xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/syscalls.h>
16 #include <linux/error-injection.h>
17 #include <linux/btf_ids.h>
18 
19 #include <asm/tlb.h>
20 
21 #include "trace_probe.h"
22 #include "trace.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include "bpf_trace.h"
26 
27 #define bpf_event_rcu_dereference(p)					\
28 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
29 
30 #ifdef CONFIG_MODULES
31 struct bpf_trace_module {
32 	struct module *module;
33 	struct list_head list;
34 };
35 
36 static LIST_HEAD(bpf_trace_modules);
37 static DEFINE_MUTEX(bpf_module_mutex);
38 
39 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
40 {
41 	struct bpf_raw_event_map *btp, *ret = NULL;
42 	struct bpf_trace_module *btm;
43 	unsigned int i;
44 
45 	mutex_lock(&bpf_module_mutex);
46 	list_for_each_entry(btm, &bpf_trace_modules, list) {
47 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
48 			btp = &btm->module->bpf_raw_events[i];
49 			if (!strcmp(btp->tp->name, name)) {
50 				if (try_module_get(btm->module))
51 					ret = btp;
52 				goto out;
53 			}
54 		}
55 	}
56 out:
57 	mutex_unlock(&bpf_module_mutex);
58 	return ret;
59 }
60 #else
61 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
62 {
63 	return NULL;
64 }
65 #endif /* CONFIG_MODULES */
66 
67 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
68 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
69 
70 /**
71  * trace_call_bpf - invoke BPF program
72  * @call: tracepoint event
73  * @ctx: opaque context pointer
74  *
75  * kprobe handlers execute BPF programs via this helper.
76  * Can be used from static tracepoints in the future.
77  *
78  * Return: BPF programs always return an integer which is interpreted by
79  * kprobe handler as:
80  * 0 - return from kprobe (event is filtered out)
81  * 1 - store kprobe event into ring buffer
82  * Other values are reserved and currently alias to 1
83  */
84 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
85 {
86 	unsigned int ret;
87 
88 	if (in_nmi()) /* not supported yet */
89 		return 1;
90 
91 	cant_sleep();
92 
93 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
94 		/*
95 		 * since some bpf program is already running on this cpu,
96 		 * don't call into another bpf program (same or different)
97 		 * and don't send kprobe event into ring-buffer,
98 		 * so return zero here
99 		 */
100 		ret = 0;
101 		goto out;
102 	}
103 
104 	/*
105 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
106 	 * to all call sites, we did a bpf_prog_array_valid() there to check
107 	 * whether call->prog_array is empty or not, which is
108 	 * a heurisitc to speed up execution.
109 	 *
110 	 * If bpf_prog_array_valid() fetched prog_array was
111 	 * non-NULL, we go into trace_call_bpf() and do the actual
112 	 * proper rcu_dereference() under RCU lock.
113 	 * If it turns out that prog_array is NULL then, we bail out.
114 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
115 	 * was NULL, you'll skip the prog_array with the risk of missing
116 	 * out of events when it was updated in between this and the
117 	 * rcu_dereference() which is accepted risk.
118 	 */
119 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
120 
121  out:
122 	__this_cpu_dec(bpf_prog_active);
123 
124 	return ret;
125 }
126 
127 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
128 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
129 {
130 	regs_set_return_value(regs, rc);
131 	override_function_with_return(regs);
132 	return 0;
133 }
134 
135 static const struct bpf_func_proto bpf_override_return_proto = {
136 	.func		= bpf_override_return,
137 	.gpl_only	= true,
138 	.ret_type	= RET_INTEGER,
139 	.arg1_type	= ARG_PTR_TO_CTX,
140 	.arg2_type	= ARG_ANYTHING,
141 };
142 #endif
143 
144 static __always_inline int
145 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
146 {
147 	int ret;
148 
149 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
150 	if (unlikely(ret < 0))
151 		memset(dst, 0, size);
152 	return ret;
153 }
154 
155 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
156 	   const void __user *, unsafe_ptr)
157 {
158 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
159 }
160 
161 const struct bpf_func_proto bpf_probe_read_user_proto = {
162 	.func		= bpf_probe_read_user,
163 	.gpl_only	= true,
164 	.ret_type	= RET_INTEGER,
165 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
166 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
167 	.arg3_type	= ARG_ANYTHING,
168 };
169 
170 static __always_inline int
171 bpf_probe_read_user_str_common(void *dst, u32 size,
172 			       const void __user *unsafe_ptr)
173 {
174 	int ret;
175 
176 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
177 	if (unlikely(ret < 0))
178 		memset(dst, 0, size);
179 	return ret;
180 }
181 
182 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
183 	   const void __user *, unsafe_ptr)
184 {
185 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
186 }
187 
188 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
189 	.func		= bpf_probe_read_user_str,
190 	.gpl_only	= true,
191 	.ret_type	= RET_INTEGER,
192 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
193 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
194 	.arg3_type	= ARG_ANYTHING,
195 };
196 
197 static __always_inline int
198 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
199 {
200 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
201 
202 	if (unlikely(ret < 0))
203 		goto fail;
204 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
205 	if (unlikely(ret < 0))
206 		goto fail;
207 	return ret;
208 fail:
209 	memset(dst, 0, size);
210 	return ret;
211 }
212 
213 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
214 	   const void *, unsafe_ptr)
215 {
216 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
217 }
218 
219 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
220 	.func		= bpf_probe_read_kernel,
221 	.gpl_only	= true,
222 	.ret_type	= RET_INTEGER,
223 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
224 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
225 	.arg3_type	= ARG_ANYTHING,
226 };
227 
228 static __always_inline int
229 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
230 {
231 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
232 
233 	if (unlikely(ret < 0))
234 		goto fail;
235 
236 	/*
237 	 * The strncpy_from_kernel_nofault() call will likely not fill the
238 	 * entire buffer, but that's okay in this circumstance as we're probing
239 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
240 	 * as well probe the stack. Thus, memory is explicitly cleared
241 	 * only in error case, so that improper users ignoring return
242 	 * code altogether don't copy garbage; otherwise length of string
243 	 * is returned that can be used for bpf_perf_event_output() et al.
244 	 */
245 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
246 	if (unlikely(ret < 0))
247 		goto fail;
248 
249 	return ret;
250 fail:
251 	memset(dst, 0, size);
252 	return ret;
253 }
254 
255 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
256 	   const void *, unsafe_ptr)
257 {
258 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
259 }
260 
261 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
262 	.func		= bpf_probe_read_kernel_str,
263 	.gpl_only	= true,
264 	.ret_type	= RET_INTEGER,
265 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
266 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
267 	.arg3_type	= ARG_ANYTHING,
268 };
269 
270 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
271 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
272 	   const void *, unsafe_ptr)
273 {
274 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
275 		return bpf_probe_read_user_common(dst, size,
276 				(__force void __user *)unsafe_ptr);
277 	}
278 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
279 }
280 
281 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
282 	.func		= bpf_probe_read_compat,
283 	.gpl_only	= true,
284 	.ret_type	= RET_INTEGER,
285 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
286 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
287 	.arg3_type	= ARG_ANYTHING,
288 };
289 
290 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
291 	   const void *, unsafe_ptr)
292 {
293 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
294 		return bpf_probe_read_user_str_common(dst, size,
295 				(__force void __user *)unsafe_ptr);
296 	}
297 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
298 }
299 
300 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
301 	.func		= bpf_probe_read_compat_str,
302 	.gpl_only	= true,
303 	.ret_type	= RET_INTEGER,
304 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
305 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
306 	.arg3_type	= ARG_ANYTHING,
307 };
308 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
309 
310 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
311 	   u32, size)
312 {
313 	/*
314 	 * Ensure we're in user context which is safe for the helper to
315 	 * run. This helper has no business in a kthread.
316 	 *
317 	 * access_ok() should prevent writing to non-user memory, but in
318 	 * some situations (nommu, temporary switch, etc) access_ok() does
319 	 * not provide enough validation, hence the check on KERNEL_DS.
320 	 *
321 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
322 	 * state, when the task or mm are switched. This is specifically
323 	 * required to prevent the use of temporary mm.
324 	 */
325 
326 	if (unlikely(in_interrupt() ||
327 		     current->flags & (PF_KTHREAD | PF_EXITING)))
328 		return -EPERM;
329 	if (unlikely(uaccess_kernel()))
330 		return -EPERM;
331 	if (unlikely(!nmi_uaccess_okay()))
332 		return -EPERM;
333 
334 	return copy_to_user_nofault(unsafe_ptr, src, size);
335 }
336 
337 static const struct bpf_func_proto bpf_probe_write_user_proto = {
338 	.func		= bpf_probe_write_user,
339 	.gpl_only	= true,
340 	.ret_type	= RET_INTEGER,
341 	.arg1_type	= ARG_ANYTHING,
342 	.arg2_type	= ARG_PTR_TO_MEM,
343 	.arg3_type	= ARG_CONST_SIZE,
344 };
345 
346 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
347 {
348 	if (!capable(CAP_SYS_ADMIN))
349 		return NULL;
350 
351 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
352 			    current->comm, task_pid_nr(current));
353 
354 	return &bpf_probe_write_user_proto;
355 }
356 
357 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
358 		size_t bufsz)
359 {
360 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
361 
362 	buf[0] = 0;
363 
364 	switch (fmt_ptype) {
365 	case 's':
366 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
367 		if ((unsigned long)unsafe_ptr < TASK_SIZE) {
368 			strncpy_from_user_nofault(buf, user_ptr, bufsz);
369 			break;
370 		}
371 		fallthrough;
372 #endif
373 	case 'k':
374 		strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
375 		break;
376 	case 'u':
377 		strncpy_from_user_nofault(buf, user_ptr, bufsz);
378 		break;
379 	}
380 }
381 
382 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
383 
384 #define BPF_TRACE_PRINTK_SIZE   1024
385 
386 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
387 {
388 	static char buf[BPF_TRACE_PRINTK_SIZE];
389 	unsigned long flags;
390 	va_list ap;
391 	int ret;
392 
393 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
394 	va_start(ap, fmt);
395 	ret = vsnprintf(buf, sizeof(buf), fmt, ap);
396 	va_end(ap);
397 	/* vsnprintf() will not append null for zero-length strings */
398 	if (ret == 0)
399 		buf[0] = '\0';
400 	trace_bpf_trace_printk(buf);
401 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
402 
403 	return ret;
404 }
405 
406 /*
407  * Only limited trace_printk() conversion specifiers allowed:
408  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
409  */
410 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
411 	   u64, arg2, u64, arg3)
412 {
413 	int i, mod[3] = {}, fmt_cnt = 0;
414 	char buf[64], fmt_ptype;
415 	void *unsafe_ptr = NULL;
416 	bool str_seen = false;
417 
418 	/*
419 	 * bpf_check()->check_func_arg()->check_stack_boundary()
420 	 * guarantees that fmt points to bpf program stack,
421 	 * fmt_size bytes of it were initialized and fmt_size > 0
422 	 */
423 	if (fmt[--fmt_size] != 0)
424 		return -EINVAL;
425 
426 	/* check format string for allowed specifiers */
427 	for (i = 0; i < fmt_size; i++) {
428 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
429 			return -EINVAL;
430 
431 		if (fmt[i] != '%')
432 			continue;
433 
434 		if (fmt_cnt >= 3)
435 			return -EINVAL;
436 
437 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
438 		i++;
439 		if (fmt[i] == 'l') {
440 			mod[fmt_cnt]++;
441 			i++;
442 		} else if (fmt[i] == 'p') {
443 			mod[fmt_cnt]++;
444 			if ((fmt[i + 1] == 'k' ||
445 			     fmt[i + 1] == 'u') &&
446 			    fmt[i + 2] == 's') {
447 				fmt_ptype = fmt[i + 1];
448 				i += 2;
449 				goto fmt_str;
450 			}
451 
452 			if (fmt[i + 1] == 'B') {
453 				i++;
454 				goto fmt_next;
455 			}
456 
457 			/* disallow any further format extensions */
458 			if (fmt[i + 1] != 0 &&
459 			    !isspace(fmt[i + 1]) &&
460 			    !ispunct(fmt[i + 1]))
461 				return -EINVAL;
462 
463 			goto fmt_next;
464 		} else if (fmt[i] == 's') {
465 			mod[fmt_cnt]++;
466 			fmt_ptype = fmt[i];
467 fmt_str:
468 			if (str_seen)
469 				/* allow only one '%s' per fmt string */
470 				return -EINVAL;
471 			str_seen = true;
472 
473 			if (fmt[i + 1] != 0 &&
474 			    !isspace(fmt[i + 1]) &&
475 			    !ispunct(fmt[i + 1]))
476 				return -EINVAL;
477 
478 			switch (fmt_cnt) {
479 			case 0:
480 				unsafe_ptr = (void *)(long)arg1;
481 				arg1 = (long)buf;
482 				break;
483 			case 1:
484 				unsafe_ptr = (void *)(long)arg2;
485 				arg2 = (long)buf;
486 				break;
487 			case 2:
488 				unsafe_ptr = (void *)(long)arg3;
489 				arg3 = (long)buf;
490 				break;
491 			}
492 
493 			bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
494 					sizeof(buf));
495 			goto fmt_next;
496 		}
497 
498 		if (fmt[i] == 'l') {
499 			mod[fmt_cnt]++;
500 			i++;
501 		}
502 
503 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
504 		    fmt[i] != 'u' && fmt[i] != 'x')
505 			return -EINVAL;
506 fmt_next:
507 		fmt_cnt++;
508 	}
509 
510 /* Horrid workaround for getting va_list handling working with different
511  * argument type combinations generically for 32 and 64 bit archs.
512  */
513 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
514 #define __BPF_TP(...)							\
515 	bpf_do_trace_printk(fmt, ##__VA_ARGS__)
516 
517 #define __BPF_ARG1_TP(...)						\
518 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
519 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
520 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
521 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
522 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
523 
524 #define __BPF_ARG2_TP(...)						\
525 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
526 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
527 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
528 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
529 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
530 
531 #define __BPF_ARG3_TP(...)						\
532 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
533 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
534 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
535 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
536 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
537 
538 	return __BPF_TP_EMIT();
539 }
540 
541 static const struct bpf_func_proto bpf_trace_printk_proto = {
542 	.func		= bpf_trace_printk,
543 	.gpl_only	= true,
544 	.ret_type	= RET_INTEGER,
545 	.arg1_type	= ARG_PTR_TO_MEM,
546 	.arg2_type	= ARG_CONST_SIZE,
547 };
548 
549 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
550 {
551 	/*
552 	 * This program might be calling bpf_trace_printk,
553 	 * so enable the associated bpf_trace/bpf_trace_printk event.
554 	 * Repeat this each time as it is possible a user has
555 	 * disabled bpf_trace_printk events.  By loading a program
556 	 * calling bpf_trace_printk() however the user has expressed
557 	 * the intent to see such events.
558 	 */
559 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
560 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
561 
562 	return &bpf_trace_printk_proto;
563 }
564 
565 #define MAX_SEQ_PRINTF_VARARGS		12
566 #define MAX_SEQ_PRINTF_MAX_MEMCPY	6
567 #define MAX_SEQ_PRINTF_STR_LEN		128
568 
569 struct bpf_seq_printf_buf {
570 	char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
571 };
572 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
573 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
574 
575 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
576 	   const void *, data, u32, data_len)
577 {
578 	int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
579 	int i, buf_used, copy_size, num_args;
580 	u64 params[MAX_SEQ_PRINTF_VARARGS];
581 	struct bpf_seq_printf_buf *bufs;
582 	const u64 *args = data;
583 
584 	buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
585 	if (WARN_ON_ONCE(buf_used > 1)) {
586 		err = -EBUSY;
587 		goto out;
588 	}
589 
590 	bufs = this_cpu_ptr(&bpf_seq_printf_buf);
591 
592 	/*
593 	 * bpf_check()->check_func_arg()->check_stack_boundary()
594 	 * guarantees that fmt points to bpf program stack,
595 	 * fmt_size bytes of it were initialized and fmt_size > 0
596 	 */
597 	if (fmt[--fmt_size] != 0)
598 		goto out;
599 
600 	if (data_len & 7)
601 		goto out;
602 
603 	for (i = 0; i < fmt_size; i++) {
604 		if (fmt[i] == '%') {
605 			if (fmt[i + 1] == '%')
606 				i++;
607 			else if (!data || !data_len)
608 				goto out;
609 		}
610 	}
611 
612 	num_args = data_len / 8;
613 
614 	/* check format string for allowed specifiers */
615 	for (i = 0; i < fmt_size; i++) {
616 		/* only printable ascii for now. */
617 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
618 			err = -EINVAL;
619 			goto out;
620 		}
621 
622 		if (fmt[i] != '%')
623 			continue;
624 
625 		if (fmt[i + 1] == '%') {
626 			i++;
627 			continue;
628 		}
629 
630 		if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
631 			err = -E2BIG;
632 			goto out;
633 		}
634 
635 		if (fmt_cnt >= num_args) {
636 			err = -EINVAL;
637 			goto out;
638 		}
639 
640 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
641 		i++;
642 
643 		/* skip optional "[0 +-][num]" width formating field */
644 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
645 		       fmt[i] == ' ')
646 			i++;
647 		if (fmt[i] >= '1' && fmt[i] <= '9') {
648 			i++;
649 			while (fmt[i] >= '0' && fmt[i] <= '9')
650 				i++;
651 		}
652 
653 		if (fmt[i] == 's') {
654 			void *unsafe_ptr;
655 
656 			/* try our best to copy */
657 			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
658 				err = -E2BIG;
659 				goto out;
660 			}
661 
662 			unsafe_ptr = (void *)(long)args[fmt_cnt];
663 			err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
664 					unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
665 			if (err < 0)
666 				bufs->buf[memcpy_cnt][0] = '\0';
667 			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
668 
669 			fmt_cnt++;
670 			memcpy_cnt++;
671 			continue;
672 		}
673 
674 		if (fmt[i] == 'p') {
675 			if (fmt[i + 1] == 0 ||
676 			    fmt[i + 1] == 'K' ||
677 			    fmt[i + 1] == 'x' ||
678 			    fmt[i + 1] == 'B') {
679 				/* just kernel pointers */
680 				params[fmt_cnt] = args[fmt_cnt];
681 				fmt_cnt++;
682 				continue;
683 			}
684 
685 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
686 			if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
687 				err = -EINVAL;
688 				goto out;
689 			}
690 			if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
691 				err = -EINVAL;
692 				goto out;
693 			}
694 
695 			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
696 				err = -E2BIG;
697 				goto out;
698 			}
699 
700 
701 			copy_size = (fmt[i + 2] == '4') ? 4 : 16;
702 
703 			err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
704 						(void *) (long) args[fmt_cnt],
705 						copy_size);
706 			if (err < 0)
707 				memset(bufs->buf[memcpy_cnt], 0, copy_size);
708 			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
709 
710 			i += 2;
711 			fmt_cnt++;
712 			memcpy_cnt++;
713 			continue;
714 		}
715 
716 		if (fmt[i] == 'l') {
717 			i++;
718 			if (fmt[i] == 'l')
719 				i++;
720 		}
721 
722 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
723 		    fmt[i] != 'u' && fmt[i] != 'x' &&
724 		    fmt[i] != 'X') {
725 			err = -EINVAL;
726 			goto out;
727 		}
728 
729 		params[fmt_cnt] = args[fmt_cnt];
730 		fmt_cnt++;
731 	}
732 
733 	/* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
734 	 * all of them to seq_printf().
735 	 */
736 	seq_printf(m, fmt, params[0], params[1], params[2], params[3],
737 		   params[4], params[5], params[6], params[7], params[8],
738 		   params[9], params[10], params[11]);
739 
740 	err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
741 out:
742 	this_cpu_dec(bpf_seq_printf_buf_used);
743 	return err;
744 }
745 
746 BTF_ID_LIST(bpf_seq_printf_btf_ids)
747 BTF_ID(struct, seq_file)
748 
749 static const struct bpf_func_proto bpf_seq_printf_proto = {
750 	.func		= bpf_seq_printf,
751 	.gpl_only	= true,
752 	.ret_type	= RET_INTEGER,
753 	.arg1_type	= ARG_PTR_TO_BTF_ID,
754 	.arg2_type	= ARG_PTR_TO_MEM,
755 	.arg3_type	= ARG_CONST_SIZE,
756 	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
757 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
758 	.btf_id		= bpf_seq_printf_btf_ids,
759 };
760 
761 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
762 {
763 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
764 }
765 
766 BTF_ID_LIST(bpf_seq_write_btf_ids)
767 BTF_ID(struct, seq_file)
768 
769 static const struct bpf_func_proto bpf_seq_write_proto = {
770 	.func		= bpf_seq_write,
771 	.gpl_only	= true,
772 	.ret_type	= RET_INTEGER,
773 	.arg1_type	= ARG_PTR_TO_BTF_ID,
774 	.arg2_type	= ARG_PTR_TO_MEM,
775 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
776 	.btf_id		= bpf_seq_write_btf_ids,
777 };
778 
779 static __always_inline int
780 get_map_perf_counter(struct bpf_map *map, u64 flags,
781 		     u64 *value, u64 *enabled, u64 *running)
782 {
783 	struct bpf_array *array = container_of(map, struct bpf_array, map);
784 	unsigned int cpu = smp_processor_id();
785 	u64 index = flags & BPF_F_INDEX_MASK;
786 	struct bpf_event_entry *ee;
787 
788 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
789 		return -EINVAL;
790 	if (index == BPF_F_CURRENT_CPU)
791 		index = cpu;
792 	if (unlikely(index >= array->map.max_entries))
793 		return -E2BIG;
794 
795 	ee = READ_ONCE(array->ptrs[index]);
796 	if (!ee)
797 		return -ENOENT;
798 
799 	return perf_event_read_local(ee->event, value, enabled, running);
800 }
801 
802 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
803 {
804 	u64 value = 0;
805 	int err;
806 
807 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
808 	/*
809 	 * this api is ugly since we miss [-22..-2] range of valid
810 	 * counter values, but that's uapi
811 	 */
812 	if (err)
813 		return err;
814 	return value;
815 }
816 
817 static const struct bpf_func_proto bpf_perf_event_read_proto = {
818 	.func		= bpf_perf_event_read,
819 	.gpl_only	= true,
820 	.ret_type	= RET_INTEGER,
821 	.arg1_type	= ARG_CONST_MAP_PTR,
822 	.arg2_type	= ARG_ANYTHING,
823 };
824 
825 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
826 	   struct bpf_perf_event_value *, buf, u32, size)
827 {
828 	int err = -EINVAL;
829 
830 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
831 		goto clear;
832 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
833 				   &buf->running);
834 	if (unlikely(err))
835 		goto clear;
836 	return 0;
837 clear:
838 	memset(buf, 0, size);
839 	return err;
840 }
841 
842 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
843 	.func		= bpf_perf_event_read_value,
844 	.gpl_only	= true,
845 	.ret_type	= RET_INTEGER,
846 	.arg1_type	= ARG_CONST_MAP_PTR,
847 	.arg2_type	= ARG_ANYTHING,
848 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
849 	.arg4_type	= ARG_CONST_SIZE,
850 };
851 
852 static __always_inline u64
853 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
854 			u64 flags, struct perf_sample_data *sd)
855 {
856 	struct bpf_array *array = container_of(map, struct bpf_array, map);
857 	unsigned int cpu = smp_processor_id();
858 	u64 index = flags & BPF_F_INDEX_MASK;
859 	struct bpf_event_entry *ee;
860 	struct perf_event *event;
861 
862 	if (index == BPF_F_CURRENT_CPU)
863 		index = cpu;
864 	if (unlikely(index >= array->map.max_entries))
865 		return -E2BIG;
866 
867 	ee = READ_ONCE(array->ptrs[index]);
868 	if (!ee)
869 		return -ENOENT;
870 
871 	event = ee->event;
872 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
873 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
874 		return -EINVAL;
875 
876 	if (unlikely(event->oncpu != cpu))
877 		return -EOPNOTSUPP;
878 
879 	return perf_event_output(event, sd, regs);
880 }
881 
882 /*
883  * Support executing tracepoints in normal, irq, and nmi context that each call
884  * bpf_perf_event_output
885  */
886 struct bpf_trace_sample_data {
887 	struct perf_sample_data sds[3];
888 };
889 
890 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
891 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
892 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
893 	   u64, flags, void *, data, u64, size)
894 {
895 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
896 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
897 	struct perf_raw_record raw = {
898 		.frag = {
899 			.size = size,
900 			.data = data,
901 		},
902 	};
903 	struct perf_sample_data *sd;
904 	int err;
905 
906 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
907 		err = -EBUSY;
908 		goto out;
909 	}
910 
911 	sd = &sds->sds[nest_level - 1];
912 
913 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
914 		err = -EINVAL;
915 		goto out;
916 	}
917 
918 	perf_sample_data_init(sd, 0, 0);
919 	sd->raw = &raw;
920 
921 	err = __bpf_perf_event_output(regs, map, flags, sd);
922 
923 out:
924 	this_cpu_dec(bpf_trace_nest_level);
925 	return err;
926 }
927 
928 static const struct bpf_func_proto bpf_perf_event_output_proto = {
929 	.func		= bpf_perf_event_output,
930 	.gpl_only	= true,
931 	.ret_type	= RET_INTEGER,
932 	.arg1_type	= ARG_PTR_TO_CTX,
933 	.arg2_type	= ARG_CONST_MAP_PTR,
934 	.arg3_type	= ARG_ANYTHING,
935 	.arg4_type	= ARG_PTR_TO_MEM,
936 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
937 };
938 
939 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
940 struct bpf_nested_pt_regs {
941 	struct pt_regs regs[3];
942 };
943 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
944 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
945 
946 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
947 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
948 {
949 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
950 	struct perf_raw_frag frag = {
951 		.copy		= ctx_copy,
952 		.size		= ctx_size,
953 		.data		= ctx,
954 	};
955 	struct perf_raw_record raw = {
956 		.frag = {
957 			{
958 				.next	= ctx_size ? &frag : NULL,
959 			},
960 			.size	= meta_size,
961 			.data	= meta,
962 		},
963 	};
964 	struct perf_sample_data *sd;
965 	struct pt_regs *regs;
966 	u64 ret;
967 
968 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
969 		ret = -EBUSY;
970 		goto out;
971 	}
972 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
973 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
974 
975 	perf_fetch_caller_regs(regs);
976 	perf_sample_data_init(sd, 0, 0);
977 	sd->raw = &raw;
978 
979 	ret = __bpf_perf_event_output(regs, map, flags, sd);
980 out:
981 	this_cpu_dec(bpf_event_output_nest_level);
982 	return ret;
983 }
984 
985 BPF_CALL_0(bpf_get_current_task)
986 {
987 	return (long) current;
988 }
989 
990 const struct bpf_func_proto bpf_get_current_task_proto = {
991 	.func		= bpf_get_current_task,
992 	.gpl_only	= true,
993 	.ret_type	= RET_INTEGER,
994 };
995 
996 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
997 {
998 	struct bpf_array *array = container_of(map, struct bpf_array, map);
999 	struct cgroup *cgrp;
1000 
1001 	if (unlikely(idx >= array->map.max_entries))
1002 		return -E2BIG;
1003 
1004 	cgrp = READ_ONCE(array->ptrs[idx]);
1005 	if (unlikely(!cgrp))
1006 		return -EAGAIN;
1007 
1008 	return task_under_cgroup_hierarchy(current, cgrp);
1009 }
1010 
1011 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
1012 	.func           = bpf_current_task_under_cgroup,
1013 	.gpl_only       = false,
1014 	.ret_type       = RET_INTEGER,
1015 	.arg1_type      = ARG_CONST_MAP_PTR,
1016 	.arg2_type      = ARG_ANYTHING,
1017 };
1018 
1019 struct send_signal_irq_work {
1020 	struct irq_work irq_work;
1021 	struct task_struct *task;
1022 	u32 sig;
1023 	enum pid_type type;
1024 };
1025 
1026 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
1027 
1028 static void do_bpf_send_signal(struct irq_work *entry)
1029 {
1030 	struct send_signal_irq_work *work;
1031 
1032 	work = container_of(entry, struct send_signal_irq_work, irq_work);
1033 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
1034 }
1035 
1036 static int bpf_send_signal_common(u32 sig, enum pid_type type)
1037 {
1038 	struct send_signal_irq_work *work = NULL;
1039 
1040 	/* Similar to bpf_probe_write_user, task needs to be
1041 	 * in a sound condition and kernel memory access be
1042 	 * permitted in order to send signal to the current
1043 	 * task.
1044 	 */
1045 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1046 		return -EPERM;
1047 	if (unlikely(uaccess_kernel()))
1048 		return -EPERM;
1049 	if (unlikely(!nmi_uaccess_okay()))
1050 		return -EPERM;
1051 
1052 	if (irqs_disabled()) {
1053 		/* Do an early check on signal validity. Otherwise,
1054 		 * the error is lost in deferred irq_work.
1055 		 */
1056 		if (unlikely(!valid_signal(sig)))
1057 			return -EINVAL;
1058 
1059 		work = this_cpu_ptr(&send_signal_work);
1060 		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1061 			return -EBUSY;
1062 
1063 		/* Add the current task, which is the target of sending signal,
1064 		 * to the irq_work. The current task may change when queued
1065 		 * irq works get executed.
1066 		 */
1067 		work->task = current;
1068 		work->sig = sig;
1069 		work->type = type;
1070 		irq_work_queue(&work->irq_work);
1071 		return 0;
1072 	}
1073 
1074 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1075 }
1076 
1077 BPF_CALL_1(bpf_send_signal, u32, sig)
1078 {
1079 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
1080 }
1081 
1082 static const struct bpf_func_proto bpf_send_signal_proto = {
1083 	.func		= bpf_send_signal,
1084 	.gpl_only	= false,
1085 	.ret_type	= RET_INTEGER,
1086 	.arg1_type	= ARG_ANYTHING,
1087 };
1088 
1089 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1090 {
1091 	return bpf_send_signal_common(sig, PIDTYPE_PID);
1092 }
1093 
1094 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1095 	.func		= bpf_send_signal_thread,
1096 	.gpl_only	= false,
1097 	.ret_type	= RET_INTEGER,
1098 	.arg1_type	= ARG_ANYTHING,
1099 };
1100 
1101 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
1102 {
1103 	long len;
1104 	char *p;
1105 
1106 	if (!sz)
1107 		return 0;
1108 
1109 	p = d_path(path, buf, sz);
1110 	if (IS_ERR(p)) {
1111 		len = PTR_ERR(p);
1112 	} else {
1113 		len = buf + sz - p;
1114 		memmove(buf, p, len);
1115 	}
1116 
1117 	return len;
1118 }
1119 
1120 BTF_SET_START(btf_allowlist_d_path)
1121 BTF_ID(func, vfs_truncate)
1122 BTF_ID(func, vfs_fallocate)
1123 BTF_ID(func, dentry_open)
1124 BTF_ID(func, vfs_getattr)
1125 BTF_ID(func, filp_close)
1126 BTF_SET_END(btf_allowlist_d_path)
1127 
1128 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
1129 {
1130 	return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id);
1131 }
1132 
1133 BTF_ID_LIST(bpf_d_path_btf_ids)
1134 BTF_ID(struct, path)
1135 
1136 static const struct bpf_func_proto bpf_d_path_proto = {
1137 	.func		= bpf_d_path,
1138 	.gpl_only	= false,
1139 	.ret_type	= RET_INTEGER,
1140 	.arg1_type	= ARG_PTR_TO_BTF_ID,
1141 	.arg2_type	= ARG_PTR_TO_MEM,
1142 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1143 	.btf_id		= bpf_d_path_btf_ids,
1144 	.allowed	= bpf_d_path_allowed,
1145 };
1146 
1147 const struct bpf_func_proto *
1148 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1149 {
1150 	switch (func_id) {
1151 	case BPF_FUNC_map_lookup_elem:
1152 		return &bpf_map_lookup_elem_proto;
1153 	case BPF_FUNC_map_update_elem:
1154 		return &bpf_map_update_elem_proto;
1155 	case BPF_FUNC_map_delete_elem:
1156 		return &bpf_map_delete_elem_proto;
1157 	case BPF_FUNC_map_push_elem:
1158 		return &bpf_map_push_elem_proto;
1159 	case BPF_FUNC_map_pop_elem:
1160 		return &bpf_map_pop_elem_proto;
1161 	case BPF_FUNC_map_peek_elem:
1162 		return &bpf_map_peek_elem_proto;
1163 	case BPF_FUNC_ktime_get_ns:
1164 		return &bpf_ktime_get_ns_proto;
1165 	case BPF_FUNC_ktime_get_boot_ns:
1166 		return &bpf_ktime_get_boot_ns_proto;
1167 	case BPF_FUNC_tail_call:
1168 		return &bpf_tail_call_proto;
1169 	case BPF_FUNC_get_current_pid_tgid:
1170 		return &bpf_get_current_pid_tgid_proto;
1171 	case BPF_FUNC_get_current_task:
1172 		return &bpf_get_current_task_proto;
1173 	case BPF_FUNC_get_current_uid_gid:
1174 		return &bpf_get_current_uid_gid_proto;
1175 	case BPF_FUNC_get_current_comm:
1176 		return &bpf_get_current_comm_proto;
1177 	case BPF_FUNC_trace_printk:
1178 		return bpf_get_trace_printk_proto();
1179 	case BPF_FUNC_get_smp_processor_id:
1180 		return &bpf_get_smp_processor_id_proto;
1181 	case BPF_FUNC_get_numa_node_id:
1182 		return &bpf_get_numa_node_id_proto;
1183 	case BPF_FUNC_perf_event_read:
1184 		return &bpf_perf_event_read_proto;
1185 	case BPF_FUNC_probe_write_user:
1186 		return bpf_get_probe_write_proto();
1187 	case BPF_FUNC_current_task_under_cgroup:
1188 		return &bpf_current_task_under_cgroup_proto;
1189 	case BPF_FUNC_get_prandom_u32:
1190 		return &bpf_get_prandom_u32_proto;
1191 	case BPF_FUNC_probe_read_user:
1192 		return &bpf_probe_read_user_proto;
1193 	case BPF_FUNC_probe_read_kernel:
1194 		return &bpf_probe_read_kernel_proto;
1195 	case BPF_FUNC_probe_read_user_str:
1196 		return &bpf_probe_read_user_str_proto;
1197 	case BPF_FUNC_probe_read_kernel_str:
1198 		return &bpf_probe_read_kernel_str_proto;
1199 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1200 	case BPF_FUNC_probe_read:
1201 		return &bpf_probe_read_compat_proto;
1202 	case BPF_FUNC_probe_read_str:
1203 		return &bpf_probe_read_compat_str_proto;
1204 #endif
1205 #ifdef CONFIG_CGROUPS
1206 	case BPF_FUNC_get_current_cgroup_id:
1207 		return &bpf_get_current_cgroup_id_proto;
1208 #endif
1209 	case BPF_FUNC_send_signal:
1210 		return &bpf_send_signal_proto;
1211 	case BPF_FUNC_send_signal_thread:
1212 		return &bpf_send_signal_thread_proto;
1213 	case BPF_FUNC_perf_event_read_value:
1214 		return &bpf_perf_event_read_value_proto;
1215 	case BPF_FUNC_get_ns_current_pid_tgid:
1216 		return &bpf_get_ns_current_pid_tgid_proto;
1217 	case BPF_FUNC_ringbuf_output:
1218 		return &bpf_ringbuf_output_proto;
1219 	case BPF_FUNC_ringbuf_reserve:
1220 		return &bpf_ringbuf_reserve_proto;
1221 	case BPF_FUNC_ringbuf_submit:
1222 		return &bpf_ringbuf_submit_proto;
1223 	case BPF_FUNC_ringbuf_discard:
1224 		return &bpf_ringbuf_discard_proto;
1225 	case BPF_FUNC_ringbuf_query:
1226 		return &bpf_ringbuf_query_proto;
1227 	case BPF_FUNC_jiffies64:
1228 		return &bpf_jiffies64_proto;
1229 	case BPF_FUNC_get_task_stack:
1230 		return &bpf_get_task_stack_proto;
1231 	case BPF_FUNC_copy_from_user:
1232 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1233 	default:
1234 		return NULL;
1235 	}
1236 }
1237 
1238 static const struct bpf_func_proto *
1239 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1240 {
1241 	switch (func_id) {
1242 	case BPF_FUNC_perf_event_output:
1243 		return &bpf_perf_event_output_proto;
1244 	case BPF_FUNC_get_stackid:
1245 		return &bpf_get_stackid_proto;
1246 	case BPF_FUNC_get_stack:
1247 		return &bpf_get_stack_proto;
1248 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1249 	case BPF_FUNC_override_return:
1250 		return &bpf_override_return_proto;
1251 #endif
1252 	default:
1253 		return bpf_tracing_func_proto(func_id, prog);
1254 	}
1255 }
1256 
1257 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1258 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1259 					const struct bpf_prog *prog,
1260 					struct bpf_insn_access_aux *info)
1261 {
1262 	if (off < 0 || off >= sizeof(struct pt_regs))
1263 		return false;
1264 	if (type != BPF_READ)
1265 		return false;
1266 	if (off % size != 0)
1267 		return false;
1268 	/*
1269 	 * Assertion for 32 bit to make sure last 8 byte access
1270 	 * (BPF_DW) to the last 4 byte member is disallowed.
1271 	 */
1272 	if (off + size > sizeof(struct pt_regs))
1273 		return false;
1274 
1275 	return true;
1276 }
1277 
1278 const struct bpf_verifier_ops kprobe_verifier_ops = {
1279 	.get_func_proto  = kprobe_prog_func_proto,
1280 	.is_valid_access = kprobe_prog_is_valid_access,
1281 };
1282 
1283 const struct bpf_prog_ops kprobe_prog_ops = {
1284 };
1285 
1286 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1287 	   u64, flags, void *, data, u64, size)
1288 {
1289 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1290 
1291 	/*
1292 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1293 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1294 	 * from there and call the same bpf_perf_event_output() helper inline.
1295 	 */
1296 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1297 }
1298 
1299 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1300 	.func		= bpf_perf_event_output_tp,
1301 	.gpl_only	= true,
1302 	.ret_type	= RET_INTEGER,
1303 	.arg1_type	= ARG_PTR_TO_CTX,
1304 	.arg2_type	= ARG_CONST_MAP_PTR,
1305 	.arg3_type	= ARG_ANYTHING,
1306 	.arg4_type	= ARG_PTR_TO_MEM,
1307 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1308 };
1309 
1310 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1311 	   u64, flags)
1312 {
1313 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1314 
1315 	/*
1316 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1317 	 * the other helper's function body cannot be inlined due to being
1318 	 * external, thus we need to call raw helper function.
1319 	 */
1320 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1321 			       flags, 0, 0);
1322 }
1323 
1324 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1325 	.func		= bpf_get_stackid_tp,
1326 	.gpl_only	= true,
1327 	.ret_type	= RET_INTEGER,
1328 	.arg1_type	= ARG_PTR_TO_CTX,
1329 	.arg2_type	= ARG_CONST_MAP_PTR,
1330 	.arg3_type	= ARG_ANYTHING,
1331 };
1332 
1333 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1334 	   u64, flags)
1335 {
1336 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1337 
1338 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1339 			     (unsigned long) size, flags, 0);
1340 }
1341 
1342 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1343 	.func		= bpf_get_stack_tp,
1344 	.gpl_only	= true,
1345 	.ret_type	= RET_INTEGER,
1346 	.arg1_type	= ARG_PTR_TO_CTX,
1347 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1348 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1349 	.arg4_type	= ARG_ANYTHING,
1350 };
1351 
1352 static const struct bpf_func_proto *
1353 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1354 {
1355 	switch (func_id) {
1356 	case BPF_FUNC_perf_event_output:
1357 		return &bpf_perf_event_output_proto_tp;
1358 	case BPF_FUNC_get_stackid:
1359 		return &bpf_get_stackid_proto_tp;
1360 	case BPF_FUNC_get_stack:
1361 		return &bpf_get_stack_proto_tp;
1362 	default:
1363 		return bpf_tracing_func_proto(func_id, prog);
1364 	}
1365 }
1366 
1367 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1368 				    const struct bpf_prog *prog,
1369 				    struct bpf_insn_access_aux *info)
1370 {
1371 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1372 		return false;
1373 	if (type != BPF_READ)
1374 		return false;
1375 	if (off % size != 0)
1376 		return false;
1377 
1378 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1379 	return true;
1380 }
1381 
1382 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1383 	.get_func_proto  = tp_prog_func_proto,
1384 	.is_valid_access = tp_prog_is_valid_access,
1385 };
1386 
1387 const struct bpf_prog_ops tracepoint_prog_ops = {
1388 };
1389 
1390 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1391 	   struct bpf_perf_event_value *, buf, u32, size)
1392 {
1393 	int err = -EINVAL;
1394 
1395 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1396 		goto clear;
1397 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1398 				    &buf->running);
1399 	if (unlikely(err))
1400 		goto clear;
1401 	return 0;
1402 clear:
1403 	memset(buf, 0, size);
1404 	return err;
1405 }
1406 
1407 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1408          .func           = bpf_perf_prog_read_value,
1409          .gpl_only       = true,
1410          .ret_type       = RET_INTEGER,
1411          .arg1_type      = ARG_PTR_TO_CTX,
1412          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1413          .arg3_type      = ARG_CONST_SIZE,
1414 };
1415 
1416 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1417 	   void *, buf, u32, size, u64, flags)
1418 {
1419 #ifndef CONFIG_X86
1420 	return -ENOENT;
1421 #else
1422 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1423 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1424 	u32 to_copy;
1425 
1426 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1427 		return -EINVAL;
1428 
1429 	if (unlikely(!br_stack))
1430 		return -EINVAL;
1431 
1432 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1433 		return br_stack->nr * br_entry_size;
1434 
1435 	if (!buf || (size % br_entry_size != 0))
1436 		return -EINVAL;
1437 
1438 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1439 	memcpy(buf, br_stack->entries, to_copy);
1440 
1441 	return to_copy;
1442 #endif
1443 }
1444 
1445 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1446 	.func           = bpf_read_branch_records,
1447 	.gpl_only       = true,
1448 	.ret_type       = RET_INTEGER,
1449 	.arg1_type      = ARG_PTR_TO_CTX,
1450 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1451 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1452 	.arg4_type      = ARG_ANYTHING,
1453 };
1454 
1455 static const struct bpf_func_proto *
1456 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1457 {
1458 	switch (func_id) {
1459 	case BPF_FUNC_perf_event_output:
1460 		return &bpf_perf_event_output_proto_tp;
1461 	case BPF_FUNC_get_stackid:
1462 		return &bpf_get_stackid_proto_pe;
1463 	case BPF_FUNC_get_stack:
1464 		return &bpf_get_stack_proto_pe;
1465 	case BPF_FUNC_perf_prog_read_value:
1466 		return &bpf_perf_prog_read_value_proto;
1467 	case BPF_FUNC_read_branch_records:
1468 		return &bpf_read_branch_records_proto;
1469 	default:
1470 		return bpf_tracing_func_proto(func_id, prog);
1471 	}
1472 }
1473 
1474 /*
1475  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1476  * to avoid potential recursive reuse issue when/if tracepoints are added
1477  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1478  *
1479  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1480  * in normal, irq, and nmi context.
1481  */
1482 struct bpf_raw_tp_regs {
1483 	struct pt_regs regs[3];
1484 };
1485 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1486 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1487 static struct pt_regs *get_bpf_raw_tp_regs(void)
1488 {
1489 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1490 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1491 
1492 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1493 		this_cpu_dec(bpf_raw_tp_nest_level);
1494 		return ERR_PTR(-EBUSY);
1495 	}
1496 
1497 	return &tp_regs->regs[nest_level - 1];
1498 }
1499 
1500 static void put_bpf_raw_tp_regs(void)
1501 {
1502 	this_cpu_dec(bpf_raw_tp_nest_level);
1503 }
1504 
1505 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1506 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1507 {
1508 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1509 	int ret;
1510 
1511 	if (IS_ERR(regs))
1512 		return PTR_ERR(regs);
1513 
1514 	perf_fetch_caller_regs(regs);
1515 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1516 
1517 	put_bpf_raw_tp_regs();
1518 	return ret;
1519 }
1520 
1521 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1522 	.func		= bpf_perf_event_output_raw_tp,
1523 	.gpl_only	= true,
1524 	.ret_type	= RET_INTEGER,
1525 	.arg1_type	= ARG_PTR_TO_CTX,
1526 	.arg2_type	= ARG_CONST_MAP_PTR,
1527 	.arg3_type	= ARG_ANYTHING,
1528 	.arg4_type	= ARG_PTR_TO_MEM,
1529 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1530 };
1531 
1532 extern const struct bpf_func_proto bpf_skb_output_proto;
1533 extern const struct bpf_func_proto bpf_xdp_output_proto;
1534 
1535 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1536 	   struct bpf_map *, map, u64, flags)
1537 {
1538 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1539 	int ret;
1540 
1541 	if (IS_ERR(regs))
1542 		return PTR_ERR(regs);
1543 
1544 	perf_fetch_caller_regs(regs);
1545 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1546 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1547 			      flags, 0, 0);
1548 	put_bpf_raw_tp_regs();
1549 	return ret;
1550 }
1551 
1552 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1553 	.func		= bpf_get_stackid_raw_tp,
1554 	.gpl_only	= true,
1555 	.ret_type	= RET_INTEGER,
1556 	.arg1_type	= ARG_PTR_TO_CTX,
1557 	.arg2_type	= ARG_CONST_MAP_PTR,
1558 	.arg3_type	= ARG_ANYTHING,
1559 };
1560 
1561 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1562 	   void *, buf, u32, size, u64, flags)
1563 {
1564 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1565 	int ret;
1566 
1567 	if (IS_ERR(regs))
1568 		return PTR_ERR(regs);
1569 
1570 	perf_fetch_caller_regs(regs);
1571 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1572 			    (unsigned long) size, flags, 0);
1573 	put_bpf_raw_tp_regs();
1574 	return ret;
1575 }
1576 
1577 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1578 	.func		= bpf_get_stack_raw_tp,
1579 	.gpl_only	= true,
1580 	.ret_type	= RET_INTEGER,
1581 	.arg1_type	= ARG_PTR_TO_CTX,
1582 	.arg2_type	= ARG_PTR_TO_MEM,
1583 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1584 	.arg4_type	= ARG_ANYTHING,
1585 };
1586 
1587 static const struct bpf_func_proto *
1588 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1589 {
1590 	switch (func_id) {
1591 	case BPF_FUNC_perf_event_output:
1592 		return &bpf_perf_event_output_proto_raw_tp;
1593 	case BPF_FUNC_get_stackid:
1594 		return &bpf_get_stackid_proto_raw_tp;
1595 	case BPF_FUNC_get_stack:
1596 		return &bpf_get_stack_proto_raw_tp;
1597 	default:
1598 		return bpf_tracing_func_proto(func_id, prog);
1599 	}
1600 }
1601 
1602 const struct bpf_func_proto *
1603 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1604 {
1605 	switch (func_id) {
1606 #ifdef CONFIG_NET
1607 	case BPF_FUNC_skb_output:
1608 		return &bpf_skb_output_proto;
1609 	case BPF_FUNC_xdp_output:
1610 		return &bpf_xdp_output_proto;
1611 	case BPF_FUNC_skc_to_tcp6_sock:
1612 		return &bpf_skc_to_tcp6_sock_proto;
1613 	case BPF_FUNC_skc_to_tcp_sock:
1614 		return &bpf_skc_to_tcp_sock_proto;
1615 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1616 		return &bpf_skc_to_tcp_timewait_sock_proto;
1617 	case BPF_FUNC_skc_to_tcp_request_sock:
1618 		return &bpf_skc_to_tcp_request_sock_proto;
1619 	case BPF_FUNC_skc_to_udp6_sock:
1620 		return &bpf_skc_to_udp6_sock_proto;
1621 #endif
1622 	case BPF_FUNC_seq_printf:
1623 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1624 		       &bpf_seq_printf_proto :
1625 		       NULL;
1626 	case BPF_FUNC_seq_write:
1627 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1628 		       &bpf_seq_write_proto :
1629 		       NULL;
1630 	case BPF_FUNC_d_path:
1631 		return &bpf_d_path_proto;
1632 	default:
1633 		return raw_tp_prog_func_proto(func_id, prog);
1634 	}
1635 }
1636 
1637 static bool raw_tp_prog_is_valid_access(int off, int size,
1638 					enum bpf_access_type type,
1639 					const struct bpf_prog *prog,
1640 					struct bpf_insn_access_aux *info)
1641 {
1642 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1643 		return false;
1644 	if (type != BPF_READ)
1645 		return false;
1646 	if (off % size != 0)
1647 		return false;
1648 	return true;
1649 }
1650 
1651 static bool tracing_prog_is_valid_access(int off, int size,
1652 					 enum bpf_access_type type,
1653 					 const struct bpf_prog *prog,
1654 					 struct bpf_insn_access_aux *info)
1655 {
1656 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1657 		return false;
1658 	if (type != BPF_READ)
1659 		return false;
1660 	if (off % size != 0)
1661 		return false;
1662 	return btf_ctx_access(off, size, type, prog, info);
1663 }
1664 
1665 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1666 				     const union bpf_attr *kattr,
1667 				     union bpf_attr __user *uattr)
1668 {
1669 	return -ENOTSUPP;
1670 }
1671 
1672 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1673 	.get_func_proto  = raw_tp_prog_func_proto,
1674 	.is_valid_access = raw_tp_prog_is_valid_access,
1675 };
1676 
1677 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1678 };
1679 
1680 const struct bpf_verifier_ops tracing_verifier_ops = {
1681 	.get_func_proto  = tracing_prog_func_proto,
1682 	.is_valid_access = tracing_prog_is_valid_access,
1683 };
1684 
1685 const struct bpf_prog_ops tracing_prog_ops = {
1686 	.test_run = bpf_prog_test_run_tracing,
1687 };
1688 
1689 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1690 						 enum bpf_access_type type,
1691 						 const struct bpf_prog *prog,
1692 						 struct bpf_insn_access_aux *info)
1693 {
1694 	if (off == 0) {
1695 		if (size != sizeof(u64) || type != BPF_READ)
1696 			return false;
1697 		info->reg_type = PTR_TO_TP_BUFFER;
1698 	}
1699 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1700 }
1701 
1702 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1703 	.get_func_proto  = raw_tp_prog_func_proto,
1704 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1705 };
1706 
1707 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1708 };
1709 
1710 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1711 				    const struct bpf_prog *prog,
1712 				    struct bpf_insn_access_aux *info)
1713 {
1714 	const int size_u64 = sizeof(u64);
1715 
1716 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1717 		return false;
1718 	if (type != BPF_READ)
1719 		return false;
1720 	if (off % size != 0) {
1721 		if (sizeof(unsigned long) != 4)
1722 			return false;
1723 		if (size != 8)
1724 			return false;
1725 		if (off % size != 4)
1726 			return false;
1727 	}
1728 
1729 	switch (off) {
1730 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1731 		bpf_ctx_record_field_size(info, size_u64);
1732 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1733 			return false;
1734 		break;
1735 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1736 		bpf_ctx_record_field_size(info, size_u64);
1737 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1738 			return false;
1739 		break;
1740 	default:
1741 		if (size != sizeof(long))
1742 			return false;
1743 	}
1744 
1745 	return true;
1746 }
1747 
1748 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1749 				      const struct bpf_insn *si,
1750 				      struct bpf_insn *insn_buf,
1751 				      struct bpf_prog *prog, u32 *target_size)
1752 {
1753 	struct bpf_insn *insn = insn_buf;
1754 
1755 	switch (si->off) {
1756 	case offsetof(struct bpf_perf_event_data, sample_period):
1757 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1758 						       data), si->dst_reg, si->src_reg,
1759 				      offsetof(struct bpf_perf_event_data_kern, data));
1760 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1761 				      bpf_target_off(struct perf_sample_data, period, 8,
1762 						     target_size));
1763 		break;
1764 	case offsetof(struct bpf_perf_event_data, addr):
1765 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1766 						       data), si->dst_reg, si->src_reg,
1767 				      offsetof(struct bpf_perf_event_data_kern, data));
1768 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1769 				      bpf_target_off(struct perf_sample_data, addr, 8,
1770 						     target_size));
1771 		break;
1772 	default:
1773 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1774 						       regs), si->dst_reg, si->src_reg,
1775 				      offsetof(struct bpf_perf_event_data_kern, regs));
1776 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1777 				      si->off);
1778 		break;
1779 	}
1780 
1781 	return insn - insn_buf;
1782 }
1783 
1784 const struct bpf_verifier_ops perf_event_verifier_ops = {
1785 	.get_func_proto		= pe_prog_func_proto,
1786 	.is_valid_access	= pe_prog_is_valid_access,
1787 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1788 };
1789 
1790 const struct bpf_prog_ops perf_event_prog_ops = {
1791 };
1792 
1793 static DEFINE_MUTEX(bpf_event_mutex);
1794 
1795 #define BPF_TRACE_MAX_PROGS 64
1796 
1797 int perf_event_attach_bpf_prog(struct perf_event *event,
1798 			       struct bpf_prog *prog)
1799 {
1800 	struct bpf_prog_array *old_array;
1801 	struct bpf_prog_array *new_array;
1802 	int ret = -EEXIST;
1803 
1804 	/*
1805 	 * Kprobe override only works if they are on the function entry,
1806 	 * and only if they are on the opt-in list.
1807 	 */
1808 	if (prog->kprobe_override &&
1809 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1810 	     !trace_kprobe_error_injectable(event->tp_event)))
1811 		return -EINVAL;
1812 
1813 	mutex_lock(&bpf_event_mutex);
1814 
1815 	if (event->prog)
1816 		goto unlock;
1817 
1818 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1819 	if (old_array &&
1820 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1821 		ret = -E2BIG;
1822 		goto unlock;
1823 	}
1824 
1825 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1826 	if (ret < 0)
1827 		goto unlock;
1828 
1829 	/* set the new array to event->tp_event and set event->prog */
1830 	event->prog = prog;
1831 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1832 	bpf_prog_array_free(old_array);
1833 
1834 unlock:
1835 	mutex_unlock(&bpf_event_mutex);
1836 	return ret;
1837 }
1838 
1839 void perf_event_detach_bpf_prog(struct perf_event *event)
1840 {
1841 	struct bpf_prog_array *old_array;
1842 	struct bpf_prog_array *new_array;
1843 	int ret;
1844 
1845 	mutex_lock(&bpf_event_mutex);
1846 
1847 	if (!event->prog)
1848 		goto unlock;
1849 
1850 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1851 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1852 	if (ret == -ENOENT)
1853 		goto unlock;
1854 	if (ret < 0) {
1855 		bpf_prog_array_delete_safe(old_array, event->prog);
1856 	} else {
1857 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1858 		bpf_prog_array_free(old_array);
1859 	}
1860 
1861 	bpf_prog_put(event->prog);
1862 	event->prog = NULL;
1863 
1864 unlock:
1865 	mutex_unlock(&bpf_event_mutex);
1866 }
1867 
1868 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1869 {
1870 	struct perf_event_query_bpf __user *uquery = info;
1871 	struct perf_event_query_bpf query = {};
1872 	struct bpf_prog_array *progs;
1873 	u32 *ids, prog_cnt, ids_len;
1874 	int ret;
1875 
1876 	if (!perfmon_capable())
1877 		return -EPERM;
1878 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1879 		return -EINVAL;
1880 	if (copy_from_user(&query, uquery, sizeof(query)))
1881 		return -EFAULT;
1882 
1883 	ids_len = query.ids_len;
1884 	if (ids_len > BPF_TRACE_MAX_PROGS)
1885 		return -E2BIG;
1886 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1887 	if (!ids)
1888 		return -ENOMEM;
1889 	/*
1890 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1891 	 * is required when user only wants to check for uquery->prog_cnt.
1892 	 * There is no need to check for it since the case is handled
1893 	 * gracefully in bpf_prog_array_copy_info.
1894 	 */
1895 
1896 	mutex_lock(&bpf_event_mutex);
1897 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1898 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1899 	mutex_unlock(&bpf_event_mutex);
1900 
1901 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1902 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1903 		ret = -EFAULT;
1904 
1905 	kfree(ids);
1906 	return ret;
1907 }
1908 
1909 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1910 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1911 
1912 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1913 {
1914 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1915 
1916 	for (; btp < __stop__bpf_raw_tp; btp++) {
1917 		if (!strcmp(btp->tp->name, name))
1918 			return btp;
1919 	}
1920 
1921 	return bpf_get_raw_tracepoint_module(name);
1922 }
1923 
1924 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1925 {
1926 	struct module *mod = __module_address((unsigned long)btp);
1927 
1928 	if (mod)
1929 		module_put(mod);
1930 }
1931 
1932 static __always_inline
1933 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1934 {
1935 	cant_sleep();
1936 	rcu_read_lock();
1937 	(void) BPF_PROG_RUN(prog, args);
1938 	rcu_read_unlock();
1939 }
1940 
1941 #define UNPACK(...)			__VA_ARGS__
1942 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1943 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1944 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1945 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1946 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1947 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1948 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1949 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1950 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1951 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1952 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1953 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1954 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1955 
1956 #define SARG(X)		u64 arg##X
1957 #define COPY(X)		args[X] = arg##X
1958 
1959 #define __DL_COM	(,)
1960 #define __DL_SEM	(;)
1961 
1962 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1963 
1964 #define BPF_TRACE_DEFN_x(x)						\
1965 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1966 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1967 	{								\
1968 		u64 args[x];						\
1969 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1970 		__bpf_trace_run(prog, args);				\
1971 	}								\
1972 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1973 BPF_TRACE_DEFN_x(1);
1974 BPF_TRACE_DEFN_x(2);
1975 BPF_TRACE_DEFN_x(3);
1976 BPF_TRACE_DEFN_x(4);
1977 BPF_TRACE_DEFN_x(5);
1978 BPF_TRACE_DEFN_x(6);
1979 BPF_TRACE_DEFN_x(7);
1980 BPF_TRACE_DEFN_x(8);
1981 BPF_TRACE_DEFN_x(9);
1982 BPF_TRACE_DEFN_x(10);
1983 BPF_TRACE_DEFN_x(11);
1984 BPF_TRACE_DEFN_x(12);
1985 
1986 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1987 {
1988 	struct tracepoint *tp = btp->tp;
1989 
1990 	/*
1991 	 * check that program doesn't access arguments beyond what's
1992 	 * available in this tracepoint
1993 	 */
1994 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1995 		return -EINVAL;
1996 
1997 	if (prog->aux->max_tp_access > btp->writable_size)
1998 		return -EINVAL;
1999 
2000 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
2001 }
2002 
2003 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2004 {
2005 	return __bpf_probe_register(btp, prog);
2006 }
2007 
2008 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2009 {
2010 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2011 }
2012 
2013 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2014 			    u32 *fd_type, const char **buf,
2015 			    u64 *probe_offset, u64 *probe_addr)
2016 {
2017 	bool is_tracepoint, is_syscall_tp;
2018 	struct bpf_prog *prog;
2019 	int flags, err = 0;
2020 
2021 	prog = event->prog;
2022 	if (!prog)
2023 		return -ENOENT;
2024 
2025 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2026 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2027 		return -EOPNOTSUPP;
2028 
2029 	*prog_id = prog->aux->id;
2030 	flags = event->tp_event->flags;
2031 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2032 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2033 
2034 	if (is_tracepoint || is_syscall_tp) {
2035 		*buf = is_tracepoint ? event->tp_event->tp->name
2036 				     : event->tp_event->name;
2037 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
2038 		*probe_offset = 0x0;
2039 		*probe_addr = 0x0;
2040 	} else {
2041 		/* kprobe/uprobe */
2042 		err = -EOPNOTSUPP;
2043 #ifdef CONFIG_KPROBE_EVENTS
2044 		if (flags & TRACE_EVENT_FL_KPROBE)
2045 			err = bpf_get_kprobe_info(event, fd_type, buf,
2046 						  probe_offset, probe_addr,
2047 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2048 #endif
2049 #ifdef CONFIG_UPROBE_EVENTS
2050 		if (flags & TRACE_EVENT_FL_UPROBE)
2051 			err = bpf_get_uprobe_info(event, fd_type, buf,
2052 						  probe_offset,
2053 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2054 #endif
2055 	}
2056 
2057 	return err;
2058 }
2059 
2060 static int __init send_signal_irq_work_init(void)
2061 {
2062 	int cpu;
2063 	struct send_signal_irq_work *work;
2064 
2065 	for_each_possible_cpu(cpu) {
2066 		work = per_cpu_ptr(&send_signal_work, cpu);
2067 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2068 	}
2069 	return 0;
2070 }
2071 
2072 subsys_initcall(send_signal_irq_work_init);
2073 
2074 #ifdef CONFIG_MODULES
2075 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2076 			    void *module)
2077 {
2078 	struct bpf_trace_module *btm, *tmp;
2079 	struct module *mod = module;
2080 
2081 	if (mod->num_bpf_raw_events == 0 ||
2082 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2083 		return 0;
2084 
2085 	mutex_lock(&bpf_module_mutex);
2086 
2087 	switch (op) {
2088 	case MODULE_STATE_COMING:
2089 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2090 		if (btm) {
2091 			btm->module = module;
2092 			list_add(&btm->list, &bpf_trace_modules);
2093 		}
2094 		break;
2095 	case MODULE_STATE_GOING:
2096 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2097 			if (btm->module == module) {
2098 				list_del(&btm->list);
2099 				kfree(btm);
2100 				break;
2101 			}
2102 		}
2103 		break;
2104 	}
2105 
2106 	mutex_unlock(&bpf_module_mutex);
2107 
2108 	return 0;
2109 }
2110 
2111 static struct notifier_block bpf_module_nb = {
2112 	.notifier_call = bpf_event_notify,
2113 };
2114 
2115 static int __init bpf_event_init(void)
2116 {
2117 	register_module_notifier(&bpf_module_nb);
2118 	return 0;
2119 }
2120 
2121 fs_initcall(bpf_event_init);
2122 #endif /* CONFIG_MODULES */
2123