE(array->ptrs[index]); 311 if (!ee) 312 return -ENOENT; 313 314 return perf_event_read_local(ee->event, value, enabled, running); 315 } 316 317 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 318 { 319 u64 value = 0; 320 int err; 321 322 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 323 /* 324 * this api is ugly since we miss [-22..-2] range of valid 325 * counter values, but that's uapi 326 */ 327 if (err) 328 return err; 329 return value; 330 } 331 332 static const struct bpf_func_proto bpf_perf_event_read_proto = { 333 .func = bpf_perf_event_read, 334 .gpl_only = true, 335 .ret_type = RET_INTEGER, 336 .arg1_type = ARG_CONST_MAP_PTR, 337 .arg2_type = ARG_ANYTHING, 338 }; 339 340 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 341 struct bpf_perf_event_value *, buf, u32, size) 342 { 343 int err = -EINVAL; 344 345 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 346 goto clear; 347 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 348 &buf->running); 349 if (unlikely(err)) 350 goto clear; 351 return 0; 352 clear: 353 memset(buf, 0, size); 354 return err; 355 } 356 357 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 358 .func = bpf_perf_event_read_value, 359 .gpl_only = true, 360 .ret_type = RET_INTEGER, 361 .arg1_type = ARG_CONST_MAP_PTR, 362 .arg2_type = ARG_ANYTHING, 363 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 364 .arg4_type = ARG_CONST_SIZE, 365 }; 366 367 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd); 368 369 static __always_inline u64 370 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 371 u64 flags, struct perf_sample_data *sd) 372 { 373 struct bpf_array *array = container_of(map, struct bpf_array, map); 374 unsigned int cpu = smp_processor_id(); 375 u64 index = flags & BPF_F_INDEX_MASK; 376 struct bpf_event_entry *ee; 377 struct perf_event *event; 378 379 if (index == BPF_F_CURRENT_CPU) 380 index = cpu; 381 if (unlikely(index >= array->map.max_entries)) 382 return -E2BIG; 383 384 ee = READ_ONCE(array->ptrs[index]); 385 if (!ee) 386 return -ENOENT; 387 388 event = ee->event; 389 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 390 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 391 return -EINVAL; 392 393 if (unlikely(event->oncpu != cpu)) 394 return -EOPNOTSUPP; 395 396 perf_event_output(event, sd, regs); 397 return 0; 398 } 399 400 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 401 u64, flags, void *, data, u64, size) 402 { 403 struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd); 404 struct perf_raw_record raw = { 405 .frag = { 406 .size = size, 407 .data = data, 408 }, 409 }; 410 411 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 412 return -EINVAL; 413 414 perf_sample_data_init(sd, 0, 0); 415 sd->raw = &raw; 416 417 return __bpf_perf_event_output(regs, map, flags, sd); 418 } 419 420 static const struct bpf_func_proto bpf_perf_event_output_proto = { 421 .func = bpf_perf_event_output, 422 .gpl_only = true, 423 .ret_type = RET_INTEGER, 424 .arg1_type = ARG_PTR_TO_CTX, 425 .arg2_type = ARG_CONST_MAP_PTR, 426 .arg3_type = ARG_ANYTHING, 427 .arg4_type = ARG_PTR_TO_MEM, 428 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 429 }; 430 431 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs); 432 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd); 433 434 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 435 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 436 { 437 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd); 438 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs); 439 struct perf_raw_frag frag = { 440 .copy = ctx_copy, 441 .size = ctx_size, 442 .data = ctx, 443 }; 444 struct perf_raw_record raw = { 445 .frag = { 446 { 447 .next = ctx_size ? &frag : NULL, 448 }, 449 .size = meta_size, 450 .data = meta, 451 }, 452 }; 453 454 perf_fetch_caller_regs(regs); 455 perf_sample_data_init(sd, 0, 0); 456 sd->raw = &raw; 457 458 return __bpf_perf_event_output(regs, map, flags, sd); 459 } 460 461 BPF_CALL_0(bpf_get_current_task) 462 { 463 return (long) current; 464 } 465 466 static const struct bpf_func_proto bpf_get_current_task_proto = { 467 .func = bpf_get_current_task, 468 .gpl_only = true, 469 .ret_type = RET_INTEGER, 470 }; 471 472 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 473 { 474 struct bpf_array *array = container_of(map, struct bpf_array, map); 475 struct cgroup *cgrp; 476 477 if (unlikely(in_interrupt())) 478 return -EINVAL; 479 if (unlikely(idx >= array->map.max_entries)) 480 return -E2BIG; 481 482 cgrp = READ_ONCE(array->ptrs[idx]); 483 if (unlikely(!cgrp)) 484 return -EAGAIN; 485 486 return task_under_cgroup_hierarchy(current, cgrp); 487 } 488 489 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 490 .func = bpf_current_task_under_cgroup, 491 .gpl_only = false, 492 .ret_type = RET_INTEGER, 493 .arg1_type = ARG_CONST_MAP_PTR, 494 .arg2_type = ARG_ANYTHING, 495 }; 496 497 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, 498 const void *, unsafe_ptr) 499 { 500 int ret; 501 502 /* 503 * The strncpy_from_unsafe() call will likely not fill the entire 504 * buffer, but that's okay in this circumstance as we're probing 505 * arbitrary memory anyway similar to bpf_probe_read() and might 506 * as well probe the stack. Thus, memory is explicitly cleared 507 * only in error case, so that improper users ignoring return 508 * code altogether don't copy garbage; otherwise length of string 509 * is returned that can be used for bpf_perf_event_output() et al. 510 */ 511 ret = strncpy_from_unsafe(dst, unsafe_ptr, size); 512 if (unlikely(ret < 0)) 513 memset(dst, 0, size); 514 515 return ret; 516 } 517 518 static const struct bpf_func_proto bpf_probe_read_str_proto = { 519 .func = bpf_probe_read_str, 520 .gpl_only = true, 521 .ret_type = RET_INTEGER, 522 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 523 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 524 .arg3_type = ARG_ANYTHING, 525 }; 526 527 static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id) 528 { 529 switch (func_id) { 530 case BPF_FUNC_map_lookup_elem: 531 return &bpf_map_lookup_elem_proto; 532 case BPF_FUNC_map_update_elem: 533 return &bpf_map_update_elem_proto; 534 case BPF_FUNC_map_delete_elem: 535 return &bpf_map_delete_elem_proto; 536 case BPF_FUNC_probe_read: 537 return &bpf_probe_read_proto; 538 case BPF_FUNC_ktime_get_ns: 539 return &bpf_ktime_get_ns_proto; 540 case BPF_FUNC_tail_call: 541 return &bpf_tail_call_proto; 542 case BPF_FUNC_get_current_pid_tgid: 543 return &bpf_get_current_pid_tgid_proto; 544 case BPF_FUNC_get_current_task: 545 return &bpf_get_current_task_proto; 546 case BPF_FUNC_get_current_uid_gid: 547 return &bpf_get_current_uid_gid_proto; 548 case BPF_FUNC_get_current_comm: 549 return &bpf_get_current_comm_proto; 550 case BPF_FUNC_trace_printk: 551 return bpf_get_trace_printk_proto(); 552 case BPF_FUNC_get_smp_processor_id: 553 return &bpf_get_smp_processor_id_proto; 554 case BPF_FUNC_get_numa_node_id: 555 return &bpf_get_numa_node_id_proto; 556 case BPF_FUNC_perf_event_read: 557 return &bpf_perf_event_read_proto; 558 case BPF_FUNC_probe_write_user: 559 return bpf_get_probe_write_proto(); 560 case BPF_FUNC_current_task_under_cgroup: 561 return &bpf_current_task_under_cgroup_proto; 562 case BPF_FUNC_get_prandom_u32: 563 return &bpf_get_prandom_u32_proto; 564 case BPF_FUNC_probe_read_str: 565 return &bpf_probe_read_str_proto; 566 default: 567 return NULL; 568 } 569 } 570 571 static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id) 572 { 573 switch (func_id) { 574 case BPF_FUNC_perf_event_output: 575 return &bpf_perf_event_output_proto; 576 case BPF_FUNC_get_stackid: 577 return &bpf_get_stackid_proto; 578 case BPF_FUNC_perf_event_read_value: 579 return &bpf_perf_event_read_value_proto; 580 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 581 case BPF_FUNC_override_return: 582 return &bpf_override_return_proto; 583 #endif 584 default: 585 return tracing_func_proto(func_id); 586 } 587 } 588 589 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 590 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 591 struct bpf_insn_access_aux *info) 592 { 593 if (off < 0 || off >= sizeof(struct pt_regs)) 594 return false; 595 if (type != BPF_READ) 596 return false; 597 if (off % size != 0) 598 return false; 599 /* 600 * Assertion for 32 bit to make sure last 8 byte access 601 * (BPF_DW) to the last 4 byte member is disallowed. 602 */ 603 if (off + size > sizeof(struct pt_regs)) 604 return false; 605 606 return true; 607 } 608 609 const struct bpf_verifier_ops kprobe_verifier_ops = { 610 .get_func_proto = kprobe_prog_func_proto, 611 .is_valid_access = kprobe_prog_is_valid_access, 612 }; 613 614 const struct bpf_prog_ops kprobe_prog_ops = { 615 }; 616 617 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 618 u64, flags, void *, data, u64, size) 619 { 620 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 621 622 /* 623 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 624 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 625 * from there and call the same bpf_perf_event_output() helper inline. 626 */ 627 return ____bpf_perf_event_output(regs, map, flags, data, size); 628 } 629 630 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 631 .func = bpf_perf_event_output_tp, 632 .gpl_only = true, 633 .ret_type = RET_INTEGER, 634 .arg1_type = ARG_PTR_TO_CTX, 635 .arg2_type = ARG_CONST_MAP_PTR, 636 .arg3_type = ARG_ANYTHING, 637 .arg4_type = ARG_PTR_TO_MEM, 638 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 639 }; 640 641 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 642 u64, flags) 643 { 644 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 645 646 /* 647 * Same comment as in bpf_perf_event_output_tp(), only that this time 648 * the other helper's function body cannot be inlined due to being 649 * external, thus we need to call raw helper function. 650 */ 651 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 652 flags, 0, 0); 653 } 654 655 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 656 .func = bpf_get_stackid_tp, 657 .gpl_only = true, 658 .ret_type = RET_INTEGER, 659 .arg1_type = ARG_PTR_TO_CTX, 660 .arg2_type = ARG_CONST_MAP_PTR, 661 .arg3_type = ARG_ANYTHING, 662 }; 663 664 BPF_CALL_3(bpf_perf_prog_read_value_tp, struct bpf_perf_event_data_kern *, ctx, 665 struct bpf_perf_event_value *, buf, u32, size) 666 { 667 int err = -EINVAL; 668 669 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 670 goto clear; 671 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 672 &buf->running); 673 if (unlikely(err)) 674 goto clear; 675 return 0; 676 clear: 677 memset(buf, 0, size); 678 return err; 679 } 680 681 static const struct bpf_func_proto bpf_perf_prog_read_value_proto_tp = { 682 .func = bpf_perf_prog_read_value_tp, 683 .gpl_only = true, 684 .ret_type = RET_INTEGER, 685 .arg1_type = ARG_PTR_TO_CTX, 686 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 687 .arg3_type = ARG_CONST_SIZE, 688 }; 689 690 static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id) 691 { 692 switch (func_id) { 693 case BPF_FUNC_perf_event_output: 694 return &bpf_perf_event_output_proto_tp; 695 case BPF_FUNC_get_stackid: 696 return &bpf_get_stackid_proto_tp; 697 case BPF_FUNC_perf_prog_read_value: 698 return &bpf_perf_prog_read_value_proto_tp; 699 default: 700 return tracing_func_proto(func_id); 701 } 702 } 703 704 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 705 struct bpf_insn_access_aux *info) 706 { 707 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 708 return false; 709 if (type != BPF_READ) 710 return false; 711 if (off % size != 0) 712 return false; 713 714 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 715 return true; 716 } 717 718 const struct bpf_verifier_ops tracepoint_verifier_ops = { 719 .get_func_proto = tp_prog_func_proto, 720 .is_valid_access = tp_prog_is_valid_access, 721 }; 722 723 const struct bpf_prog_ops tracepoint_prog_ops = { 724 }; 725 726 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 727 struct bpf_insn_access_aux *info) 728 { 729 const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data, 730 sample_period); 731 732 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 733 return false; 734 if (type != BPF_READ) 735 return false; 736 if (off % size != 0) 737 return false; 738 739 switch (off) { 740 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 741 bpf_ctx_record_field_size(info, size_sp); 742 if (!bpf_ctx_narrow_access_ok(off, size, size_sp)) 743 return false; 744 break; 745 default: 746 if (size != sizeof(long)) 747 return false; 748 } 749 750 return true; 751 } 752 753 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 754 const struct bpf_insn *si, 755 struct bpf_insn *insn_buf, 756 struct bpf_prog *prog, u32 *target_size) 757 { 758 struct bpf_insn *insn = insn_buf; 759 760 switch (si->off) { 761 case offsetof(struct bpf_perf_event_data, sample_period): 762 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 763 data), si->dst_reg, si->src_reg, 764 offsetof(struct bpf_perf_event_data_kern, data)); 765 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 766 bpf_target_off(struct perf_sample_data, period, 8, 767 target_size)); 768 break; 769 default: 770 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 771 regs), si->dst_reg, si->src_reg, 772 offsetof(struct bpf_perf_event_data_kern, regs)); 773 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 774 si->off); 775 break; 776 } 777 778 return insn - insn_buf; 779 } 780 781 const struct bpf_verifier_ops perf_event_verifier_ops = { 782 .get_func_proto = tp_prog_func_proto, 783 .is_valid_access = pe_prog_is_valid_access, 784 .convert_ctx_access = pe_prog_convert_ctx_access, 785 }; 786 787 const struct bpf_prog_ops perf_event_prog_ops = { 788 }; 789 790 static DEFINE_MUTEX(bpf_event_mutex); 791 792 #define BPF_TRACE_MAX_PROGS 64 793 794 int perf_event_attach_bpf_prog(struct perf_event *event, 795 struct bpf_prog *prog) 796 { 797 struct bpf_prog_array __rcu *old_array; 798 struct bpf_prog_array *new_array; 799 int ret = -EEXIST; 800 801 /* 802 * Kprobe override only works if they are on the function entry, 803 * and only if they are on the opt-in list. 804 */ 805 if (prog->kprobe_override && 806 (!trace_kprobe_on_func_entry(event->tp_event) || 807 !trace_kprobe_error_injectable(event->tp_event))) 808 return -EINVAL; 809 810 mutex_lock(&bpf_event_mutex); 811 812 if (event->prog) 813 goto unlock; 814 815 old_array = event->tp_event->prog_array; 816 if (old_array && 817 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 818 ret = -E2BIG; 819 goto unlock; 820 } 821 822 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 823 if (ret < 0) 824 goto unlock; 825 826 /* set the new array to event->tp_event and set event->prog */ 827 event->prog = prog; 828 rcu_assign_pointer(event->tp_event->prog_array, new_array); 829 bpf_prog_array_free(old_array); 830 831 unlock: 832 mutex_unlock(&bpf_event_mutex); 833 return ret; 834 } 835 836 void perf_event_detach_bpf_prog(struct perf_event *event) 837 { 838 struct bpf_prog_array __rcu *old_array; 839 struct bpf_prog_array *new_array; 840 int ret; 841 842 mutex_lock(&bpf_event_mutex); 843 844 if (!event->prog) 845 goto unlock; 846 847 old_array = event->tp_event->prog_array; 848 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 849 if (ret < 0) { 850 bpf_prog_array_delete_safe(old_array, event->prog); 851 } else { 852 rcu_assign_pointer(event->tp_event->prog_array, new_array); 853 bpf_prog_array_free(old_array); 854 } 855 856 bpf_prog_put(event->prog); 857 event->prog = NULL; 858 859 unlock: 860 mutex_unlock(&bpf_event_mutex); 861 } 862 863 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 864 { 865 struct perf_event_query_bpf __user *uquery = info; 866 struct perf_event_query_bpf query = {}; 867 int ret; 868 869 if (!capable(CAP_SYS_ADMIN)) 870 return -EPERM; 871 if (event->attr.type != PERF_TYPE_TRACEPOINT) 872 return -EINVAL; 873 if (copy_from_user(&query, uquery, sizeof(query))) 874 return -EFAULT; 875 876 mutex_lock(&bpf_event_mutex); 877 ret = bpf_prog_array_copy_info(event->tp_event->prog_array, 878 uquery->ids, 879 query.ids_len, 880 &uquery->prog_cnt); 881 mutex_unlock(&bpf_event_mutex); 882 883 return ret; 884 } 885