xref: /openbmc/linux/kernel/time/vsyscall.c (revision 75020f2d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 ARM Ltd.
4  *
5  * Generic implementation of update_vsyscall and update_vsyscall_tz.
6  *
7  * Based on the x86 specific implementation.
8  */
9 
10 #include <linux/hrtimer.h>
11 #include <linux/timekeeper_internal.h>
12 #include <vdso/datapage.h>
13 #include <vdso/helpers.h>
14 #include <vdso/vsyscall.h>
15 
16 #include "timekeeping_internal.h"
17 
18 static inline void update_vdso_data(struct vdso_data *vdata,
19 				    struct timekeeper *tk)
20 {
21 	struct vdso_timestamp *vdso_ts;
22 	u64 nsec, sec;
23 
24 	vdata[CS_HRES_COARSE].cycle_last	= tk->tkr_mono.cycle_last;
25 	vdata[CS_HRES_COARSE].mask		= tk->tkr_mono.mask;
26 	vdata[CS_HRES_COARSE].mult		= tk->tkr_mono.mult;
27 	vdata[CS_HRES_COARSE].shift		= tk->tkr_mono.shift;
28 	vdata[CS_RAW].cycle_last		= tk->tkr_raw.cycle_last;
29 	vdata[CS_RAW].mask			= tk->tkr_raw.mask;
30 	vdata[CS_RAW].mult			= tk->tkr_raw.mult;
31 	vdata[CS_RAW].shift			= tk->tkr_raw.shift;
32 
33 	/* CLOCK_MONOTONIC */
34 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
35 	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
36 
37 	nsec = tk->tkr_mono.xtime_nsec;
38 	nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
39 	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
40 		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
41 		vdso_ts->sec++;
42 	}
43 	vdso_ts->nsec	= nsec;
44 
45 	/* Copy MONOTONIC time for BOOTTIME */
46 	sec	= vdso_ts->sec;
47 	/* Add the boot offset */
48 	sec	+= tk->monotonic_to_boot.tv_sec;
49 	nsec	+= (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
50 
51 	/* CLOCK_BOOTTIME */
52 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
53 	vdso_ts->sec	= sec;
54 
55 	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
56 		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
57 		vdso_ts->sec++;
58 	}
59 	vdso_ts->nsec	= nsec;
60 
61 	/* CLOCK_MONOTONIC_RAW */
62 	vdso_ts		= &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
63 	vdso_ts->sec	= tk->raw_sec;
64 	vdso_ts->nsec	= tk->tkr_raw.xtime_nsec;
65 
66 	/* CLOCK_TAI */
67 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI];
68 	vdso_ts->sec	= tk->xtime_sec + (s64)tk->tai_offset;
69 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
70 }
71 
72 void update_vsyscall(struct timekeeper *tk)
73 {
74 	struct vdso_data *vdata = __arch_get_k_vdso_data();
75 	struct vdso_timestamp *vdso_ts;
76 	s32 clock_mode;
77 	u64 nsec;
78 
79 	/* copy vsyscall data */
80 	vdso_write_begin(vdata);
81 
82 	clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
83 	vdata[CS_HRES_COARSE].clock_mode	= clock_mode;
84 	vdata[CS_RAW].clock_mode		= clock_mode;
85 
86 	/* CLOCK_REALTIME also required for time() */
87 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
88 	vdso_ts->sec	= tk->xtime_sec;
89 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
90 
91 	/* CLOCK_REALTIME_COARSE */
92 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
93 	vdso_ts->sec	= tk->xtime_sec;
94 	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
95 
96 	/* CLOCK_MONOTONIC_COARSE */
97 	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
98 	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
99 	nsec		= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
100 	nsec		= nsec + tk->wall_to_monotonic.tv_nsec;
101 	vdso_ts->sec	+= __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
102 
103 	/*
104 	 * Read without the seqlock held by clock_getres().
105 	 * Note: No need to have a second copy.
106 	 */
107 	WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution);
108 
109 	/*
110 	 * If the current clocksource is not VDSO capable, then spare the
111 	 * update of the high resolution parts.
112 	 */
113 	if (clock_mode != VDSO_CLOCKMODE_NONE)
114 		update_vdso_data(vdata, tk);
115 
116 	__arch_update_vsyscall(vdata, tk);
117 
118 	vdso_write_end(vdata);
119 
120 	__arch_sync_vdso_data(vdata);
121 }
122 
123 void update_vsyscall_tz(void)
124 {
125 	struct vdso_data *vdata = __arch_get_k_vdso_data();
126 
127 	vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
128 	vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
129 
130 	__arch_sync_vdso_data(vdata);
131 }
132 
133 /**
134  * vdso_update_begin - Start of a VDSO update section
135  *
136  * Allows architecture code to safely update the architecture specific VDSO
137  * data. Disables interrupts, acquires timekeeper lock to serialize against
138  * concurrent updates from timekeeping and invalidates the VDSO data
139  * sequence counter to prevent concurrent readers from accessing
140  * inconsistent data.
141  *
142  * Returns: Saved interrupt flags which need to be handed in to
143  * vdso_update_end().
144  */
145 unsigned long vdso_update_begin(void)
146 {
147 	struct vdso_data *vdata = __arch_get_k_vdso_data();
148 	unsigned long flags;
149 
150 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
151 	vdso_write_begin(vdata);
152 	return flags;
153 }
154 
155 /**
156  * vdso_update_end - End of a VDSO update section
157  * @flags:	Interrupt flags as returned from vdso_update_begin()
158  *
159  * Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
160  * synchronization if the architecture requires it, drops timekeeper lock
161  * and restores interrupt flags.
162  */
163 void vdso_update_end(unsigned long flags)
164 {
165 	struct vdso_data *vdata = __arch_get_k_vdso_data();
166 
167 	vdso_write_end(vdata);
168 	__arch_sync_vdso_data(vdata);
169 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
170 }
171