1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/filter.h> 11 #include <linux/uaccess.h> 12 #include <linux/ctype.h> 13 #include <linux/kprobes.h> 14 #include <linux/syscalls.h> 15 #include <linux/error-injection.h> 16 17 #include <asm/tlb.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 #define bpf_event_rcu_dereference(p) \ 23 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 24 25 #ifdef CONFIG_MODULES 26 struct bpf_trace_module { 27 struct module *module; 28 struct list_head list; 29 }; 30 31 static LIST_HEAD(bpf_trace_modules); 32 static DEFINE_MUTEX(bpf_module_mutex); 33 34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 35 { 36 struct bpf_raw_event_map *btp, *ret = NULL; 37 struct bpf_trace_module *btm; 38 unsigned int i; 39 40 mutex_lock(&bpf_module_mutex); 41 list_for_each_entry(btm, &bpf_trace_modules, list) { 42 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 43 btp = &btm->module->bpf_raw_events[i]; 44 if (!strcmp(btp->tp->name, name)) { 45 if (try_module_get(btm->module)) 46 ret = btp; 47 goto out; 48 } 49 } 50 } 51 out: 52 mutex_unlock(&bpf_module_mutex); 53 return ret; 54 } 55 #else 56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 57 { 58 return NULL; 59 } 60 #endif /* CONFIG_MODULES */ 61 62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 64 65 /** 66 * trace_call_bpf - invoke BPF program 67 * @call: tracepoint event 68 * @ctx: opaque context pointer 69 * 70 * kprobe handlers execute BPF programs via this helper. 71 * Can be used from static tracepoints in the future. 72 * 73 * Return: BPF programs always return an integer which is interpreted by 74 * kprobe handler as: 75 * 0 - return from kprobe (event is filtered out) 76 * 1 - store kprobe event into ring buffer 77 * Other values are reserved and currently alias to 1 78 */ 79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 80 { 81 unsigned int ret; 82 83 if (in_nmi()) /* not supported yet */ 84 return 1; 85 86 cant_sleep(); 87 88 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 89 /* 90 * since some bpf program is already running on this cpu, 91 * don't call into another bpf program (same or different) 92 * and don't send kprobe event into ring-buffer, 93 * so return zero here 94 */ 95 ret = 0; 96 goto out; 97 } 98 99 /* 100 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 101 * to all call sites, we did a bpf_prog_array_valid() there to check 102 * whether call->prog_array is empty or not, which is 103 * a heurisitc to speed up execution. 104 * 105 * If bpf_prog_array_valid() fetched prog_array was 106 * non-NULL, we go into trace_call_bpf() and do the actual 107 * proper rcu_dereference() under RCU lock. 108 * If it turns out that prog_array is NULL then, we bail out. 109 * For the opposite, if the bpf_prog_array_valid() fetched pointer 110 * was NULL, you'll skip the prog_array with the risk of missing 111 * out of events when it was updated in between this and the 112 * rcu_dereference() which is accepted risk. 113 */ 114 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 115 116 out: 117 __this_cpu_dec(bpf_prog_active); 118 119 return ret; 120 } 121 122 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 123 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 124 { 125 regs_set_return_value(regs, rc); 126 override_function_with_return(regs); 127 return 0; 128 } 129 130 static const struct bpf_func_proto bpf_override_return_proto = { 131 .func = bpf_override_return, 132 .gpl_only = true, 133 .ret_type = RET_INTEGER, 134 .arg1_type = ARG_PTR_TO_CTX, 135 .arg2_type = ARG_ANYTHING, 136 }; 137 #endif 138 139 static __always_inline int 140 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 141 { 142 int ret; 143 144 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 145 if (unlikely(ret < 0)) 146 memset(dst, 0, size); 147 return ret; 148 } 149 150 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 151 const void __user *, unsafe_ptr) 152 { 153 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 154 } 155 156 const struct bpf_func_proto bpf_probe_read_user_proto = { 157 .func = bpf_probe_read_user, 158 .gpl_only = true, 159 .ret_type = RET_INTEGER, 160 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 161 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 162 .arg3_type = ARG_ANYTHING, 163 }; 164 165 static __always_inline int 166 bpf_probe_read_user_str_common(void *dst, u32 size, 167 const void __user *unsafe_ptr) 168 { 169 int ret; 170 171 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 172 if (unlikely(ret < 0)) 173 memset(dst, 0, size); 174 return ret; 175 } 176 177 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 178 const void __user *, unsafe_ptr) 179 { 180 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 181 } 182 183 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 184 .func = bpf_probe_read_user_str, 185 .gpl_only = true, 186 .ret_type = RET_INTEGER, 187 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 188 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 189 .arg3_type = ARG_ANYTHING, 190 }; 191 192 static __always_inline int 193 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 194 { 195 int ret = security_locked_down(LOCKDOWN_BPF_READ); 196 197 if (unlikely(ret < 0)) 198 goto fail; 199 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 200 if (unlikely(ret < 0)) 201 goto fail; 202 return ret; 203 fail: 204 memset(dst, 0, size); 205 return ret; 206 } 207 208 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 209 const void *, unsafe_ptr) 210 { 211 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 212 } 213 214 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 215 .func = bpf_probe_read_kernel, 216 .gpl_only = true, 217 .ret_type = RET_INTEGER, 218 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 219 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 220 .arg3_type = ARG_ANYTHING, 221 }; 222 223 static __always_inline int 224 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 225 { 226 int ret = security_locked_down(LOCKDOWN_BPF_READ); 227 228 if (unlikely(ret < 0)) 229 goto fail; 230 231 /* 232 * The strncpy_from_kernel_nofault() call will likely not fill the 233 * entire buffer, but that's okay in this circumstance as we're probing 234 * arbitrary memory anyway similar to bpf_probe_read_*() and might 235 * as well probe the stack. Thus, memory is explicitly cleared 236 * only in error case, so that improper users ignoring return 237 * code altogether don't copy garbage; otherwise length of string 238 * is returned that can be used for bpf_perf_event_output() et al. 239 */ 240 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 241 if (unlikely(ret < 0)) 242 goto fail; 243 244 return ret; 245 fail: 246 memset(dst, 0, size); 247 return ret; 248 } 249 250 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 251 const void *, unsafe_ptr) 252 { 253 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 254 } 255 256 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 257 .func = bpf_probe_read_kernel_str, 258 .gpl_only = true, 259 .ret_type = RET_INTEGER, 260 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 261 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 262 .arg3_type = ARG_ANYTHING, 263 }; 264 265 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 266 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 267 const void *, unsafe_ptr) 268 { 269 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 270 return bpf_probe_read_user_common(dst, size, 271 (__force void __user *)unsafe_ptr); 272 } 273 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 274 } 275 276 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 277 .func = bpf_probe_read_compat, 278 .gpl_only = true, 279 .ret_type = RET_INTEGER, 280 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 281 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 282 .arg3_type = ARG_ANYTHING, 283 }; 284 285 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 286 const void *, unsafe_ptr) 287 { 288 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 289 return bpf_probe_read_user_str_common(dst, size, 290 (__force void __user *)unsafe_ptr); 291 } 292 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 293 } 294 295 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 296 .func = bpf_probe_read_compat_str, 297 .gpl_only = true, 298 .ret_type = RET_INTEGER, 299 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 300 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 301 .arg3_type = ARG_ANYTHING, 302 }; 303 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 304 305 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 306 u32, size) 307 { 308 /* 309 * Ensure we're in user context which is safe for the helper to 310 * run. This helper has no business in a kthread. 311 * 312 * access_ok() should prevent writing to non-user memory, but in 313 * some situations (nommu, temporary switch, etc) access_ok() does 314 * not provide enough validation, hence the check on KERNEL_DS. 315 * 316 * nmi_uaccess_okay() ensures the probe is not run in an interim 317 * state, when the task or mm are switched. This is specifically 318 * required to prevent the use of temporary mm. 319 */ 320 321 if (unlikely(in_interrupt() || 322 current->flags & (PF_KTHREAD | PF_EXITING))) 323 return -EPERM; 324 if (unlikely(uaccess_kernel())) 325 return -EPERM; 326 if (unlikely(!nmi_uaccess_okay())) 327 return -EPERM; 328 329 return copy_to_user_nofault(unsafe_ptr, src, size); 330 } 331 332 static const struct bpf_func_proto bpf_probe_write_user_proto = { 333 .func = bpf_probe_write_user, 334 .gpl_only = true, 335 .ret_type = RET_INTEGER, 336 .arg1_type = ARG_ANYTHING, 337 .arg2_type = ARG_PTR_TO_MEM, 338 .arg3_type = ARG_CONST_SIZE, 339 }; 340 341 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 342 { 343 if (!capable(CAP_SYS_ADMIN)) 344 return NULL; 345 346 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 347 current->comm, task_pid_nr(current)); 348 349 return &bpf_probe_write_user_proto; 350 } 351 352 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 353 size_t bufsz) 354 { 355 void __user *user_ptr = (__force void __user *)unsafe_ptr; 356 357 buf[0] = 0; 358 359 switch (fmt_ptype) { 360 case 's': 361 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 362 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 363 strncpy_from_user_nofault(buf, user_ptr, bufsz); 364 break; 365 } 366 fallthrough; 367 #endif 368 case 'k': 369 strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 370 break; 371 case 'u': 372 strncpy_from_user_nofault(buf, user_ptr, bufsz); 373 break; 374 } 375 } 376 377 /* 378 * Only limited trace_printk() conversion specifiers allowed: 379 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pks %pus %s 380 */ 381 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 382 u64, arg2, u64, arg3) 383 { 384 int i, mod[3] = {}, fmt_cnt = 0; 385 char buf[64], fmt_ptype; 386 void *unsafe_ptr = NULL; 387 bool str_seen = false; 388 389 /* 390 * bpf_check()->check_func_arg()->check_stack_boundary() 391 * guarantees that fmt points to bpf program stack, 392 * fmt_size bytes of it were initialized and fmt_size > 0 393 */ 394 if (fmt[--fmt_size] != 0) 395 return -EINVAL; 396 397 /* check format string for allowed specifiers */ 398 for (i = 0; i < fmt_size; i++) { 399 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 400 return -EINVAL; 401 402 if (fmt[i] != '%') 403 continue; 404 405 if (fmt_cnt >= 3) 406 return -EINVAL; 407 408 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 409 i++; 410 if (fmt[i] == 'l') { 411 mod[fmt_cnt]++; 412 i++; 413 } else if (fmt[i] == 'p') { 414 mod[fmt_cnt]++; 415 if ((fmt[i + 1] == 'k' || 416 fmt[i + 1] == 'u') && 417 fmt[i + 2] == 's') { 418 fmt_ptype = fmt[i + 1]; 419 i += 2; 420 goto fmt_str; 421 } 422 423 /* disallow any further format extensions */ 424 if (fmt[i + 1] != 0 && 425 !isspace(fmt[i + 1]) && 426 !ispunct(fmt[i + 1])) 427 return -EINVAL; 428 429 goto fmt_next; 430 } else if (fmt[i] == 's') { 431 mod[fmt_cnt]++; 432 fmt_ptype = fmt[i]; 433 fmt_str: 434 if (str_seen) 435 /* allow only one '%s' per fmt string */ 436 return -EINVAL; 437 str_seen = true; 438 439 if (fmt[i + 1] != 0 && 440 !isspace(fmt[i + 1]) && 441 !ispunct(fmt[i + 1])) 442 return -EINVAL; 443 444 switch (fmt_cnt) { 445 case 0: 446 unsafe_ptr = (void *)(long)arg1; 447 arg1 = (long)buf; 448 break; 449 case 1: 450 unsafe_ptr = (void *)(long)arg2; 451 arg2 = (long)buf; 452 break; 453 case 2: 454 unsafe_ptr = (void *)(long)arg3; 455 arg3 = (long)buf; 456 break; 457 } 458 459 bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype, 460 sizeof(buf)); 461 goto fmt_next; 462 } 463 464 if (fmt[i] == 'l') { 465 mod[fmt_cnt]++; 466 i++; 467 } 468 469 if (fmt[i] != 'i' && fmt[i] != 'd' && 470 fmt[i] != 'u' && fmt[i] != 'x') 471 return -EINVAL; 472 fmt_next: 473 fmt_cnt++; 474 } 475 476 /* Horrid workaround for getting va_list handling working with different 477 * argument type combinations generically for 32 and 64 bit archs. 478 */ 479 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 480 #define __BPF_TP(...) \ 481 __trace_printk(0 /* Fake ip */, \ 482 fmt, ##__VA_ARGS__) 483 484 #define __BPF_ARG1_TP(...) \ 485 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 486 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 487 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 488 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 489 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 490 491 #define __BPF_ARG2_TP(...) \ 492 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 493 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 494 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 495 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 496 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 497 498 #define __BPF_ARG3_TP(...) \ 499 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 500 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 501 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 502 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 503 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 504 505 return __BPF_TP_EMIT(); 506 } 507 508 static const struct bpf_func_proto bpf_trace_printk_proto = { 509 .func = bpf_trace_printk, 510 .gpl_only = true, 511 .ret_type = RET_INTEGER, 512 .arg1_type = ARG_PTR_TO_MEM, 513 .arg2_type = ARG_CONST_SIZE, 514 }; 515 516 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 517 { 518 /* 519 * this program might be calling bpf_trace_printk, 520 * so allocate per-cpu printk buffers 521 */ 522 trace_printk_init_buffers(); 523 524 return &bpf_trace_printk_proto; 525 } 526 527 #define MAX_SEQ_PRINTF_VARARGS 12 528 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6 529 #define MAX_SEQ_PRINTF_STR_LEN 128 530 531 struct bpf_seq_printf_buf { 532 char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN]; 533 }; 534 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf); 535 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used); 536 537 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 538 const void *, data, u32, data_len) 539 { 540 int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0; 541 int i, buf_used, copy_size, num_args; 542 u64 params[MAX_SEQ_PRINTF_VARARGS]; 543 struct bpf_seq_printf_buf *bufs; 544 const u64 *args = data; 545 546 buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used); 547 if (WARN_ON_ONCE(buf_used > 1)) { 548 err = -EBUSY; 549 goto out; 550 } 551 552 bufs = this_cpu_ptr(&bpf_seq_printf_buf); 553 554 /* 555 * bpf_check()->check_func_arg()->check_stack_boundary() 556 * guarantees that fmt points to bpf program stack, 557 * fmt_size bytes of it were initialized and fmt_size > 0 558 */ 559 if (fmt[--fmt_size] != 0) 560 goto out; 561 562 if (data_len & 7) 563 goto out; 564 565 for (i = 0; i < fmt_size; i++) { 566 if (fmt[i] == '%') { 567 if (fmt[i + 1] == '%') 568 i++; 569 else if (!data || !data_len) 570 goto out; 571 } 572 } 573 574 num_args = data_len / 8; 575 576 /* check format string for allowed specifiers */ 577 for (i = 0; i < fmt_size; i++) { 578 /* only printable ascii for now. */ 579 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 580 err = -EINVAL; 581 goto out; 582 } 583 584 if (fmt[i] != '%') 585 continue; 586 587 if (fmt[i + 1] == '%') { 588 i++; 589 continue; 590 } 591 592 if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) { 593 err = -E2BIG; 594 goto out; 595 } 596 597 if (fmt_cnt >= num_args) { 598 err = -EINVAL; 599 goto out; 600 } 601 602 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 603 i++; 604 605 /* skip optional "[0 +-][num]" width formating field */ 606 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 607 fmt[i] == ' ') 608 i++; 609 if (fmt[i] >= '1' && fmt[i] <= '9') { 610 i++; 611 while (fmt[i] >= '0' && fmt[i] <= '9') 612 i++; 613 } 614 615 if (fmt[i] == 's') { 616 void *unsafe_ptr; 617 618 /* try our best to copy */ 619 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 620 err = -E2BIG; 621 goto out; 622 } 623 624 unsafe_ptr = (void *)(long)args[fmt_cnt]; 625 err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt], 626 unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN); 627 if (err < 0) 628 bufs->buf[memcpy_cnt][0] = '\0'; 629 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 630 631 fmt_cnt++; 632 memcpy_cnt++; 633 continue; 634 } 635 636 if (fmt[i] == 'p') { 637 if (fmt[i + 1] == 0 || 638 fmt[i + 1] == 'K' || 639 fmt[i + 1] == 'x') { 640 /* just kernel pointers */ 641 params[fmt_cnt] = args[fmt_cnt]; 642 fmt_cnt++; 643 continue; 644 } 645 646 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 647 if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') { 648 err = -EINVAL; 649 goto out; 650 } 651 if (fmt[i + 2] != '4' && fmt[i + 2] != '6') { 652 err = -EINVAL; 653 goto out; 654 } 655 656 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 657 err = -E2BIG; 658 goto out; 659 } 660 661 662 copy_size = (fmt[i + 2] == '4') ? 4 : 16; 663 664 err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt], 665 (void *) (long) args[fmt_cnt], 666 copy_size); 667 if (err < 0) 668 memset(bufs->buf[memcpy_cnt], 0, copy_size); 669 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 670 671 i += 2; 672 fmt_cnt++; 673 memcpy_cnt++; 674 continue; 675 } 676 677 if (fmt[i] == 'l') { 678 i++; 679 if (fmt[i] == 'l') 680 i++; 681 } 682 683 if (fmt[i] != 'i' && fmt[i] != 'd' && 684 fmt[i] != 'u' && fmt[i] != 'x') { 685 err = -EINVAL; 686 goto out; 687 } 688 689 params[fmt_cnt] = args[fmt_cnt]; 690 fmt_cnt++; 691 } 692 693 /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give 694 * all of them to seq_printf(). 695 */ 696 seq_printf(m, fmt, params[0], params[1], params[2], params[3], 697 params[4], params[5], params[6], params[7], params[8], 698 params[9], params[10], params[11]); 699 700 err = seq_has_overflowed(m) ? -EOVERFLOW : 0; 701 out: 702 this_cpu_dec(bpf_seq_printf_buf_used); 703 return err; 704 } 705 706 static int bpf_seq_printf_btf_ids[5]; 707 static const struct bpf_func_proto bpf_seq_printf_proto = { 708 .func = bpf_seq_printf, 709 .gpl_only = true, 710 .ret_type = RET_INTEGER, 711 .arg1_type = ARG_PTR_TO_BTF_ID, 712 .arg2_type = ARG_PTR_TO_MEM, 713 .arg3_type = ARG_CONST_SIZE, 714 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 715 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 716 .btf_id = bpf_seq_printf_btf_ids, 717 }; 718 719 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 720 { 721 return seq_write(m, data, len) ? -EOVERFLOW : 0; 722 } 723 724 static int bpf_seq_write_btf_ids[5]; 725 static const struct bpf_func_proto bpf_seq_write_proto = { 726 .func = bpf_seq_write, 727 .gpl_only = true, 728 .ret_type = RET_INTEGER, 729 .arg1_type = ARG_PTR_TO_BTF_ID, 730 .arg2_type = ARG_PTR_TO_MEM, 731 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 732 .btf_id = bpf_seq_write_btf_ids, 733 }; 734 735 static __always_inline int 736 get_map_perf_counter(struct bpf_map *map, u64 flags, 737 u64 *value, u64 *enabled, u64 *running) 738 { 739 struct bpf_array *array = container_of(map, struct bpf_array, map); 740 unsigned int cpu = smp_processor_id(); 741 u64 index = flags & BPF_F_INDEX_MASK; 742 struct bpf_event_entry *ee; 743 744 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 745 return -EINVAL; 746 if (index == BPF_F_CURRENT_CPU) 747 index = cpu; 748 if (unlikely(index >= array->map.max_entries)) 749 return -E2BIG; 750 751 ee = READ_ONCE(array->ptrs[index]); 752 if (!ee) 753 return -ENOENT; 754 755 return perf_event_read_local(ee->event, value, enabled, running); 756 } 757 758 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 759 { 760 u64 value = 0; 761 int err; 762 763 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 764 /* 765 * this api is ugly since we miss [-22..-2] range of valid 766 * counter values, but that's uapi 767 */ 768 if (err) 769 return err; 770 return value; 771 } 772 773 static const struct bpf_func_proto bpf_perf_event_read_proto = { 774 .func = bpf_perf_event_read, 775 .gpl_only = true, 776 .ret_type = RET_INTEGER, 777 .arg1_type = ARG_CONST_MAP_PTR, 778 .arg2_type = ARG_ANYTHING, 779 }; 780 781 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 782 struct bpf_perf_event_value *, buf, u32, size) 783 { 784 int err = -EINVAL; 785 786 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 787 goto clear; 788 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 789 &buf->running); 790 if (unlikely(err)) 791 goto clear; 792 return 0; 793 clear: 794 memset(buf, 0, size); 795 return err; 796 } 797 798 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 799 .func = bpf_perf_event_read_value, 800 .gpl_only = true, 801 .ret_type = RET_INTEGER, 802 .arg1_type = ARG_CONST_MAP_PTR, 803 .arg2_type = ARG_ANYTHING, 804 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 805 .arg4_type = ARG_CONST_SIZE, 806 }; 807 808 static __always_inline u64 809 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 810 u64 flags, struct perf_sample_data *sd) 811 { 812 struct bpf_array *array = container_of(map, struct bpf_array, map); 813 unsigned int cpu = smp_processor_id(); 814 u64 index = flags & BPF_F_INDEX_MASK; 815 struct bpf_event_entry *ee; 816 struct perf_event *event; 817 818 if (index == BPF_F_CURRENT_CPU) 819 index = cpu; 820 if (unlikely(index >= array->map.max_entries)) 821 return -E2BIG; 822 823 ee = READ_ONCE(array->ptrs[index]); 824 if (!ee) 825 return -ENOENT; 826 827 event = ee->event; 828 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 829 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 830 return -EINVAL; 831 832 if (unlikely(event->oncpu != cpu)) 833 return -EOPNOTSUPP; 834 835 return perf_event_output(event, sd, regs); 836 } 837 838 /* 839 * Support executing tracepoints in normal, irq, and nmi context that each call 840 * bpf_perf_event_output 841 */ 842 struct bpf_trace_sample_data { 843 struct perf_sample_data sds[3]; 844 }; 845 846 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 847 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 848 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 849 u64, flags, void *, data, u64, size) 850 { 851 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 852 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 853 struct perf_raw_record raw = { 854 .frag = { 855 .size = size, 856 .data = data, 857 }, 858 }; 859 struct perf_sample_data *sd; 860 int err; 861 862 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 863 err = -EBUSY; 864 goto out; 865 } 866 867 sd = &sds->sds[nest_level - 1]; 868 869 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 870 err = -EINVAL; 871 goto out; 872 } 873 874 perf_sample_data_init(sd, 0, 0); 875 sd->raw = &raw; 876 877 err = __bpf_perf_event_output(regs, map, flags, sd); 878 879 out: 880 this_cpu_dec(bpf_trace_nest_level); 881 return err; 882 } 883 884 static const struct bpf_func_proto bpf_perf_event_output_proto = { 885 .func = bpf_perf_event_output, 886 .gpl_only = true, 887 .ret_type = RET_INTEGER, 888 .arg1_type = ARG_PTR_TO_CTX, 889 .arg2_type = ARG_CONST_MAP_PTR, 890 .arg3_type = ARG_ANYTHING, 891 .arg4_type = ARG_PTR_TO_MEM, 892 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 893 }; 894 895 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 896 struct bpf_nested_pt_regs { 897 struct pt_regs regs[3]; 898 }; 899 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 900 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 901 902 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 903 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 904 { 905 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 906 struct perf_raw_frag frag = { 907 .copy = ctx_copy, 908 .size = ctx_size, 909 .data = ctx, 910 }; 911 struct perf_raw_record raw = { 912 .frag = { 913 { 914 .next = ctx_size ? &frag : NULL, 915 }, 916 .size = meta_size, 917 .data = meta, 918 }, 919 }; 920 struct perf_sample_data *sd; 921 struct pt_regs *regs; 922 u64 ret; 923 924 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 925 ret = -EBUSY; 926 goto out; 927 } 928 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 929 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 930 931 perf_fetch_caller_regs(regs); 932 perf_sample_data_init(sd, 0, 0); 933 sd->raw = &raw; 934 935 ret = __bpf_perf_event_output(regs, map, flags, sd); 936 out: 937 this_cpu_dec(bpf_event_output_nest_level); 938 return ret; 939 } 940 941 BPF_CALL_0(bpf_get_current_task) 942 { 943 return (long) current; 944 } 945 946 const struct bpf_func_proto bpf_get_current_task_proto = { 947 .func = bpf_get_current_task, 948 .gpl_only = true, 949 .ret_type = RET_INTEGER, 950 }; 951 952 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 953 { 954 struct bpf_array *array = container_of(map, struct bpf_array, map); 955 struct cgroup *cgrp; 956 957 if (unlikely(idx >= array->map.max_entries)) 958 return -E2BIG; 959 960 cgrp = READ_ONCE(array->ptrs[idx]); 961 if (unlikely(!cgrp)) 962 return -EAGAIN; 963 964 return task_under_cgroup_hierarchy(current, cgrp); 965 } 966 967 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 968 .func = bpf_current_task_under_cgroup, 969 .gpl_only = false, 970 .ret_type = RET_INTEGER, 971 .arg1_type = ARG_CONST_MAP_PTR, 972 .arg2_type = ARG_ANYTHING, 973 }; 974 975 struct send_signal_irq_work { 976 struct irq_work irq_work; 977 struct task_struct *task; 978 u32 sig; 979 enum pid_type type; 980 }; 981 982 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 983 984 static void do_bpf_send_signal(struct irq_work *entry) 985 { 986 struct send_signal_irq_work *work; 987 988 work = container_of(entry, struct send_signal_irq_work, irq_work); 989 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 990 } 991 992 static int bpf_send_signal_common(u32 sig, enum pid_type type) 993 { 994 struct send_signal_irq_work *work = NULL; 995 996 /* Similar to bpf_probe_write_user, task needs to be 997 * in a sound condition and kernel memory access be 998 * permitted in order to send signal to the current 999 * task. 1000 */ 1001 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 1002 return -EPERM; 1003 if (unlikely(uaccess_kernel())) 1004 return -EPERM; 1005 if (unlikely(!nmi_uaccess_okay())) 1006 return -EPERM; 1007 1008 if (irqs_disabled()) { 1009 /* Do an early check on signal validity. Otherwise, 1010 * the error is lost in deferred irq_work. 1011 */ 1012 if (unlikely(!valid_signal(sig))) 1013 return -EINVAL; 1014 1015 work = this_cpu_ptr(&send_signal_work); 1016 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) 1017 return -EBUSY; 1018 1019 /* Add the current task, which is the target of sending signal, 1020 * to the irq_work. The current task may change when queued 1021 * irq works get executed. 1022 */ 1023 work->task = current; 1024 work->sig = sig; 1025 work->type = type; 1026 irq_work_queue(&work->irq_work); 1027 return 0; 1028 } 1029 1030 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 1031 } 1032 1033 BPF_CALL_1(bpf_send_signal, u32, sig) 1034 { 1035 return bpf_send_signal_common(sig, PIDTYPE_TGID); 1036 } 1037 1038 static const struct bpf_func_proto bpf_send_signal_proto = { 1039 .func = bpf_send_signal, 1040 .gpl_only = false, 1041 .ret_type = RET_INTEGER, 1042 .arg1_type = ARG_ANYTHING, 1043 }; 1044 1045 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 1046 { 1047 return bpf_send_signal_common(sig, PIDTYPE_PID); 1048 } 1049 1050 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 1051 .func = bpf_send_signal_thread, 1052 .gpl_only = false, 1053 .ret_type = RET_INTEGER, 1054 .arg1_type = ARG_ANYTHING, 1055 }; 1056 1057 const struct bpf_func_proto * 1058 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1059 { 1060 switch (func_id) { 1061 case BPF_FUNC_map_lookup_elem: 1062 return &bpf_map_lookup_elem_proto; 1063 case BPF_FUNC_map_update_elem: 1064 return &bpf_map_update_elem_proto; 1065 case BPF_FUNC_map_delete_elem: 1066 return &bpf_map_delete_elem_proto; 1067 case BPF_FUNC_map_push_elem: 1068 return &bpf_map_push_elem_proto; 1069 case BPF_FUNC_map_pop_elem: 1070 return &bpf_map_pop_elem_proto; 1071 case BPF_FUNC_map_peek_elem: 1072 return &bpf_map_peek_elem_proto; 1073 case BPF_FUNC_ktime_get_ns: 1074 return &bpf_ktime_get_ns_proto; 1075 case BPF_FUNC_ktime_get_boot_ns: 1076 return &bpf_ktime_get_boot_ns_proto; 1077 case BPF_FUNC_tail_call: 1078 return &bpf_tail_call_proto; 1079 case BPF_FUNC_get_current_pid_tgid: 1080 return &bpf_get_current_pid_tgid_proto; 1081 case BPF_FUNC_get_current_task: 1082 return &bpf_get_current_task_proto; 1083 case BPF_FUNC_get_current_uid_gid: 1084 return &bpf_get_current_uid_gid_proto; 1085 case BPF_FUNC_get_current_comm: 1086 return &bpf_get_current_comm_proto; 1087 case BPF_FUNC_trace_printk: 1088 return bpf_get_trace_printk_proto(); 1089 case BPF_FUNC_get_smp_processor_id: 1090 return &bpf_get_smp_processor_id_proto; 1091 case BPF_FUNC_get_numa_node_id: 1092 return &bpf_get_numa_node_id_proto; 1093 case BPF_FUNC_perf_event_read: 1094 return &bpf_perf_event_read_proto; 1095 case BPF_FUNC_probe_write_user: 1096 return bpf_get_probe_write_proto(); 1097 case BPF_FUNC_current_task_under_cgroup: 1098 return &bpf_current_task_under_cgroup_proto; 1099 case BPF_FUNC_get_prandom_u32: 1100 return &bpf_get_prandom_u32_proto; 1101 case BPF_FUNC_probe_read_user: 1102 return &bpf_probe_read_user_proto; 1103 case BPF_FUNC_probe_read_kernel: 1104 return &bpf_probe_read_kernel_proto; 1105 case BPF_FUNC_probe_read_user_str: 1106 return &bpf_probe_read_user_str_proto; 1107 case BPF_FUNC_probe_read_kernel_str: 1108 return &bpf_probe_read_kernel_str_proto; 1109 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1110 case BPF_FUNC_probe_read: 1111 return &bpf_probe_read_compat_proto; 1112 case BPF_FUNC_probe_read_str: 1113 return &bpf_probe_read_compat_str_proto; 1114 #endif 1115 #ifdef CONFIG_CGROUPS 1116 case BPF_FUNC_get_current_cgroup_id: 1117 return &bpf_get_current_cgroup_id_proto; 1118 #endif 1119 case BPF_FUNC_send_signal: 1120 return &bpf_send_signal_proto; 1121 case BPF_FUNC_send_signal_thread: 1122 return &bpf_send_signal_thread_proto; 1123 case BPF_FUNC_perf_event_read_value: 1124 return &bpf_perf_event_read_value_proto; 1125 case BPF_FUNC_get_ns_current_pid_tgid: 1126 return &bpf_get_ns_current_pid_tgid_proto; 1127 case BPF_FUNC_ringbuf_output: 1128 return &bpf_ringbuf_output_proto; 1129 case BPF_FUNC_ringbuf_reserve: 1130 return &bpf_ringbuf_reserve_proto; 1131 case BPF_FUNC_ringbuf_submit: 1132 return &bpf_ringbuf_submit_proto; 1133 case BPF_FUNC_ringbuf_discard: 1134 return &bpf_ringbuf_discard_proto; 1135 case BPF_FUNC_ringbuf_query: 1136 return &bpf_ringbuf_query_proto; 1137 default: 1138 return NULL; 1139 } 1140 } 1141 1142 static const struct bpf_func_proto * 1143 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1144 { 1145 switch (func_id) { 1146 case BPF_FUNC_perf_event_output: 1147 return &bpf_perf_event_output_proto; 1148 case BPF_FUNC_get_stackid: 1149 return &bpf_get_stackid_proto; 1150 case BPF_FUNC_get_stack: 1151 return &bpf_get_stack_proto; 1152 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1153 case BPF_FUNC_override_return: 1154 return &bpf_override_return_proto; 1155 #endif 1156 default: 1157 return bpf_tracing_func_proto(func_id, prog); 1158 } 1159 } 1160 1161 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1162 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1163 const struct bpf_prog *prog, 1164 struct bpf_insn_access_aux *info) 1165 { 1166 if (off < 0 || off >= sizeof(struct pt_regs)) 1167 return false; 1168 if (type != BPF_READ) 1169 return false; 1170 if (off % size != 0) 1171 return false; 1172 /* 1173 * Assertion for 32 bit to make sure last 8 byte access 1174 * (BPF_DW) to the last 4 byte member is disallowed. 1175 */ 1176 if (off + size > sizeof(struct pt_regs)) 1177 return false; 1178 1179 return true; 1180 } 1181 1182 const struct bpf_verifier_ops kprobe_verifier_ops = { 1183 .get_func_proto = kprobe_prog_func_proto, 1184 .is_valid_access = kprobe_prog_is_valid_access, 1185 }; 1186 1187 const struct bpf_prog_ops kprobe_prog_ops = { 1188 }; 1189 1190 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1191 u64, flags, void *, data, u64, size) 1192 { 1193 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1194 1195 /* 1196 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1197 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1198 * from there and call the same bpf_perf_event_output() helper inline. 1199 */ 1200 return ____bpf_perf_event_output(regs, map, flags, data, size); 1201 } 1202 1203 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1204 .func = bpf_perf_event_output_tp, 1205 .gpl_only = true, 1206 .ret_type = RET_INTEGER, 1207 .arg1_type = ARG_PTR_TO_CTX, 1208 .arg2_type = ARG_CONST_MAP_PTR, 1209 .arg3_type = ARG_ANYTHING, 1210 .arg4_type = ARG_PTR_TO_MEM, 1211 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1212 }; 1213 1214 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1215 u64, flags) 1216 { 1217 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1218 1219 /* 1220 * Same comment as in bpf_perf_event_output_tp(), only that this time 1221 * the other helper's function body cannot be inlined due to being 1222 * external, thus we need to call raw helper function. 1223 */ 1224 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1225 flags, 0, 0); 1226 } 1227 1228 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1229 .func = bpf_get_stackid_tp, 1230 .gpl_only = true, 1231 .ret_type = RET_INTEGER, 1232 .arg1_type = ARG_PTR_TO_CTX, 1233 .arg2_type = ARG_CONST_MAP_PTR, 1234 .arg3_type = ARG_ANYTHING, 1235 }; 1236 1237 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1238 u64, flags) 1239 { 1240 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1241 1242 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1243 (unsigned long) size, flags, 0); 1244 } 1245 1246 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1247 .func = bpf_get_stack_tp, 1248 .gpl_only = true, 1249 .ret_type = RET_INTEGER, 1250 .arg1_type = ARG_PTR_TO_CTX, 1251 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1252 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1253 .arg4_type = ARG_ANYTHING, 1254 }; 1255 1256 static const struct bpf_func_proto * 1257 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1258 { 1259 switch (func_id) { 1260 case BPF_FUNC_perf_event_output: 1261 return &bpf_perf_event_output_proto_tp; 1262 case BPF_FUNC_get_stackid: 1263 return &bpf_get_stackid_proto_tp; 1264 case BPF_FUNC_get_stack: 1265 return &bpf_get_stack_proto_tp; 1266 default: 1267 return bpf_tracing_func_proto(func_id, prog); 1268 } 1269 } 1270 1271 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1272 const struct bpf_prog *prog, 1273 struct bpf_insn_access_aux *info) 1274 { 1275 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1276 return false; 1277 if (type != BPF_READ) 1278 return false; 1279 if (off % size != 0) 1280 return false; 1281 1282 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1283 return true; 1284 } 1285 1286 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1287 .get_func_proto = tp_prog_func_proto, 1288 .is_valid_access = tp_prog_is_valid_access, 1289 }; 1290 1291 const struct bpf_prog_ops tracepoint_prog_ops = { 1292 }; 1293 1294 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1295 struct bpf_perf_event_value *, buf, u32, size) 1296 { 1297 int err = -EINVAL; 1298 1299 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1300 goto clear; 1301 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1302 &buf->running); 1303 if (unlikely(err)) 1304 goto clear; 1305 return 0; 1306 clear: 1307 memset(buf, 0, size); 1308 return err; 1309 } 1310 1311 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1312 .func = bpf_perf_prog_read_value, 1313 .gpl_only = true, 1314 .ret_type = RET_INTEGER, 1315 .arg1_type = ARG_PTR_TO_CTX, 1316 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1317 .arg3_type = ARG_CONST_SIZE, 1318 }; 1319 1320 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1321 void *, buf, u32, size, u64, flags) 1322 { 1323 #ifndef CONFIG_X86 1324 return -ENOENT; 1325 #else 1326 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1327 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1328 u32 to_copy; 1329 1330 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1331 return -EINVAL; 1332 1333 if (unlikely(!br_stack)) 1334 return -EINVAL; 1335 1336 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1337 return br_stack->nr * br_entry_size; 1338 1339 if (!buf || (size % br_entry_size != 0)) 1340 return -EINVAL; 1341 1342 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1343 memcpy(buf, br_stack->entries, to_copy); 1344 1345 return to_copy; 1346 #endif 1347 } 1348 1349 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1350 .func = bpf_read_branch_records, 1351 .gpl_only = true, 1352 .ret_type = RET_INTEGER, 1353 .arg1_type = ARG_PTR_TO_CTX, 1354 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1355 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1356 .arg4_type = ARG_ANYTHING, 1357 }; 1358 1359 static const struct bpf_func_proto * 1360 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1361 { 1362 switch (func_id) { 1363 case BPF_FUNC_perf_event_output: 1364 return &bpf_perf_event_output_proto_tp; 1365 case BPF_FUNC_get_stackid: 1366 return &bpf_get_stackid_proto_tp; 1367 case BPF_FUNC_get_stack: 1368 return &bpf_get_stack_proto_tp; 1369 case BPF_FUNC_perf_prog_read_value: 1370 return &bpf_perf_prog_read_value_proto; 1371 case BPF_FUNC_read_branch_records: 1372 return &bpf_read_branch_records_proto; 1373 default: 1374 return bpf_tracing_func_proto(func_id, prog); 1375 } 1376 } 1377 1378 /* 1379 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1380 * to avoid potential recursive reuse issue when/if tracepoints are added 1381 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1382 * 1383 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1384 * in normal, irq, and nmi context. 1385 */ 1386 struct bpf_raw_tp_regs { 1387 struct pt_regs regs[3]; 1388 }; 1389 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1390 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1391 static struct pt_regs *get_bpf_raw_tp_regs(void) 1392 { 1393 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1394 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1395 1396 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1397 this_cpu_dec(bpf_raw_tp_nest_level); 1398 return ERR_PTR(-EBUSY); 1399 } 1400 1401 return &tp_regs->regs[nest_level - 1]; 1402 } 1403 1404 static void put_bpf_raw_tp_regs(void) 1405 { 1406 this_cpu_dec(bpf_raw_tp_nest_level); 1407 } 1408 1409 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1410 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1411 { 1412 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1413 int ret; 1414 1415 if (IS_ERR(regs)) 1416 return PTR_ERR(regs); 1417 1418 perf_fetch_caller_regs(regs); 1419 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1420 1421 put_bpf_raw_tp_regs(); 1422 return ret; 1423 } 1424 1425 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1426 .func = bpf_perf_event_output_raw_tp, 1427 .gpl_only = true, 1428 .ret_type = RET_INTEGER, 1429 .arg1_type = ARG_PTR_TO_CTX, 1430 .arg2_type = ARG_CONST_MAP_PTR, 1431 .arg3_type = ARG_ANYTHING, 1432 .arg4_type = ARG_PTR_TO_MEM, 1433 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1434 }; 1435 1436 extern const struct bpf_func_proto bpf_skb_output_proto; 1437 extern const struct bpf_func_proto bpf_xdp_output_proto; 1438 1439 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1440 struct bpf_map *, map, u64, flags) 1441 { 1442 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1443 int ret; 1444 1445 if (IS_ERR(regs)) 1446 return PTR_ERR(regs); 1447 1448 perf_fetch_caller_regs(regs); 1449 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1450 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1451 flags, 0, 0); 1452 put_bpf_raw_tp_regs(); 1453 return ret; 1454 } 1455 1456 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1457 .func = bpf_get_stackid_raw_tp, 1458 .gpl_only = true, 1459 .ret_type = RET_INTEGER, 1460 .arg1_type = ARG_PTR_TO_CTX, 1461 .arg2_type = ARG_CONST_MAP_PTR, 1462 .arg3_type = ARG_ANYTHING, 1463 }; 1464 1465 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1466 void *, buf, u32, size, u64, flags) 1467 { 1468 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1469 int ret; 1470 1471 if (IS_ERR(regs)) 1472 return PTR_ERR(regs); 1473 1474 perf_fetch_caller_regs(regs); 1475 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1476 (unsigned long) size, flags, 0); 1477 put_bpf_raw_tp_regs(); 1478 return ret; 1479 } 1480 1481 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1482 .func = bpf_get_stack_raw_tp, 1483 .gpl_only = true, 1484 .ret_type = RET_INTEGER, 1485 .arg1_type = ARG_PTR_TO_CTX, 1486 .arg2_type = ARG_PTR_TO_MEM, 1487 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1488 .arg4_type = ARG_ANYTHING, 1489 }; 1490 1491 static const struct bpf_func_proto * 1492 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1493 { 1494 switch (func_id) { 1495 case BPF_FUNC_perf_event_output: 1496 return &bpf_perf_event_output_proto_raw_tp; 1497 case BPF_FUNC_get_stackid: 1498 return &bpf_get_stackid_proto_raw_tp; 1499 case BPF_FUNC_get_stack: 1500 return &bpf_get_stack_proto_raw_tp; 1501 default: 1502 return bpf_tracing_func_proto(func_id, prog); 1503 } 1504 } 1505 1506 const struct bpf_func_proto * 1507 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1508 { 1509 switch (func_id) { 1510 #ifdef CONFIG_NET 1511 case BPF_FUNC_skb_output: 1512 return &bpf_skb_output_proto; 1513 case BPF_FUNC_xdp_output: 1514 return &bpf_xdp_output_proto; 1515 #endif 1516 case BPF_FUNC_seq_printf: 1517 return prog->expected_attach_type == BPF_TRACE_ITER ? 1518 &bpf_seq_printf_proto : 1519 NULL; 1520 case BPF_FUNC_seq_write: 1521 return prog->expected_attach_type == BPF_TRACE_ITER ? 1522 &bpf_seq_write_proto : 1523 NULL; 1524 default: 1525 return raw_tp_prog_func_proto(func_id, prog); 1526 } 1527 } 1528 1529 static bool raw_tp_prog_is_valid_access(int off, int size, 1530 enum bpf_access_type type, 1531 const struct bpf_prog *prog, 1532 struct bpf_insn_access_aux *info) 1533 { 1534 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1535 return false; 1536 if (type != BPF_READ) 1537 return false; 1538 if (off % size != 0) 1539 return false; 1540 return true; 1541 } 1542 1543 static bool tracing_prog_is_valid_access(int off, int size, 1544 enum bpf_access_type type, 1545 const struct bpf_prog *prog, 1546 struct bpf_insn_access_aux *info) 1547 { 1548 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1549 return false; 1550 if (type != BPF_READ) 1551 return false; 1552 if (off % size != 0) 1553 return false; 1554 return btf_ctx_access(off, size, type, prog, info); 1555 } 1556 1557 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1558 const union bpf_attr *kattr, 1559 union bpf_attr __user *uattr) 1560 { 1561 return -ENOTSUPP; 1562 } 1563 1564 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1565 .get_func_proto = raw_tp_prog_func_proto, 1566 .is_valid_access = raw_tp_prog_is_valid_access, 1567 }; 1568 1569 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1570 }; 1571 1572 const struct bpf_verifier_ops tracing_verifier_ops = { 1573 .get_func_proto = tracing_prog_func_proto, 1574 .is_valid_access = tracing_prog_is_valid_access, 1575 }; 1576 1577 const struct bpf_prog_ops tracing_prog_ops = { 1578 .test_run = bpf_prog_test_run_tracing, 1579 }; 1580 1581 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1582 enum bpf_access_type type, 1583 const struct bpf_prog *prog, 1584 struct bpf_insn_access_aux *info) 1585 { 1586 if (off == 0) { 1587 if (size != sizeof(u64) || type != BPF_READ) 1588 return false; 1589 info->reg_type = PTR_TO_TP_BUFFER; 1590 } 1591 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1592 } 1593 1594 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1595 .get_func_proto = raw_tp_prog_func_proto, 1596 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1597 }; 1598 1599 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1600 }; 1601 1602 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1603 const struct bpf_prog *prog, 1604 struct bpf_insn_access_aux *info) 1605 { 1606 const int size_u64 = sizeof(u64); 1607 1608 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1609 return false; 1610 if (type != BPF_READ) 1611 return false; 1612 if (off % size != 0) { 1613 if (sizeof(unsigned long) != 4) 1614 return false; 1615 if (size != 8) 1616 return false; 1617 if (off % size != 4) 1618 return false; 1619 } 1620 1621 switch (off) { 1622 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1623 bpf_ctx_record_field_size(info, size_u64); 1624 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1625 return false; 1626 break; 1627 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1628 bpf_ctx_record_field_size(info, size_u64); 1629 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1630 return false; 1631 break; 1632 default: 1633 if (size != sizeof(long)) 1634 return false; 1635 } 1636 1637 return true; 1638 } 1639 1640 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1641 const struct bpf_insn *si, 1642 struct bpf_insn *insn_buf, 1643 struct bpf_prog *prog, u32 *target_size) 1644 { 1645 struct bpf_insn *insn = insn_buf; 1646 1647 switch (si->off) { 1648 case offsetof(struct bpf_perf_event_data, sample_period): 1649 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1650 data), si->dst_reg, si->src_reg, 1651 offsetof(struct bpf_perf_event_data_kern, data)); 1652 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1653 bpf_target_off(struct perf_sample_data, period, 8, 1654 target_size)); 1655 break; 1656 case offsetof(struct bpf_perf_event_data, addr): 1657 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1658 data), si->dst_reg, si->src_reg, 1659 offsetof(struct bpf_perf_event_data_kern, data)); 1660 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1661 bpf_target_off(struct perf_sample_data, addr, 8, 1662 target_size)); 1663 break; 1664 default: 1665 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1666 regs), si->dst_reg, si->src_reg, 1667 offsetof(struct bpf_perf_event_data_kern, regs)); 1668 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1669 si->off); 1670 break; 1671 } 1672 1673 return insn - insn_buf; 1674 } 1675 1676 const struct bpf_verifier_ops perf_event_verifier_ops = { 1677 .get_func_proto = pe_prog_func_proto, 1678 .is_valid_access = pe_prog_is_valid_access, 1679 .convert_ctx_access = pe_prog_convert_ctx_access, 1680 }; 1681 1682 const struct bpf_prog_ops perf_event_prog_ops = { 1683 }; 1684 1685 static DEFINE_MUTEX(bpf_event_mutex); 1686 1687 #define BPF_TRACE_MAX_PROGS 64 1688 1689 int perf_event_attach_bpf_prog(struct perf_event *event, 1690 struct bpf_prog *prog) 1691 { 1692 struct bpf_prog_array *old_array; 1693 struct bpf_prog_array *new_array; 1694 int ret = -EEXIST; 1695 1696 /* 1697 * Kprobe override only works if they are on the function entry, 1698 * and only if they are on the opt-in list. 1699 */ 1700 if (prog->kprobe_override && 1701 (!trace_kprobe_on_func_entry(event->tp_event) || 1702 !trace_kprobe_error_injectable(event->tp_event))) 1703 return -EINVAL; 1704 1705 mutex_lock(&bpf_event_mutex); 1706 1707 if (event->prog) 1708 goto unlock; 1709 1710 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1711 if (old_array && 1712 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1713 ret = -E2BIG; 1714 goto unlock; 1715 } 1716 1717 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1718 if (ret < 0) 1719 goto unlock; 1720 1721 /* set the new array to event->tp_event and set event->prog */ 1722 event->prog = prog; 1723 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1724 bpf_prog_array_free(old_array); 1725 1726 unlock: 1727 mutex_unlock(&bpf_event_mutex); 1728 return ret; 1729 } 1730 1731 void perf_event_detach_bpf_prog(struct perf_event *event) 1732 { 1733 struct bpf_prog_array *old_array; 1734 struct bpf_prog_array *new_array; 1735 int ret; 1736 1737 mutex_lock(&bpf_event_mutex); 1738 1739 if (!event->prog) 1740 goto unlock; 1741 1742 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1743 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1744 if (ret == -ENOENT) 1745 goto unlock; 1746 if (ret < 0) { 1747 bpf_prog_array_delete_safe(old_array, event->prog); 1748 } else { 1749 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1750 bpf_prog_array_free(old_array); 1751 } 1752 1753 bpf_prog_put(event->prog); 1754 event->prog = NULL; 1755 1756 unlock: 1757 mutex_unlock(&bpf_event_mutex); 1758 } 1759 1760 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1761 { 1762 struct perf_event_query_bpf __user *uquery = info; 1763 struct perf_event_query_bpf query = {}; 1764 struct bpf_prog_array *progs; 1765 u32 *ids, prog_cnt, ids_len; 1766 int ret; 1767 1768 if (!perfmon_capable()) 1769 return -EPERM; 1770 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1771 return -EINVAL; 1772 if (copy_from_user(&query, uquery, sizeof(query))) 1773 return -EFAULT; 1774 1775 ids_len = query.ids_len; 1776 if (ids_len > BPF_TRACE_MAX_PROGS) 1777 return -E2BIG; 1778 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1779 if (!ids) 1780 return -ENOMEM; 1781 /* 1782 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1783 * is required when user only wants to check for uquery->prog_cnt. 1784 * There is no need to check for it since the case is handled 1785 * gracefully in bpf_prog_array_copy_info. 1786 */ 1787 1788 mutex_lock(&bpf_event_mutex); 1789 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1790 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1791 mutex_unlock(&bpf_event_mutex); 1792 1793 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1794 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1795 ret = -EFAULT; 1796 1797 kfree(ids); 1798 return ret; 1799 } 1800 1801 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1802 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1803 1804 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1805 { 1806 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1807 1808 for (; btp < __stop__bpf_raw_tp; btp++) { 1809 if (!strcmp(btp->tp->name, name)) 1810 return btp; 1811 } 1812 1813 return bpf_get_raw_tracepoint_module(name); 1814 } 1815 1816 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1817 { 1818 struct module *mod = __module_address((unsigned long)btp); 1819 1820 if (mod) 1821 module_put(mod); 1822 } 1823 1824 static __always_inline 1825 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1826 { 1827 cant_sleep(); 1828 rcu_read_lock(); 1829 (void) BPF_PROG_RUN(prog, args); 1830 rcu_read_unlock(); 1831 } 1832 1833 #define UNPACK(...) __VA_ARGS__ 1834 #define REPEAT_1(FN, DL, X, ...) FN(X) 1835 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1836 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1837 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1838 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1839 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1840 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1841 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1842 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1843 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1844 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1845 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1846 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1847 1848 #define SARG(X) u64 arg##X 1849 #define COPY(X) args[X] = arg##X 1850 1851 #define __DL_COM (,) 1852 #define __DL_SEM (;) 1853 1854 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1855 1856 #define BPF_TRACE_DEFN_x(x) \ 1857 void bpf_trace_run##x(struct bpf_prog *prog, \ 1858 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1859 { \ 1860 u64 args[x]; \ 1861 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1862 __bpf_trace_run(prog, args); \ 1863 } \ 1864 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1865 BPF_TRACE_DEFN_x(1); 1866 BPF_TRACE_DEFN_x(2); 1867 BPF_TRACE_DEFN_x(3); 1868 BPF_TRACE_DEFN_x(4); 1869 BPF_TRACE_DEFN_x(5); 1870 BPF_TRACE_DEFN_x(6); 1871 BPF_TRACE_DEFN_x(7); 1872 BPF_TRACE_DEFN_x(8); 1873 BPF_TRACE_DEFN_x(9); 1874 BPF_TRACE_DEFN_x(10); 1875 BPF_TRACE_DEFN_x(11); 1876 BPF_TRACE_DEFN_x(12); 1877 1878 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1879 { 1880 struct tracepoint *tp = btp->tp; 1881 1882 /* 1883 * check that program doesn't access arguments beyond what's 1884 * available in this tracepoint 1885 */ 1886 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1887 return -EINVAL; 1888 1889 if (prog->aux->max_tp_access > btp->writable_size) 1890 return -EINVAL; 1891 1892 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1893 } 1894 1895 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1896 { 1897 return __bpf_probe_register(btp, prog); 1898 } 1899 1900 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1901 { 1902 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1903 } 1904 1905 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1906 u32 *fd_type, const char **buf, 1907 u64 *probe_offset, u64 *probe_addr) 1908 { 1909 bool is_tracepoint, is_syscall_tp; 1910 struct bpf_prog *prog; 1911 int flags, err = 0; 1912 1913 prog = event->prog; 1914 if (!prog) 1915 return -ENOENT; 1916 1917 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1918 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1919 return -EOPNOTSUPP; 1920 1921 *prog_id = prog->aux->id; 1922 flags = event->tp_event->flags; 1923 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1924 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1925 1926 if (is_tracepoint || is_syscall_tp) { 1927 *buf = is_tracepoint ? event->tp_event->tp->name 1928 : event->tp_event->name; 1929 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1930 *probe_offset = 0x0; 1931 *probe_addr = 0x0; 1932 } else { 1933 /* kprobe/uprobe */ 1934 err = -EOPNOTSUPP; 1935 #ifdef CONFIG_KPROBE_EVENTS 1936 if (flags & TRACE_EVENT_FL_KPROBE) 1937 err = bpf_get_kprobe_info(event, fd_type, buf, 1938 probe_offset, probe_addr, 1939 event->attr.type == PERF_TYPE_TRACEPOINT); 1940 #endif 1941 #ifdef CONFIG_UPROBE_EVENTS 1942 if (flags & TRACE_EVENT_FL_UPROBE) 1943 err = bpf_get_uprobe_info(event, fd_type, buf, 1944 probe_offset, 1945 event->attr.type == PERF_TYPE_TRACEPOINT); 1946 #endif 1947 } 1948 1949 return err; 1950 } 1951 1952 static int __init send_signal_irq_work_init(void) 1953 { 1954 int cpu; 1955 struct send_signal_irq_work *work; 1956 1957 for_each_possible_cpu(cpu) { 1958 work = per_cpu_ptr(&send_signal_work, cpu); 1959 init_irq_work(&work->irq_work, do_bpf_send_signal); 1960 } 1961 return 0; 1962 } 1963 1964 subsys_initcall(send_signal_irq_work_init); 1965 1966 #ifdef CONFIG_MODULES 1967 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1968 void *module) 1969 { 1970 struct bpf_trace_module *btm, *tmp; 1971 struct module *mod = module; 1972 1973 if (mod->num_bpf_raw_events == 0 || 1974 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1975 return 0; 1976 1977 mutex_lock(&bpf_module_mutex); 1978 1979 switch (op) { 1980 case MODULE_STATE_COMING: 1981 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1982 if (btm) { 1983 btm->module = module; 1984 list_add(&btm->list, &bpf_trace_modules); 1985 } 1986 break; 1987 case MODULE_STATE_GOING: 1988 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1989 if (btm->module == module) { 1990 list_del(&btm->list); 1991 kfree(btm); 1992 break; 1993 } 1994 } 1995 break; 1996 } 1997 1998 mutex_unlock(&bpf_module_mutex); 1999 2000 return 0; 2001 } 2002 2003 static struct notifier_block bpf_module_nb = { 2004 .notifier_call = bpf_event_notify, 2005 }; 2006 2007 static int __init bpf_event_init(void) 2008 { 2009 register_module_notifier(&bpf_module_nb); 2010 return 0; 2011 } 2012 2013 fs_initcall(bpf_event_init); 2014 #endif /* CONFIG_MODULES */ 2015