1 /* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22 #include <linux/kernel_stat.h> 23 #include <linux/export.h> 24 #include <linux/interrupt.h> 25 #include <linux/percpu.h> 26 #include <linux/init.h> 27 #include <linux/mm.h> 28 #include <linux/swap.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/notifier.h> 31 #include <linux/thread_info.h> 32 #include <linux/time.h> 33 #include <linux/jiffies.h> 34 #include <linux/posix-timers.h> 35 #include <linux/cpu.h> 36 #include <linux/syscalls.h> 37 #include <linux/delay.h> 38 #include <linux/tick.h> 39 #include <linux/kallsyms.h> 40 #include <linux/irq_work.h> 41 #include <linux/sched.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/slab.h> 44 #include <linux/compat.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/unistd.h> 48 #include <asm/div64.h> 49 #include <asm/timex.h> 50 #include <asm/io.h> 51 52 #include "tick-internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/timer.h> 56 57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 58 59 EXPORT_SYMBOL(jiffies_64); 60 61 /* 62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 64 * level has a different granularity. 65 * 66 * The level granularity is: LVL_CLK_DIV ^ lvl 67 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 68 * 69 * The array level of a newly armed timer depends on the relative expiry 70 * time. The farther the expiry time is away the higher the array level and 71 * therefor the granularity becomes. 72 * 73 * Contrary to the original timer wheel implementation, which aims for 'exact' 74 * expiry of the timers, this implementation removes the need for recascading 75 * the timers into the lower array levels. The previous 'classic' timer wheel 76 * implementation of the kernel already violated the 'exact' expiry by adding 77 * slack to the expiry time to provide batched expiration. The granularity 78 * levels provide implicit batching. 79 * 80 * This is an optimization of the original timer wheel implementation for the 81 * majority of the timer wheel use cases: timeouts. The vast majority of 82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 83 * the timeout expires it indicates that normal operation is disturbed, so it 84 * does not matter much whether the timeout comes with a slight delay. 85 * 86 * The only exception to this are networking timers with a small expiry 87 * time. They rely on the granularity. Those fit into the first wheel level, 88 * which has HZ granularity. 89 * 90 * We don't have cascading anymore. timers with a expiry time above the 91 * capacity of the last wheel level are force expired at the maximum timeout 92 * value of the last wheel level. From data sampling we know that the maximum 93 * value observed is 5 days (network connection tracking), so this should not 94 * be an issue. 95 * 96 * The currently chosen array constants values are a good compromise between 97 * array size and granularity. 98 * 99 * This results in the following granularity and range levels: 100 * 101 * HZ 1000 steps 102 * Level Offset Granularity Range 103 * 0 0 1 ms 0 ms - 63 ms 104 * 1 64 8 ms 64 ms - 511 ms 105 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 106 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 107 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 108 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 109 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 110 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 111 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 112 * 113 * HZ 300 114 * Level Offset Granularity Range 115 * 0 0 3 ms 0 ms - 210 ms 116 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 117 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 118 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 119 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 120 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 121 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 122 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 123 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 124 * 125 * HZ 250 126 * Level Offset Granularity Range 127 * 0 0 4 ms 0 ms - 255 ms 128 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 129 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 130 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 131 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 132 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 133 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 134 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 135 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 136 * 137 * HZ 100 138 * Level Offset Granularity Range 139 * 0 0 10 ms 0 ms - 630 ms 140 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 141 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 142 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 143 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 144 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 145 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 146 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 147 */ 148 149 /* Clock divisor for the next level */ 150 #define LVL_CLK_SHIFT 3 151 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 152 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 153 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 154 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 155 156 /* 157 * The time start value for each level to select the bucket at enqueue 158 * time. 159 */ 160 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 161 162 /* Size of each clock level */ 163 #define LVL_BITS 6 164 #define LVL_SIZE (1UL << LVL_BITS) 165 #define LVL_MASK (LVL_SIZE - 1) 166 #define LVL_OFFS(n) ((n) * LVL_SIZE) 167 168 /* Level depth */ 169 #if HZ > 100 170 # define LVL_DEPTH 9 171 # else 172 # define LVL_DEPTH 8 173 #endif 174 175 /* The cutoff (max. capacity of the wheel) */ 176 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 177 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 178 179 /* 180 * The resulting wheel size. If NOHZ is configured we allocate two 181 * wheels so we have a separate storage for the deferrable timers. 182 */ 183 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 184 185 #ifdef CONFIG_NO_HZ_COMMON 186 # define NR_BASES 2 187 # define BASE_STD 0 188 # define BASE_DEF 1 189 #else 190 # define NR_BASES 1 191 # define BASE_STD 0 192 # define BASE_DEF 0 193 #endif 194 195 struct timer_base { 196 spinlock_t lock; 197 struct timer_list *running_timer; 198 unsigned long clk; 199 unsigned long next_expiry; 200 unsigned int cpu; 201 bool migration_enabled; 202 bool nohz_active; 203 bool is_idle; 204 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 205 struct hlist_head vectors[WHEEL_SIZE]; 206 } ____cacheline_aligned; 207 208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 209 210 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 211 unsigned int sysctl_timer_migration = 1; 212 213 void timers_update_migration(bool update_nohz) 214 { 215 bool on = sysctl_timer_migration && tick_nohz_active; 216 unsigned int cpu; 217 218 /* Avoid the loop, if nothing to update */ 219 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on) 220 return; 221 222 for_each_possible_cpu(cpu) { 223 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on; 224 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on; 225 per_cpu(hrtimer_bases.migration_enabled, cpu) = on; 226 if (!update_nohz) 227 continue; 228 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true; 229 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true; 230 per_cpu(hrtimer_bases.nohz_active, cpu) = true; 231 } 232 } 233 234 int timer_migration_handler(struct ctl_table *table, int write, 235 void __user *buffer, size_t *lenp, 236 loff_t *ppos) 237 { 238 static DEFINE_MUTEX(mutex); 239 int ret; 240 241 mutex_lock(&mutex); 242 ret = proc_dointvec(table, write, buffer, lenp, ppos); 243 if (!ret && write) 244 timers_update_migration(false); 245 mutex_unlock(&mutex); 246 return ret; 247 } 248 #endif 249 250 static unsigned long round_jiffies_common(unsigned long j, int cpu, 251 bool force_up) 252 { 253 int rem; 254 unsigned long original = j; 255 256 /* 257 * We don't want all cpus firing their timers at once hitting the 258 * same lock or cachelines, so we skew each extra cpu with an extra 259 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 260 * already did this. 261 * The skew is done by adding 3*cpunr, then round, then subtract this 262 * extra offset again. 263 */ 264 j += cpu * 3; 265 266 rem = j % HZ; 267 268 /* 269 * If the target jiffie is just after a whole second (which can happen 270 * due to delays of the timer irq, long irq off times etc etc) then 271 * we should round down to the whole second, not up. Use 1/4th second 272 * as cutoff for this rounding as an extreme upper bound for this. 273 * But never round down if @force_up is set. 274 */ 275 if (rem < HZ/4 && !force_up) /* round down */ 276 j = j - rem; 277 else /* round up */ 278 j = j - rem + HZ; 279 280 /* now that we have rounded, subtract the extra skew again */ 281 j -= cpu * 3; 282 283 /* 284 * Make sure j is still in the future. Otherwise return the 285 * unmodified value. 286 */ 287 return time_is_after_jiffies(j) ? j : original; 288 } 289 290 /** 291 * __round_jiffies - function to round jiffies to a full second 292 * @j: the time in (absolute) jiffies that should be rounded 293 * @cpu: the processor number on which the timeout will happen 294 * 295 * __round_jiffies() rounds an absolute time in the future (in jiffies) 296 * up or down to (approximately) full seconds. This is useful for timers 297 * for which the exact time they fire does not matter too much, as long as 298 * they fire approximately every X seconds. 299 * 300 * By rounding these timers to whole seconds, all such timers will fire 301 * at the same time, rather than at various times spread out. The goal 302 * of this is to have the CPU wake up less, which saves power. 303 * 304 * The exact rounding is skewed for each processor to avoid all 305 * processors firing at the exact same time, which could lead 306 * to lock contention or spurious cache line bouncing. 307 * 308 * The return value is the rounded version of the @j parameter. 309 */ 310 unsigned long __round_jiffies(unsigned long j, int cpu) 311 { 312 return round_jiffies_common(j, cpu, false); 313 } 314 EXPORT_SYMBOL_GPL(__round_jiffies); 315 316 /** 317 * __round_jiffies_relative - function to round jiffies to a full second 318 * @j: the time in (relative) jiffies that should be rounded 319 * @cpu: the processor number on which the timeout will happen 320 * 321 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 322 * up or down to (approximately) full seconds. This is useful for timers 323 * for which the exact time they fire does not matter too much, as long as 324 * they fire approximately every X seconds. 325 * 326 * By rounding these timers to whole seconds, all such timers will fire 327 * at the same time, rather than at various times spread out. The goal 328 * of this is to have the CPU wake up less, which saves power. 329 * 330 * The exact rounding is skewed for each processor to avoid all 331 * processors firing at the exact same time, which could lead 332 * to lock contention or spurious cache line bouncing. 333 * 334 * The return value is the rounded version of the @j parameter. 335 */ 336 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 337 { 338 unsigned long j0 = jiffies; 339 340 /* Use j0 because jiffies might change while we run */ 341 return round_jiffies_common(j + j0, cpu, false) - j0; 342 } 343 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 344 345 /** 346 * round_jiffies - function to round jiffies to a full second 347 * @j: the time in (absolute) jiffies that should be rounded 348 * 349 * round_jiffies() rounds an absolute time in the future (in jiffies) 350 * up or down to (approximately) full seconds. This is useful for timers 351 * for which the exact time they fire does not matter too much, as long as 352 * they fire approximately every X seconds. 353 * 354 * By rounding these timers to whole seconds, all such timers will fire 355 * at the same time, rather than at various times spread out. The goal 356 * of this is to have the CPU wake up less, which saves power. 357 * 358 * The return value is the rounded version of the @j parameter. 359 */ 360 unsigned long round_jiffies(unsigned long j) 361 { 362 return round_jiffies_common(j, raw_smp_processor_id(), false); 363 } 364 EXPORT_SYMBOL_GPL(round_jiffies); 365 366 /** 367 * round_jiffies_relative - function to round jiffies to a full second 368 * @j: the time in (relative) jiffies that should be rounded 369 * 370 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 371 * up or down to (approximately) full seconds. This is useful for timers 372 * for which the exact time they fire does not matter too much, as long as 373 * they fire approximately every X seconds. 374 * 375 * By rounding these timers to whole seconds, all such timers will fire 376 * at the same time, rather than at various times spread out. The goal 377 * of this is to have the CPU wake up less, which saves power. 378 * 379 * The return value is the rounded version of the @j parameter. 380 */ 381 unsigned long round_jiffies_relative(unsigned long j) 382 { 383 return __round_jiffies_relative(j, raw_smp_processor_id()); 384 } 385 EXPORT_SYMBOL_GPL(round_jiffies_relative); 386 387 /** 388 * __round_jiffies_up - function to round jiffies up to a full second 389 * @j: the time in (absolute) jiffies that should be rounded 390 * @cpu: the processor number on which the timeout will happen 391 * 392 * This is the same as __round_jiffies() except that it will never 393 * round down. This is useful for timeouts for which the exact time 394 * of firing does not matter too much, as long as they don't fire too 395 * early. 396 */ 397 unsigned long __round_jiffies_up(unsigned long j, int cpu) 398 { 399 return round_jiffies_common(j, cpu, true); 400 } 401 EXPORT_SYMBOL_GPL(__round_jiffies_up); 402 403 /** 404 * __round_jiffies_up_relative - function to round jiffies up to a full second 405 * @j: the time in (relative) jiffies that should be rounded 406 * @cpu: the processor number on which the timeout will happen 407 * 408 * This is the same as __round_jiffies_relative() except that it will never 409 * round down. This is useful for timeouts for which the exact time 410 * of firing does not matter too much, as long as they don't fire too 411 * early. 412 */ 413 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 414 { 415 unsigned long j0 = jiffies; 416 417 /* Use j0 because jiffies might change while we run */ 418 return round_jiffies_common(j + j0, cpu, true) - j0; 419 } 420 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 421 422 /** 423 * round_jiffies_up - function to round jiffies up to a full second 424 * @j: the time in (absolute) jiffies that should be rounded 425 * 426 * This is the same as round_jiffies() except that it will never 427 * round down. This is useful for timeouts for which the exact time 428 * of firing does not matter too much, as long as they don't fire too 429 * early. 430 */ 431 unsigned long round_jiffies_up(unsigned long j) 432 { 433 return round_jiffies_common(j, raw_smp_processor_id(), true); 434 } 435 EXPORT_SYMBOL_GPL(round_jiffies_up); 436 437 /** 438 * round_jiffies_up_relative - function to round jiffies up to a full second 439 * @j: the time in (relative) jiffies that should be rounded 440 * 441 * This is the same as round_jiffies_relative() except that it will never 442 * round down. This is useful for timeouts for which the exact time 443 * of firing does not matter too much, as long as they don't fire too 444 * early. 445 */ 446 unsigned long round_jiffies_up_relative(unsigned long j) 447 { 448 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 449 } 450 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 451 452 453 static inline unsigned int timer_get_idx(struct timer_list *timer) 454 { 455 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 456 } 457 458 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 459 { 460 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 461 idx << TIMER_ARRAYSHIFT; 462 } 463 464 /* 465 * Helper function to calculate the array index for a given expiry 466 * time. 467 */ 468 static inline unsigned calc_index(unsigned expires, unsigned lvl) 469 { 470 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 471 return LVL_OFFS(lvl) + (expires & LVL_MASK); 472 } 473 474 static int calc_wheel_index(unsigned long expires, unsigned long clk) 475 { 476 unsigned long delta = expires - clk; 477 unsigned int idx; 478 479 if (delta < LVL_START(1)) { 480 idx = calc_index(expires, 0); 481 } else if (delta < LVL_START(2)) { 482 idx = calc_index(expires, 1); 483 } else if (delta < LVL_START(3)) { 484 idx = calc_index(expires, 2); 485 } else if (delta < LVL_START(4)) { 486 idx = calc_index(expires, 3); 487 } else if (delta < LVL_START(5)) { 488 idx = calc_index(expires, 4); 489 } else if (delta < LVL_START(6)) { 490 idx = calc_index(expires, 5); 491 } else if (delta < LVL_START(7)) { 492 idx = calc_index(expires, 6); 493 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 494 idx = calc_index(expires, 7); 495 } else if ((long) delta < 0) { 496 idx = clk & LVL_MASK; 497 } else { 498 /* 499 * Force expire obscene large timeouts to expire at the 500 * capacity limit of the wheel. 501 */ 502 if (expires >= WHEEL_TIMEOUT_CUTOFF) 503 expires = WHEEL_TIMEOUT_MAX; 504 505 idx = calc_index(expires, LVL_DEPTH - 1); 506 } 507 return idx; 508 } 509 510 /* 511 * Enqueue the timer into the hash bucket, mark it pending in 512 * the bitmap and store the index in the timer flags. 513 */ 514 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 515 unsigned int idx) 516 { 517 hlist_add_head(&timer->entry, base->vectors + idx); 518 __set_bit(idx, base->pending_map); 519 timer_set_idx(timer, idx); 520 } 521 522 static void 523 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 524 { 525 unsigned int idx; 526 527 idx = calc_wheel_index(timer->expires, base->clk); 528 enqueue_timer(base, timer, idx); 529 } 530 531 static void 532 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 533 { 534 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 535 return; 536 537 /* 538 * TODO: This wants some optimizing similar to the code below, but we 539 * will do that when we switch from push to pull for deferrable timers. 540 */ 541 if (timer->flags & TIMER_DEFERRABLE) { 542 if (tick_nohz_full_cpu(base->cpu)) 543 wake_up_nohz_cpu(base->cpu); 544 return; 545 } 546 547 /* 548 * We might have to IPI the remote CPU if the base is idle and the 549 * timer is not deferrable. If the other CPU is on the way to idle 550 * then it can't set base->is_idle as we hold the base lock: 551 */ 552 if (!base->is_idle) 553 return; 554 555 /* Check whether this is the new first expiring timer: */ 556 if (time_after_eq(timer->expires, base->next_expiry)) 557 return; 558 559 /* 560 * Set the next expiry time and kick the CPU so it can reevaluate the 561 * wheel: 562 */ 563 base->next_expiry = timer->expires; 564 wake_up_nohz_cpu(base->cpu); 565 } 566 567 static void 568 internal_add_timer(struct timer_base *base, struct timer_list *timer) 569 { 570 __internal_add_timer(base, timer); 571 trigger_dyntick_cpu(base, timer); 572 } 573 574 #ifdef CONFIG_TIMER_STATS 575 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) 576 { 577 if (timer->start_site) 578 return; 579 580 timer->start_site = addr; 581 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 582 timer->start_pid = current->pid; 583 } 584 585 static void timer_stats_account_timer(struct timer_list *timer) 586 { 587 void *site; 588 589 /* 590 * start_site can be concurrently reset by 591 * timer_stats_timer_clear_start_info() 592 */ 593 site = READ_ONCE(timer->start_site); 594 if (likely(!site)) 595 return; 596 597 timer_stats_update_stats(timer, timer->start_pid, site, 598 timer->function, timer->start_comm, 599 timer->flags); 600 } 601 602 #else 603 static void timer_stats_account_timer(struct timer_list *timer) {} 604 #endif 605 606 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 607 608 static struct debug_obj_descr timer_debug_descr; 609 610 static void *timer_debug_hint(void *addr) 611 { 612 return ((struct timer_list *) addr)->function; 613 } 614 615 static bool timer_is_static_object(void *addr) 616 { 617 struct timer_list *timer = addr; 618 619 return (timer->entry.pprev == NULL && 620 timer->entry.next == TIMER_ENTRY_STATIC); 621 } 622 623 /* 624 * fixup_init is called when: 625 * - an active object is initialized 626 */ 627 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 628 { 629 struct timer_list *timer = addr; 630 631 switch (state) { 632 case ODEBUG_STATE_ACTIVE: 633 del_timer_sync(timer); 634 debug_object_init(timer, &timer_debug_descr); 635 return true; 636 default: 637 return false; 638 } 639 } 640 641 /* Stub timer callback for improperly used timers. */ 642 static void stub_timer(unsigned long data) 643 { 644 WARN_ON(1); 645 } 646 647 /* 648 * fixup_activate is called when: 649 * - an active object is activated 650 * - an unknown non-static object is activated 651 */ 652 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 653 { 654 struct timer_list *timer = addr; 655 656 switch (state) { 657 case ODEBUG_STATE_NOTAVAILABLE: 658 setup_timer(timer, stub_timer, 0); 659 return true; 660 661 case ODEBUG_STATE_ACTIVE: 662 WARN_ON(1); 663 664 default: 665 return false; 666 } 667 } 668 669 /* 670 * fixup_free is called when: 671 * - an active object is freed 672 */ 673 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 674 { 675 struct timer_list *timer = addr; 676 677 switch (state) { 678 case ODEBUG_STATE_ACTIVE: 679 del_timer_sync(timer); 680 debug_object_free(timer, &timer_debug_descr); 681 return true; 682 default: 683 return false; 684 } 685 } 686 687 /* 688 * fixup_assert_init is called when: 689 * - an untracked/uninit-ed object is found 690 */ 691 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 692 { 693 struct timer_list *timer = addr; 694 695 switch (state) { 696 case ODEBUG_STATE_NOTAVAILABLE: 697 setup_timer(timer, stub_timer, 0); 698 return true; 699 default: 700 return false; 701 } 702 } 703 704 static struct debug_obj_descr timer_debug_descr = { 705 .name = "timer_list", 706 .debug_hint = timer_debug_hint, 707 .is_static_object = timer_is_static_object, 708 .fixup_init = timer_fixup_init, 709 .fixup_activate = timer_fixup_activate, 710 .fixup_free = timer_fixup_free, 711 .fixup_assert_init = timer_fixup_assert_init, 712 }; 713 714 static inline void debug_timer_init(struct timer_list *timer) 715 { 716 debug_object_init(timer, &timer_debug_descr); 717 } 718 719 static inline void debug_timer_activate(struct timer_list *timer) 720 { 721 debug_object_activate(timer, &timer_debug_descr); 722 } 723 724 static inline void debug_timer_deactivate(struct timer_list *timer) 725 { 726 debug_object_deactivate(timer, &timer_debug_descr); 727 } 728 729 static inline void debug_timer_free(struct timer_list *timer) 730 { 731 debug_object_free(timer, &timer_debug_descr); 732 } 733 734 static inline void debug_timer_assert_init(struct timer_list *timer) 735 { 736 debug_object_assert_init(timer, &timer_debug_descr); 737 } 738 739 static void do_init_timer(struct timer_list *timer, unsigned int flags, 740 const char *name, struct lock_class_key *key); 741 742 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags, 743 const char *name, struct lock_class_key *key) 744 { 745 debug_object_init_on_stack(timer, &timer_debug_descr); 746 do_init_timer(timer, flags, name, key); 747 } 748 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 749 750 void destroy_timer_on_stack(struct timer_list *timer) 751 { 752 debug_object_free(timer, &timer_debug_descr); 753 } 754 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 755 756 #else 757 static inline void debug_timer_init(struct timer_list *timer) { } 758 static inline void debug_timer_activate(struct timer_list *timer) { } 759 static inline void debug_timer_deactivate(struct timer_list *timer) { } 760 static inline void debug_timer_assert_init(struct timer_list *timer) { } 761 #endif 762 763 static inline void debug_init(struct timer_list *timer) 764 { 765 debug_timer_init(timer); 766 trace_timer_init(timer); 767 } 768 769 static inline void 770 debug_activate(struct timer_list *timer, unsigned long expires) 771 { 772 debug_timer_activate(timer); 773 trace_timer_start(timer, expires, timer->flags); 774 } 775 776 static inline void debug_deactivate(struct timer_list *timer) 777 { 778 debug_timer_deactivate(timer); 779 trace_timer_cancel(timer); 780 } 781 782 static inline void debug_assert_init(struct timer_list *timer) 783 { 784 debug_timer_assert_init(timer); 785 } 786 787 static void do_init_timer(struct timer_list *timer, unsigned int flags, 788 const char *name, struct lock_class_key *key) 789 { 790 timer->entry.pprev = NULL; 791 timer->flags = flags | raw_smp_processor_id(); 792 #ifdef CONFIG_TIMER_STATS 793 timer->start_site = NULL; 794 timer->start_pid = -1; 795 memset(timer->start_comm, 0, TASK_COMM_LEN); 796 #endif 797 lockdep_init_map(&timer->lockdep_map, name, key, 0); 798 } 799 800 /** 801 * init_timer_key - initialize a timer 802 * @timer: the timer to be initialized 803 * @flags: timer flags 804 * @name: name of the timer 805 * @key: lockdep class key of the fake lock used for tracking timer 806 * sync lock dependencies 807 * 808 * init_timer_key() must be done to a timer prior calling *any* of the 809 * other timer functions. 810 */ 811 void init_timer_key(struct timer_list *timer, unsigned int flags, 812 const char *name, struct lock_class_key *key) 813 { 814 debug_init(timer); 815 do_init_timer(timer, flags, name, key); 816 } 817 EXPORT_SYMBOL(init_timer_key); 818 819 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 820 { 821 struct hlist_node *entry = &timer->entry; 822 823 debug_deactivate(timer); 824 825 __hlist_del(entry); 826 if (clear_pending) 827 entry->pprev = NULL; 828 entry->next = LIST_POISON2; 829 } 830 831 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 832 bool clear_pending) 833 { 834 unsigned idx = timer_get_idx(timer); 835 836 if (!timer_pending(timer)) 837 return 0; 838 839 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 840 __clear_bit(idx, base->pending_map); 841 842 detach_timer(timer, clear_pending); 843 return 1; 844 } 845 846 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 847 { 848 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 849 850 /* 851 * If the timer is deferrable and nohz is active then we need to use 852 * the deferrable base. 853 */ 854 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active && 855 (tflags & TIMER_DEFERRABLE)) 856 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 857 return base; 858 } 859 860 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 861 { 862 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 863 864 /* 865 * If the timer is deferrable and nohz is active then we need to use 866 * the deferrable base. 867 */ 868 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active && 869 (tflags & TIMER_DEFERRABLE)) 870 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 871 return base; 872 } 873 874 static inline struct timer_base *get_timer_base(u32 tflags) 875 { 876 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 877 } 878 879 #ifdef CONFIG_NO_HZ_COMMON 880 static inline struct timer_base * 881 get_target_base(struct timer_base *base, unsigned tflags) 882 { 883 #ifdef CONFIG_SMP 884 if ((tflags & TIMER_PINNED) || !base->migration_enabled) 885 return get_timer_this_cpu_base(tflags); 886 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 887 #else 888 return get_timer_this_cpu_base(tflags); 889 #endif 890 } 891 892 static inline void forward_timer_base(struct timer_base *base) 893 { 894 unsigned long jnow = READ_ONCE(jiffies); 895 896 /* 897 * We only forward the base when it's idle and we have a delta between 898 * base clock and jiffies. 899 */ 900 if (!base->is_idle || (long) (jnow - base->clk) < 2) 901 return; 902 903 /* 904 * If the next expiry value is > jiffies, then we fast forward to 905 * jiffies otherwise we forward to the next expiry value. 906 */ 907 if (time_after(base->next_expiry, jnow)) 908 base->clk = jnow; 909 else 910 base->clk = base->next_expiry; 911 } 912 #else 913 static inline struct timer_base * 914 get_target_base(struct timer_base *base, unsigned tflags) 915 { 916 return get_timer_this_cpu_base(tflags); 917 } 918 919 static inline void forward_timer_base(struct timer_base *base) { } 920 #endif 921 922 923 /* 924 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 925 * that all timers which are tied to this base are locked, and the base itself 926 * is locked too. 927 * 928 * So __run_timers/migrate_timers can safely modify all timers which could 929 * be found in the base->vectors array. 930 * 931 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 932 * to wait until the migration is done. 933 */ 934 static struct timer_base *lock_timer_base(struct timer_list *timer, 935 unsigned long *flags) 936 __acquires(timer->base->lock) 937 { 938 for (;;) { 939 struct timer_base *base; 940 u32 tf; 941 942 /* 943 * We need to use READ_ONCE() here, otherwise the compiler 944 * might re-read @tf between the check for TIMER_MIGRATING 945 * and spin_lock(). 946 */ 947 tf = READ_ONCE(timer->flags); 948 949 if (!(tf & TIMER_MIGRATING)) { 950 base = get_timer_base(tf); 951 spin_lock_irqsave(&base->lock, *flags); 952 if (timer->flags == tf) 953 return base; 954 spin_unlock_irqrestore(&base->lock, *flags); 955 } 956 cpu_relax(); 957 } 958 } 959 960 static inline int 961 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only) 962 { 963 struct timer_base *base, *new_base; 964 unsigned int idx = UINT_MAX; 965 unsigned long clk = 0, flags; 966 int ret = 0; 967 968 BUG_ON(!timer->function); 969 970 /* 971 * This is a common optimization triggered by the networking code - if 972 * the timer is re-modified to have the same timeout or ends up in the 973 * same array bucket then just return: 974 */ 975 if (timer_pending(timer)) { 976 if (timer->expires == expires) 977 return 1; 978 979 /* 980 * We lock timer base and calculate the bucket index right 981 * here. If the timer ends up in the same bucket, then we 982 * just update the expiry time and avoid the whole 983 * dequeue/enqueue dance. 984 */ 985 base = lock_timer_base(timer, &flags); 986 987 clk = base->clk; 988 idx = calc_wheel_index(expires, clk); 989 990 /* 991 * Retrieve and compare the array index of the pending 992 * timer. If it matches set the expiry to the new value so a 993 * subsequent call will exit in the expires check above. 994 */ 995 if (idx == timer_get_idx(timer)) { 996 timer->expires = expires; 997 ret = 1; 998 goto out_unlock; 999 } 1000 } else { 1001 base = lock_timer_base(timer, &flags); 1002 } 1003 1004 timer_stats_timer_set_start_info(timer); 1005 1006 ret = detach_if_pending(timer, base, false); 1007 if (!ret && pending_only) 1008 goto out_unlock; 1009 1010 debug_activate(timer, expires); 1011 1012 new_base = get_target_base(base, timer->flags); 1013 1014 if (base != new_base) { 1015 /* 1016 * We are trying to schedule the timer on the new base. 1017 * However we can't change timer's base while it is running, 1018 * otherwise del_timer_sync() can't detect that the timer's 1019 * handler yet has not finished. This also guarantees that the 1020 * timer is serialized wrt itself. 1021 */ 1022 if (likely(base->running_timer != timer)) { 1023 /* See the comment in lock_timer_base() */ 1024 timer->flags |= TIMER_MIGRATING; 1025 1026 spin_unlock(&base->lock); 1027 base = new_base; 1028 spin_lock(&base->lock); 1029 WRITE_ONCE(timer->flags, 1030 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1031 } 1032 } 1033 1034 /* Try to forward a stale timer base clock */ 1035 forward_timer_base(base); 1036 1037 timer->expires = expires; 1038 /* 1039 * If 'idx' was calculated above and the base time did not advance 1040 * between calculating 'idx' and possibly switching the base, only 1041 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1042 * we need to (re)calculate the wheel index via 1043 * internal_add_timer(). 1044 */ 1045 if (idx != UINT_MAX && clk == base->clk) { 1046 enqueue_timer(base, timer, idx); 1047 trigger_dyntick_cpu(base, timer); 1048 } else { 1049 internal_add_timer(base, timer); 1050 } 1051 1052 out_unlock: 1053 spin_unlock_irqrestore(&base->lock, flags); 1054 1055 return ret; 1056 } 1057 1058 /** 1059 * mod_timer_pending - modify a pending timer's timeout 1060 * @timer: the pending timer to be modified 1061 * @expires: new timeout in jiffies 1062 * 1063 * mod_timer_pending() is the same for pending timers as mod_timer(), 1064 * but will not re-activate and modify already deleted timers. 1065 * 1066 * It is useful for unserialized use of timers. 1067 */ 1068 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1069 { 1070 return __mod_timer(timer, expires, true); 1071 } 1072 EXPORT_SYMBOL(mod_timer_pending); 1073 1074 /** 1075 * mod_timer - modify a timer's timeout 1076 * @timer: the timer to be modified 1077 * @expires: new timeout in jiffies 1078 * 1079 * mod_timer() is a more efficient way to update the expire field of an 1080 * active timer (if the timer is inactive it will be activated) 1081 * 1082 * mod_timer(timer, expires) is equivalent to: 1083 * 1084 * del_timer(timer); timer->expires = expires; add_timer(timer); 1085 * 1086 * Note that if there are multiple unserialized concurrent users of the 1087 * same timer, then mod_timer() is the only safe way to modify the timeout, 1088 * since add_timer() cannot modify an already running timer. 1089 * 1090 * The function returns whether it has modified a pending timer or not. 1091 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1092 * active timer returns 1.) 1093 */ 1094 int mod_timer(struct timer_list *timer, unsigned long expires) 1095 { 1096 return __mod_timer(timer, expires, false); 1097 } 1098 EXPORT_SYMBOL(mod_timer); 1099 1100 /** 1101 * add_timer - start a timer 1102 * @timer: the timer to be added 1103 * 1104 * The kernel will do a ->function(->data) callback from the 1105 * timer interrupt at the ->expires point in the future. The 1106 * current time is 'jiffies'. 1107 * 1108 * The timer's ->expires, ->function (and if the handler uses it, ->data) 1109 * fields must be set prior calling this function. 1110 * 1111 * Timers with an ->expires field in the past will be executed in the next 1112 * timer tick. 1113 */ 1114 void add_timer(struct timer_list *timer) 1115 { 1116 BUG_ON(timer_pending(timer)); 1117 mod_timer(timer, timer->expires); 1118 } 1119 EXPORT_SYMBOL(add_timer); 1120 1121 /** 1122 * add_timer_on - start a timer on a particular CPU 1123 * @timer: the timer to be added 1124 * @cpu: the CPU to start it on 1125 * 1126 * This is not very scalable on SMP. Double adds are not possible. 1127 */ 1128 void add_timer_on(struct timer_list *timer, int cpu) 1129 { 1130 struct timer_base *new_base, *base; 1131 unsigned long flags; 1132 1133 timer_stats_timer_set_start_info(timer); 1134 BUG_ON(timer_pending(timer) || !timer->function); 1135 1136 new_base = get_timer_cpu_base(timer->flags, cpu); 1137 1138 /* 1139 * If @timer was on a different CPU, it should be migrated with the 1140 * old base locked to prevent other operations proceeding with the 1141 * wrong base locked. See lock_timer_base(). 1142 */ 1143 base = lock_timer_base(timer, &flags); 1144 if (base != new_base) { 1145 timer->flags |= TIMER_MIGRATING; 1146 1147 spin_unlock(&base->lock); 1148 base = new_base; 1149 spin_lock(&base->lock); 1150 WRITE_ONCE(timer->flags, 1151 (timer->flags & ~TIMER_BASEMASK) | cpu); 1152 } 1153 1154 debug_activate(timer, timer->expires); 1155 internal_add_timer(base, timer); 1156 spin_unlock_irqrestore(&base->lock, flags); 1157 } 1158 EXPORT_SYMBOL_GPL(add_timer_on); 1159 1160 /** 1161 * del_timer - deactive a timer. 1162 * @timer: the timer to be deactivated 1163 * 1164 * del_timer() deactivates a timer - this works on both active and inactive 1165 * timers. 1166 * 1167 * The function returns whether it has deactivated a pending timer or not. 1168 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1169 * active timer returns 1.) 1170 */ 1171 int del_timer(struct timer_list *timer) 1172 { 1173 struct timer_base *base; 1174 unsigned long flags; 1175 int ret = 0; 1176 1177 debug_assert_init(timer); 1178 1179 timer_stats_timer_clear_start_info(timer); 1180 if (timer_pending(timer)) { 1181 base = lock_timer_base(timer, &flags); 1182 ret = detach_if_pending(timer, base, true); 1183 spin_unlock_irqrestore(&base->lock, flags); 1184 } 1185 1186 return ret; 1187 } 1188 EXPORT_SYMBOL(del_timer); 1189 1190 /** 1191 * try_to_del_timer_sync - Try to deactivate a timer 1192 * @timer: timer do del 1193 * 1194 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1195 * exit the timer is not queued and the handler is not running on any CPU. 1196 */ 1197 int try_to_del_timer_sync(struct timer_list *timer) 1198 { 1199 struct timer_base *base; 1200 unsigned long flags; 1201 int ret = -1; 1202 1203 debug_assert_init(timer); 1204 1205 base = lock_timer_base(timer, &flags); 1206 1207 if (base->running_timer != timer) { 1208 timer_stats_timer_clear_start_info(timer); 1209 ret = detach_if_pending(timer, base, true); 1210 } 1211 spin_unlock_irqrestore(&base->lock, flags); 1212 1213 return ret; 1214 } 1215 EXPORT_SYMBOL(try_to_del_timer_sync); 1216 1217 #ifdef CONFIG_SMP 1218 /** 1219 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1220 * @timer: the timer to be deactivated 1221 * 1222 * This function only differs from del_timer() on SMP: besides deactivating 1223 * the timer it also makes sure the handler has finished executing on other 1224 * CPUs. 1225 * 1226 * Synchronization rules: Callers must prevent restarting of the timer, 1227 * otherwise this function is meaningless. It must not be called from 1228 * interrupt contexts unless the timer is an irqsafe one. The caller must 1229 * not hold locks which would prevent completion of the timer's 1230 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1231 * timer is not queued and the handler is not running on any CPU. 1232 * 1233 * Note: For !irqsafe timers, you must not hold locks that are held in 1234 * interrupt context while calling this function. Even if the lock has 1235 * nothing to do with the timer in question. Here's why: 1236 * 1237 * CPU0 CPU1 1238 * ---- ---- 1239 * <SOFTIRQ> 1240 * call_timer_fn(); 1241 * base->running_timer = mytimer; 1242 * spin_lock_irq(somelock); 1243 * <IRQ> 1244 * spin_lock(somelock); 1245 * del_timer_sync(mytimer); 1246 * while (base->running_timer == mytimer); 1247 * 1248 * Now del_timer_sync() will never return and never release somelock. 1249 * The interrupt on the other CPU is waiting to grab somelock but 1250 * it has interrupted the softirq that CPU0 is waiting to finish. 1251 * 1252 * The function returns whether it has deactivated a pending timer or not. 1253 */ 1254 int del_timer_sync(struct timer_list *timer) 1255 { 1256 #ifdef CONFIG_LOCKDEP 1257 unsigned long flags; 1258 1259 /* 1260 * If lockdep gives a backtrace here, please reference 1261 * the synchronization rules above. 1262 */ 1263 local_irq_save(flags); 1264 lock_map_acquire(&timer->lockdep_map); 1265 lock_map_release(&timer->lockdep_map); 1266 local_irq_restore(flags); 1267 #endif 1268 /* 1269 * don't use it in hardirq context, because it 1270 * could lead to deadlock. 1271 */ 1272 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1273 for (;;) { 1274 int ret = try_to_del_timer_sync(timer); 1275 if (ret >= 0) 1276 return ret; 1277 cpu_relax(); 1278 } 1279 } 1280 EXPORT_SYMBOL(del_timer_sync); 1281 #endif 1282 1283 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), 1284 unsigned long data) 1285 { 1286 int count = preempt_count(); 1287 1288 #ifdef CONFIG_LOCKDEP 1289 /* 1290 * It is permissible to free the timer from inside the 1291 * function that is called from it, this we need to take into 1292 * account for lockdep too. To avoid bogus "held lock freed" 1293 * warnings as well as problems when looking into 1294 * timer->lockdep_map, make a copy and use that here. 1295 */ 1296 struct lockdep_map lockdep_map; 1297 1298 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1299 #endif 1300 /* 1301 * Couple the lock chain with the lock chain at 1302 * del_timer_sync() by acquiring the lock_map around the fn() 1303 * call here and in del_timer_sync(). 1304 */ 1305 lock_map_acquire(&lockdep_map); 1306 1307 trace_timer_expire_entry(timer); 1308 fn(data); 1309 trace_timer_expire_exit(timer); 1310 1311 lock_map_release(&lockdep_map); 1312 1313 if (count != preempt_count()) { 1314 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1315 fn, count, preempt_count()); 1316 /* 1317 * Restore the preempt count. That gives us a decent 1318 * chance to survive and extract information. If the 1319 * callback kept a lock held, bad luck, but not worse 1320 * than the BUG() we had. 1321 */ 1322 preempt_count_set(count); 1323 } 1324 } 1325 1326 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1327 { 1328 while (!hlist_empty(head)) { 1329 struct timer_list *timer; 1330 void (*fn)(unsigned long); 1331 unsigned long data; 1332 1333 timer = hlist_entry(head->first, struct timer_list, entry); 1334 timer_stats_account_timer(timer); 1335 1336 base->running_timer = timer; 1337 detach_timer(timer, true); 1338 1339 fn = timer->function; 1340 data = timer->data; 1341 1342 if (timer->flags & TIMER_IRQSAFE) { 1343 spin_unlock(&base->lock); 1344 call_timer_fn(timer, fn, data); 1345 spin_lock(&base->lock); 1346 } else { 1347 spin_unlock_irq(&base->lock); 1348 call_timer_fn(timer, fn, data); 1349 spin_lock_irq(&base->lock); 1350 } 1351 } 1352 } 1353 1354 static int __collect_expired_timers(struct timer_base *base, 1355 struct hlist_head *heads) 1356 { 1357 unsigned long clk = base->clk; 1358 struct hlist_head *vec; 1359 int i, levels = 0; 1360 unsigned int idx; 1361 1362 for (i = 0; i < LVL_DEPTH; i++) { 1363 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1364 1365 if (__test_and_clear_bit(idx, base->pending_map)) { 1366 vec = base->vectors + idx; 1367 hlist_move_list(vec, heads++); 1368 levels++; 1369 } 1370 /* Is it time to look at the next level? */ 1371 if (clk & LVL_CLK_MASK) 1372 break; 1373 /* Shift clock for the next level granularity */ 1374 clk >>= LVL_CLK_SHIFT; 1375 } 1376 return levels; 1377 } 1378 1379 #ifdef CONFIG_NO_HZ_COMMON 1380 /* 1381 * Find the next pending bucket of a level. Search from level start (@offset) 1382 * + @clk upwards and if nothing there, search from start of the level 1383 * (@offset) up to @offset + clk. 1384 */ 1385 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1386 unsigned clk) 1387 { 1388 unsigned pos, start = offset + clk; 1389 unsigned end = offset + LVL_SIZE; 1390 1391 pos = find_next_bit(base->pending_map, end, start); 1392 if (pos < end) 1393 return pos - start; 1394 1395 pos = find_next_bit(base->pending_map, start, offset); 1396 return pos < start ? pos + LVL_SIZE - start : -1; 1397 } 1398 1399 /* 1400 * Search the first expiring timer in the various clock levels. Caller must 1401 * hold base->lock. 1402 */ 1403 static unsigned long __next_timer_interrupt(struct timer_base *base) 1404 { 1405 unsigned long clk, next, adj; 1406 unsigned lvl, offset = 0; 1407 1408 next = base->clk + NEXT_TIMER_MAX_DELTA; 1409 clk = base->clk; 1410 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1411 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1412 1413 if (pos >= 0) { 1414 unsigned long tmp = clk + (unsigned long) pos; 1415 1416 tmp <<= LVL_SHIFT(lvl); 1417 if (time_before(tmp, next)) 1418 next = tmp; 1419 } 1420 /* 1421 * Clock for the next level. If the current level clock lower 1422 * bits are zero, we look at the next level as is. If not we 1423 * need to advance it by one because that's going to be the 1424 * next expiring bucket in that level. base->clk is the next 1425 * expiring jiffie. So in case of: 1426 * 1427 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1428 * 0 0 0 0 0 0 1429 * 1430 * we have to look at all levels @index 0. With 1431 * 1432 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1433 * 0 0 0 0 0 2 1434 * 1435 * LVL0 has the next expiring bucket @index 2. The upper 1436 * levels have the next expiring bucket @index 1. 1437 * 1438 * In case that the propagation wraps the next level the same 1439 * rules apply: 1440 * 1441 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1442 * 0 0 0 0 F 2 1443 * 1444 * So after looking at LVL0 we get: 1445 * 1446 * LVL5 LVL4 LVL3 LVL2 LVL1 1447 * 0 0 0 1 0 1448 * 1449 * So no propagation from LVL1 to LVL2 because that happened 1450 * with the add already, but then we need to propagate further 1451 * from LVL2 to LVL3. 1452 * 1453 * So the simple check whether the lower bits of the current 1454 * level are 0 or not is sufficient for all cases. 1455 */ 1456 adj = clk & LVL_CLK_MASK ? 1 : 0; 1457 clk >>= LVL_CLK_SHIFT; 1458 clk += adj; 1459 } 1460 return next; 1461 } 1462 1463 /* 1464 * Check, if the next hrtimer event is before the next timer wheel 1465 * event: 1466 */ 1467 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1468 { 1469 u64 nextevt = hrtimer_get_next_event(); 1470 1471 /* 1472 * If high resolution timers are enabled 1473 * hrtimer_get_next_event() returns KTIME_MAX. 1474 */ 1475 if (expires <= nextevt) 1476 return expires; 1477 1478 /* 1479 * If the next timer is already expired, return the tick base 1480 * time so the tick is fired immediately. 1481 */ 1482 if (nextevt <= basem) 1483 return basem; 1484 1485 /* 1486 * Round up to the next jiffie. High resolution timers are 1487 * off, so the hrtimers are expired in the tick and we need to 1488 * make sure that this tick really expires the timer to avoid 1489 * a ping pong of the nohz stop code. 1490 * 1491 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1492 */ 1493 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1494 } 1495 1496 /** 1497 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1498 * @basej: base time jiffies 1499 * @basem: base time clock monotonic 1500 * 1501 * Returns the tick aligned clock monotonic time of the next pending 1502 * timer or KTIME_MAX if no timer is pending. 1503 */ 1504 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1505 { 1506 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1507 u64 expires = KTIME_MAX; 1508 unsigned long nextevt; 1509 bool is_max_delta; 1510 1511 /* 1512 * Pretend that there is no timer pending if the cpu is offline. 1513 * Possible pending timers will be migrated later to an active cpu. 1514 */ 1515 if (cpu_is_offline(smp_processor_id())) 1516 return expires; 1517 1518 spin_lock(&base->lock); 1519 nextevt = __next_timer_interrupt(base); 1520 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1521 base->next_expiry = nextevt; 1522 /* 1523 * We have a fresh next event. Check whether we can forward the 1524 * base. We can only do that when @basej is past base->clk 1525 * otherwise we might rewind base->clk. 1526 */ 1527 if (time_after(basej, base->clk)) { 1528 if (time_after(nextevt, basej)) 1529 base->clk = basej; 1530 else if (time_after(nextevt, base->clk)) 1531 base->clk = nextevt; 1532 } 1533 1534 if (time_before_eq(nextevt, basej)) { 1535 expires = basem; 1536 base->is_idle = false; 1537 } else { 1538 if (!is_max_delta) 1539 expires = basem + (nextevt - basej) * TICK_NSEC; 1540 /* 1541 * If we expect to sleep more than a tick, mark the base idle: 1542 */ 1543 if ((expires - basem) > TICK_NSEC) 1544 base->is_idle = true; 1545 } 1546 spin_unlock(&base->lock); 1547 1548 return cmp_next_hrtimer_event(basem, expires); 1549 } 1550 1551 /** 1552 * timer_clear_idle - Clear the idle state of the timer base 1553 * 1554 * Called with interrupts disabled 1555 */ 1556 void timer_clear_idle(void) 1557 { 1558 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1559 1560 /* 1561 * We do this unlocked. The worst outcome is a remote enqueue sending 1562 * a pointless IPI, but taking the lock would just make the window for 1563 * sending the IPI a few instructions smaller for the cost of taking 1564 * the lock in the exit from idle path. 1565 */ 1566 base->is_idle = false; 1567 } 1568 1569 static int collect_expired_timers(struct timer_base *base, 1570 struct hlist_head *heads) 1571 { 1572 /* 1573 * NOHZ optimization. After a long idle sleep we need to forward the 1574 * base to current jiffies. Avoid a loop by searching the bitfield for 1575 * the next expiring timer. 1576 */ 1577 if ((long)(jiffies - base->clk) > 2) { 1578 unsigned long next = __next_timer_interrupt(base); 1579 1580 /* 1581 * If the next timer is ahead of time forward to current 1582 * jiffies, otherwise forward to the next expiry time: 1583 */ 1584 if (time_after(next, jiffies)) { 1585 /* The call site will increment clock! */ 1586 base->clk = jiffies - 1; 1587 return 0; 1588 } 1589 base->clk = next; 1590 } 1591 return __collect_expired_timers(base, heads); 1592 } 1593 #else 1594 static inline int collect_expired_timers(struct timer_base *base, 1595 struct hlist_head *heads) 1596 { 1597 return __collect_expired_timers(base, heads); 1598 } 1599 #endif 1600 1601 /* 1602 * Called from the timer interrupt handler to charge one tick to the current 1603 * process. user_tick is 1 if the tick is user time, 0 for system. 1604 */ 1605 void update_process_times(int user_tick) 1606 { 1607 struct task_struct *p = current; 1608 1609 /* Note: this timer irq context must be accounted for as well. */ 1610 account_process_tick(p, user_tick); 1611 run_local_timers(); 1612 rcu_check_callbacks(user_tick); 1613 #ifdef CONFIG_IRQ_WORK 1614 if (in_irq()) 1615 irq_work_tick(); 1616 #endif 1617 scheduler_tick(); 1618 run_posix_cpu_timers(p); 1619 } 1620 1621 /** 1622 * __run_timers - run all expired timers (if any) on this CPU. 1623 * @base: the timer vector to be processed. 1624 */ 1625 static inline void __run_timers(struct timer_base *base) 1626 { 1627 struct hlist_head heads[LVL_DEPTH]; 1628 int levels; 1629 1630 if (!time_after_eq(jiffies, base->clk)) 1631 return; 1632 1633 spin_lock_irq(&base->lock); 1634 1635 while (time_after_eq(jiffies, base->clk)) { 1636 1637 levels = collect_expired_timers(base, heads); 1638 base->clk++; 1639 1640 while (levels--) 1641 expire_timers(base, heads + levels); 1642 } 1643 base->running_timer = NULL; 1644 spin_unlock_irq(&base->lock); 1645 } 1646 1647 /* 1648 * This function runs timers and the timer-tq in bottom half context. 1649 */ 1650 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1651 { 1652 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1653 1654 __run_timers(base); 1655 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active) 1656 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1657 } 1658 1659 /* 1660 * Called by the local, per-CPU timer interrupt on SMP. 1661 */ 1662 void run_local_timers(void) 1663 { 1664 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1665 1666 hrtimer_run_queues(); 1667 /* Raise the softirq only if required. */ 1668 if (time_before(jiffies, base->clk)) { 1669 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 1670 return; 1671 /* CPU is awake, so check the deferrable base. */ 1672 base++; 1673 if (time_before(jiffies, base->clk)) 1674 return; 1675 } 1676 raise_softirq(TIMER_SOFTIRQ); 1677 } 1678 1679 #ifdef __ARCH_WANT_SYS_ALARM 1680 1681 /* 1682 * For backwards compatibility? This can be done in libc so Alpha 1683 * and all newer ports shouldn't need it. 1684 */ 1685 SYSCALL_DEFINE1(alarm, unsigned int, seconds) 1686 { 1687 return alarm_setitimer(seconds); 1688 } 1689 1690 #endif 1691 1692 static void process_timeout(unsigned long __data) 1693 { 1694 wake_up_process((struct task_struct *)__data); 1695 } 1696 1697 /** 1698 * schedule_timeout - sleep until timeout 1699 * @timeout: timeout value in jiffies 1700 * 1701 * Make the current task sleep until @timeout jiffies have 1702 * elapsed. The routine will return immediately unless 1703 * the current task state has been set (see set_current_state()). 1704 * 1705 * You can set the task state as follows - 1706 * 1707 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1708 * pass before the routine returns. The routine will return 0 1709 * 1710 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1711 * delivered to the current task. In this case the remaining time 1712 * in jiffies will be returned, or 0 if the timer expired in time 1713 * 1714 * The current task state is guaranteed to be TASK_RUNNING when this 1715 * routine returns. 1716 * 1717 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1718 * the CPU away without a bound on the timeout. In this case the return 1719 * value will be %MAX_SCHEDULE_TIMEOUT. 1720 * 1721 * In all cases the return value is guaranteed to be non-negative. 1722 */ 1723 signed long __sched schedule_timeout(signed long timeout) 1724 { 1725 struct timer_list timer; 1726 unsigned long expire; 1727 1728 switch (timeout) 1729 { 1730 case MAX_SCHEDULE_TIMEOUT: 1731 /* 1732 * These two special cases are useful to be comfortable 1733 * in the caller. Nothing more. We could take 1734 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1735 * but I' d like to return a valid offset (>=0) to allow 1736 * the caller to do everything it want with the retval. 1737 */ 1738 schedule(); 1739 goto out; 1740 default: 1741 /* 1742 * Another bit of PARANOID. Note that the retval will be 1743 * 0 since no piece of kernel is supposed to do a check 1744 * for a negative retval of schedule_timeout() (since it 1745 * should never happens anyway). You just have the printk() 1746 * that will tell you if something is gone wrong and where. 1747 */ 1748 if (timeout < 0) { 1749 printk(KERN_ERR "schedule_timeout: wrong timeout " 1750 "value %lx\n", timeout); 1751 dump_stack(); 1752 current->state = TASK_RUNNING; 1753 goto out; 1754 } 1755 } 1756 1757 expire = timeout + jiffies; 1758 1759 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); 1760 __mod_timer(&timer, expire, false); 1761 schedule(); 1762 del_singleshot_timer_sync(&timer); 1763 1764 /* Remove the timer from the object tracker */ 1765 destroy_timer_on_stack(&timer); 1766 1767 timeout = expire - jiffies; 1768 1769 out: 1770 return timeout < 0 ? 0 : timeout; 1771 } 1772 EXPORT_SYMBOL(schedule_timeout); 1773 1774 /* 1775 * We can use __set_current_state() here because schedule_timeout() calls 1776 * schedule() unconditionally. 1777 */ 1778 signed long __sched schedule_timeout_interruptible(signed long timeout) 1779 { 1780 __set_current_state(TASK_INTERRUPTIBLE); 1781 return schedule_timeout(timeout); 1782 } 1783 EXPORT_SYMBOL(schedule_timeout_interruptible); 1784 1785 signed long __sched schedule_timeout_killable(signed long timeout) 1786 { 1787 __set_current_state(TASK_KILLABLE); 1788 return schedule_timeout(timeout); 1789 } 1790 EXPORT_SYMBOL(schedule_timeout_killable); 1791 1792 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1793 { 1794 __set_current_state(TASK_UNINTERRUPTIBLE); 1795 return schedule_timeout(timeout); 1796 } 1797 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1798 1799 /* 1800 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1801 * to load average. 1802 */ 1803 signed long __sched schedule_timeout_idle(signed long timeout) 1804 { 1805 __set_current_state(TASK_IDLE); 1806 return schedule_timeout(timeout); 1807 } 1808 EXPORT_SYMBOL(schedule_timeout_idle); 1809 1810 #ifdef CONFIG_HOTPLUG_CPU 1811 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1812 { 1813 struct timer_list *timer; 1814 int cpu = new_base->cpu; 1815 1816 while (!hlist_empty(head)) { 1817 timer = hlist_entry(head->first, struct timer_list, entry); 1818 detach_timer(timer, false); 1819 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1820 internal_add_timer(new_base, timer); 1821 } 1822 } 1823 1824 int timers_dead_cpu(unsigned int cpu) 1825 { 1826 struct timer_base *old_base; 1827 struct timer_base *new_base; 1828 int b, i; 1829 1830 BUG_ON(cpu_online(cpu)); 1831 1832 for (b = 0; b < NR_BASES; b++) { 1833 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1834 new_base = get_cpu_ptr(&timer_bases[b]); 1835 /* 1836 * The caller is globally serialized and nobody else 1837 * takes two locks at once, deadlock is not possible. 1838 */ 1839 spin_lock_irq(&new_base->lock); 1840 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1841 1842 BUG_ON(old_base->running_timer); 1843 1844 for (i = 0; i < WHEEL_SIZE; i++) 1845 migrate_timer_list(new_base, old_base->vectors + i); 1846 1847 spin_unlock(&old_base->lock); 1848 spin_unlock_irq(&new_base->lock); 1849 put_cpu_ptr(&timer_bases); 1850 } 1851 return 0; 1852 } 1853 1854 #endif /* CONFIG_HOTPLUG_CPU */ 1855 1856 static void __init init_timer_cpu(int cpu) 1857 { 1858 struct timer_base *base; 1859 int i; 1860 1861 for (i = 0; i < NR_BASES; i++) { 1862 base = per_cpu_ptr(&timer_bases[i], cpu); 1863 base->cpu = cpu; 1864 spin_lock_init(&base->lock); 1865 base->clk = jiffies; 1866 } 1867 } 1868 1869 static void __init init_timer_cpus(void) 1870 { 1871 int cpu; 1872 1873 for_each_possible_cpu(cpu) 1874 init_timer_cpu(cpu); 1875 } 1876 1877 void __init init_timers(void) 1878 { 1879 init_timer_cpus(); 1880 init_timer_stats(); 1881 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1882 } 1883 1884 /** 1885 * msleep - sleep safely even with waitqueue interruptions 1886 * @msecs: Time in milliseconds to sleep for 1887 */ 1888 void msleep(unsigned int msecs) 1889 { 1890 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1891 1892 while (timeout) 1893 timeout = schedule_timeout_uninterruptible(timeout); 1894 } 1895 1896 EXPORT_SYMBOL(msleep); 1897 1898 /** 1899 * msleep_interruptible - sleep waiting for signals 1900 * @msecs: Time in milliseconds to sleep for 1901 */ 1902 unsigned long msleep_interruptible(unsigned int msecs) 1903 { 1904 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1905 1906 while (timeout && !signal_pending(current)) 1907 timeout = schedule_timeout_interruptible(timeout); 1908 return jiffies_to_msecs(timeout); 1909 } 1910 1911 EXPORT_SYMBOL(msleep_interruptible); 1912 1913 static void __sched do_usleep_range(unsigned long min, unsigned long max) 1914 { 1915 ktime_t kmin; 1916 u64 delta; 1917 1918 kmin = ktime_set(0, min * NSEC_PER_USEC); 1919 delta = (u64)(max - min) * NSEC_PER_USEC; 1920 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL); 1921 } 1922 1923 /** 1924 * usleep_range - Sleep for an approximate time 1925 * @min: Minimum time in usecs to sleep 1926 * @max: Maximum time in usecs to sleep 1927 * 1928 * In non-atomic context where the exact wakeup time is flexible, use 1929 * usleep_range() instead of udelay(). The sleep improves responsiveness 1930 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 1931 * power usage by allowing hrtimers to take advantage of an already- 1932 * scheduled interrupt instead of scheduling a new one just for this sleep. 1933 */ 1934 void __sched usleep_range(unsigned long min, unsigned long max) 1935 { 1936 __set_current_state(TASK_UNINTERRUPTIBLE); 1937 do_usleep_range(min, max); 1938 } 1939 EXPORT_SYMBOL(usleep_range); 1940