1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/filter.h> 11 #include <linux/uaccess.h> 12 #include <linux/ctype.h> 13 #include <linux/kprobes.h> 14 #include <linux/spinlock.h> 15 #include <linux/syscalls.h> 16 #include <linux/error-injection.h> 17 #include <linux/btf_ids.h> 18 19 #include <asm/tlb.h> 20 21 #include "trace_probe.h" 22 #include "trace.h" 23 24 #define CREATE_TRACE_POINTS 25 #include "bpf_trace.h" 26 27 #define bpf_event_rcu_dereference(p) \ 28 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 29 30 #ifdef CONFIG_MODULES 31 struct bpf_trace_module { 32 struct module *module; 33 struct list_head list; 34 }; 35 36 static LIST_HEAD(bpf_trace_modules); 37 static DEFINE_MUTEX(bpf_module_mutex); 38 39 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 40 { 41 struct bpf_raw_event_map *btp, *ret = NULL; 42 struct bpf_trace_module *btm; 43 unsigned int i; 44 45 mutex_lock(&bpf_module_mutex); 46 list_for_each_entry(btm, &bpf_trace_modules, list) { 47 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 48 btp = &btm->module->bpf_raw_events[i]; 49 if (!strcmp(btp->tp->name, name)) { 50 if (try_module_get(btm->module)) 51 ret = btp; 52 goto out; 53 } 54 } 55 } 56 out: 57 mutex_unlock(&bpf_module_mutex); 58 return ret; 59 } 60 #else 61 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 62 { 63 return NULL; 64 } 65 #endif /* CONFIG_MODULES */ 66 67 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 68 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 69 70 /** 71 * trace_call_bpf - invoke BPF program 72 * @call: tracepoint event 73 * @ctx: opaque context pointer 74 * 75 * kprobe handlers execute BPF programs via this helper. 76 * Can be used from static tracepoints in the future. 77 * 78 * Return: BPF programs always return an integer which is interpreted by 79 * kprobe handler as: 80 * 0 - return from kprobe (event is filtered out) 81 * 1 - store kprobe event into ring buffer 82 * Other values are reserved and currently alias to 1 83 */ 84 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 85 { 86 unsigned int ret; 87 88 if (in_nmi()) /* not supported yet */ 89 return 1; 90 91 cant_sleep(); 92 93 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 94 /* 95 * since some bpf program is already running on this cpu, 96 * don't call into another bpf program (same or different) 97 * and don't send kprobe event into ring-buffer, 98 * so return zero here 99 */ 100 ret = 0; 101 goto out; 102 } 103 104 /* 105 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 106 * to all call sites, we did a bpf_prog_array_valid() there to check 107 * whether call->prog_array is empty or not, which is 108 * a heurisitc to speed up execution. 109 * 110 * If bpf_prog_array_valid() fetched prog_array was 111 * non-NULL, we go into trace_call_bpf() and do the actual 112 * proper rcu_dereference() under RCU lock. 113 * If it turns out that prog_array is NULL then, we bail out. 114 * For the opposite, if the bpf_prog_array_valid() fetched pointer 115 * was NULL, you'll skip the prog_array with the risk of missing 116 * out of events when it was updated in between this and the 117 * rcu_dereference() which is accepted risk. 118 */ 119 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 120 121 out: 122 __this_cpu_dec(bpf_prog_active); 123 124 return ret; 125 } 126 127 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 128 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 129 { 130 regs_set_return_value(regs, rc); 131 override_function_with_return(regs); 132 return 0; 133 } 134 135 static const struct bpf_func_proto bpf_override_return_proto = { 136 .func = bpf_override_return, 137 .gpl_only = true, 138 .ret_type = RET_INTEGER, 139 .arg1_type = ARG_PTR_TO_CTX, 140 .arg2_type = ARG_ANYTHING, 141 }; 142 #endif 143 144 static __always_inline int 145 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 146 { 147 int ret; 148 149 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 150 if (unlikely(ret < 0)) 151 memset(dst, 0, size); 152 return ret; 153 } 154 155 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 156 const void __user *, unsafe_ptr) 157 { 158 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 159 } 160 161 const struct bpf_func_proto bpf_probe_read_user_proto = { 162 .func = bpf_probe_read_user, 163 .gpl_only = true, 164 .ret_type = RET_INTEGER, 165 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 166 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 167 .arg3_type = ARG_ANYTHING, 168 }; 169 170 static __always_inline int 171 bpf_probe_read_user_str_common(void *dst, u32 size, 172 const void __user *unsafe_ptr) 173 { 174 int ret; 175 176 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 177 if (unlikely(ret < 0)) 178 memset(dst, 0, size); 179 return ret; 180 } 181 182 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 183 const void __user *, unsafe_ptr) 184 { 185 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 186 } 187 188 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 189 .func = bpf_probe_read_user_str, 190 .gpl_only = true, 191 .ret_type = RET_INTEGER, 192 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 193 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 194 .arg3_type = ARG_ANYTHING, 195 }; 196 197 static __always_inline int 198 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 199 { 200 int ret = security_locked_down(LOCKDOWN_BPF_READ); 201 202 if (unlikely(ret < 0)) 203 goto fail; 204 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 205 if (unlikely(ret < 0)) 206 goto fail; 207 return ret; 208 fail: 209 memset(dst, 0, size); 210 return ret; 211 } 212 213 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 214 const void *, unsafe_ptr) 215 { 216 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 217 } 218 219 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 220 .func = bpf_probe_read_kernel, 221 .gpl_only = true, 222 .ret_type = RET_INTEGER, 223 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 224 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 225 .arg3_type = ARG_ANYTHING, 226 }; 227 228 static __always_inline int 229 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 230 { 231 int ret = security_locked_down(LOCKDOWN_BPF_READ); 232 233 if (unlikely(ret < 0)) 234 goto fail; 235 236 /* 237 * The strncpy_from_kernel_nofault() call will likely not fill the 238 * entire buffer, but that's okay in this circumstance as we're probing 239 * arbitrary memory anyway similar to bpf_probe_read_*() and might 240 * as well probe the stack. Thus, memory is explicitly cleared 241 * only in error case, so that improper users ignoring return 242 * code altogether don't copy garbage; otherwise length of string 243 * is returned that can be used for bpf_perf_event_output() et al. 244 */ 245 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 246 if (unlikely(ret < 0)) 247 goto fail; 248 249 return ret; 250 fail: 251 memset(dst, 0, size); 252 return ret; 253 } 254 255 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 256 const void *, unsafe_ptr) 257 { 258 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 259 } 260 261 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 262 .func = bpf_probe_read_kernel_str, 263 .gpl_only = true, 264 .ret_type = RET_INTEGER, 265 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 266 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 267 .arg3_type = ARG_ANYTHING, 268 }; 269 270 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 271 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 272 const void *, unsafe_ptr) 273 { 274 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 275 return bpf_probe_read_user_common(dst, size, 276 (__force void __user *)unsafe_ptr); 277 } 278 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 279 } 280 281 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 282 .func = bpf_probe_read_compat, 283 .gpl_only = true, 284 .ret_type = RET_INTEGER, 285 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 286 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 287 .arg3_type = ARG_ANYTHING, 288 }; 289 290 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 291 const void *, unsafe_ptr) 292 { 293 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 294 return bpf_probe_read_user_str_common(dst, size, 295 (__force void __user *)unsafe_ptr); 296 } 297 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 298 } 299 300 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 301 .func = bpf_probe_read_compat_str, 302 .gpl_only = true, 303 .ret_type = RET_INTEGER, 304 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 305 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 306 .arg3_type = ARG_ANYTHING, 307 }; 308 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 309 310 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 311 u32, size) 312 { 313 /* 314 * Ensure we're in user context which is safe for the helper to 315 * run. This helper has no business in a kthread. 316 * 317 * access_ok() should prevent writing to non-user memory, but in 318 * some situations (nommu, temporary switch, etc) access_ok() does 319 * not provide enough validation, hence the check on KERNEL_DS. 320 * 321 * nmi_uaccess_okay() ensures the probe is not run in an interim 322 * state, when the task or mm are switched. This is specifically 323 * required to prevent the use of temporary mm. 324 */ 325 326 if (unlikely(in_interrupt() || 327 current->flags & (PF_KTHREAD | PF_EXITING))) 328 return -EPERM; 329 if (unlikely(uaccess_kernel())) 330 return -EPERM; 331 if (unlikely(!nmi_uaccess_okay())) 332 return -EPERM; 333 334 return copy_to_user_nofault(unsafe_ptr, src, size); 335 } 336 337 static const struct bpf_func_proto bpf_probe_write_user_proto = { 338 .func = bpf_probe_write_user, 339 .gpl_only = true, 340 .ret_type = RET_INTEGER, 341 .arg1_type = ARG_ANYTHING, 342 .arg2_type = ARG_PTR_TO_MEM, 343 .arg3_type = ARG_CONST_SIZE, 344 }; 345 346 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 347 { 348 if (!capable(CAP_SYS_ADMIN)) 349 return NULL; 350 351 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 352 current->comm, task_pid_nr(current)); 353 354 return &bpf_probe_write_user_proto; 355 } 356 357 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 358 size_t bufsz) 359 { 360 void __user *user_ptr = (__force void __user *)unsafe_ptr; 361 362 buf[0] = 0; 363 364 switch (fmt_ptype) { 365 case 's': 366 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 367 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 368 strncpy_from_user_nofault(buf, user_ptr, bufsz); 369 break; 370 } 371 fallthrough; 372 #endif 373 case 'k': 374 strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 375 break; 376 case 'u': 377 strncpy_from_user_nofault(buf, user_ptr, bufsz); 378 break; 379 } 380 } 381 382 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 383 384 #define BPF_TRACE_PRINTK_SIZE 1024 385 386 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...) 387 { 388 static char buf[BPF_TRACE_PRINTK_SIZE]; 389 unsigned long flags; 390 va_list ap; 391 int ret; 392 393 raw_spin_lock_irqsave(&trace_printk_lock, flags); 394 va_start(ap, fmt); 395 ret = vsnprintf(buf, sizeof(buf), fmt, ap); 396 va_end(ap); 397 /* vsnprintf() will not append null for zero-length strings */ 398 if (ret == 0) 399 buf[0] = '\0'; 400 trace_bpf_trace_printk(buf); 401 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 402 403 return ret; 404 } 405 406 /* 407 * Only limited trace_printk() conversion specifiers allowed: 408 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s 409 */ 410 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 411 u64, arg2, u64, arg3) 412 { 413 int i, mod[3] = {}, fmt_cnt = 0; 414 char buf[64], fmt_ptype; 415 void *unsafe_ptr = NULL; 416 bool str_seen = false; 417 418 /* 419 * bpf_check()->check_func_arg()->check_stack_boundary() 420 * guarantees that fmt points to bpf program stack, 421 * fmt_size bytes of it were initialized and fmt_size > 0 422 */ 423 if (fmt[--fmt_size] != 0) 424 return -EINVAL; 425 426 /* check format string for allowed specifiers */ 427 for (i = 0; i < fmt_size; i++) { 428 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 429 return -EINVAL; 430 431 if (fmt[i] != '%') 432 continue; 433 434 if (fmt_cnt >= 3) 435 return -EINVAL; 436 437 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 438 i++; 439 if (fmt[i] == 'l') { 440 mod[fmt_cnt]++; 441 i++; 442 } else if (fmt[i] == 'p') { 443 mod[fmt_cnt]++; 444 if ((fmt[i + 1] == 'k' || 445 fmt[i + 1] == 'u') && 446 fmt[i + 2] == 's') { 447 fmt_ptype = fmt[i + 1]; 448 i += 2; 449 goto fmt_str; 450 } 451 452 if (fmt[i + 1] == 'B') { 453 i++; 454 goto fmt_next; 455 } 456 457 /* disallow any further format extensions */ 458 if (fmt[i + 1] != 0 && 459 !isspace(fmt[i + 1]) && 460 !ispunct(fmt[i + 1])) 461 return -EINVAL; 462 463 goto fmt_next; 464 } else if (fmt[i] == 's') { 465 mod[fmt_cnt]++; 466 fmt_ptype = fmt[i]; 467 fmt_str: 468 if (str_seen) 469 /* allow only one '%s' per fmt string */ 470 return -EINVAL; 471 str_seen = true; 472 473 if (fmt[i + 1] != 0 && 474 !isspace(fmt[i + 1]) && 475 !ispunct(fmt[i + 1])) 476 return -EINVAL; 477 478 switch (fmt_cnt) { 479 case 0: 480 unsafe_ptr = (void *)(long)arg1; 481 arg1 = (long)buf; 482 break; 483 case 1: 484 unsafe_ptr = (void *)(long)arg2; 485 arg2 = (long)buf; 486 break; 487 case 2: 488 unsafe_ptr = (void *)(long)arg3; 489 arg3 = (long)buf; 490 break; 491 } 492 493 bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype, 494 sizeof(buf)); 495 goto fmt_next; 496 } 497 498 if (fmt[i] == 'l') { 499 mod[fmt_cnt]++; 500 i++; 501 } 502 503 if (fmt[i] != 'i' && fmt[i] != 'd' && 504 fmt[i] != 'u' && fmt[i] != 'x') 505 return -EINVAL; 506 fmt_next: 507 fmt_cnt++; 508 } 509 510 /* Horrid workaround for getting va_list handling working with different 511 * argument type combinations generically for 32 and 64 bit archs. 512 */ 513 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 514 #define __BPF_TP(...) \ 515 bpf_do_trace_printk(fmt, ##__VA_ARGS__) 516 517 #define __BPF_ARG1_TP(...) \ 518 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 519 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 520 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 521 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 522 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 523 524 #define __BPF_ARG2_TP(...) \ 525 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 526 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 527 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 528 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 529 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 530 531 #define __BPF_ARG3_TP(...) \ 532 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 533 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 534 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 535 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 536 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 537 538 return __BPF_TP_EMIT(); 539 } 540 541 static const struct bpf_func_proto bpf_trace_printk_proto = { 542 .func = bpf_trace_printk, 543 .gpl_only = true, 544 .ret_type = RET_INTEGER, 545 .arg1_type = ARG_PTR_TO_MEM, 546 .arg2_type = ARG_CONST_SIZE, 547 }; 548 549 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 550 { 551 /* 552 * This program might be calling bpf_trace_printk, 553 * so enable the associated bpf_trace/bpf_trace_printk event. 554 * Repeat this each time as it is possible a user has 555 * disabled bpf_trace_printk events. By loading a program 556 * calling bpf_trace_printk() however the user has expressed 557 * the intent to see such events. 558 */ 559 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 560 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 561 562 return &bpf_trace_printk_proto; 563 } 564 565 #define MAX_SEQ_PRINTF_VARARGS 12 566 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6 567 #define MAX_SEQ_PRINTF_STR_LEN 128 568 569 struct bpf_seq_printf_buf { 570 char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN]; 571 }; 572 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf); 573 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used); 574 575 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 576 const void *, data, u32, data_len) 577 { 578 int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0; 579 int i, buf_used, copy_size, num_args; 580 u64 params[MAX_SEQ_PRINTF_VARARGS]; 581 struct bpf_seq_printf_buf *bufs; 582 const u64 *args = data; 583 584 buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used); 585 if (WARN_ON_ONCE(buf_used > 1)) { 586 err = -EBUSY; 587 goto out; 588 } 589 590 bufs = this_cpu_ptr(&bpf_seq_printf_buf); 591 592 /* 593 * bpf_check()->check_func_arg()->check_stack_boundary() 594 * guarantees that fmt points to bpf program stack, 595 * fmt_size bytes of it were initialized and fmt_size > 0 596 */ 597 if (fmt[--fmt_size] != 0) 598 goto out; 599 600 if (data_len & 7) 601 goto out; 602 603 for (i = 0; i < fmt_size; i++) { 604 if (fmt[i] == '%') { 605 if (fmt[i + 1] == '%') 606 i++; 607 else if (!data || !data_len) 608 goto out; 609 } 610 } 611 612 num_args = data_len / 8; 613 614 /* check format string for allowed specifiers */ 615 for (i = 0; i < fmt_size; i++) { 616 /* only printable ascii for now. */ 617 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 618 err = -EINVAL; 619 goto out; 620 } 621 622 if (fmt[i] != '%') 623 continue; 624 625 if (fmt[i + 1] == '%') { 626 i++; 627 continue; 628 } 629 630 if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) { 631 err = -E2BIG; 632 goto out; 633 } 634 635 if (fmt_cnt >= num_args) { 636 err = -EINVAL; 637 goto out; 638 } 639 640 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 641 i++; 642 643 /* skip optional "[0 +-][num]" width formating field */ 644 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 645 fmt[i] == ' ') 646 i++; 647 if (fmt[i] >= '1' && fmt[i] <= '9') { 648 i++; 649 while (fmt[i] >= '0' && fmt[i] <= '9') 650 i++; 651 } 652 653 if (fmt[i] == 's') { 654 void *unsafe_ptr; 655 656 /* try our best to copy */ 657 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 658 err = -E2BIG; 659 goto out; 660 } 661 662 unsafe_ptr = (void *)(long)args[fmt_cnt]; 663 err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt], 664 unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN); 665 if (err < 0) 666 bufs->buf[memcpy_cnt][0] = '\0'; 667 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 668 669 fmt_cnt++; 670 memcpy_cnt++; 671 continue; 672 } 673 674 if (fmt[i] == 'p') { 675 if (fmt[i + 1] == 0 || 676 fmt[i + 1] == 'K' || 677 fmt[i + 1] == 'x' || 678 fmt[i + 1] == 'B') { 679 /* just kernel pointers */ 680 params[fmt_cnt] = args[fmt_cnt]; 681 fmt_cnt++; 682 continue; 683 } 684 685 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 686 if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') { 687 err = -EINVAL; 688 goto out; 689 } 690 if (fmt[i + 2] != '4' && fmt[i + 2] != '6') { 691 err = -EINVAL; 692 goto out; 693 } 694 695 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 696 err = -E2BIG; 697 goto out; 698 } 699 700 701 copy_size = (fmt[i + 2] == '4') ? 4 : 16; 702 703 err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt], 704 (void *) (long) args[fmt_cnt], 705 copy_size); 706 if (err < 0) 707 memset(bufs->buf[memcpy_cnt], 0, copy_size); 708 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 709 710 i += 2; 711 fmt_cnt++; 712 memcpy_cnt++; 713 continue; 714 } 715 716 if (fmt[i] == 'l') { 717 i++; 718 if (fmt[i] == 'l') 719 i++; 720 } 721 722 if (fmt[i] != 'i' && fmt[i] != 'd' && 723 fmt[i] != 'u' && fmt[i] != 'x' && 724 fmt[i] != 'X') { 725 err = -EINVAL; 726 goto out; 727 } 728 729 params[fmt_cnt] = args[fmt_cnt]; 730 fmt_cnt++; 731 } 732 733 /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give 734 * all of them to seq_printf(). 735 */ 736 seq_printf(m, fmt, params[0], params[1], params[2], params[3], 737 params[4], params[5], params[6], params[7], params[8], 738 params[9], params[10], params[11]); 739 740 err = seq_has_overflowed(m) ? -EOVERFLOW : 0; 741 out: 742 this_cpu_dec(bpf_seq_printf_buf_used); 743 return err; 744 } 745 746 BTF_ID_LIST(bpf_seq_printf_btf_ids) 747 BTF_ID(struct, seq_file) 748 749 static const struct bpf_func_proto bpf_seq_printf_proto = { 750 .func = bpf_seq_printf, 751 .gpl_only = true, 752 .ret_type = RET_INTEGER, 753 .arg1_type = ARG_PTR_TO_BTF_ID, 754 .arg2_type = ARG_PTR_TO_MEM, 755 .arg3_type = ARG_CONST_SIZE, 756 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 757 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 758 .btf_id = bpf_seq_printf_btf_ids, 759 }; 760 761 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 762 { 763 return seq_write(m, data, len) ? -EOVERFLOW : 0; 764 } 765 766 BTF_ID_LIST(bpf_seq_write_btf_ids) 767 BTF_ID(struct, seq_file) 768 769 static const struct bpf_func_proto bpf_seq_write_proto = { 770 .func = bpf_seq_write, 771 .gpl_only = true, 772 .ret_type = RET_INTEGER, 773 .arg1_type = ARG_PTR_TO_BTF_ID, 774 .arg2_type = ARG_PTR_TO_MEM, 775 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 776 .btf_id = bpf_seq_write_btf_ids, 777 }; 778 779 static __always_inline int 780 get_map_perf_counter(struct bpf_map *map, u64 flags, 781 u64 *value, u64 *enabled, u64 *running) 782 { 783 struct bpf_array *array = container_of(map, struct bpf_array, map); 784 unsigned int cpu = smp_processor_id(); 785 u64 index = flags & BPF_F_INDEX_MASK; 786 struct bpf_event_entry *ee; 787 788 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 789 return -EINVAL; 790 if (index == BPF_F_CURRENT_CPU) 791 index = cpu; 792 if (unlikely(index >= array->map.max_entries)) 793 return -E2BIG; 794 795 ee = READ_ONCE(array->ptrs[index]); 796 if (!ee) 797 return -ENOENT; 798 799 return perf_event_read_local(ee->event, value, enabled, running); 800 } 801 802 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 803 { 804 u64 value = 0; 805 int err; 806 807 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 808 /* 809 * this api is ugly since we miss [-22..-2] range of valid 810 * counter values, but that's uapi 811 */ 812 if (err) 813 return err; 814 return value; 815 } 816 817 static const struct bpf_func_proto bpf_perf_event_read_proto = { 818 .func = bpf_perf_event_read, 819 .gpl_only = true, 820 .ret_type = RET_INTEGER, 821 .arg1_type = ARG_CONST_MAP_PTR, 822 .arg2_type = ARG_ANYTHING, 823 }; 824 825 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 826 struct bpf_perf_event_value *, buf, u32, size) 827 { 828 int err = -EINVAL; 829 830 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 831 goto clear; 832 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 833 &buf->running); 834 if (unlikely(err)) 835 goto clear; 836 return 0; 837 clear: 838 memset(buf, 0, size); 839 return err; 840 } 841 842 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 843 .func = bpf_perf_event_read_value, 844 .gpl_only = true, 845 .ret_type = RET_INTEGER, 846 .arg1_type = ARG_CONST_MAP_PTR, 847 .arg2_type = ARG_ANYTHING, 848 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 849 .arg4_type = ARG_CONST_SIZE, 850 }; 851 852 static __always_inline u64 853 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 854 u64 flags, struct perf_sample_data *sd) 855 { 856 struct bpf_array *array = container_of(map, struct bpf_array, map); 857 unsigned int cpu = smp_processor_id(); 858 u64 index = flags & BPF_F_INDEX_MASK; 859 struct bpf_event_entry *ee; 860 struct perf_event *event; 861 862 if (index == BPF_F_CURRENT_CPU) 863 index = cpu; 864 if (unlikely(index >= array->map.max_entries)) 865 return -E2BIG; 866 867 ee = READ_ONCE(array->ptrs[index]); 868 if (!ee) 869 return -ENOENT; 870 871 event = ee->event; 872 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 873 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 874 return -EINVAL; 875 876 if (unlikely(event->oncpu != cpu)) 877 return -EOPNOTSUPP; 878 879 return perf_event_output(event, sd, regs); 880 } 881 882 /* 883 * Support executing tracepoints in normal, irq, and nmi context that each call 884 * bpf_perf_event_output 885 */ 886 struct bpf_trace_sample_data { 887 struct perf_sample_data sds[3]; 888 }; 889 890 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 891 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 892 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 893 u64, flags, void *, data, u64, size) 894 { 895 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 896 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 897 struct perf_raw_record raw = { 898 .frag = { 899 .size = size, 900 .data = data, 901 }, 902 }; 903 struct perf_sample_data *sd; 904 int err; 905 906 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 907 err = -EBUSY; 908 goto out; 909 } 910 911 sd = &sds->sds[nest_level - 1]; 912 913 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 914 err = -EINVAL; 915 goto out; 916 } 917 918 perf_sample_data_init(sd, 0, 0); 919 sd->raw = &raw; 920 921 err = __bpf_perf_event_output(regs, map, flags, sd); 922 923 out: 924 this_cpu_dec(bpf_trace_nest_level); 925 return err; 926 } 927 928 static const struct bpf_func_proto bpf_perf_event_output_proto = { 929 .func = bpf_perf_event_output, 930 .gpl_only = true, 931 .ret_type = RET_INTEGER, 932 .arg1_type = ARG_PTR_TO_CTX, 933 .arg2_type = ARG_CONST_MAP_PTR, 934 .arg3_type = ARG_ANYTHING, 935 .arg4_type = ARG_PTR_TO_MEM, 936 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 937 }; 938 939 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 940 struct bpf_nested_pt_regs { 941 struct pt_regs regs[3]; 942 }; 943 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 944 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 945 946 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 947 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 948 { 949 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 950 struct perf_raw_frag frag = { 951 .copy = ctx_copy, 952 .size = ctx_size, 953 .data = ctx, 954 }; 955 struct perf_raw_record raw = { 956 .frag = { 957 { 958 .next = ctx_size ? &frag : NULL, 959 }, 960 .size = meta_size, 961 .data = meta, 962 }, 963 }; 964 struct perf_sample_data *sd; 965 struct pt_regs *regs; 966 u64 ret; 967 968 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 969 ret = -EBUSY; 970 goto out; 971 } 972 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 973 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 974 975 perf_fetch_caller_regs(regs); 976 perf_sample_data_init(sd, 0, 0); 977 sd->raw = &raw; 978 979 ret = __bpf_perf_event_output(regs, map, flags, sd); 980 out: 981 this_cpu_dec(bpf_event_output_nest_level); 982 return ret; 983 } 984 985 BPF_CALL_0(bpf_get_current_task) 986 { 987 return (long) current; 988 } 989 990 const struct bpf_func_proto bpf_get_current_task_proto = { 991 .func = bpf_get_current_task, 992 .gpl_only = true, 993 .ret_type = RET_INTEGER, 994 }; 995 996 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 997 { 998 struct bpf_array *array = container_of(map, struct bpf_array, map); 999 struct cgroup *cgrp; 1000 1001 if (unlikely(idx >= array->map.max_entries)) 1002 return -E2BIG; 1003 1004 cgrp = READ_ONCE(array->ptrs[idx]); 1005 if (unlikely(!cgrp)) 1006 return -EAGAIN; 1007 1008 return task_under_cgroup_hierarchy(current, cgrp); 1009 } 1010 1011 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 1012 .func = bpf_current_task_under_cgroup, 1013 .gpl_only = false, 1014 .ret_type = RET_INTEGER, 1015 .arg1_type = ARG_CONST_MAP_PTR, 1016 .arg2_type = ARG_ANYTHING, 1017 }; 1018 1019 struct send_signal_irq_work { 1020 struct irq_work irq_work; 1021 struct task_struct *task; 1022 u32 sig; 1023 enum pid_type type; 1024 }; 1025 1026 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 1027 1028 static void do_bpf_send_signal(struct irq_work *entry) 1029 { 1030 struct send_signal_irq_work *work; 1031 1032 work = container_of(entry, struct send_signal_irq_work, irq_work); 1033 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 1034 } 1035 1036 static int bpf_send_signal_common(u32 sig, enum pid_type type) 1037 { 1038 struct send_signal_irq_work *work = NULL; 1039 1040 /* Similar to bpf_probe_write_user, task needs to be 1041 * in a sound condition and kernel memory access be 1042 * permitted in order to send signal to the current 1043 * task. 1044 */ 1045 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 1046 return -EPERM; 1047 if (unlikely(uaccess_kernel())) 1048 return -EPERM; 1049 if (unlikely(!nmi_uaccess_okay())) 1050 return -EPERM; 1051 1052 if (irqs_disabled()) { 1053 /* Do an early check on signal validity. Otherwise, 1054 * the error is lost in deferred irq_work. 1055 */ 1056 if (unlikely(!valid_signal(sig))) 1057 return -EINVAL; 1058 1059 work = this_cpu_ptr(&send_signal_work); 1060 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) 1061 return -EBUSY; 1062 1063 /* Add the current task, which is the target of sending signal, 1064 * to the irq_work. The current task may change when queued 1065 * irq works get executed. 1066 */ 1067 work->task = current; 1068 work->sig = sig; 1069 work->type = type; 1070 irq_work_queue(&work->irq_work); 1071 return 0; 1072 } 1073 1074 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 1075 } 1076 1077 BPF_CALL_1(bpf_send_signal, u32, sig) 1078 { 1079 return bpf_send_signal_common(sig, PIDTYPE_TGID); 1080 } 1081 1082 static const struct bpf_func_proto bpf_send_signal_proto = { 1083 .func = bpf_send_signal, 1084 .gpl_only = false, 1085 .ret_type = RET_INTEGER, 1086 .arg1_type = ARG_ANYTHING, 1087 }; 1088 1089 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 1090 { 1091 return bpf_send_signal_common(sig, PIDTYPE_PID); 1092 } 1093 1094 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 1095 .func = bpf_send_signal_thread, 1096 .gpl_only = false, 1097 .ret_type = RET_INTEGER, 1098 .arg1_type = ARG_ANYTHING, 1099 }; 1100 1101 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 1102 { 1103 long len; 1104 char *p; 1105 1106 if (!sz) 1107 return 0; 1108 1109 p = d_path(path, buf, sz); 1110 if (IS_ERR(p)) { 1111 len = PTR_ERR(p); 1112 } else { 1113 len = buf + sz - p; 1114 memmove(buf, p, len); 1115 } 1116 1117 return len; 1118 } 1119 1120 BTF_SET_START(btf_allowlist_d_path) 1121 BTF_ID(func, vfs_truncate) 1122 BTF_ID(func, vfs_fallocate) 1123 BTF_ID(func, dentry_open) 1124 BTF_ID(func, vfs_getattr) 1125 BTF_ID(func, filp_close) 1126 BTF_SET_END(btf_allowlist_d_path) 1127 1128 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 1129 { 1130 return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id); 1131 } 1132 1133 BTF_ID_LIST(bpf_d_path_btf_ids) 1134 BTF_ID(struct, path) 1135 1136 static const struct bpf_func_proto bpf_d_path_proto = { 1137 .func = bpf_d_path, 1138 .gpl_only = false, 1139 .ret_type = RET_INTEGER, 1140 .arg1_type = ARG_PTR_TO_BTF_ID, 1141 .arg2_type = ARG_PTR_TO_MEM, 1142 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1143 .btf_id = bpf_d_path_btf_ids, 1144 .allowed = bpf_d_path_allowed, 1145 }; 1146 1147 const struct bpf_func_proto * 1148 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1149 { 1150 switch (func_id) { 1151 case BPF_FUNC_map_lookup_elem: 1152 return &bpf_map_lookup_elem_proto; 1153 case BPF_FUNC_map_update_elem: 1154 return &bpf_map_update_elem_proto; 1155 case BPF_FUNC_map_delete_elem: 1156 return &bpf_map_delete_elem_proto; 1157 case BPF_FUNC_map_push_elem: 1158 return &bpf_map_push_elem_proto; 1159 case BPF_FUNC_map_pop_elem: 1160 return &bpf_map_pop_elem_proto; 1161 case BPF_FUNC_map_peek_elem: 1162 return &bpf_map_peek_elem_proto; 1163 case BPF_FUNC_ktime_get_ns: 1164 return &bpf_ktime_get_ns_proto; 1165 case BPF_FUNC_ktime_get_boot_ns: 1166 return &bpf_ktime_get_boot_ns_proto; 1167 case BPF_FUNC_tail_call: 1168 return &bpf_tail_call_proto; 1169 case BPF_FUNC_get_current_pid_tgid: 1170 return &bpf_get_current_pid_tgid_proto; 1171 case BPF_FUNC_get_current_task: 1172 return &bpf_get_current_task_proto; 1173 case BPF_FUNC_get_current_uid_gid: 1174 return &bpf_get_current_uid_gid_proto; 1175 case BPF_FUNC_get_current_comm: 1176 return &bpf_get_current_comm_proto; 1177 case BPF_FUNC_trace_printk: 1178 return bpf_get_trace_printk_proto(); 1179 case BPF_FUNC_get_smp_processor_id: 1180 return &bpf_get_smp_processor_id_proto; 1181 case BPF_FUNC_get_numa_node_id: 1182 return &bpf_get_numa_node_id_proto; 1183 case BPF_FUNC_perf_event_read: 1184 return &bpf_perf_event_read_proto; 1185 case BPF_FUNC_probe_write_user: 1186 return bpf_get_probe_write_proto(); 1187 case BPF_FUNC_current_task_under_cgroup: 1188 return &bpf_current_task_under_cgroup_proto; 1189 case BPF_FUNC_get_prandom_u32: 1190 return &bpf_get_prandom_u32_proto; 1191 case BPF_FUNC_probe_read_user: 1192 return &bpf_probe_read_user_proto; 1193 case BPF_FUNC_probe_read_kernel: 1194 return &bpf_probe_read_kernel_proto; 1195 case BPF_FUNC_probe_read_user_str: 1196 return &bpf_probe_read_user_str_proto; 1197 case BPF_FUNC_probe_read_kernel_str: 1198 return &bpf_probe_read_kernel_str_proto; 1199 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1200 case BPF_FUNC_probe_read: 1201 return &bpf_probe_read_compat_proto; 1202 case BPF_FUNC_probe_read_str: 1203 return &bpf_probe_read_compat_str_proto; 1204 #endif 1205 #ifdef CONFIG_CGROUPS 1206 case BPF_FUNC_get_current_cgroup_id: 1207 return &bpf_get_current_cgroup_id_proto; 1208 #endif 1209 case BPF_FUNC_send_signal: 1210 return &bpf_send_signal_proto; 1211 case BPF_FUNC_send_signal_thread: 1212 return &bpf_send_signal_thread_proto; 1213 case BPF_FUNC_perf_event_read_value: 1214 return &bpf_perf_event_read_value_proto; 1215 case BPF_FUNC_get_ns_current_pid_tgid: 1216 return &bpf_get_ns_current_pid_tgid_proto; 1217 case BPF_FUNC_ringbuf_output: 1218 return &bpf_ringbuf_output_proto; 1219 case BPF_FUNC_ringbuf_reserve: 1220 return &bpf_ringbuf_reserve_proto; 1221 case BPF_FUNC_ringbuf_submit: 1222 return &bpf_ringbuf_submit_proto; 1223 case BPF_FUNC_ringbuf_discard: 1224 return &bpf_ringbuf_discard_proto; 1225 case BPF_FUNC_ringbuf_query: 1226 return &bpf_ringbuf_query_proto; 1227 case BPF_FUNC_jiffies64: 1228 return &bpf_jiffies64_proto; 1229 case BPF_FUNC_get_task_stack: 1230 return &bpf_get_task_stack_proto; 1231 case BPF_FUNC_copy_from_user: 1232 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL; 1233 default: 1234 return NULL; 1235 } 1236 } 1237 1238 static const struct bpf_func_proto * 1239 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1240 { 1241 switch (func_id) { 1242 case BPF_FUNC_perf_event_output: 1243 return &bpf_perf_event_output_proto; 1244 case BPF_FUNC_get_stackid: 1245 return &bpf_get_stackid_proto; 1246 case BPF_FUNC_get_stack: 1247 return &bpf_get_stack_proto; 1248 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1249 case BPF_FUNC_override_return: 1250 return &bpf_override_return_proto; 1251 #endif 1252 default: 1253 return bpf_tracing_func_proto(func_id, prog); 1254 } 1255 } 1256 1257 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1258 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1259 const struct bpf_prog *prog, 1260 struct bpf_insn_access_aux *info) 1261 { 1262 if (off < 0 || off >= sizeof(struct pt_regs)) 1263 return false; 1264 if (type != BPF_READ) 1265 return false; 1266 if (off % size != 0) 1267 return false; 1268 /* 1269 * Assertion for 32 bit to make sure last 8 byte access 1270 * (BPF_DW) to the last 4 byte member is disallowed. 1271 */ 1272 if (off + size > sizeof(struct pt_regs)) 1273 return false; 1274 1275 return true; 1276 } 1277 1278 const struct bpf_verifier_ops kprobe_verifier_ops = { 1279 .get_func_proto = kprobe_prog_func_proto, 1280 .is_valid_access = kprobe_prog_is_valid_access, 1281 }; 1282 1283 const struct bpf_prog_ops kprobe_prog_ops = { 1284 }; 1285 1286 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1287 u64, flags, void *, data, u64, size) 1288 { 1289 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1290 1291 /* 1292 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1293 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1294 * from there and call the same bpf_perf_event_output() helper inline. 1295 */ 1296 return ____bpf_perf_event_output(regs, map, flags, data, size); 1297 } 1298 1299 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1300 .func = bpf_perf_event_output_tp, 1301 .gpl_only = true, 1302 .ret_type = RET_INTEGER, 1303 .arg1_type = ARG_PTR_TO_CTX, 1304 .arg2_type = ARG_CONST_MAP_PTR, 1305 .arg3_type = ARG_ANYTHING, 1306 .arg4_type = ARG_PTR_TO_MEM, 1307 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1308 }; 1309 1310 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1311 u64, flags) 1312 { 1313 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1314 1315 /* 1316 * Same comment as in bpf_perf_event_output_tp(), only that this time 1317 * the other helper's function body cannot be inlined due to being 1318 * external, thus we need to call raw helper function. 1319 */ 1320 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1321 flags, 0, 0); 1322 } 1323 1324 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1325 .func = bpf_get_stackid_tp, 1326 .gpl_only = true, 1327 .ret_type = RET_INTEGER, 1328 .arg1_type = ARG_PTR_TO_CTX, 1329 .arg2_type = ARG_CONST_MAP_PTR, 1330 .arg3_type = ARG_ANYTHING, 1331 }; 1332 1333 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1334 u64, flags) 1335 { 1336 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1337 1338 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1339 (unsigned long) size, flags, 0); 1340 } 1341 1342 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1343 .func = bpf_get_stack_tp, 1344 .gpl_only = true, 1345 .ret_type = RET_INTEGER, 1346 .arg1_type = ARG_PTR_TO_CTX, 1347 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1348 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1349 .arg4_type = ARG_ANYTHING, 1350 }; 1351 1352 static const struct bpf_func_proto * 1353 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1354 { 1355 switch (func_id) { 1356 case BPF_FUNC_perf_event_output: 1357 return &bpf_perf_event_output_proto_tp; 1358 case BPF_FUNC_get_stackid: 1359 return &bpf_get_stackid_proto_tp; 1360 case BPF_FUNC_get_stack: 1361 return &bpf_get_stack_proto_tp; 1362 default: 1363 return bpf_tracing_func_proto(func_id, prog); 1364 } 1365 } 1366 1367 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1368 const struct bpf_prog *prog, 1369 struct bpf_insn_access_aux *info) 1370 { 1371 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1372 return false; 1373 if (type != BPF_READ) 1374 return false; 1375 if (off % size != 0) 1376 return false; 1377 1378 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1379 return true; 1380 } 1381 1382 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1383 .get_func_proto = tp_prog_func_proto, 1384 .is_valid_access = tp_prog_is_valid_access, 1385 }; 1386 1387 const struct bpf_prog_ops tracepoint_prog_ops = { 1388 }; 1389 1390 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1391 struct bpf_perf_event_value *, buf, u32, size) 1392 { 1393 int err = -EINVAL; 1394 1395 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1396 goto clear; 1397 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1398 &buf->running); 1399 if (unlikely(err)) 1400 goto clear; 1401 return 0; 1402 clear: 1403 memset(buf, 0, size); 1404 return err; 1405 } 1406 1407 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1408 .func = bpf_perf_prog_read_value, 1409 .gpl_only = true, 1410 .ret_type = RET_INTEGER, 1411 .arg1_type = ARG_PTR_TO_CTX, 1412 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1413 .arg3_type = ARG_CONST_SIZE, 1414 }; 1415 1416 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1417 void *, buf, u32, size, u64, flags) 1418 { 1419 #ifndef CONFIG_X86 1420 return -ENOENT; 1421 #else 1422 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1423 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1424 u32 to_copy; 1425 1426 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1427 return -EINVAL; 1428 1429 if (unlikely(!br_stack)) 1430 return -EINVAL; 1431 1432 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1433 return br_stack->nr * br_entry_size; 1434 1435 if (!buf || (size % br_entry_size != 0)) 1436 return -EINVAL; 1437 1438 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1439 memcpy(buf, br_stack->entries, to_copy); 1440 1441 return to_copy; 1442 #endif 1443 } 1444 1445 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1446 .func = bpf_read_branch_records, 1447 .gpl_only = true, 1448 .ret_type = RET_INTEGER, 1449 .arg1_type = ARG_PTR_TO_CTX, 1450 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1451 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1452 .arg4_type = ARG_ANYTHING, 1453 }; 1454 1455 static const struct bpf_func_proto * 1456 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1457 { 1458 switch (func_id) { 1459 case BPF_FUNC_perf_event_output: 1460 return &bpf_perf_event_output_proto_tp; 1461 case BPF_FUNC_get_stackid: 1462 return &bpf_get_stackid_proto_pe; 1463 case BPF_FUNC_get_stack: 1464 return &bpf_get_stack_proto_pe; 1465 case BPF_FUNC_perf_prog_read_value: 1466 return &bpf_perf_prog_read_value_proto; 1467 case BPF_FUNC_read_branch_records: 1468 return &bpf_read_branch_records_proto; 1469 default: 1470 return bpf_tracing_func_proto(func_id, prog); 1471 } 1472 } 1473 1474 /* 1475 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1476 * to avoid potential recursive reuse issue when/if tracepoints are added 1477 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1478 * 1479 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1480 * in normal, irq, and nmi context. 1481 */ 1482 struct bpf_raw_tp_regs { 1483 struct pt_regs regs[3]; 1484 }; 1485 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1486 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1487 static struct pt_regs *get_bpf_raw_tp_regs(void) 1488 { 1489 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1490 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1491 1492 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1493 this_cpu_dec(bpf_raw_tp_nest_level); 1494 return ERR_PTR(-EBUSY); 1495 } 1496 1497 return &tp_regs->regs[nest_level - 1]; 1498 } 1499 1500 static void put_bpf_raw_tp_regs(void) 1501 { 1502 this_cpu_dec(bpf_raw_tp_nest_level); 1503 } 1504 1505 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1506 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1507 { 1508 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1509 int ret; 1510 1511 if (IS_ERR(regs)) 1512 return PTR_ERR(regs); 1513 1514 perf_fetch_caller_regs(regs); 1515 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1516 1517 put_bpf_raw_tp_regs(); 1518 return ret; 1519 } 1520 1521 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1522 .func = bpf_perf_event_output_raw_tp, 1523 .gpl_only = true, 1524 .ret_type = RET_INTEGER, 1525 .arg1_type = ARG_PTR_TO_CTX, 1526 .arg2_type = ARG_CONST_MAP_PTR, 1527 .arg3_type = ARG_ANYTHING, 1528 .arg4_type = ARG_PTR_TO_MEM, 1529 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1530 }; 1531 1532 extern const struct bpf_func_proto bpf_skb_output_proto; 1533 extern const struct bpf_func_proto bpf_xdp_output_proto; 1534 1535 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1536 struct bpf_map *, map, u64, flags) 1537 { 1538 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1539 int ret; 1540 1541 if (IS_ERR(regs)) 1542 return PTR_ERR(regs); 1543 1544 perf_fetch_caller_regs(regs); 1545 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1546 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1547 flags, 0, 0); 1548 put_bpf_raw_tp_regs(); 1549 return ret; 1550 } 1551 1552 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1553 .func = bpf_get_stackid_raw_tp, 1554 .gpl_only = true, 1555 .ret_type = RET_INTEGER, 1556 .arg1_type = ARG_PTR_TO_CTX, 1557 .arg2_type = ARG_CONST_MAP_PTR, 1558 .arg3_type = ARG_ANYTHING, 1559 }; 1560 1561 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1562 void *, buf, u32, size, u64, flags) 1563 { 1564 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1565 int ret; 1566 1567 if (IS_ERR(regs)) 1568 return PTR_ERR(regs); 1569 1570 perf_fetch_caller_regs(regs); 1571 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1572 (unsigned long) size, flags, 0); 1573 put_bpf_raw_tp_regs(); 1574 return ret; 1575 } 1576 1577 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1578 .func = bpf_get_stack_raw_tp, 1579 .gpl_only = true, 1580 .ret_type = RET_INTEGER, 1581 .arg1_type = ARG_PTR_TO_CTX, 1582 .arg2_type = ARG_PTR_TO_MEM, 1583 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1584 .arg4_type = ARG_ANYTHING, 1585 }; 1586 1587 static const struct bpf_func_proto * 1588 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1589 { 1590 switch (func_id) { 1591 case BPF_FUNC_perf_event_output: 1592 return &bpf_perf_event_output_proto_raw_tp; 1593 case BPF_FUNC_get_stackid: 1594 return &bpf_get_stackid_proto_raw_tp; 1595 case BPF_FUNC_get_stack: 1596 return &bpf_get_stack_proto_raw_tp; 1597 default: 1598 return bpf_tracing_func_proto(func_id, prog); 1599 } 1600 } 1601 1602 const struct bpf_func_proto * 1603 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1604 { 1605 switch (func_id) { 1606 #ifdef CONFIG_NET 1607 case BPF_FUNC_skb_output: 1608 return &bpf_skb_output_proto; 1609 case BPF_FUNC_xdp_output: 1610 return &bpf_xdp_output_proto; 1611 case BPF_FUNC_skc_to_tcp6_sock: 1612 return &bpf_skc_to_tcp6_sock_proto; 1613 case BPF_FUNC_skc_to_tcp_sock: 1614 return &bpf_skc_to_tcp_sock_proto; 1615 case BPF_FUNC_skc_to_tcp_timewait_sock: 1616 return &bpf_skc_to_tcp_timewait_sock_proto; 1617 case BPF_FUNC_skc_to_tcp_request_sock: 1618 return &bpf_skc_to_tcp_request_sock_proto; 1619 case BPF_FUNC_skc_to_udp6_sock: 1620 return &bpf_skc_to_udp6_sock_proto; 1621 #endif 1622 case BPF_FUNC_seq_printf: 1623 return prog->expected_attach_type == BPF_TRACE_ITER ? 1624 &bpf_seq_printf_proto : 1625 NULL; 1626 case BPF_FUNC_seq_write: 1627 return prog->expected_attach_type == BPF_TRACE_ITER ? 1628 &bpf_seq_write_proto : 1629 NULL; 1630 case BPF_FUNC_d_path: 1631 return &bpf_d_path_proto; 1632 default: 1633 return raw_tp_prog_func_proto(func_id, prog); 1634 } 1635 } 1636 1637 static bool raw_tp_prog_is_valid_access(int off, int size, 1638 enum bpf_access_type type, 1639 const struct bpf_prog *prog, 1640 struct bpf_insn_access_aux *info) 1641 { 1642 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1643 return false; 1644 if (type != BPF_READ) 1645 return false; 1646 if (off % size != 0) 1647 return false; 1648 return true; 1649 } 1650 1651 static bool tracing_prog_is_valid_access(int off, int size, 1652 enum bpf_access_type type, 1653 const struct bpf_prog *prog, 1654 struct bpf_insn_access_aux *info) 1655 { 1656 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1657 return false; 1658 if (type != BPF_READ) 1659 return false; 1660 if (off % size != 0) 1661 return false; 1662 return btf_ctx_access(off, size, type, prog, info); 1663 } 1664 1665 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1666 const union bpf_attr *kattr, 1667 union bpf_attr __user *uattr) 1668 { 1669 return -ENOTSUPP; 1670 } 1671 1672 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1673 .get_func_proto = raw_tp_prog_func_proto, 1674 .is_valid_access = raw_tp_prog_is_valid_access, 1675 }; 1676 1677 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1678 }; 1679 1680 const struct bpf_verifier_ops tracing_verifier_ops = { 1681 .get_func_proto = tracing_prog_func_proto, 1682 .is_valid_access = tracing_prog_is_valid_access, 1683 }; 1684 1685 const struct bpf_prog_ops tracing_prog_ops = { 1686 .test_run = bpf_prog_test_run_tracing, 1687 }; 1688 1689 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1690 enum bpf_access_type type, 1691 const struct bpf_prog *prog, 1692 struct bpf_insn_access_aux *info) 1693 { 1694 if (off == 0) { 1695 if (size != sizeof(u64) || type != BPF_READ) 1696 return false; 1697 info->reg_type = PTR_TO_TP_BUFFER; 1698 } 1699 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1700 } 1701 1702 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1703 .get_func_proto = raw_tp_prog_func_proto, 1704 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1705 }; 1706 1707 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1708 }; 1709 1710 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1711 const struct bpf_prog *prog, 1712 struct bpf_insn_access_aux *info) 1713 { 1714 const int size_u64 = sizeof(u64); 1715 1716 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1717 return false; 1718 if (type != BPF_READ) 1719 return false; 1720 if (off % size != 0) { 1721 if (sizeof(unsigned long) != 4) 1722 return false; 1723 if (size != 8) 1724 return false; 1725 if (off % size != 4) 1726 return false; 1727 } 1728 1729 switch (off) { 1730 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1731 bpf_ctx_record_field_size(info, size_u64); 1732 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1733 return false; 1734 break; 1735 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1736 bpf_ctx_record_field_size(info, size_u64); 1737 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1738 return false; 1739 break; 1740 default: 1741 if (size != sizeof(long)) 1742 return false; 1743 } 1744 1745 return true; 1746 } 1747 1748 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1749 const struct bpf_insn *si, 1750 struct bpf_insn *insn_buf, 1751 struct bpf_prog *prog, u32 *target_size) 1752 { 1753 struct bpf_insn *insn = insn_buf; 1754 1755 switch (si->off) { 1756 case offsetof(struct bpf_perf_event_data, sample_period): 1757 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1758 data), si->dst_reg, si->src_reg, 1759 offsetof(struct bpf_perf_event_data_kern, data)); 1760 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1761 bpf_target_off(struct perf_sample_data, period, 8, 1762 target_size)); 1763 break; 1764 case offsetof(struct bpf_perf_event_data, addr): 1765 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1766 data), si->dst_reg, si->src_reg, 1767 offsetof(struct bpf_perf_event_data_kern, data)); 1768 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1769 bpf_target_off(struct perf_sample_data, addr, 8, 1770 target_size)); 1771 break; 1772 default: 1773 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1774 regs), si->dst_reg, si->src_reg, 1775 offsetof(struct bpf_perf_event_data_kern, regs)); 1776 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1777 si->off); 1778 break; 1779 } 1780 1781 return insn - insn_buf; 1782 } 1783 1784 const struct bpf_verifier_ops perf_event_verifier_ops = { 1785 .get_func_proto = pe_prog_func_proto, 1786 .is_valid_access = pe_prog_is_valid_access, 1787 .convert_ctx_access = pe_prog_convert_ctx_access, 1788 }; 1789 1790 const struct bpf_prog_ops perf_event_prog_ops = { 1791 }; 1792 1793 static DEFINE_MUTEX(bpf_event_mutex); 1794 1795 #define BPF_TRACE_MAX_PROGS 64 1796 1797 int perf_event_attach_bpf_prog(struct perf_event *event, 1798 struct bpf_prog *prog) 1799 { 1800 struct bpf_prog_array *old_array; 1801 struct bpf_prog_array *new_array; 1802 int ret = -EEXIST; 1803 1804 /* 1805 * Kprobe override only works if they are on the function entry, 1806 * and only if they are on the opt-in list. 1807 */ 1808 if (prog->kprobe_override && 1809 (!trace_kprobe_on_func_entry(event->tp_event) || 1810 !trace_kprobe_error_injectable(event->tp_event))) 1811 return -EINVAL; 1812 1813 mutex_lock(&bpf_event_mutex); 1814 1815 if (event->prog) 1816 goto unlock; 1817 1818 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1819 if (old_array && 1820 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1821 ret = -E2BIG; 1822 goto unlock; 1823 } 1824 1825 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1826 if (ret < 0) 1827 goto unlock; 1828 1829 /* set the new array to event->tp_event and set event->prog */ 1830 event->prog = prog; 1831 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1832 bpf_prog_array_free(old_array); 1833 1834 unlock: 1835 mutex_unlock(&bpf_event_mutex); 1836 return ret; 1837 } 1838 1839 void perf_event_detach_bpf_prog(struct perf_event *event) 1840 { 1841 struct bpf_prog_array *old_array; 1842 struct bpf_prog_array *new_array; 1843 int ret; 1844 1845 mutex_lock(&bpf_event_mutex); 1846 1847 if (!event->prog) 1848 goto unlock; 1849 1850 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1851 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1852 if (ret == -ENOENT) 1853 goto unlock; 1854 if (ret < 0) { 1855 bpf_prog_array_delete_safe(old_array, event->prog); 1856 } else { 1857 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1858 bpf_prog_array_free(old_array); 1859 } 1860 1861 bpf_prog_put(event->prog); 1862 event->prog = NULL; 1863 1864 unlock: 1865 mutex_unlock(&bpf_event_mutex); 1866 } 1867 1868 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1869 { 1870 struct perf_event_query_bpf __user *uquery = info; 1871 struct perf_event_query_bpf query = {}; 1872 struct bpf_prog_array *progs; 1873 u32 *ids, prog_cnt, ids_len; 1874 int ret; 1875 1876 if (!perfmon_capable()) 1877 return -EPERM; 1878 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1879 return -EINVAL; 1880 if (copy_from_user(&query, uquery, sizeof(query))) 1881 return -EFAULT; 1882 1883 ids_len = query.ids_len; 1884 if (ids_len > BPF_TRACE_MAX_PROGS) 1885 return -E2BIG; 1886 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1887 if (!ids) 1888 return -ENOMEM; 1889 /* 1890 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1891 * is required when user only wants to check for uquery->prog_cnt. 1892 * There is no need to check for it since the case is handled 1893 * gracefully in bpf_prog_array_copy_info. 1894 */ 1895 1896 mutex_lock(&bpf_event_mutex); 1897 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1898 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1899 mutex_unlock(&bpf_event_mutex); 1900 1901 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1902 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1903 ret = -EFAULT; 1904 1905 kfree(ids); 1906 return ret; 1907 } 1908 1909 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1910 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1911 1912 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1913 { 1914 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1915 1916 for (; btp < __stop__bpf_raw_tp; btp++) { 1917 if (!strcmp(btp->tp->name, name)) 1918 return btp; 1919 } 1920 1921 return bpf_get_raw_tracepoint_module(name); 1922 } 1923 1924 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1925 { 1926 struct module *mod = __module_address((unsigned long)btp); 1927 1928 if (mod) 1929 module_put(mod); 1930 } 1931 1932 static __always_inline 1933 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1934 { 1935 cant_sleep(); 1936 rcu_read_lock(); 1937 (void) BPF_PROG_RUN(prog, args); 1938 rcu_read_unlock(); 1939 } 1940 1941 #define UNPACK(...) __VA_ARGS__ 1942 #define REPEAT_1(FN, DL, X, ...) FN(X) 1943 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1944 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1945 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1946 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1947 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1948 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1949 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1950 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1951 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1952 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1953 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1954 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1955 1956 #define SARG(X) u64 arg##X 1957 #define COPY(X) args[X] = arg##X 1958 1959 #define __DL_COM (,) 1960 #define __DL_SEM (;) 1961 1962 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1963 1964 #define BPF_TRACE_DEFN_x(x) \ 1965 void bpf_trace_run##x(struct bpf_prog *prog, \ 1966 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1967 { \ 1968 u64 args[x]; \ 1969 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1970 __bpf_trace_run(prog, args); \ 1971 } \ 1972 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1973 BPF_TRACE_DEFN_x(1); 1974 BPF_TRACE_DEFN_x(2); 1975 BPF_TRACE_DEFN_x(3); 1976 BPF_TRACE_DEFN_x(4); 1977 BPF_TRACE_DEFN_x(5); 1978 BPF_TRACE_DEFN_x(6); 1979 BPF_TRACE_DEFN_x(7); 1980 BPF_TRACE_DEFN_x(8); 1981 BPF_TRACE_DEFN_x(9); 1982 BPF_TRACE_DEFN_x(10); 1983 BPF_TRACE_DEFN_x(11); 1984 BPF_TRACE_DEFN_x(12); 1985 1986 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1987 { 1988 struct tracepoint *tp = btp->tp; 1989 1990 /* 1991 * check that program doesn't access arguments beyond what's 1992 * available in this tracepoint 1993 */ 1994 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1995 return -EINVAL; 1996 1997 if (prog->aux->max_tp_access > btp->writable_size) 1998 return -EINVAL; 1999 2000 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 2001 } 2002 2003 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2004 { 2005 return __bpf_probe_register(btp, prog); 2006 } 2007 2008 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2009 { 2010 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 2011 } 2012 2013 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2014 u32 *fd_type, const char **buf, 2015 u64 *probe_offset, u64 *probe_addr) 2016 { 2017 bool is_tracepoint, is_syscall_tp; 2018 struct bpf_prog *prog; 2019 int flags, err = 0; 2020 2021 prog = event->prog; 2022 if (!prog) 2023 return -ENOENT; 2024 2025 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2026 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2027 return -EOPNOTSUPP; 2028 2029 *prog_id = prog->aux->id; 2030 flags = event->tp_event->flags; 2031 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2032 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2033 2034 if (is_tracepoint || is_syscall_tp) { 2035 *buf = is_tracepoint ? event->tp_event->tp->name 2036 : event->tp_event->name; 2037 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2038 *probe_offset = 0x0; 2039 *probe_addr = 0x0; 2040 } else { 2041 /* kprobe/uprobe */ 2042 err = -EOPNOTSUPP; 2043 #ifdef CONFIG_KPROBE_EVENTS 2044 if (flags & TRACE_EVENT_FL_KPROBE) 2045 err = bpf_get_kprobe_info(event, fd_type, buf, 2046 probe_offset, probe_addr, 2047 event->attr.type == PERF_TYPE_TRACEPOINT); 2048 #endif 2049 #ifdef CONFIG_UPROBE_EVENTS 2050 if (flags & TRACE_EVENT_FL_UPROBE) 2051 err = bpf_get_uprobe_info(event, fd_type, buf, 2052 probe_offset, 2053 event->attr.type == PERF_TYPE_TRACEPOINT); 2054 #endif 2055 } 2056 2057 return err; 2058 } 2059 2060 static int __init send_signal_irq_work_init(void) 2061 { 2062 int cpu; 2063 struct send_signal_irq_work *work; 2064 2065 for_each_possible_cpu(cpu) { 2066 work = per_cpu_ptr(&send_signal_work, cpu); 2067 init_irq_work(&work->irq_work, do_bpf_send_signal); 2068 } 2069 return 0; 2070 } 2071 2072 subsys_initcall(send_signal_irq_work_init); 2073 2074 #ifdef CONFIG_MODULES 2075 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2076 void *module) 2077 { 2078 struct bpf_trace_module *btm, *tmp; 2079 struct module *mod = module; 2080 2081 if (mod->num_bpf_raw_events == 0 || 2082 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2083 return 0; 2084 2085 mutex_lock(&bpf_module_mutex); 2086 2087 switch (op) { 2088 case MODULE_STATE_COMING: 2089 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2090 if (btm) { 2091 btm->module = module; 2092 list_add(&btm->list, &bpf_trace_modules); 2093 } 2094 break; 2095 case MODULE_STATE_GOING: 2096 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2097 if (btm->module == module) { 2098 list_del(&btm->list); 2099 kfree(btm); 2100 break; 2101 } 2102 } 2103 break; 2104 } 2105 2106 mutex_unlock(&bpf_module_mutex); 2107 2108 return 0; 2109 } 2110 2111 static struct notifier_block bpf_module_nb = { 2112 .notifier_call = bpf_event_notify, 2113 }; 2114 2115 static int __init bpf_event_init(void) 2116 { 2117 register_module_notifier(&bpf_module_nb); 2118 return 0; 2119 } 2120 2121 fs_initcall(bpf_event_init); 2122 #endif /* CONFIG_MODULES */ 2123