xref: /openbmc/linux/kernel/time/timer.c (revision de2bdb3d)
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51 
52 #include "tick-internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56 
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58 
59 EXPORT_SYMBOL(jiffies_64);
60 
61 /*
62  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
63  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
64  * level has a different granularity.
65  *
66  * The level granularity is:		LVL_CLK_DIV ^ lvl
67  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
68  *
69  * The array level of a newly armed timer depends on the relative expiry
70  * time. The farther the expiry time is away the higher the array level and
71  * therefor the granularity becomes.
72  *
73  * Contrary to the original timer wheel implementation, which aims for 'exact'
74  * expiry of the timers, this implementation removes the need for recascading
75  * the timers into the lower array levels. The previous 'classic' timer wheel
76  * implementation of the kernel already violated the 'exact' expiry by adding
77  * slack to the expiry time to provide batched expiration. The granularity
78  * levels provide implicit batching.
79  *
80  * This is an optimization of the original timer wheel implementation for the
81  * majority of the timer wheel use cases: timeouts. The vast majority of
82  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
83  * the timeout expires it indicates that normal operation is disturbed, so it
84  * does not matter much whether the timeout comes with a slight delay.
85  *
86  * The only exception to this are networking timers with a small expiry
87  * time. They rely on the granularity. Those fit into the first wheel level,
88  * which has HZ granularity.
89  *
90  * We don't have cascading anymore. timers with a expiry time above the
91  * capacity of the last wheel level are force expired at the maximum timeout
92  * value of the last wheel level. From data sampling we know that the maximum
93  * value observed is 5 days (network connection tracking), so this should not
94  * be an issue.
95  *
96  * The currently chosen array constants values are a good compromise between
97  * array size and granularity.
98  *
99  * This results in the following granularity and range levels:
100  *
101  * HZ 1000 steps
102  * Level Offset  Granularity            Range
103  *  0      0         1 ms                0 ms -         63 ms
104  *  1     64         8 ms               64 ms -        511 ms
105  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
106  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
107  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
108  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
109  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
110  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
111  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
112  *
113  * HZ  300
114  * Level Offset  Granularity            Range
115  *  0	   0         3 ms                0 ms -        210 ms
116  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
117  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
118  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
119  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
120  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
121  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
122  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
123  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
124  *
125  * HZ  250
126  * Level Offset  Granularity            Range
127  *  0	   0         4 ms                0 ms -        255 ms
128  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
129  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
130  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
131  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
132  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
133  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
134  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
135  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
136  *
137  * HZ  100
138  * Level Offset  Granularity            Range
139  *  0	   0         10 ms               0 ms -        630 ms
140  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
141  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
142  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
143  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
144  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
145  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
146  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
147  */
148 
149 /* Clock divisor for the next level */
150 #define LVL_CLK_SHIFT	3
151 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
152 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
153 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
154 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
155 
156 /*
157  * The time start value for each level to select the bucket at enqueue
158  * time.
159  */
160 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
161 
162 /* Size of each clock level */
163 #define LVL_BITS	6
164 #define LVL_SIZE	(1UL << LVL_BITS)
165 #define LVL_MASK	(LVL_SIZE - 1)
166 #define LVL_OFFS(n)	((n) * LVL_SIZE)
167 
168 /* Level depth */
169 #if HZ > 100
170 # define LVL_DEPTH	9
171 # else
172 # define LVL_DEPTH	8
173 #endif
174 
175 /* The cutoff (max. capacity of the wheel) */
176 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
177 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
178 
179 /*
180  * The resulting wheel size. If NOHZ is configured we allocate two
181  * wheels so we have a separate storage for the deferrable timers.
182  */
183 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
184 
185 #ifdef CONFIG_NO_HZ_COMMON
186 # define NR_BASES	2
187 # define BASE_STD	0
188 # define BASE_DEF	1
189 #else
190 # define NR_BASES	1
191 # define BASE_STD	0
192 # define BASE_DEF	0
193 #endif
194 
195 struct timer_base {
196 	spinlock_t		lock;
197 	struct timer_list	*running_timer;
198 	unsigned long		clk;
199 	unsigned long		next_expiry;
200 	unsigned int		cpu;
201 	bool			migration_enabled;
202 	bool			nohz_active;
203 	bool			is_idle;
204 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
205 	struct hlist_head	vectors[WHEEL_SIZE];
206 } ____cacheline_aligned;
207 
208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
209 
210 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
211 unsigned int sysctl_timer_migration = 1;
212 
213 void timers_update_migration(bool update_nohz)
214 {
215 	bool on = sysctl_timer_migration && tick_nohz_active;
216 	unsigned int cpu;
217 
218 	/* Avoid the loop, if nothing to update */
219 	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
220 		return;
221 
222 	for_each_possible_cpu(cpu) {
223 		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
224 		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
225 		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
226 		if (!update_nohz)
227 			continue;
228 		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
229 		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
230 		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
231 	}
232 }
233 
234 int timer_migration_handler(struct ctl_table *table, int write,
235 			    void __user *buffer, size_t *lenp,
236 			    loff_t *ppos)
237 {
238 	static DEFINE_MUTEX(mutex);
239 	int ret;
240 
241 	mutex_lock(&mutex);
242 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
243 	if (!ret && write)
244 		timers_update_migration(false);
245 	mutex_unlock(&mutex);
246 	return ret;
247 }
248 #endif
249 
250 static unsigned long round_jiffies_common(unsigned long j, int cpu,
251 		bool force_up)
252 {
253 	int rem;
254 	unsigned long original = j;
255 
256 	/*
257 	 * We don't want all cpus firing their timers at once hitting the
258 	 * same lock or cachelines, so we skew each extra cpu with an extra
259 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
260 	 * already did this.
261 	 * The skew is done by adding 3*cpunr, then round, then subtract this
262 	 * extra offset again.
263 	 */
264 	j += cpu * 3;
265 
266 	rem = j % HZ;
267 
268 	/*
269 	 * If the target jiffie is just after a whole second (which can happen
270 	 * due to delays of the timer irq, long irq off times etc etc) then
271 	 * we should round down to the whole second, not up. Use 1/4th second
272 	 * as cutoff for this rounding as an extreme upper bound for this.
273 	 * But never round down if @force_up is set.
274 	 */
275 	if (rem < HZ/4 && !force_up) /* round down */
276 		j = j - rem;
277 	else /* round up */
278 		j = j - rem + HZ;
279 
280 	/* now that we have rounded, subtract the extra skew again */
281 	j -= cpu * 3;
282 
283 	/*
284 	 * Make sure j is still in the future. Otherwise return the
285 	 * unmodified value.
286 	 */
287 	return time_is_after_jiffies(j) ? j : original;
288 }
289 
290 /**
291  * __round_jiffies - function to round jiffies to a full second
292  * @j: the time in (absolute) jiffies that should be rounded
293  * @cpu: the processor number on which the timeout will happen
294  *
295  * __round_jiffies() rounds an absolute time in the future (in jiffies)
296  * up or down to (approximately) full seconds. This is useful for timers
297  * for which the exact time they fire does not matter too much, as long as
298  * they fire approximately every X seconds.
299  *
300  * By rounding these timers to whole seconds, all such timers will fire
301  * at the same time, rather than at various times spread out. The goal
302  * of this is to have the CPU wake up less, which saves power.
303  *
304  * The exact rounding is skewed for each processor to avoid all
305  * processors firing at the exact same time, which could lead
306  * to lock contention or spurious cache line bouncing.
307  *
308  * The return value is the rounded version of the @j parameter.
309  */
310 unsigned long __round_jiffies(unsigned long j, int cpu)
311 {
312 	return round_jiffies_common(j, cpu, false);
313 }
314 EXPORT_SYMBOL_GPL(__round_jiffies);
315 
316 /**
317  * __round_jiffies_relative - function to round jiffies to a full second
318  * @j: the time in (relative) jiffies that should be rounded
319  * @cpu: the processor number on which the timeout will happen
320  *
321  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
322  * up or down to (approximately) full seconds. This is useful for timers
323  * for which the exact time they fire does not matter too much, as long as
324  * they fire approximately every X seconds.
325  *
326  * By rounding these timers to whole seconds, all such timers will fire
327  * at the same time, rather than at various times spread out. The goal
328  * of this is to have the CPU wake up less, which saves power.
329  *
330  * The exact rounding is skewed for each processor to avoid all
331  * processors firing at the exact same time, which could lead
332  * to lock contention or spurious cache line bouncing.
333  *
334  * The return value is the rounded version of the @j parameter.
335  */
336 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
337 {
338 	unsigned long j0 = jiffies;
339 
340 	/* Use j0 because jiffies might change while we run */
341 	return round_jiffies_common(j + j0, cpu, false) - j0;
342 }
343 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
344 
345 /**
346  * round_jiffies - function to round jiffies to a full second
347  * @j: the time in (absolute) jiffies that should be rounded
348  *
349  * round_jiffies() rounds an absolute time in the future (in jiffies)
350  * up or down to (approximately) full seconds. This is useful for timers
351  * for which the exact time they fire does not matter too much, as long as
352  * they fire approximately every X seconds.
353  *
354  * By rounding these timers to whole seconds, all such timers will fire
355  * at the same time, rather than at various times spread out. The goal
356  * of this is to have the CPU wake up less, which saves power.
357  *
358  * The return value is the rounded version of the @j parameter.
359  */
360 unsigned long round_jiffies(unsigned long j)
361 {
362 	return round_jiffies_common(j, raw_smp_processor_id(), false);
363 }
364 EXPORT_SYMBOL_GPL(round_jiffies);
365 
366 /**
367  * round_jiffies_relative - function to round jiffies to a full second
368  * @j: the time in (relative) jiffies that should be rounded
369  *
370  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
371  * up or down to (approximately) full seconds. This is useful for timers
372  * for which the exact time they fire does not matter too much, as long as
373  * they fire approximately every X seconds.
374  *
375  * By rounding these timers to whole seconds, all such timers will fire
376  * at the same time, rather than at various times spread out. The goal
377  * of this is to have the CPU wake up less, which saves power.
378  *
379  * The return value is the rounded version of the @j parameter.
380  */
381 unsigned long round_jiffies_relative(unsigned long j)
382 {
383 	return __round_jiffies_relative(j, raw_smp_processor_id());
384 }
385 EXPORT_SYMBOL_GPL(round_jiffies_relative);
386 
387 /**
388  * __round_jiffies_up - function to round jiffies up to a full second
389  * @j: the time in (absolute) jiffies that should be rounded
390  * @cpu: the processor number on which the timeout will happen
391  *
392  * This is the same as __round_jiffies() except that it will never
393  * round down.  This is useful for timeouts for which the exact time
394  * of firing does not matter too much, as long as they don't fire too
395  * early.
396  */
397 unsigned long __round_jiffies_up(unsigned long j, int cpu)
398 {
399 	return round_jiffies_common(j, cpu, true);
400 }
401 EXPORT_SYMBOL_GPL(__round_jiffies_up);
402 
403 /**
404  * __round_jiffies_up_relative - function to round jiffies up to a full second
405  * @j: the time in (relative) jiffies that should be rounded
406  * @cpu: the processor number on which the timeout will happen
407  *
408  * This is the same as __round_jiffies_relative() except that it will never
409  * round down.  This is useful for timeouts for which the exact time
410  * of firing does not matter too much, as long as they don't fire too
411  * early.
412  */
413 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
414 {
415 	unsigned long j0 = jiffies;
416 
417 	/* Use j0 because jiffies might change while we run */
418 	return round_jiffies_common(j + j0, cpu, true) - j0;
419 }
420 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
421 
422 /**
423  * round_jiffies_up - function to round jiffies up to a full second
424  * @j: the time in (absolute) jiffies that should be rounded
425  *
426  * This is the same as round_jiffies() except that it will never
427  * round down.  This is useful for timeouts for which the exact time
428  * of firing does not matter too much, as long as they don't fire too
429  * early.
430  */
431 unsigned long round_jiffies_up(unsigned long j)
432 {
433 	return round_jiffies_common(j, raw_smp_processor_id(), true);
434 }
435 EXPORT_SYMBOL_GPL(round_jiffies_up);
436 
437 /**
438  * round_jiffies_up_relative - function to round jiffies up to a full second
439  * @j: the time in (relative) jiffies that should be rounded
440  *
441  * This is the same as round_jiffies_relative() except that it will never
442  * round down.  This is useful for timeouts for which the exact time
443  * of firing does not matter too much, as long as they don't fire too
444  * early.
445  */
446 unsigned long round_jiffies_up_relative(unsigned long j)
447 {
448 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
449 }
450 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
451 
452 
453 static inline unsigned int timer_get_idx(struct timer_list *timer)
454 {
455 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
456 }
457 
458 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
459 {
460 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
461 			idx << TIMER_ARRAYSHIFT;
462 }
463 
464 /*
465  * Helper function to calculate the array index for a given expiry
466  * time.
467  */
468 static inline unsigned calc_index(unsigned expires, unsigned lvl)
469 {
470 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
471 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
472 }
473 
474 static int calc_wheel_index(unsigned long expires, unsigned long clk)
475 {
476 	unsigned long delta = expires - clk;
477 	unsigned int idx;
478 
479 	if (delta < LVL_START(1)) {
480 		idx = calc_index(expires, 0);
481 	} else if (delta < LVL_START(2)) {
482 		idx = calc_index(expires, 1);
483 	} else if (delta < LVL_START(3)) {
484 		idx = calc_index(expires, 2);
485 	} else if (delta < LVL_START(4)) {
486 		idx = calc_index(expires, 3);
487 	} else if (delta < LVL_START(5)) {
488 		idx = calc_index(expires, 4);
489 	} else if (delta < LVL_START(6)) {
490 		idx = calc_index(expires, 5);
491 	} else if (delta < LVL_START(7)) {
492 		idx = calc_index(expires, 6);
493 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
494 		idx = calc_index(expires, 7);
495 	} else if ((long) delta < 0) {
496 		idx = clk & LVL_MASK;
497 	} else {
498 		/*
499 		 * Force expire obscene large timeouts to expire at the
500 		 * capacity limit of the wheel.
501 		 */
502 		if (expires >= WHEEL_TIMEOUT_CUTOFF)
503 			expires = WHEEL_TIMEOUT_MAX;
504 
505 		idx = calc_index(expires, LVL_DEPTH - 1);
506 	}
507 	return idx;
508 }
509 
510 /*
511  * Enqueue the timer into the hash bucket, mark it pending in
512  * the bitmap and store the index in the timer flags.
513  */
514 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
515 			  unsigned int idx)
516 {
517 	hlist_add_head(&timer->entry, base->vectors + idx);
518 	__set_bit(idx, base->pending_map);
519 	timer_set_idx(timer, idx);
520 }
521 
522 static void
523 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
524 {
525 	unsigned int idx;
526 
527 	idx = calc_wheel_index(timer->expires, base->clk);
528 	enqueue_timer(base, timer, idx);
529 }
530 
531 static void
532 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
533 {
534 	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
535 		return;
536 
537 	/*
538 	 * TODO: This wants some optimizing similar to the code below, but we
539 	 * will do that when we switch from push to pull for deferrable timers.
540 	 */
541 	if (timer->flags & TIMER_DEFERRABLE) {
542 		if (tick_nohz_full_cpu(base->cpu))
543 			wake_up_nohz_cpu(base->cpu);
544 		return;
545 	}
546 
547 	/*
548 	 * We might have to IPI the remote CPU if the base is idle and the
549 	 * timer is not deferrable. If the other CPU is on the way to idle
550 	 * then it can't set base->is_idle as we hold the base lock:
551 	 */
552 	if (!base->is_idle)
553 		return;
554 
555 	/* Check whether this is the new first expiring timer: */
556 	if (time_after_eq(timer->expires, base->next_expiry))
557 		return;
558 
559 	/*
560 	 * Set the next expiry time and kick the CPU so it can reevaluate the
561 	 * wheel:
562 	 */
563 	base->next_expiry = timer->expires;
564 		wake_up_nohz_cpu(base->cpu);
565 }
566 
567 static void
568 internal_add_timer(struct timer_base *base, struct timer_list *timer)
569 {
570 	__internal_add_timer(base, timer);
571 	trigger_dyntick_cpu(base, timer);
572 }
573 
574 #ifdef CONFIG_TIMER_STATS
575 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
576 {
577 	if (timer->start_site)
578 		return;
579 
580 	timer->start_site = addr;
581 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
582 	timer->start_pid = current->pid;
583 }
584 
585 static void timer_stats_account_timer(struct timer_list *timer)
586 {
587 	void *site;
588 
589 	/*
590 	 * start_site can be concurrently reset by
591 	 * timer_stats_timer_clear_start_info()
592 	 */
593 	site = READ_ONCE(timer->start_site);
594 	if (likely(!site))
595 		return;
596 
597 	timer_stats_update_stats(timer, timer->start_pid, site,
598 				 timer->function, timer->start_comm,
599 				 timer->flags);
600 }
601 
602 #else
603 static void timer_stats_account_timer(struct timer_list *timer) {}
604 #endif
605 
606 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
607 
608 static struct debug_obj_descr timer_debug_descr;
609 
610 static void *timer_debug_hint(void *addr)
611 {
612 	return ((struct timer_list *) addr)->function;
613 }
614 
615 static bool timer_is_static_object(void *addr)
616 {
617 	struct timer_list *timer = addr;
618 
619 	return (timer->entry.pprev == NULL &&
620 		timer->entry.next == TIMER_ENTRY_STATIC);
621 }
622 
623 /*
624  * fixup_init is called when:
625  * - an active object is initialized
626  */
627 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
628 {
629 	struct timer_list *timer = addr;
630 
631 	switch (state) {
632 	case ODEBUG_STATE_ACTIVE:
633 		del_timer_sync(timer);
634 		debug_object_init(timer, &timer_debug_descr);
635 		return true;
636 	default:
637 		return false;
638 	}
639 }
640 
641 /* Stub timer callback for improperly used timers. */
642 static void stub_timer(unsigned long data)
643 {
644 	WARN_ON(1);
645 }
646 
647 /*
648  * fixup_activate is called when:
649  * - an active object is activated
650  * - an unknown non-static object is activated
651  */
652 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
653 {
654 	struct timer_list *timer = addr;
655 
656 	switch (state) {
657 	case ODEBUG_STATE_NOTAVAILABLE:
658 		setup_timer(timer, stub_timer, 0);
659 		return true;
660 
661 	case ODEBUG_STATE_ACTIVE:
662 		WARN_ON(1);
663 
664 	default:
665 		return false;
666 	}
667 }
668 
669 /*
670  * fixup_free is called when:
671  * - an active object is freed
672  */
673 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
674 {
675 	struct timer_list *timer = addr;
676 
677 	switch (state) {
678 	case ODEBUG_STATE_ACTIVE:
679 		del_timer_sync(timer);
680 		debug_object_free(timer, &timer_debug_descr);
681 		return true;
682 	default:
683 		return false;
684 	}
685 }
686 
687 /*
688  * fixup_assert_init is called when:
689  * - an untracked/uninit-ed object is found
690  */
691 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
692 {
693 	struct timer_list *timer = addr;
694 
695 	switch (state) {
696 	case ODEBUG_STATE_NOTAVAILABLE:
697 		setup_timer(timer, stub_timer, 0);
698 		return true;
699 	default:
700 		return false;
701 	}
702 }
703 
704 static struct debug_obj_descr timer_debug_descr = {
705 	.name			= "timer_list",
706 	.debug_hint		= timer_debug_hint,
707 	.is_static_object	= timer_is_static_object,
708 	.fixup_init		= timer_fixup_init,
709 	.fixup_activate		= timer_fixup_activate,
710 	.fixup_free		= timer_fixup_free,
711 	.fixup_assert_init	= timer_fixup_assert_init,
712 };
713 
714 static inline void debug_timer_init(struct timer_list *timer)
715 {
716 	debug_object_init(timer, &timer_debug_descr);
717 }
718 
719 static inline void debug_timer_activate(struct timer_list *timer)
720 {
721 	debug_object_activate(timer, &timer_debug_descr);
722 }
723 
724 static inline void debug_timer_deactivate(struct timer_list *timer)
725 {
726 	debug_object_deactivate(timer, &timer_debug_descr);
727 }
728 
729 static inline void debug_timer_free(struct timer_list *timer)
730 {
731 	debug_object_free(timer, &timer_debug_descr);
732 }
733 
734 static inline void debug_timer_assert_init(struct timer_list *timer)
735 {
736 	debug_object_assert_init(timer, &timer_debug_descr);
737 }
738 
739 static void do_init_timer(struct timer_list *timer, unsigned int flags,
740 			  const char *name, struct lock_class_key *key);
741 
742 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
743 			     const char *name, struct lock_class_key *key)
744 {
745 	debug_object_init_on_stack(timer, &timer_debug_descr);
746 	do_init_timer(timer, flags, name, key);
747 }
748 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
749 
750 void destroy_timer_on_stack(struct timer_list *timer)
751 {
752 	debug_object_free(timer, &timer_debug_descr);
753 }
754 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
755 
756 #else
757 static inline void debug_timer_init(struct timer_list *timer) { }
758 static inline void debug_timer_activate(struct timer_list *timer) { }
759 static inline void debug_timer_deactivate(struct timer_list *timer) { }
760 static inline void debug_timer_assert_init(struct timer_list *timer) { }
761 #endif
762 
763 static inline void debug_init(struct timer_list *timer)
764 {
765 	debug_timer_init(timer);
766 	trace_timer_init(timer);
767 }
768 
769 static inline void
770 debug_activate(struct timer_list *timer, unsigned long expires)
771 {
772 	debug_timer_activate(timer);
773 	trace_timer_start(timer, expires, timer->flags);
774 }
775 
776 static inline void debug_deactivate(struct timer_list *timer)
777 {
778 	debug_timer_deactivate(timer);
779 	trace_timer_cancel(timer);
780 }
781 
782 static inline void debug_assert_init(struct timer_list *timer)
783 {
784 	debug_timer_assert_init(timer);
785 }
786 
787 static void do_init_timer(struct timer_list *timer, unsigned int flags,
788 			  const char *name, struct lock_class_key *key)
789 {
790 	timer->entry.pprev = NULL;
791 	timer->flags = flags | raw_smp_processor_id();
792 #ifdef CONFIG_TIMER_STATS
793 	timer->start_site = NULL;
794 	timer->start_pid = -1;
795 	memset(timer->start_comm, 0, TASK_COMM_LEN);
796 #endif
797 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
798 }
799 
800 /**
801  * init_timer_key - initialize a timer
802  * @timer: the timer to be initialized
803  * @flags: timer flags
804  * @name: name of the timer
805  * @key: lockdep class key of the fake lock used for tracking timer
806  *       sync lock dependencies
807  *
808  * init_timer_key() must be done to a timer prior calling *any* of the
809  * other timer functions.
810  */
811 void init_timer_key(struct timer_list *timer, unsigned int flags,
812 		    const char *name, struct lock_class_key *key)
813 {
814 	debug_init(timer);
815 	do_init_timer(timer, flags, name, key);
816 }
817 EXPORT_SYMBOL(init_timer_key);
818 
819 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
820 {
821 	struct hlist_node *entry = &timer->entry;
822 
823 	debug_deactivate(timer);
824 
825 	__hlist_del(entry);
826 	if (clear_pending)
827 		entry->pprev = NULL;
828 	entry->next = LIST_POISON2;
829 }
830 
831 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
832 			     bool clear_pending)
833 {
834 	unsigned idx = timer_get_idx(timer);
835 
836 	if (!timer_pending(timer))
837 		return 0;
838 
839 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
840 		__clear_bit(idx, base->pending_map);
841 
842 	detach_timer(timer, clear_pending);
843 	return 1;
844 }
845 
846 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
847 {
848 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
849 
850 	/*
851 	 * If the timer is deferrable and nohz is active then we need to use
852 	 * the deferrable base.
853 	 */
854 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
855 	    (tflags & TIMER_DEFERRABLE))
856 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
857 	return base;
858 }
859 
860 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
861 {
862 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
863 
864 	/*
865 	 * If the timer is deferrable and nohz is active then we need to use
866 	 * the deferrable base.
867 	 */
868 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
869 	    (tflags & TIMER_DEFERRABLE))
870 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
871 	return base;
872 }
873 
874 static inline struct timer_base *get_timer_base(u32 tflags)
875 {
876 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
877 }
878 
879 #ifdef CONFIG_NO_HZ_COMMON
880 static inline struct timer_base *
881 get_target_base(struct timer_base *base, unsigned tflags)
882 {
883 #ifdef CONFIG_SMP
884 	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
885 		return get_timer_this_cpu_base(tflags);
886 	return get_timer_cpu_base(tflags, get_nohz_timer_target());
887 #else
888 	return get_timer_this_cpu_base(tflags);
889 #endif
890 }
891 
892 static inline void forward_timer_base(struct timer_base *base)
893 {
894 	unsigned long jnow = READ_ONCE(jiffies);
895 
896 	/*
897 	 * We only forward the base when it's idle and we have a delta between
898 	 * base clock and jiffies.
899 	 */
900 	if (!base->is_idle || (long) (jnow - base->clk) < 2)
901 		return;
902 
903 	/*
904 	 * If the next expiry value is > jiffies, then we fast forward to
905 	 * jiffies otherwise we forward to the next expiry value.
906 	 */
907 	if (time_after(base->next_expiry, jnow))
908 		base->clk = jnow;
909 	else
910 		base->clk = base->next_expiry;
911 }
912 #else
913 static inline struct timer_base *
914 get_target_base(struct timer_base *base, unsigned tflags)
915 {
916 	return get_timer_this_cpu_base(tflags);
917 }
918 
919 static inline void forward_timer_base(struct timer_base *base) { }
920 #endif
921 
922 
923 /*
924  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
925  * that all timers which are tied to this base are locked, and the base itself
926  * is locked too.
927  *
928  * So __run_timers/migrate_timers can safely modify all timers which could
929  * be found in the base->vectors array.
930  *
931  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
932  * to wait until the migration is done.
933  */
934 static struct timer_base *lock_timer_base(struct timer_list *timer,
935 					  unsigned long *flags)
936 	__acquires(timer->base->lock)
937 {
938 	for (;;) {
939 		struct timer_base *base;
940 		u32 tf;
941 
942 		/*
943 		 * We need to use READ_ONCE() here, otherwise the compiler
944 		 * might re-read @tf between the check for TIMER_MIGRATING
945 		 * and spin_lock().
946 		 */
947 		tf = READ_ONCE(timer->flags);
948 
949 		if (!(tf & TIMER_MIGRATING)) {
950 			base = get_timer_base(tf);
951 			spin_lock_irqsave(&base->lock, *flags);
952 			if (timer->flags == tf)
953 				return base;
954 			spin_unlock_irqrestore(&base->lock, *flags);
955 		}
956 		cpu_relax();
957 	}
958 }
959 
960 static inline int
961 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
962 {
963 	struct timer_base *base, *new_base;
964 	unsigned int idx = UINT_MAX;
965 	unsigned long clk = 0, flags;
966 	int ret = 0;
967 
968 	BUG_ON(!timer->function);
969 
970 	/*
971 	 * This is a common optimization triggered by the networking code - if
972 	 * the timer is re-modified to have the same timeout or ends up in the
973 	 * same array bucket then just return:
974 	 */
975 	if (timer_pending(timer)) {
976 		if (timer->expires == expires)
977 			return 1;
978 
979 		/*
980 		 * We lock timer base and calculate the bucket index right
981 		 * here. If the timer ends up in the same bucket, then we
982 		 * just update the expiry time and avoid the whole
983 		 * dequeue/enqueue dance.
984 		 */
985 		base = lock_timer_base(timer, &flags);
986 
987 		clk = base->clk;
988 		idx = calc_wheel_index(expires, clk);
989 
990 		/*
991 		 * Retrieve and compare the array index of the pending
992 		 * timer. If it matches set the expiry to the new value so a
993 		 * subsequent call will exit in the expires check above.
994 		 */
995 		if (idx == timer_get_idx(timer)) {
996 			timer->expires = expires;
997 			ret = 1;
998 			goto out_unlock;
999 		}
1000 	} else {
1001 		base = lock_timer_base(timer, &flags);
1002 	}
1003 
1004 	timer_stats_timer_set_start_info(timer);
1005 
1006 	ret = detach_if_pending(timer, base, false);
1007 	if (!ret && pending_only)
1008 		goto out_unlock;
1009 
1010 	debug_activate(timer, expires);
1011 
1012 	new_base = get_target_base(base, timer->flags);
1013 
1014 	if (base != new_base) {
1015 		/*
1016 		 * We are trying to schedule the timer on the new base.
1017 		 * However we can't change timer's base while it is running,
1018 		 * otherwise del_timer_sync() can't detect that the timer's
1019 		 * handler yet has not finished. This also guarantees that the
1020 		 * timer is serialized wrt itself.
1021 		 */
1022 		if (likely(base->running_timer != timer)) {
1023 			/* See the comment in lock_timer_base() */
1024 			timer->flags |= TIMER_MIGRATING;
1025 
1026 			spin_unlock(&base->lock);
1027 			base = new_base;
1028 			spin_lock(&base->lock);
1029 			WRITE_ONCE(timer->flags,
1030 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1031 		}
1032 	}
1033 
1034 	/* Try to forward a stale timer base clock */
1035 	forward_timer_base(base);
1036 
1037 	timer->expires = expires;
1038 	/*
1039 	 * If 'idx' was calculated above and the base time did not advance
1040 	 * between calculating 'idx' and possibly switching the base, only
1041 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1042 	 * we need to (re)calculate the wheel index via
1043 	 * internal_add_timer().
1044 	 */
1045 	if (idx != UINT_MAX && clk == base->clk) {
1046 		enqueue_timer(base, timer, idx);
1047 		trigger_dyntick_cpu(base, timer);
1048 	} else {
1049 		internal_add_timer(base, timer);
1050 	}
1051 
1052 out_unlock:
1053 	spin_unlock_irqrestore(&base->lock, flags);
1054 
1055 	return ret;
1056 }
1057 
1058 /**
1059  * mod_timer_pending - modify a pending timer's timeout
1060  * @timer: the pending timer to be modified
1061  * @expires: new timeout in jiffies
1062  *
1063  * mod_timer_pending() is the same for pending timers as mod_timer(),
1064  * but will not re-activate and modify already deleted timers.
1065  *
1066  * It is useful for unserialized use of timers.
1067  */
1068 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1069 {
1070 	return __mod_timer(timer, expires, true);
1071 }
1072 EXPORT_SYMBOL(mod_timer_pending);
1073 
1074 /**
1075  * mod_timer - modify a timer's timeout
1076  * @timer: the timer to be modified
1077  * @expires: new timeout in jiffies
1078  *
1079  * mod_timer() is a more efficient way to update the expire field of an
1080  * active timer (if the timer is inactive it will be activated)
1081  *
1082  * mod_timer(timer, expires) is equivalent to:
1083  *
1084  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1085  *
1086  * Note that if there are multiple unserialized concurrent users of the
1087  * same timer, then mod_timer() is the only safe way to modify the timeout,
1088  * since add_timer() cannot modify an already running timer.
1089  *
1090  * The function returns whether it has modified a pending timer or not.
1091  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1092  * active timer returns 1.)
1093  */
1094 int mod_timer(struct timer_list *timer, unsigned long expires)
1095 {
1096 	return __mod_timer(timer, expires, false);
1097 }
1098 EXPORT_SYMBOL(mod_timer);
1099 
1100 /**
1101  * add_timer - start a timer
1102  * @timer: the timer to be added
1103  *
1104  * The kernel will do a ->function(->data) callback from the
1105  * timer interrupt at the ->expires point in the future. The
1106  * current time is 'jiffies'.
1107  *
1108  * The timer's ->expires, ->function (and if the handler uses it, ->data)
1109  * fields must be set prior calling this function.
1110  *
1111  * Timers with an ->expires field in the past will be executed in the next
1112  * timer tick.
1113  */
1114 void add_timer(struct timer_list *timer)
1115 {
1116 	BUG_ON(timer_pending(timer));
1117 	mod_timer(timer, timer->expires);
1118 }
1119 EXPORT_SYMBOL(add_timer);
1120 
1121 /**
1122  * add_timer_on - start a timer on a particular CPU
1123  * @timer: the timer to be added
1124  * @cpu: the CPU to start it on
1125  *
1126  * This is not very scalable on SMP. Double adds are not possible.
1127  */
1128 void add_timer_on(struct timer_list *timer, int cpu)
1129 {
1130 	struct timer_base *new_base, *base;
1131 	unsigned long flags;
1132 
1133 	timer_stats_timer_set_start_info(timer);
1134 	BUG_ON(timer_pending(timer) || !timer->function);
1135 
1136 	new_base = get_timer_cpu_base(timer->flags, cpu);
1137 
1138 	/*
1139 	 * If @timer was on a different CPU, it should be migrated with the
1140 	 * old base locked to prevent other operations proceeding with the
1141 	 * wrong base locked.  See lock_timer_base().
1142 	 */
1143 	base = lock_timer_base(timer, &flags);
1144 	if (base != new_base) {
1145 		timer->flags |= TIMER_MIGRATING;
1146 
1147 		spin_unlock(&base->lock);
1148 		base = new_base;
1149 		spin_lock(&base->lock);
1150 		WRITE_ONCE(timer->flags,
1151 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1152 	}
1153 
1154 	debug_activate(timer, timer->expires);
1155 	internal_add_timer(base, timer);
1156 	spin_unlock_irqrestore(&base->lock, flags);
1157 }
1158 EXPORT_SYMBOL_GPL(add_timer_on);
1159 
1160 /**
1161  * del_timer - deactive a timer.
1162  * @timer: the timer to be deactivated
1163  *
1164  * del_timer() deactivates a timer - this works on both active and inactive
1165  * timers.
1166  *
1167  * The function returns whether it has deactivated a pending timer or not.
1168  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1169  * active timer returns 1.)
1170  */
1171 int del_timer(struct timer_list *timer)
1172 {
1173 	struct timer_base *base;
1174 	unsigned long flags;
1175 	int ret = 0;
1176 
1177 	debug_assert_init(timer);
1178 
1179 	timer_stats_timer_clear_start_info(timer);
1180 	if (timer_pending(timer)) {
1181 		base = lock_timer_base(timer, &flags);
1182 		ret = detach_if_pending(timer, base, true);
1183 		spin_unlock_irqrestore(&base->lock, flags);
1184 	}
1185 
1186 	return ret;
1187 }
1188 EXPORT_SYMBOL(del_timer);
1189 
1190 /**
1191  * try_to_del_timer_sync - Try to deactivate a timer
1192  * @timer: timer do del
1193  *
1194  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1195  * exit the timer is not queued and the handler is not running on any CPU.
1196  */
1197 int try_to_del_timer_sync(struct timer_list *timer)
1198 {
1199 	struct timer_base *base;
1200 	unsigned long flags;
1201 	int ret = -1;
1202 
1203 	debug_assert_init(timer);
1204 
1205 	base = lock_timer_base(timer, &flags);
1206 
1207 	if (base->running_timer != timer) {
1208 		timer_stats_timer_clear_start_info(timer);
1209 		ret = detach_if_pending(timer, base, true);
1210 	}
1211 	spin_unlock_irqrestore(&base->lock, flags);
1212 
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL(try_to_del_timer_sync);
1216 
1217 #ifdef CONFIG_SMP
1218 /**
1219  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1220  * @timer: the timer to be deactivated
1221  *
1222  * This function only differs from del_timer() on SMP: besides deactivating
1223  * the timer it also makes sure the handler has finished executing on other
1224  * CPUs.
1225  *
1226  * Synchronization rules: Callers must prevent restarting of the timer,
1227  * otherwise this function is meaningless. It must not be called from
1228  * interrupt contexts unless the timer is an irqsafe one. The caller must
1229  * not hold locks which would prevent completion of the timer's
1230  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1231  * timer is not queued and the handler is not running on any CPU.
1232  *
1233  * Note: For !irqsafe timers, you must not hold locks that are held in
1234  *   interrupt context while calling this function. Even if the lock has
1235  *   nothing to do with the timer in question.  Here's why:
1236  *
1237  *    CPU0                             CPU1
1238  *    ----                             ----
1239  *                                   <SOFTIRQ>
1240  *                                   call_timer_fn();
1241  *                                     base->running_timer = mytimer;
1242  *  spin_lock_irq(somelock);
1243  *                                     <IRQ>
1244  *                                        spin_lock(somelock);
1245  *  del_timer_sync(mytimer);
1246  *   while (base->running_timer == mytimer);
1247  *
1248  * Now del_timer_sync() will never return and never release somelock.
1249  * The interrupt on the other CPU is waiting to grab somelock but
1250  * it has interrupted the softirq that CPU0 is waiting to finish.
1251  *
1252  * The function returns whether it has deactivated a pending timer or not.
1253  */
1254 int del_timer_sync(struct timer_list *timer)
1255 {
1256 #ifdef CONFIG_LOCKDEP
1257 	unsigned long flags;
1258 
1259 	/*
1260 	 * If lockdep gives a backtrace here, please reference
1261 	 * the synchronization rules above.
1262 	 */
1263 	local_irq_save(flags);
1264 	lock_map_acquire(&timer->lockdep_map);
1265 	lock_map_release(&timer->lockdep_map);
1266 	local_irq_restore(flags);
1267 #endif
1268 	/*
1269 	 * don't use it in hardirq context, because it
1270 	 * could lead to deadlock.
1271 	 */
1272 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1273 	for (;;) {
1274 		int ret = try_to_del_timer_sync(timer);
1275 		if (ret >= 0)
1276 			return ret;
1277 		cpu_relax();
1278 	}
1279 }
1280 EXPORT_SYMBOL(del_timer_sync);
1281 #endif
1282 
1283 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1284 			  unsigned long data)
1285 {
1286 	int count = preempt_count();
1287 
1288 #ifdef CONFIG_LOCKDEP
1289 	/*
1290 	 * It is permissible to free the timer from inside the
1291 	 * function that is called from it, this we need to take into
1292 	 * account for lockdep too. To avoid bogus "held lock freed"
1293 	 * warnings as well as problems when looking into
1294 	 * timer->lockdep_map, make a copy and use that here.
1295 	 */
1296 	struct lockdep_map lockdep_map;
1297 
1298 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1299 #endif
1300 	/*
1301 	 * Couple the lock chain with the lock chain at
1302 	 * del_timer_sync() by acquiring the lock_map around the fn()
1303 	 * call here and in del_timer_sync().
1304 	 */
1305 	lock_map_acquire(&lockdep_map);
1306 
1307 	trace_timer_expire_entry(timer);
1308 	fn(data);
1309 	trace_timer_expire_exit(timer);
1310 
1311 	lock_map_release(&lockdep_map);
1312 
1313 	if (count != preempt_count()) {
1314 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1315 			  fn, count, preempt_count());
1316 		/*
1317 		 * Restore the preempt count. That gives us a decent
1318 		 * chance to survive and extract information. If the
1319 		 * callback kept a lock held, bad luck, but not worse
1320 		 * than the BUG() we had.
1321 		 */
1322 		preempt_count_set(count);
1323 	}
1324 }
1325 
1326 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1327 {
1328 	while (!hlist_empty(head)) {
1329 		struct timer_list *timer;
1330 		void (*fn)(unsigned long);
1331 		unsigned long data;
1332 
1333 		timer = hlist_entry(head->first, struct timer_list, entry);
1334 		timer_stats_account_timer(timer);
1335 
1336 		base->running_timer = timer;
1337 		detach_timer(timer, true);
1338 
1339 		fn = timer->function;
1340 		data = timer->data;
1341 
1342 		if (timer->flags & TIMER_IRQSAFE) {
1343 			spin_unlock(&base->lock);
1344 			call_timer_fn(timer, fn, data);
1345 			spin_lock(&base->lock);
1346 		} else {
1347 			spin_unlock_irq(&base->lock);
1348 			call_timer_fn(timer, fn, data);
1349 			spin_lock_irq(&base->lock);
1350 		}
1351 	}
1352 }
1353 
1354 static int __collect_expired_timers(struct timer_base *base,
1355 				    struct hlist_head *heads)
1356 {
1357 	unsigned long clk = base->clk;
1358 	struct hlist_head *vec;
1359 	int i, levels = 0;
1360 	unsigned int idx;
1361 
1362 	for (i = 0; i < LVL_DEPTH; i++) {
1363 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1364 
1365 		if (__test_and_clear_bit(idx, base->pending_map)) {
1366 			vec = base->vectors + idx;
1367 			hlist_move_list(vec, heads++);
1368 			levels++;
1369 		}
1370 		/* Is it time to look at the next level? */
1371 		if (clk & LVL_CLK_MASK)
1372 			break;
1373 		/* Shift clock for the next level granularity */
1374 		clk >>= LVL_CLK_SHIFT;
1375 	}
1376 	return levels;
1377 }
1378 
1379 #ifdef CONFIG_NO_HZ_COMMON
1380 /*
1381  * Find the next pending bucket of a level. Search from level start (@offset)
1382  * + @clk upwards and if nothing there, search from start of the level
1383  * (@offset) up to @offset + clk.
1384  */
1385 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1386 			       unsigned clk)
1387 {
1388 	unsigned pos, start = offset + clk;
1389 	unsigned end = offset + LVL_SIZE;
1390 
1391 	pos = find_next_bit(base->pending_map, end, start);
1392 	if (pos < end)
1393 		return pos - start;
1394 
1395 	pos = find_next_bit(base->pending_map, start, offset);
1396 	return pos < start ? pos + LVL_SIZE - start : -1;
1397 }
1398 
1399 /*
1400  * Search the first expiring timer in the various clock levels. Caller must
1401  * hold base->lock.
1402  */
1403 static unsigned long __next_timer_interrupt(struct timer_base *base)
1404 {
1405 	unsigned long clk, next, adj;
1406 	unsigned lvl, offset = 0;
1407 
1408 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1409 	clk = base->clk;
1410 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1411 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1412 
1413 		if (pos >= 0) {
1414 			unsigned long tmp = clk + (unsigned long) pos;
1415 
1416 			tmp <<= LVL_SHIFT(lvl);
1417 			if (time_before(tmp, next))
1418 				next = tmp;
1419 		}
1420 		/*
1421 		 * Clock for the next level. If the current level clock lower
1422 		 * bits are zero, we look at the next level as is. If not we
1423 		 * need to advance it by one because that's going to be the
1424 		 * next expiring bucket in that level. base->clk is the next
1425 		 * expiring jiffie. So in case of:
1426 		 *
1427 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1428 		 *  0    0    0    0    0    0
1429 		 *
1430 		 * we have to look at all levels @index 0. With
1431 		 *
1432 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1433 		 *  0    0    0    0    0    2
1434 		 *
1435 		 * LVL0 has the next expiring bucket @index 2. The upper
1436 		 * levels have the next expiring bucket @index 1.
1437 		 *
1438 		 * In case that the propagation wraps the next level the same
1439 		 * rules apply:
1440 		 *
1441 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1442 		 *  0    0    0    0    F    2
1443 		 *
1444 		 * So after looking at LVL0 we get:
1445 		 *
1446 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1447 		 *  0    0    0    1    0
1448 		 *
1449 		 * So no propagation from LVL1 to LVL2 because that happened
1450 		 * with the add already, but then we need to propagate further
1451 		 * from LVL2 to LVL3.
1452 		 *
1453 		 * So the simple check whether the lower bits of the current
1454 		 * level are 0 or not is sufficient for all cases.
1455 		 */
1456 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1457 		clk >>= LVL_CLK_SHIFT;
1458 		clk += adj;
1459 	}
1460 	return next;
1461 }
1462 
1463 /*
1464  * Check, if the next hrtimer event is before the next timer wheel
1465  * event:
1466  */
1467 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1468 {
1469 	u64 nextevt = hrtimer_get_next_event();
1470 
1471 	/*
1472 	 * If high resolution timers are enabled
1473 	 * hrtimer_get_next_event() returns KTIME_MAX.
1474 	 */
1475 	if (expires <= nextevt)
1476 		return expires;
1477 
1478 	/*
1479 	 * If the next timer is already expired, return the tick base
1480 	 * time so the tick is fired immediately.
1481 	 */
1482 	if (nextevt <= basem)
1483 		return basem;
1484 
1485 	/*
1486 	 * Round up to the next jiffie. High resolution timers are
1487 	 * off, so the hrtimers are expired in the tick and we need to
1488 	 * make sure that this tick really expires the timer to avoid
1489 	 * a ping pong of the nohz stop code.
1490 	 *
1491 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1492 	 */
1493 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1494 }
1495 
1496 /**
1497  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1498  * @basej:	base time jiffies
1499  * @basem:	base time clock monotonic
1500  *
1501  * Returns the tick aligned clock monotonic time of the next pending
1502  * timer or KTIME_MAX if no timer is pending.
1503  */
1504 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1505 {
1506 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1507 	u64 expires = KTIME_MAX;
1508 	unsigned long nextevt;
1509 	bool is_max_delta;
1510 
1511 	/*
1512 	 * Pretend that there is no timer pending if the cpu is offline.
1513 	 * Possible pending timers will be migrated later to an active cpu.
1514 	 */
1515 	if (cpu_is_offline(smp_processor_id()))
1516 		return expires;
1517 
1518 	spin_lock(&base->lock);
1519 	nextevt = __next_timer_interrupt(base);
1520 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1521 	base->next_expiry = nextevt;
1522 	/*
1523 	 * We have a fresh next event. Check whether we can forward the
1524 	 * base. We can only do that when @basej is past base->clk
1525 	 * otherwise we might rewind base->clk.
1526 	 */
1527 	if (time_after(basej, base->clk)) {
1528 		if (time_after(nextevt, basej))
1529 			base->clk = basej;
1530 		else if (time_after(nextevt, base->clk))
1531 			base->clk = nextevt;
1532 	}
1533 
1534 	if (time_before_eq(nextevt, basej)) {
1535 		expires = basem;
1536 		base->is_idle = false;
1537 	} else {
1538 		if (!is_max_delta)
1539 			expires = basem + (nextevt - basej) * TICK_NSEC;
1540 		/*
1541 		 * If we expect to sleep more than a tick, mark the base idle:
1542 		 */
1543 		if ((expires - basem) > TICK_NSEC)
1544 			base->is_idle = true;
1545 	}
1546 	spin_unlock(&base->lock);
1547 
1548 	return cmp_next_hrtimer_event(basem, expires);
1549 }
1550 
1551 /**
1552  * timer_clear_idle - Clear the idle state of the timer base
1553  *
1554  * Called with interrupts disabled
1555  */
1556 void timer_clear_idle(void)
1557 {
1558 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1559 
1560 	/*
1561 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1562 	 * a pointless IPI, but taking the lock would just make the window for
1563 	 * sending the IPI a few instructions smaller for the cost of taking
1564 	 * the lock in the exit from idle path.
1565 	 */
1566 	base->is_idle = false;
1567 }
1568 
1569 static int collect_expired_timers(struct timer_base *base,
1570 				  struct hlist_head *heads)
1571 {
1572 	/*
1573 	 * NOHZ optimization. After a long idle sleep we need to forward the
1574 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1575 	 * the next expiring timer.
1576 	 */
1577 	if ((long)(jiffies - base->clk) > 2) {
1578 		unsigned long next = __next_timer_interrupt(base);
1579 
1580 		/*
1581 		 * If the next timer is ahead of time forward to current
1582 		 * jiffies, otherwise forward to the next expiry time:
1583 		 */
1584 		if (time_after(next, jiffies)) {
1585 			/* The call site will increment clock! */
1586 			base->clk = jiffies - 1;
1587 			return 0;
1588 		}
1589 		base->clk = next;
1590 	}
1591 	return __collect_expired_timers(base, heads);
1592 }
1593 #else
1594 static inline int collect_expired_timers(struct timer_base *base,
1595 					 struct hlist_head *heads)
1596 {
1597 	return __collect_expired_timers(base, heads);
1598 }
1599 #endif
1600 
1601 /*
1602  * Called from the timer interrupt handler to charge one tick to the current
1603  * process.  user_tick is 1 if the tick is user time, 0 for system.
1604  */
1605 void update_process_times(int user_tick)
1606 {
1607 	struct task_struct *p = current;
1608 
1609 	/* Note: this timer irq context must be accounted for as well. */
1610 	account_process_tick(p, user_tick);
1611 	run_local_timers();
1612 	rcu_check_callbacks(user_tick);
1613 #ifdef CONFIG_IRQ_WORK
1614 	if (in_irq())
1615 		irq_work_tick();
1616 #endif
1617 	scheduler_tick();
1618 	run_posix_cpu_timers(p);
1619 }
1620 
1621 /**
1622  * __run_timers - run all expired timers (if any) on this CPU.
1623  * @base: the timer vector to be processed.
1624  */
1625 static inline void __run_timers(struct timer_base *base)
1626 {
1627 	struct hlist_head heads[LVL_DEPTH];
1628 	int levels;
1629 
1630 	if (!time_after_eq(jiffies, base->clk))
1631 		return;
1632 
1633 	spin_lock_irq(&base->lock);
1634 
1635 	while (time_after_eq(jiffies, base->clk)) {
1636 
1637 		levels = collect_expired_timers(base, heads);
1638 		base->clk++;
1639 
1640 		while (levels--)
1641 			expire_timers(base, heads + levels);
1642 	}
1643 	base->running_timer = NULL;
1644 	spin_unlock_irq(&base->lock);
1645 }
1646 
1647 /*
1648  * This function runs timers and the timer-tq in bottom half context.
1649  */
1650 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1651 {
1652 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1653 
1654 	__run_timers(base);
1655 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1656 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1657 }
1658 
1659 /*
1660  * Called by the local, per-CPU timer interrupt on SMP.
1661  */
1662 void run_local_timers(void)
1663 {
1664 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1665 
1666 	hrtimer_run_queues();
1667 	/* Raise the softirq only if required. */
1668 	if (time_before(jiffies, base->clk)) {
1669 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1670 			return;
1671 		/* CPU is awake, so check the deferrable base. */
1672 		base++;
1673 		if (time_before(jiffies, base->clk))
1674 			return;
1675 	}
1676 	raise_softirq(TIMER_SOFTIRQ);
1677 }
1678 
1679 #ifdef __ARCH_WANT_SYS_ALARM
1680 
1681 /*
1682  * For backwards compatibility?  This can be done in libc so Alpha
1683  * and all newer ports shouldn't need it.
1684  */
1685 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1686 {
1687 	return alarm_setitimer(seconds);
1688 }
1689 
1690 #endif
1691 
1692 static void process_timeout(unsigned long __data)
1693 {
1694 	wake_up_process((struct task_struct *)__data);
1695 }
1696 
1697 /**
1698  * schedule_timeout - sleep until timeout
1699  * @timeout: timeout value in jiffies
1700  *
1701  * Make the current task sleep until @timeout jiffies have
1702  * elapsed. The routine will return immediately unless
1703  * the current task state has been set (see set_current_state()).
1704  *
1705  * You can set the task state as follows -
1706  *
1707  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1708  * pass before the routine returns. The routine will return 0
1709  *
1710  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1711  * delivered to the current task. In this case the remaining time
1712  * in jiffies will be returned, or 0 if the timer expired in time
1713  *
1714  * The current task state is guaranteed to be TASK_RUNNING when this
1715  * routine returns.
1716  *
1717  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1718  * the CPU away without a bound on the timeout. In this case the return
1719  * value will be %MAX_SCHEDULE_TIMEOUT.
1720  *
1721  * In all cases the return value is guaranteed to be non-negative.
1722  */
1723 signed long __sched schedule_timeout(signed long timeout)
1724 {
1725 	struct timer_list timer;
1726 	unsigned long expire;
1727 
1728 	switch (timeout)
1729 	{
1730 	case MAX_SCHEDULE_TIMEOUT:
1731 		/*
1732 		 * These two special cases are useful to be comfortable
1733 		 * in the caller. Nothing more. We could take
1734 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1735 		 * but I' d like to return a valid offset (>=0) to allow
1736 		 * the caller to do everything it want with the retval.
1737 		 */
1738 		schedule();
1739 		goto out;
1740 	default:
1741 		/*
1742 		 * Another bit of PARANOID. Note that the retval will be
1743 		 * 0 since no piece of kernel is supposed to do a check
1744 		 * for a negative retval of schedule_timeout() (since it
1745 		 * should never happens anyway). You just have the printk()
1746 		 * that will tell you if something is gone wrong and where.
1747 		 */
1748 		if (timeout < 0) {
1749 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1750 				"value %lx\n", timeout);
1751 			dump_stack();
1752 			current->state = TASK_RUNNING;
1753 			goto out;
1754 		}
1755 	}
1756 
1757 	expire = timeout + jiffies;
1758 
1759 	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1760 	__mod_timer(&timer, expire, false);
1761 	schedule();
1762 	del_singleshot_timer_sync(&timer);
1763 
1764 	/* Remove the timer from the object tracker */
1765 	destroy_timer_on_stack(&timer);
1766 
1767 	timeout = expire - jiffies;
1768 
1769  out:
1770 	return timeout < 0 ? 0 : timeout;
1771 }
1772 EXPORT_SYMBOL(schedule_timeout);
1773 
1774 /*
1775  * We can use __set_current_state() here because schedule_timeout() calls
1776  * schedule() unconditionally.
1777  */
1778 signed long __sched schedule_timeout_interruptible(signed long timeout)
1779 {
1780 	__set_current_state(TASK_INTERRUPTIBLE);
1781 	return schedule_timeout(timeout);
1782 }
1783 EXPORT_SYMBOL(schedule_timeout_interruptible);
1784 
1785 signed long __sched schedule_timeout_killable(signed long timeout)
1786 {
1787 	__set_current_state(TASK_KILLABLE);
1788 	return schedule_timeout(timeout);
1789 }
1790 EXPORT_SYMBOL(schedule_timeout_killable);
1791 
1792 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1793 {
1794 	__set_current_state(TASK_UNINTERRUPTIBLE);
1795 	return schedule_timeout(timeout);
1796 }
1797 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1798 
1799 /*
1800  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1801  * to load average.
1802  */
1803 signed long __sched schedule_timeout_idle(signed long timeout)
1804 {
1805 	__set_current_state(TASK_IDLE);
1806 	return schedule_timeout(timeout);
1807 }
1808 EXPORT_SYMBOL(schedule_timeout_idle);
1809 
1810 #ifdef CONFIG_HOTPLUG_CPU
1811 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1812 {
1813 	struct timer_list *timer;
1814 	int cpu = new_base->cpu;
1815 
1816 	while (!hlist_empty(head)) {
1817 		timer = hlist_entry(head->first, struct timer_list, entry);
1818 		detach_timer(timer, false);
1819 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1820 		internal_add_timer(new_base, timer);
1821 	}
1822 }
1823 
1824 int timers_dead_cpu(unsigned int cpu)
1825 {
1826 	struct timer_base *old_base;
1827 	struct timer_base *new_base;
1828 	int b, i;
1829 
1830 	BUG_ON(cpu_online(cpu));
1831 
1832 	for (b = 0; b < NR_BASES; b++) {
1833 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1834 		new_base = get_cpu_ptr(&timer_bases[b]);
1835 		/*
1836 		 * The caller is globally serialized and nobody else
1837 		 * takes two locks at once, deadlock is not possible.
1838 		 */
1839 		spin_lock_irq(&new_base->lock);
1840 		spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1841 
1842 		BUG_ON(old_base->running_timer);
1843 
1844 		for (i = 0; i < WHEEL_SIZE; i++)
1845 			migrate_timer_list(new_base, old_base->vectors + i);
1846 
1847 		spin_unlock(&old_base->lock);
1848 		spin_unlock_irq(&new_base->lock);
1849 		put_cpu_ptr(&timer_bases);
1850 	}
1851 	return 0;
1852 }
1853 
1854 #endif /* CONFIG_HOTPLUG_CPU */
1855 
1856 static void __init init_timer_cpu(int cpu)
1857 {
1858 	struct timer_base *base;
1859 	int i;
1860 
1861 	for (i = 0; i < NR_BASES; i++) {
1862 		base = per_cpu_ptr(&timer_bases[i], cpu);
1863 		base->cpu = cpu;
1864 		spin_lock_init(&base->lock);
1865 		base->clk = jiffies;
1866 	}
1867 }
1868 
1869 static void __init init_timer_cpus(void)
1870 {
1871 	int cpu;
1872 
1873 	for_each_possible_cpu(cpu)
1874 		init_timer_cpu(cpu);
1875 }
1876 
1877 void __init init_timers(void)
1878 {
1879 	init_timer_cpus();
1880 	init_timer_stats();
1881 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1882 }
1883 
1884 /**
1885  * msleep - sleep safely even with waitqueue interruptions
1886  * @msecs: Time in milliseconds to sleep for
1887  */
1888 void msleep(unsigned int msecs)
1889 {
1890 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1891 
1892 	while (timeout)
1893 		timeout = schedule_timeout_uninterruptible(timeout);
1894 }
1895 
1896 EXPORT_SYMBOL(msleep);
1897 
1898 /**
1899  * msleep_interruptible - sleep waiting for signals
1900  * @msecs: Time in milliseconds to sleep for
1901  */
1902 unsigned long msleep_interruptible(unsigned int msecs)
1903 {
1904 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1905 
1906 	while (timeout && !signal_pending(current))
1907 		timeout = schedule_timeout_interruptible(timeout);
1908 	return jiffies_to_msecs(timeout);
1909 }
1910 
1911 EXPORT_SYMBOL(msleep_interruptible);
1912 
1913 static void __sched do_usleep_range(unsigned long min, unsigned long max)
1914 {
1915 	ktime_t kmin;
1916 	u64 delta;
1917 
1918 	kmin = ktime_set(0, min * NSEC_PER_USEC);
1919 	delta = (u64)(max - min) * NSEC_PER_USEC;
1920 	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1921 }
1922 
1923 /**
1924  * usleep_range - Sleep for an approximate time
1925  * @min: Minimum time in usecs to sleep
1926  * @max: Maximum time in usecs to sleep
1927  *
1928  * In non-atomic context where the exact wakeup time is flexible, use
1929  * usleep_range() instead of udelay().  The sleep improves responsiveness
1930  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1931  * power usage by allowing hrtimers to take advantage of an already-
1932  * scheduled interrupt instead of scheduling a new one just for this sleep.
1933  */
1934 void __sched usleep_range(unsigned long min, unsigned long max)
1935 {
1936 	__set_current_state(TASK_UNINTERRUPTIBLE);
1937 	do_usleep_range(min, max);
1938 }
1939 EXPORT_SYMBOL(usleep_range);
1940