1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/sched/nohz.h> 43 #include <linux/sched/debug.h> 44 #include <linux/slab.h> 45 #include <linux/compat.h> 46 47 #include <linux/uaccess.h> 48 #include <asm/unistd.h> 49 #include <asm/div64.h> 50 #include <asm/timex.h> 51 #include <asm/io.h> 52 53 #include "tick-internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/timer.h> 57 58 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 59 60 EXPORT_SYMBOL(jiffies_64); 61 62 /* 63 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 64 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 65 * level has a different granularity. 66 * 67 * The level granularity is: LVL_CLK_DIV ^ lvl 68 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 69 * 70 * The array level of a newly armed timer depends on the relative expiry 71 * time. The farther the expiry time is away the higher the array level and 72 * therefor the granularity becomes. 73 * 74 * Contrary to the original timer wheel implementation, which aims for 'exact' 75 * expiry of the timers, this implementation removes the need for recascading 76 * the timers into the lower array levels. The previous 'classic' timer wheel 77 * implementation of the kernel already violated the 'exact' expiry by adding 78 * slack to the expiry time to provide batched expiration. The granularity 79 * levels provide implicit batching. 80 * 81 * This is an optimization of the original timer wheel implementation for the 82 * majority of the timer wheel use cases: timeouts. The vast majority of 83 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 84 * the timeout expires it indicates that normal operation is disturbed, so it 85 * does not matter much whether the timeout comes with a slight delay. 86 * 87 * The only exception to this are networking timers with a small expiry 88 * time. They rely on the granularity. Those fit into the first wheel level, 89 * which has HZ granularity. 90 * 91 * We don't have cascading anymore. timers with a expiry time above the 92 * capacity of the last wheel level are force expired at the maximum timeout 93 * value of the last wheel level. From data sampling we know that the maximum 94 * value observed is 5 days (network connection tracking), so this should not 95 * be an issue. 96 * 97 * The currently chosen array constants values are a good compromise between 98 * array size and granularity. 99 * 100 * This results in the following granularity and range levels: 101 * 102 * HZ 1000 steps 103 * Level Offset Granularity Range 104 * 0 0 1 ms 0 ms - 63 ms 105 * 1 64 8 ms 64 ms - 511 ms 106 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 107 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 108 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 109 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 110 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 111 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 112 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 113 * 114 * HZ 300 115 * Level Offset Granularity Range 116 * 0 0 3 ms 0 ms - 210 ms 117 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 118 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 119 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 120 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 121 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 122 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 123 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 124 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 125 * 126 * HZ 250 127 * Level Offset Granularity Range 128 * 0 0 4 ms 0 ms - 255 ms 129 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 130 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 131 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 132 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 133 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 134 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 135 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 136 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 137 * 138 * HZ 100 139 * Level Offset Granularity Range 140 * 0 0 10 ms 0 ms - 630 ms 141 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 142 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 143 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 144 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 145 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 146 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 147 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 148 */ 149 150 /* Clock divisor for the next level */ 151 #define LVL_CLK_SHIFT 3 152 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 153 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 154 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 155 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 156 157 /* 158 * The time start value for each level to select the bucket at enqueue 159 * time. 160 */ 161 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 162 163 /* Size of each clock level */ 164 #define LVL_BITS 6 165 #define LVL_SIZE (1UL << LVL_BITS) 166 #define LVL_MASK (LVL_SIZE - 1) 167 #define LVL_OFFS(n) ((n) * LVL_SIZE) 168 169 /* Level depth */ 170 #if HZ > 100 171 # define LVL_DEPTH 9 172 # else 173 # define LVL_DEPTH 8 174 #endif 175 176 /* The cutoff (max. capacity of the wheel) */ 177 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 178 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 179 180 /* 181 * The resulting wheel size. If NOHZ is configured we allocate two 182 * wheels so we have a separate storage for the deferrable timers. 183 */ 184 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 185 186 #ifdef CONFIG_NO_HZ_COMMON 187 # define NR_BASES 2 188 # define BASE_STD 0 189 # define BASE_DEF 1 190 #else 191 # define NR_BASES 1 192 # define BASE_STD 0 193 # define BASE_DEF 0 194 #endif 195 196 struct timer_base { 197 raw_spinlock_t lock; 198 struct timer_list *running_timer; 199 unsigned long clk; 200 unsigned long next_expiry; 201 unsigned int cpu; 202 bool is_idle; 203 bool must_forward_clk; 204 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 205 struct hlist_head vectors[WHEEL_SIZE]; 206 } ____cacheline_aligned; 207 208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 209 210 #ifdef CONFIG_NO_HZ_COMMON 211 212 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 213 static DEFINE_MUTEX(timer_keys_mutex); 214 215 static void timer_update_keys(struct work_struct *work); 216 static DECLARE_WORK(timer_update_work, timer_update_keys); 217 218 #ifdef CONFIG_SMP 219 unsigned int sysctl_timer_migration = 1; 220 221 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 222 223 static void timers_update_migration(void) 224 { 225 if (sysctl_timer_migration && tick_nohz_active) 226 static_branch_enable(&timers_migration_enabled); 227 else 228 static_branch_disable(&timers_migration_enabled); 229 } 230 #else 231 static inline void timers_update_migration(void) { } 232 #endif /* !CONFIG_SMP */ 233 234 static void timer_update_keys(struct work_struct *work) 235 { 236 mutex_lock(&timer_keys_mutex); 237 timers_update_migration(); 238 static_branch_enable(&timers_nohz_active); 239 mutex_unlock(&timer_keys_mutex); 240 } 241 242 void timers_update_nohz(void) 243 { 244 schedule_work(&timer_update_work); 245 } 246 247 int timer_migration_handler(struct ctl_table *table, int write, 248 void __user *buffer, size_t *lenp, 249 loff_t *ppos) 250 { 251 int ret; 252 253 mutex_lock(&timer_keys_mutex); 254 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 255 if (!ret && write) 256 timers_update_migration(); 257 mutex_unlock(&timer_keys_mutex); 258 return ret; 259 } 260 261 static inline bool is_timers_nohz_active(void) 262 { 263 return static_branch_unlikely(&timers_nohz_active); 264 } 265 #else 266 static inline bool is_timers_nohz_active(void) { return false; } 267 #endif /* NO_HZ_COMMON */ 268 269 static unsigned long round_jiffies_common(unsigned long j, int cpu, 270 bool force_up) 271 { 272 int rem; 273 unsigned long original = j; 274 275 /* 276 * We don't want all cpus firing their timers at once hitting the 277 * same lock or cachelines, so we skew each extra cpu with an extra 278 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 279 * already did this. 280 * The skew is done by adding 3*cpunr, then round, then subtract this 281 * extra offset again. 282 */ 283 j += cpu * 3; 284 285 rem = j % HZ; 286 287 /* 288 * If the target jiffie is just after a whole second (which can happen 289 * due to delays of the timer irq, long irq off times etc etc) then 290 * we should round down to the whole second, not up. Use 1/4th second 291 * as cutoff for this rounding as an extreme upper bound for this. 292 * But never round down if @force_up is set. 293 */ 294 if (rem < HZ/4 && !force_up) /* round down */ 295 j = j - rem; 296 else /* round up */ 297 j = j - rem + HZ; 298 299 /* now that we have rounded, subtract the extra skew again */ 300 j -= cpu * 3; 301 302 /* 303 * Make sure j is still in the future. Otherwise return the 304 * unmodified value. 305 */ 306 return time_is_after_jiffies(j) ? j : original; 307 } 308 309 /** 310 * __round_jiffies - function to round jiffies to a full second 311 * @j: the time in (absolute) jiffies that should be rounded 312 * @cpu: the processor number on which the timeout will happen 313 * 314 * __round_jiffies() rounds an absolute time in the future (in jiffies) 315 * up or down to (approximately) full seconds. This is useful for timers 316 * for which the exact time they fire does not matter too much, as long as 317 * they fire approximately every X seconds. 318 * 319 * By rounding these timers to whole seconds, all such timers will fire 320 * at the same time, rather than at various times spread out. The goal 321 * of this is to have the CPU wake up less, which saves power. 322 * 323 * The exact rounding is skewed for each processor to avoid all 324 * processors firing at the exact same time, which could lead 325 * to lock contention or spurious cache line bouncing. 326 * 327 * The return value is the rounded version of the @j parameter. 328 */ 329 unsigned long __round_jiffies(unsigned long j, int cpu) 330 { 331 return round_jiffies_common(j, cpu, false); 332 } 333 EXPORT_SYMBOL_GPL(__round_jiffies); 334 335 /** 336 * __round_jiffies_relative - function to round jiffies to a full second 337 * @j: the time in (relative) jiffies that should be rounded 338 * @cpu: the processor number on which the timeout will happen 339 * 340 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 341 * up or down to (approximately) full seconds. This is useful for timers 342 * for which the exact time they fire does not matter too much, as long as 343 * they fire approximately every X seconds. 344 * 345 * By rounding these timers to whole seconds, all such timers will fire 346 * at the same time, rather than at various times spread out. The goal 347 * of this is to have the CPU wake up less, which saves power. 348 * 349 * The exact rounding is skewed for each processor to avoid all 350 * processors firing at the exact same time, which could lead 351 * to lock contention or spurious cache line bouncing. 352 * 353 * The return value is the rounded version of the @j parameter. 354 */ 355 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 356 { 357 unsigned long j0 = jiffies; 358 359 /* Use j0 because jiffies might change while we run */ 360 return round_jiffies_common(j + j0, cpu, false) - j0; 361 } 362 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 363 364 /** 365 * round_jiffies - function to round jiffies to a full second 366 * @j: the time in (absolute) jiffies that should be rounded 367 * 368 * round_jiffies() rounds an absolute time in the future (in jiffies) 369 * up or down to (approximately) full seconds. This is useful for timers 370 * for which the exact time they fire does not matter too much, as long as 371 * they fire approximately every X seconds. 372 * 373 * By rounding these timers to whole seconds, all such timers will fire 374 * at the same time, rather than at various times spread out. The goal 375 * of this is to have the CPU wake up less, which saves power. 376 * 377 * The return value is the rounded version of the @j parameter. 378 */ 379 unsigned long round_jiffies(unsigned long j) 380 { 381 return round_jiffies_common(j, raw_smp_processor_id(), false); 382 } 383 EXPORT_SYMBOL_GPL(round_jiffies); 384 385 /** 386 * round_jiffies_relative - function to round jiffies to a full second 387 * @j: the time in (relative) jiffies that should be rounded 388 * 389 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 390 * up or down to (approximately) full seconds. This is useful for timers 391 * for which the exact time they fire does not matter too much, as long as 392 * they fire approximately every X seconds. 393 * 394 * By rounding these timers to whole seconds, all such timers will fire 395 * at the same time, rather than at various times spread out. The goal 396 * of this is to have the CPU wake up less, which saves power. 397 * 398 * The return value is the rounded version of the @j parameter. 399 */ 400 unsigned long round_jiffies_relative(unsigned long j) 401 { 402 return __round_jiffies_relative(j, raw_smp_processor_id()); 403 } 404 EXPORT_SYMBOL_GPL(round_jiffies_relative); 405 406 /** 407 * __round_jiffies_up - function to round jiffies up to a full second 408 * @j: the time in (absolute) jiffies that should be rounded 409 * @cpu: the processor number on which the timeout will happen 410 * 411 * This is the same as __round_jiffies() except that it will never 412 * round down. This is useful for timeouts for which the exact time 413 * of firing does not matter too much, as long as they don't fire too 414 * early. 415 */ 416 unsigned long __round_jiffies_up(unsigned long j, int cpu) 417 { 418 return round_jiffies_common(j, cpu, true); 419 } 420 EXPORT_SYMBOL_GPL(__round_jiffies_up); 421 422 /** 423 * __round_jiffies_up_relative - function to round jiffies up to a full second 424 * @j: the time in (relative) jiffies that should be rounded 425 * @cpu: the processor number on which the timeout will happen 426 * 427 * This is the same as __round_jiffies_relative() except that it will never 428 * round down. This is useful for timeouts for which the exact time 429 * of firing does not matter too much, as long as they don't fire too 430 * early. 431 */ 432 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 433 { 434 unsigned long j0 = jiffies; 435 436 /* Use j0 because jiffies might change while we run */ 437 return round_jiffies_common(j + j0, cpu, true) - j0; 438 } 439 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 440 441 /** 442 * round_jiffies_up - function to round jiffies up to a full second 443 * @j: the time in (absolute) jiffies that should be rounded 444 * 445 * This is the same as round_jiffies() except that it will never 446 * round down. This is useful for timeouts for which the exact time 447 * of firing does not matter too much, as long as they don't fire too 448 * early. 449 */ 450 unsigned long round_jiffies_up(unsigned long j) 451 { 452 return round_jiffies_common(j, raw_smp_processor_id(), true); 453 } 454 EXPORT_SYMBOL_GPL(round_jiffies_up); 455 456 /** 457 * round_jiffies_up_relative - function to round jiffies up to a full second 458 * @j: the time in (relative) jiffies that should be rounded 459 * 460 * This is the same as round_jiffies_relative() except that it will never 461 * round down. This is useful for timeouts for which the exact time 462 * of firing does not matter too much, as long as they don't fire too 463 * early. 464 */ 465 unsigned long round_jiffies_up_relative(unsigned long j) 466 { 467 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 468 } 469 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 470 471 472 static inline unsigned int timer_get_idx(struct timer_list *timer) 473 { 474 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 475 } 476 477 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 478 { 479 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 480 idx << TIMER_ARRAYSHIFT; 481 } 482 483 /* 484 * Helper function to calculate the array index for a given expiry 485 * time. 486 */ 487 static inline unsigned calc_index(unsigned expires, unsigned lvl) 488 { 489 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 490 return LVL_OFFS(lvl) + (expires & LVL_MASK); 491 } 492 493 static int calc_wheel_index(unsigned long expires, unsigned long clk) 494 { 495 unsigned long delta = expires - clk; 496 unsigned int idx; 497 498 if (delta < LVL_START(1)) { 499 idx = calc_index(expires, 0); 500 } else if (delta < LVL_START(2)) { 501 idx = calc_index(expires, 1); 502 } else if (delta < LVL_START(3)) { 503 idx = calc_index(expires, 2); 504 } else if (delta < LVL_START(4)) { 505 idx = calc_index(expires, 3); 506 } else if (delta < LVL_START(5)) { 507 idx = calc_index(expires, 4); 508 } else if (delta < LVL_START(6)) { 509 idx = calc_index(expires, 5); 510 } else if (delta < LVL_START(7)) { 511 idx = calc_index(expires, 6); 512 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 513 idx = calc_index(expires, 7); 514 } else if ((long) delta < 0) { 515 idx = clk & LVL_MASK; 516 } else { 517 /* 518 * Force expire obscene large timeouts to expire at the 519 * capacity limit of the wheel. 520 */ 521 if (expires >= WHEEL_TIMEOUT_CUTOFF) 522 expires = WHEEL_TIMEOUT_MAX; 523 524 idx = calc_index(expires, LVL_DEPTH - 1); 525 } 526 return idx; 527 } 528 529 /* 530 * Enqueue the timer into the hash bucket, mark it pending in 531 * the bitmap and store the index in the timer flags. 532 */ 533 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 534 unsigned int idx) 535 { 536 hlist_add_head(&timer->entry, base->vectors + idx); 537 __set_bit(idx, base->pending_map); 538 timer_set_idx(timer, idx); 539 } 540 541 static void 542 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 543 { 544 unsigned int idx; 545 546 idx = calc_wheel_index(timer->expires, base->clk); 547 enqueue_timer(base, timer, idx); 548 } 549 550 static void 551 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 552 { 553 if (!is_timers_nohz_active()) 554 return; 555 556 /* 557 * TODO: This wants some optimizing similar to the code below, but we 558 * will do that when we switch from push to pull for deferrable timers. 559 */ 560 if (timer->flags & TIMER_DEFERRABLE) { 561 if (tick_nohz_full_cpu(base->cpu)) 562 wake_up_nohz_cpu(base->cpu); 563 return; 564 } 565 566 /* 567 * We might have to IPI the remote CPU if the base is idle and the 568 * timer is not deferrable. If the other CPU is on the way to idle 569 * then it can't set base->is_idle as we hold the base lock: 570 */ 571 if (!base->is_idle) 572 return; 573 574 /* Check whether this is the new first expiring timer: */ 575 if (time_after_eq(timer->expires, base->next_expiry)) 576 return; 577 578 /* 579 * Set the next expiry time and kick the CPU so it can reevaluate the 580 * wheel: 581 */ 582 base->next_expiry = timer->expires; 583 wake_up_nohz_cpu(base->cpu); 584 } 585 586 static void 587 internal_add_timer(struct timer_base *base, struct timer_list *timer) 588 { 589 __internal_add_timer(base, timer); 590 trigger_dyntick_cpu(base, timer); 591 } 592 593 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 594 595 static struct debug_obj_descr timer_debug_descr; 596 597 static void *timer_debug_hint(void *addr) 598 { 599 return ((struct timer_list *) addr)->function; 600 } 601 602 static bool timer_is_static_object(void *addr) 603 { 604 struct timer_list *timer = addr; 605 606 return (timer->entry.pprev == NULL && 607 timer->entry.next == TIMER_ENTRY_STATIC); 608 } 609 610 /* 611 * fixup_init is called when: 612 * - an active object is initialized 613 */ 614 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 615 { 616 struct timer_list *timer = addr; 617 618 switch (state) { 619 case ODEBUG_STATE_ACTIVE: 620 del_timer_sync(timer); 621 debug_object_init(timer, &timer_debug_descr); 622 return true; 623 default: 624 return false; 625 } 626 } 627 628 /* Stub timer callback for improperly used timers. */ 629 static void stub_timer(struct timer_list *unused) 630 { 631 WARN_ON(1); 632 } 633 634 /* 635 * fixup_activate is called when: 636 * - an active object is activated 637 * - an unknown non-static object is activated 638 */ 639 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 640 { 641 struct timer_list *timer = addr; 642 643 switch (state) { 644 case ODEBUG_STATE_NOTAVAILABLE: 645 timer_setup(timer, stub_timer, 0); 646 return true; 647 648 case ODEBUG_STATE_ACTIVE: 649 WARN_ON(1); 650 /* fall through */ 651 default: 652 return false; 653 } 654 } 655 656 /* 657 * fixup_free is called when: 658 * - an active object is freed 659 */ 660 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 661 { 662 struct timer_list *timer = addr; 663 664 switch (state) { 665 case ODEBUG_STATE_ACTIVE: 666 del_timer_sync(timer); 667 debug_object_free(timer, &timer_debug_descr); 668 return true; 669 default: 670 return false; 671 } 672 } 673 674 /* 675 * fixup_assert_init is called when: 676 * - an untracked/uninit-ed object is found 677 */ 678 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 679 { 680 struct timer_list *timer = addr; 681 682 switch (state) { 683 case ODEBUG_STATE_NOTAVAILABLE: 684 timer_setup(timer, stub_timer, 0); 685 return true; 686 default: 687 return false; 688 } 689 } 690 691 static struct debug_obj_descr timer_debug_descr = { 692 .name = "timer_list", 693 .debug_hint = timer_debug_hint, 694 .is_static_object = timer_is_static_object, 695 .fixup_init = timer_fixup_init, 696 .fixup_activate = timer_fixup_activate, 697 .fixup_free = timer_fixup_free, 698 .fixup_assert_init = timer_fixup_assert_init, 699 }; 700 701 static inline void debug_timer_init(struct timer_list *timer) 702 { 703 debug_object_init(timer, &timer_debug_descr); 704 } 705 706 static inline void debug_timer_activate(struct timer_list *timer) 707 { 708 debug_object_activate(timer, &timer_debug_descr); 709 } 710 711 static inline void debug_timer_deactivate(struct timer_list *timer) 712 { 713 debug_object_deactivate(timer, &timer_debug_descr); 714 } 715 716 static inline void debug_timer_free(struct timer_list *timer) 717 { 718 debug_object_free(timer, &timer_debug_descr); 719 } 720 721 static inline void debug_timer_assert_init(struct timer_list *timer) 722 { 723 debug_object_assert_init(timer, &timer_debug_descr); 724 } 725 726 static void do_init_timer(struct timer_list *timer, 727 void (*func)(struct timer_list *), 728 unsigned int flags, 729 const char *name, struct lock_class_key *key); 730 731 void init_timer_on_stack_key(struct timer_list *timer, 732 void (*func)(struct timer_list *), 733 unsigned int flags, 734 const char *name, struct lock_class_key *key) 735 { 736 debug_object_init_on_stack(timer, &timer_debug_descr); 737 do_init_timer(timer, func, flags, name, key); 738 } 739 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 740 741 void destroy_timer_on_stack(struct timer_list *timer) 742 { 743 debug_object_free(timer, &timer_debug_descr); 744 } 745 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 746 747 #else 748 static inline void debug_timer_init(struct timer_list *timer) { } 749 static inline void debug_timer_activate(struct timer_list *timer) { } 750 static inline void debug_timer_deactivate(struct timer_list *timer) { } 751 static inline void debug_timer_assert_init(struct timer_list *timer) { } 752 #endif 753 754 static inline void debug_init(struct timer_list *timer) 755 { 756 debug_timer_init(timer); 757 trace_timer_init(timer); 758 } 759 760 static inline void 761 debug_activate(struct timer_list *timer, unsigned long expires) 762 { 763 debug_timer_activate(timer); 764 trace_timer_start(timer, expires, timer->flags); 765 } 766 767 static inline void debug_deactivate(struct timer_list *timer) 768 { 769 debug_timer_deactivate(timer); 770 trace_timer_cancel(timer); 771 } 772 773 static inline void debug_assert_init(struct timer_list *timer) 774 { 775 debug_timer_assert_init(timer); 776 } 777 778 static void do_init_timer(struct timer_list *timer, 779 void (*func)(struct timer_list *), 780 unsigned int flags, 781 const char *name, struct lock_class_key *key) 782 { 783 timer->entry.pprev = NULL; 784 timer->function = func; 785 timer->flags = flags | raw_smp_processor_id(); 786 lockdep_init_map(&timer->lockdep_map, name, key, 0); 787 } 788 789 /** 790 * init_timer_key - initialize a timer 791 * @timer: the timer to be initialized 792 * @func: timer callback function 793 * @flags: timer flags 794 * @name: name of the timer 795 * @key: lockdep class key of the fake lock used for tracking timer 796 * sync lock dependencies 797 * 798 * init_timer_key() must be done to a timer prior calling *any* of the 799 * other timer functions. 800 */ 801 void init_timer_key(struct timer_list *timer, 802 void (*func)(struct timer_list *), unsigned int flags, 803 const char *name, struct lock_class_key *key) 804 { 805 debug_init(timer); 806 do_init_timer(timer, func, flags, name, key); 807 } 808 EXPORT_SYMBOL(init_timer_key); 809 810 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 811 { 812 struct hlist_node *entry = &timer->entry; 813 814 debug_deactivate(timer); 815 816 __hlist_del(entry); 817 if (clear_pending) 818 entry->pprev = NULL; 819 entry->next = LIST_POISON2; 820 } 821 822 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 823 bool clear_pending) 824 { 825 unsigned idx = timer_get_idx(timer); 826 827 if (!timer_pending(timer)) 828 return 0; 829 830 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 831 __clear_bit(idx, base->pending_map); 832 833 detach_timer(timer, clear_pending); 834 return 1; 835 } 836 837 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 838 { 839 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 840 841 /* 842 * If the timer is deferrable and NO_HZ_COMMON is set then we need 843 * to use the deferrable base. 844 */ 845 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 846 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 847 return base; 848 } 849 850 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 851 { 852 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 853 854 /* 855 * If the timer is deferrable and NO_HZ_COMMON is set then we need 856 * to use the deferrable base. 857 */ 858 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 859 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 860 return base; 861 } 862 863 static inline struct timer_base *get_timer_base(u32 tflags) 864 { 865 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 866 } 867 868 static inline struct timer_base * 869 get_target_base(struct timer_base *base, unsigned tflags) 870 { 871 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 872 if (static_branch_likely(&timers_migration_enabled) && 873 !(tflags & TIMER_PINNED)) 874 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 875 #endif 876 return get_timer_this_cpu_base(tflags); 877 } 878 879 static inline void forward_timer_base(struct timer_base *base) 880 { 881 #ifdef CONFIG_NO_HZ_COMMON 882 unsigned long jnow; 883 884 /* 885 * We only forward the base when we are idle or have just come out of 886 * idle (must_forward_clk logic), and have a delta between base clock 887 * and jiffies. In the common case, run_timers will take care of it. 888 */ 889 if (likely(!base->must_forward_clk)) 890 return; 891 892 jnow = READ_ONCE(jiffies); 893 base->must_forward_clk = base->is_idle; 894 if ((long)(jnow - base->clk) < 2) 895 return; 896 897 /* 898 * If the next expiry value is > jiffies, then we fast forward to 899 * jiffies otherwise we forward to the next expiry value. 900 */ 901 if (time_after(base->next_expiry, jnow)) 902 base->clk = jnow; 903 else 904 base->clk = base->next_expiry; 905 #endif 906 } 907 908 909 /* 910 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 911 * that all timers which are tied to this base are locked, and the base itself 912 * is locked too. 913 * 914 * So __run_timers/migrate_timers can safely modify all timers which could 915 * be found in the base->vectors array. 916 * 917 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 918 * to wait until the migration is done. 919 */ 920 static struct timer_base *lock_timer_base(struct timer_list *timer, 921 unsigned long *flags) 922 __acquires(timer->base->lock) 923 { 924 for (;;) { 925 struct timer_base *base; 926 u32 tf; 927 928 /* 929 * We need to use READ_ONCE() here, otherwise the compiler 930 * might re-read @tf between the check for TIMER_MIGRATING 931 * and spin_lock(). 932 */ 933 tf = READ_ONCE(timer->flags); 934 935 if (!(tf & TIMER_MIGRATING)) { 936 base = get_timer_base(tf); 937 raw_spin_lock_irqsave(&base->lock, *flags); 938 if (timer->flags == tf) 939 return base; 940 raw_spin_unlock_irqrestore(&base->lock, *flags); 941 } 942 cpu_relax(); 943 } 944 } 945 946 #define MOD_TIMER_PENDING_ONLY 0x01 947 #define MOD_TIMER_REDUCE 0x02 948 949 static inline int 950 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 951 { 952 struct timer_base *base, *new_base; 953 unsigned int idx = UINT_MAX; 954 unsigned long clk = 0, flags; 955 int ret = 0; 956 957 BUG_ON(!timer->function); 958 959 /* 960 * This is a common optimization triggered by the networking code - if 961 * the timer is re-modified to have the same timeout or ends up in the 962 * same array bucket then just return: 963 */ 964 if (timer_pending(timer)) { 965 /* 966 * The downside of this optimization is that it can result in 967 * larger granularity than you would get from adding a new 968 * timer with this expiry. 969 */ 970 long diff = timer->expires - expires; 971 972 if (!diff) 973 return 1; 974 if (options & MOD_TIMER_REDUCE && diff <= 0) 975 return 1; 976 977 /* 978 * We lock timer base and calculate the bucket index right 979 * here. If the timer ends up in the same bucket, then we 980 * just update the expiry time and avoid the whole 981 * dequeue/enqueue dance. 982 */ 983 base = lock_timer_base(timer, &flags); 984 forward_timer_base(base); 985 986 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 987 time_before_eq(timer->expires, expires)) { 988 ret = 1; 989 goto out_unlock; 990 } 991 992 clk = base->clk; 993 idx = calc_wheel_index(expires, clk); 994 995 /* 996 * Retrieve and compare the array index of the pending 997 * timer. If it matches set the expiry to the new value so a 998 * subsequent call will exit in the expires check above. 999 */ 1000 if (idx == timer_get_idx(timer)) { 1001 if (!(options & MOD_TIMER_REDUCE)) 1002 timer->expires = expires; 1003 else if (time_after(timer->expires, expires)) 1004 timer->expires = expires; 1005 ret = 1; 1006 goto out_unlock; 1007 } 1008 } else { 1009 base = lock_timer_base(timer, &flags); 1010 forward_timer_base(base); 1011 } 1012 1013 ret = detach_if_pending(timer, base, false); 1014 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1015 goto out_unlock; 1016 1017 new_base = get_target_base(base, timer->flags); 1018 1019 if (base != new_base) { 1020 /* 1021 * We are trying to schedule the timer on the new base. 1022 * However we can't change timer's base while it is running, 1023 * otherwise del_timer_sync() can't detect that the timer's 1024 * handler yet has not finished. This also guarantees that the 1025 * timer is serialized wrt itself. 1026 */ 1027 if (likely(base->running_timer != timer)) { 1028 /* See the comment in lock_timer_base() */ 1029 timer->flags |= TIMER_MIGRATING; 1030 1031 raw_spin_unlock(&base->lock); 1032 base = new_base; 1033 raw_spin_lock(&base->lock); 1034 WRITE_ONCE(timer->flags, 1035 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1036 forward_timer_base(base); 1037 } 1038 } 1039 1040 debug_activate(timer, expires); 1041 1042 timer->expires = expires; 1043 /* 1044 * If 'idx' was calculated above and the base time did not advance 1045 * between calculating 'idx' and possibly switching the base, only 1046 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1047 * we need to (re)calculate the wheel index via 1048 * internal_add_timer(). 1049 */ 1050 if (idx != UINT_MAX && clk == base->clk) { 1051 enqueue_timer(base, timer, idx); 1052 trigger_dyntick_cpu(base, timer); 1053 } else { 1054 internal_add_timer(base, timer); 1055 } 1056 1057 out_unlock: 1058 raw_spin_unlock_irqrestore(&base->lock, flags); 1059 1060 return ret; 1061 } 1062 1063 /** 1064 * mod_timer_pending - modify a pending timer's timeout 1065 * @timer: the pending timer to be modified 1066 * @expires: new timeout in jiffies 1067 * 1068 * mod_timer_pending() is the same for pending timers as mod_timer(), 1069 * but will not re-activate and modify already deleted timers. 1070 * 1071 * It is useful for unserialized use of timers. 1072 */ 1073 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1074 { 1075 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1076 } 1077 EXPORT_SYMBOL(mod_timer_pending); 1078 1079 /** 1080 * mod_timer - modify a timer's timeout 1081 * @timer: the timer to be modified 1082 * @expires: new timeout in jiffies 1083 * 1084 * mod_timer() is a more efficient way to update the expire field of an 1085 * active timer (if the timer is inactive it will be activated) 1086 * 1087 * mod_timer(timer, expires) is equivalent to: 1088 * 1089 * del_timer(timer); timer->expires = expires; add_timer(timer); 1090 * 1091 * Note that if there are multiple unserialized concurrent users of the 1092 * same timer, then mod_timer() is the only safe way to modify the timeout, 1093 * since add_timer() cannot modify an already running timer. 1094 * 1095 * The function returns whether it has modified a pending timer or not. 1096 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1097 * active timer returns 1.) 1098 */ 1099 int mod_timer(struct timer_list *timer, unsigned long expires) 1100 { 1101 return __mod_timer(timer, expires, 0); 1102 } 1103 EXPORT_SYMBOL(mod_timer); 1104 1105 /** 1106 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1107 * @timer: The timer to be modified 1108 * @expires: New timeout in jiffies 1109 * 1110 * timer_reduce() is very similar to mod_timer(), except that it will only 1111 * modify a running timer if that would reduce the expiration time (it will 1112 * start a timer that isn't running). 1113 */ 1114 int timer_reduce(struct timer_list *timer, unsigned long expires) 1115 { 1116 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1117 } 1118 EXPORT_SYMBOL(timer_reduce); 1119 1120 /** 1121 * add_timer - start a timer 1122 * @timer: the timer to be added 1123 * 1124 * The kernel will do a ->function(@timer) callback from the 1125 * timer interrupt at the ->expires point in the future. The 1126 * current time is 'jiffies'. 1127 * 1128 * The timer's ->expires, ->function fields must be set prior calling this 1129 * function. 1130 * 1131 * Timers with an ->expires field in the past will be executed in the next 1132 * timer tick. 1133 */ 1134 void add_timer(struct timer_list *timer) 1135 { 1136 BUG_ON(timer_pending(timer)); 1137 mod_timer(timer, timer->expires); 1138 } 1139 EXPORT_SYMBOL(add_timer); 1140 1141 /** 1142 * add_timer_on - start a timer on a particular CPU 1143 * @timer: the timer to be added 1144 * @cpu: the CPU to start it on 1145 * 1146 * This is not very scalable on SMP. Double adds are not possible. 1147 */ 1148 void add_timer_on(struct timer_list *timer, int cpu) 1149 { 1150 struct timer_base *new_base, *base; 1151 unsigned long flags; 1152 1153 BUG_ON(timer_pending(timer) || !timer->function); 1154 1155 new_base = get_timer_cpu_base(timer->flags, cpu); 1156 1157 /* 1158 * If @timer was on a different CPU, it should be migrated with the 1159 * old base locked to prevent other operations proceeding with the 1160 * wrong base locked. See lock_timer_base(). 1161 */ 1162 base = lock_timer_base(timer, &flags); 1163 if (base != new_base) { 1164 timer->flags |= TIMER_MIGRATING; 1165 1166 raw_spin_unlock(&base->lock); 1167 base = new_base; 1168 raw_spin_lock(&base->lock); 1169 WRITE_ONCE(timer->flags, 1170 (timer->flags & ~TIMER_BASEMASK) | cpu); 1171 } 1172 forward_timer_base(base); 1173 1174 debug_activate(timer, timer->expires); 1175 internal_add_timer(base, timer); 1176 raw_spin_unlock_irqrestore(&base->lock, flags); 1177 } 1178 EXPORT_SYMBOL_GPL(add_timer_on); 1179 1180 /** 1181 * del_timer - deactivate a timer. 1182 * @timer: the timer to be deactivated 1183 * 1184 * del_timer() deactivates a timer - this works on both active and inactive 1185 * timers. 1186 * 1187 * The function returns whether it has deactivated a pending timer or not. 1188 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1189 * active timer returns 1.) 1190 */ 1191 int del_timer(struct timer_list *timer) 1192 { 1193 struct timer_base *base; 1194 unsigned long flags; 1195 int ret = 0; 1196 1197 debug_assert_init(timer); 1198 1199 if (timer_pending(timer)) { 1200 base = lock_timer_base(timer, &flags); 1201 ret = detach_if_pending(timer, base, true); 1202 raw_spin_unlock_irqrestore(&base->lock, flags); 1203 } 1204 1205 return ret; 1206 } 1207 EXPORT_SYMBOL(del_timer); 1208 1209 /** 1210 * try_to_del_timer_sync - Try to deactivate a timer 1211 * @timer: timer to delete 1212 * 1213 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1214 * exit the timer is not queued and the handler is not running on any CPU. 1215 */ 1216 int try_to_del_timer_sync(struct timer_list *timer) 1217 { 1218 struct timer_base *base; 1219 unsigned long flags; 1220 int ret = -1; 1221 1222 debug_assert_init(timer); 1223 1224 base = lock_timer_base(timer, &flags); 1225 1226 if (base->running_timer != timer) 1227 ret = detach_if_pending(timer, base, true); 1228 1229 raw_spin_unlock_irqrestore(&base->lock, flags); 1230 1231 return ret; 1232 } 1233 EXPORT_SYMBOL(try_to_del_timer_sync); 1234 1235 #ifdef CONFIG_SMP 1236 /** 1237 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1238 * @timer: the timer to be deactivated 1239 * 1240 * This function only differs from del_timer() on SMP: besides deactivating 1241 * the timer it also makes sure the handler has finished executing on other 1242 * CPUs. 1243 * 1244 * Synchronization rules: Callers must prevent restarting of the timer, 1245 * otherwise this function is meaningless. It must not be called from 1246 * interrupt contexts unless the timer is an irqsafe one. The caller must 1247 * not hold locks which would prevent completion of the timer's 1248 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1249 * timer is not queued and the handler is not running on any CPU. 1250 * 1251 * Note: For !irqsafe timers, you must not hold locks that are held in 1252 * interrupt context while calling this function. Even if the lock has 1253 * nothing to do with the timer in question. Here's why:: 1254 * 1255 * CPU0 CPU1 1256 * ---- ---- 1257 * <SOFTIRQ> 1258 * call_timer_fn(); 1259 * base->running_timer = mytimer; 1260 * spin_lock_irq(somelock); 1261 * <IRQ> 1262 * spin_lock(somelock); 1263 * del_timer_sync(mytimer); 1264 * while (base->running_timer == mytimer); 1265 * 1266 * Now del_timer_sync() will never return and never release somelock. 1267 * The interrupt on the other CPU is waiting to grab somelock but 1268 * it has interrupted the softirq that CPU0 is waiting to finish. 1269 * 1270 * The function returns whether it has deactivated a pending timer or not. 1271 */ 1272 int del_timer_sync(struct timer_list *timer) 1273 { 1274 #ifdef CONFIG_LOCKDEP 1275 unsigned long flags; 1276 1277 /* 1278 * If lockdep gives a backtrace here, please reference 1279 * the synchronization rules above. 1280 */ 1281 local_irq_save(flags); 1282 lock_map_acquire(&timer->lockdep_map); 1283 lock_map_release(&timer->lockdep_map); 1284 local_irq_restore(flags); 1285 #endif 1286 /* 1287 * don't use it in hardirq context, because it 1288 * could lead to deadlock. 1289 */ 1290 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1291 for (;;) { 1292 int ret = try_to_del_timer_sync(timer); 1293 if (ret >= 0) 1294 return ret; 1295 cpu_relax(); 1296 } 1297 } 1298 EXPORT_SYMBOL(del_timer_sync); 1299 #endif 1300 1301 static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *)) 1302 { 1303 int count = preempt_count(); 1304 1305 #ifdef CONFIG_LOCKDEP 1306 /* 1307 * It is permissible to free the timer from inside the 1308 * function that is called from it, this we need to take into 1309 * account for lockdep too. To avoid bogus "held lock freed" 1310 * warnings as well as problems when looking into 1311 * timer->lockdep_map, make a copy and use that here. 1312 */ 1313 struct lockdep_map lockdep_map; 1314 1315 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1316 #endif 1317 /* 1318 * Couple the lock chain with the lock chain at 1319 * del_timer_sync() by acquiring the lock_map around the fn() 1320 * call here and in del_timer_sync(). 1321 */ 1322 lock_map_acquire(&lockdep_map); 1323 1324 trace_timer_expire_entry(timer); 1325 fn(timer); 1326 trace_timer_expire_exit(timer); 1327 1328 lock_map_release(&lockdep_map); 1329 1330 if (count != preempt_count()) { 1331 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1332 fn, count, preempt_count()); 1333 /* 1334 * Restore the preempt count. That gives us a decent 1335 * chance to survive and extract information. If the 1336 * callback kept a lock held, bad luck, but not worse 1337 * than the BUG() we had. 1338 */ 1339 preempt_count_set(count); 1340 } 1341 } 1342 1343 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1344 { 1345 while (!hlist_empty(head)) { 1346 struct timer_list *timer; 1347 void (*fn)(struct timer_list *); 1348 1349 timer = hlist_entry(head->first, struct timer_list, entry); 1350 1351 base->running_timer = timer; 1352 detach_timer(timer, true); 1353 1354 fn = timer->function; 1355 1356 if (timer->flags & TIMER_IRQSAFE) { 1357 raw_spin_unlock(&base->lock); 1358 call_timer_fn(timer, fn); 1359 raw_spin_lock(&base->lock); 1360 } else { 1361 raw_spin_unlock_irq(&base->lock); 1362 call_timer_fn(timer, fn); 1363 raw_spin_lock_irq(&base->lock); 1364 } 1365 } 1366 } 1367 1368 static int __collect_expired_timers(struct timer_base *base, 1369 struct hlist_head *heads) 1370 { 1371 unsigned long clk = base->clk; 1372 struct hlist_head *vec; 1373 int i, levels = 0; 1374 unsigned int idx; 1375 1376 for (i = 0; i < LVL_DEPTH; i++) { 1377 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1378 1379 if (__test_and_clear_bit(idx, base->pending_map)) { 1380 vec = base->vectors + idx; 1381 hlist_move_list(vec, heads++); 1382 levels++; 1383 } 1384 /* Is it time to look at the next level? */ 1385 if (clk & LVL_CLK_MASK) 1386 break; 1387 /* Shift clock for the next level granularity */ 1388 clk >>= LVL_CLK_SHIFT; 1389 } 1390 return levels; 1391 } 1392 1393 #ifdef CONFIG_NO_HZ_COMMON 1394 /* 1395 * Find the next pending bucket of a level. Search from level start (@offset) 1396 * + @clk upwards and if nothing there, search from start of the level 1397 * (@offset) up to @offset + clk. 1398 */ 1399 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1400 unsigned clk) 1401 { 1402 unsigned pos, start = offset + clk; 1403 unsigned end = offset + LVL_SIZE; 1404 1405 pos = find_next_bit(base->pending_map, end, start); 1406 if (pos < end) 1407 return pos - start; 1408 1409 pos = find_next_bit(base->pending_map, start, offset); 1410 return pos < start ? pos + LVL_SIZE - start : -1; 1411 } 1412 1413 /* 1414 * Search the first expiring timer in the various clock levels. Caller must 1415 * hold base->lock. 1416 */ 1417 static unsigned long __next_timer_interrupt(struct timer_base *base) 1418 { 1419 unsigned long clk, next, adj; 1420 unsigned lvl, offset = 0; 1421 1422 next = base->clk + NEXT_TIMER_MAX_DELTA; 1423 clk = base->clk; 1424 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1425 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1426 1427 if (pos >= 0) { 1428 unsigned long tmp = clk + (unsigned long) pos; 1429 1430 tmp <<= LVL_SHIFT(lvl); 1431 if (time_before(tmp, next)) 1432 next = tmp; 1433 } 1434 /* 1435 * Clock for the next level. If the current level clock lower 1436 * bits are zero, we look at the next level as is. If not we 1437 * need to advance it by one because that's going to be the 1438 * next expiring bucket in that level. base->clk is the next 1439 * expiring jiffie. So in case of: 1440 * 1441 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1442 * 0 0 0 0 0 0 1443 * 1444 * we have to look at all levels @index 0. With 1445 * 1446 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1447 * 0 0 0 0 0 2 1448 * 1449 * LVL0 has the next expiring bucket @index 2. The upper 1450 * levels have the next expiring bucket @index 1. 1451 * 1452 * In case that the propagation wraps the next level the same 1453 * rules apply: 1454 * 1455 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1456 * 0 0 0 0 F 2 1457 * 1458 * So after looking at LVL0 we get: 1459 * 1460 * LVL5 LVL4 LVL3 LVL2 LVL1 1461 * 0 0 0 1 0 1462 * 1463 * So no propagation from LVL1 to LVL2 because that happened 1464 * with the add already, but then we need to propagate further 1465 * from LVL2 to LVL3. 1466 * 1467 * So the simple check whether the lower bits of the current 1468 * level are 0 or not is sufficient for all cases. 1469 */ 1470 adj = clk & LVL_CLK_MASK ? 1 : 0; 1471 clk >>= LVL_CLK_SHIFT; 1472 clk += adj; 1473 } 1474 return next; 1475 } 1476 1477 /* 1478 * Check, if the next hrtimer event is before the next timer wheel 1479 * event: 1480 */ 1481 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1482 { 1483 u64 nextevt = hrtimer_get_next_event(); 1484 1485 /* 1486 * If high resolution timers are enabled 1487 * hrtimer_get_next_event() returns KTIME_MAX. 1488 */ 1489 if (expires <= nextevt) 1490 return expires; 1491 1492 /* 1493 * If the next timer is already expired, return the tick base 1494 * time so the tick is fired immediately. 1495 */ 1496 if (nextevt <= basem) 1497 return basem; 1498 1499 /* 1500 * Round up to the next jiffie. High resolution timers are 1501 * off, so the hrtimers are expired in the tick and we need to 1502 * make sure that this tick really expires the timer to avoid 1503 * a ping pong of the nohz stop code. 1504 * 1505 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1506 */ 1507 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1508 } 1509 1510 /** 1511 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1512 * @basej: base time jiffies 1513 * @basem: base time clock monotonic 1514 * 1515 * Returns the tick aligned clock monotonic time of the next pending 1516 * timer or KTIME_MAX if no timer is pending. 1517 */ 1518 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1519 { 1520 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1521 u64 expires = KTIME_MAX; 1522 unsigned long nextevt; 1523 bool is_max_delta; 1524 1525 /* 1526 * Pretend that there is no timer pending if the cpu is offline. 1527 * Possible pending timers will be migrated later to an active cpu. 1528 */ 1529 if (cpu_is_offline(smp_processor_id())) 1530 return expires; 1531 1532 raw_spin_lock(&base->lock); 1533 nextevt = __next_timer_interrupt(base); 1534 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1535 base->next_expiry = nextevt; 1536 /* 1537 * We have a fresh next event. Check whether we can forward the 1538 * base. We can only do that when @basej is past base->clk 1539 * otherwise we might rewind base->clk. 1540 */ 1541 if (time_after(basej, base->clk)) { 1542 if (time_after(nextevt, basej)) 1543 base->clk = basej; 1544 else if (time_after(nextevt, base->clk)) 1545 base->clk = nextevt; 1546 } 1547 1548 if (time_before_eq(nextevt, basej)) { 1549 expires = basem; 1550 base->is_idle = false; 1551 } else { 1552 if (!is_max_delta) 1553 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1554 /* 1555 * If we expect to sleep more than a tick, mark the base idle. 1556 * Also the tick is stopped so any added timer must forward 1557 * the base clk itself to keep granularity small. This idle 1558 * logic is only maintained for the BASE_STD base, deferrable 1559 * timers may still see large granularity skew (by design). 1560 */ 1561 if ((expires - basem) > TICK_NSEC) { 1562 base->must_forward_clk = true; 1563 base->is_idle = true; 1564 } 1565 } 1566 raw_spin_unlock(&base->lock); 1567 1568 return cmp_next_hrtimer_event(basem, expires); 1569 } 1570 1571 /** 1572 * timer_clear_idle - Clear the idle state of the timer base 1573 * 1574 * Called with interrupts disabled 1575 */ 1576 void timer_clear_idle(void) 1577 { 1578 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1579 1580 /* 1581 * We do this unlocked. The worst outcome is a remote enqueue sending 1582 * a pointless IPI, but taking the lock would just make the window for 1583 * sending the IPI a few instructions smaller for the cost of taking 1584 * the lock in the exit from idle path. 1585 */ 1586 base->is_idle = false; 1587 } 1588 1589 static int collect_expired_timers(struct timer_base *base, 1590 struct hlist_head *heads) 1591 { 1592 /* 1593 * NOHZ optimization. After a long idle sleep we need to forward the 1594 * base to current jiffies. Avoid a loop by searching the bitfield for 1595 * the next expiring timer. 1596 */ 1597 if ((long)(jiffies - base->clk) > 2) { 1598 unsigned long next = __next_timer_interrupt(base); 1599 1600 /* 1601 * If the next timer is ahead of time forward to current 1602 * jiffies, otherwise forward to the next expiry time: 1603 */ 1604 if (time_after(next, jiffies)) { 1605 /* 1606 * The call site will increment base->clk and then 1607 * terminate the expiry loop immediately. 1608 */ 1609 base->clk = jiffies; 1610 return 0; 1611 } 1612 base->clk = next; 1613 } 1614 return __collect_expired_timers(base, heads); 1615 } 1616 #else 1617 static inline int collect_expired_timers(struct timer_base *base, 1618 struct hlist_head *heads) 1619 { 1620 return __collect_expired_timers(base, heads); 1621 } 1622 #endif 1623 1624 /* 1625 * Called from the timer interrupt handler to charge one tick to the current 1626 * process. user_tick is 1 if the tick is user time, 0 for system. 1627 */ 1628 void update_process_times(int user_tick) 1629 { 1630 struct task_struct *p = current; 1631 1632 /* Note: this timer irq context must be accounted for as well. */ 1633 account_process_tick(p, user_tick); 1634 run_local_timers(); 1635 rcu_sched_clock_irq(user_tick); 1636 #ifdef CONFIG_IRQ_WORK 1637 if (in_irq()) 1638 irq_work_tick(); 1639 #endif 1640 scheduler_tick(); 1641 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1642 run_posix_cpu_timers(p); 1643 } 1644 1645 /** 1646 * __run_timers - run all expired timers (if any) on this CPU. 1647 * @base: the timer vector to be processed. 1648 */ 1649 static inline void __run_timers(struct timer_base *base) 1650 { 1651 struct hlist_head heads[LVL_DEPTH]; 1652 int levels; 1653 1654 if (!time_after_eq(jiffies, base->clk)) 1655 return; 1656 1657 raw_spin_lock_irq(&base->lock); 1658 1659 /* 1660 * timer_base::must_forward_clk must be cleared before running 1661 * timers so that any timer functions that call mod_timer() will 1662 * not try to forward the base. Idle tracking / clock forwarding 1663 * logic is only used with BASE_STD timers. 1664 * 1665 * The must_forward_clk flag is cleared unconditionally also for 1666 * the deferrable base. The deferrable base is not affected by idle 1667 * tracking and never forwarded, so clearing the flag is a NOOP. 1668 * 1669 * The fact that the deferrable base is never forwarded can cause 1670 * large variations in granularity for deferrable timers, but they 1671 * can be deferred for long periods due to idle anyway. 1672 */ 1673 base->must_forward_clk = false; 1674 1675 while (time_after_eq(jiffies, base->clk)) { 1676 1677 levels = collect_expired_timers(base, heads); 1678 base->clk++; 1679 1680 while (levels--) 1681 expire_timers(base, heads + levels); 1682 } 1683 base->running_timer = NULL; 1684 raw_spin_unlock_irq(&base->lock); 1685 } 1686 1687 /* 1688 * This function runs timers and the timer-tq in bottom half context. 1689 */ 1690 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1691 { 1692 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1693 1694 __run_timers(base); 1695 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1696 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1697 } 1698 1699 /* 1700 * Called by the local, per-CPU timer interrupt on SMP. 1701 */ 1702 void run_local_timers(void) 1703 { 1704 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1705 1706 hrtimer_run_queues(); 1707 /* Raise the softirq only if required. */ 1708 if (time_before(jiffies, base->clk)) { 1709 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1710 return; 1711 /* CPU is awake, so check the deferrable base. */ 1712 base++; 1713 if (time_before(jiffies, base->clk)) 1714 return; 1715 } 1716 raise_softirq(TIMER_SOFTIRQ); 1717 } 1718 1719 /* 1720 * Since schedule_timeout()'s timer is defined on the stack, it must store 1721 * the target task on the stack as well. 1722 */ 1723 struct process_timer { 1724 struct timer_list timer; 1725 struct task_struct *task; 1726 }; 1727 1728 static void process_timeout(struct timer_list *t) 1729 { 1730 struct process_timer *timeout = from_timer(timeout, t, timer); 1731 1732 wake_up_process(timeout->task); 1733 } 1734 1735 /** 1736 * schedule_timeout - sleep until timeout 1737 * @timeout: timeout value in jiffies 1738 * 1739 * Make the current task sleep until @timeout jiffies have 1740 * elapsed. The routine will return immediately unless 1741 * the current task state has been set (see set_current_state()). 1742 * 1743 * You can set the task state as follows - 1744 * 1745 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1746 * pass before the routine returns unless the current task is explicitly 1747 * woken up, (e.g. by wake_up_process())". 1748 * 1749 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1750 * delivered to the current task or the current task is explicitly woken 1751 * up. 1752 * 1753 * The current task state is guaranteed to be TASK_RUNNING when this 1754 * routine returns. 1755 * 1756 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1757 * the CPU away without a bound on the timeout. In this case the return 1758 * value will be %MAX_SCHEDULE_TIMEOUT. 1759 * 1760 * Returns 0 when the timer has expired otherwise the remaining time in 1761 * jiffies will be returned. In all cases the return value is guaranteed 1762 * to be non-negative. 1763 */ 1764 signed long __sched schedule_timeout(signed long timeout) 1765 { 1766 struct process_timer timer; 1767 unsigned long expire; 1768 1769 switch (timeout) 1770 { 1771 case MAX_SCHEDULE_TIMEOUT: 1772 /* 1773 * These two special cases are useful to be comfortable 1774 * in the caller. Nothing more. We could take 1775 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1776 * but I' d like to return a valid offset (>=0) to allow 1777 * the caller to do everything it want with the retval. 1778 */ 1779 schedule(); 1780 goto out; 1781 default: 1782 /* 1783 * Another bit of PARANOID. Note that the retval will be 1784 * 0 since no piece of kernel is supposed to do a check 1785 * for a negative retval of schedule_timeout() (since it 1786 * should never happens anyway). You just have the printk() 1787 * that will tell you if something is gone wrong and where. 1788 */ 1789 if (timeout < 0) { 1790 printk(KERN_ERR "schedule_timeout: wrong timeout " 1791 "value %lx\n", timeout); 1792 dump_stack(); 1793 current->state = TASK_RUNNING; 1794 goto out; 1795 } 1796 } 1797 1798 expire = timeout + jiffies; 1799 1800 timer.task = current; 1801 timer_setup_on_stack(&timer.timer, process_timeout, 0); 1802 __mod_timer(&timer.timer, expire, 0); 1803 schedule(); 1804 del_singleshot_timer_sync(&timer.timer); 1805 1806 /* Remove the timer from the object tracker */ 1807 destroy_timer_on_stack(&timer.timer); 1808 1809 timeout = expire - jiffies; 1810 1811 out: 1812 return timeout < 0 ? 0 : timeout; 1813 } 1814 EXPORT_SYMBOL(schedule_timeout); 1815 1816 /* 1817 * We can use __set_current_state() here because schedule_timeout() calls 1818 * schedule() unconditionally. 1819 */ 1820 signed long __sched schedule_timeout_interruptible(signed long timeout) 1821 { 1822 __set_current_state(TASK_INTERRUPTIBLE); 1823 return schedule_timeout(timeout); 1824 } 1825 EXPORT_SYMBOL(schedule_timeout_interruptible); 1826 1827 signed long __sched schedule_timeout_killable(signed long timeout) 1828 { 1829 __set_current_state(TASK_KILLABLE); 1830 return schedule_timeout(timeout); 1831 } 1832 EXPORT_SYMBOL(schedule_timeout_killable); 1833 1834 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1835 { 1836 __set_current_state(TASK_UNINTERRUPTIBLE); 1837 return schedule_timeout(timeout); 1838 } 1839 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1840 1841 /* 1842 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1843 * to load average. 1844 */ 1845 signed long __sched schedule_timeout_idle(signed long timeout) 1846 { 1847 __set_current_state(TASK_IDLE); 1848 return schedule_timeout(timeout); 1849 } 1850 EXPORT_SYMBOL(schedule_timeout_idle); 1851 1852 #ifdef CONFIG_HOTPLUG_CPU 1853 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1854 { 1855 struct timer_list *timer; 1856 int cpu = new_base->cpu; 1857 1858 while (!hlist_empty(head)) { 1859 timer = hlist_entry(head->first, struct timer_list, entry); 1860 detach_timer(timer, false); 1861 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1862 internal_add_timer(new_base, timer); 1863 } 1864 } 1865 1866 int timers_prepare_cpu(unsigned int cpu) 1867 { 1868 struct timer_base *base; 1869 int b; 1870 1871 for (b = 0; b < NR_BASES; b++) { 1872 base = per_cpu_ptr(&timer_bases[b], cpu); 1873 base->clk = jiffies; 1874 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 1875 base->is_idle = false; 1876 base->must_forward_clk = true; 1877 } 1878 return 0; 1879 } 1880 1881 int timers_dead_cpu(unsigned int cpu) 1882 { 1883 struct timer_base *old_base; 1884 struct timer_base *new_base; 1885 int b, i; 1886 1887 BUG_ON(cpu_online(cpu)); 1888 1889 for (b = 0; b < NR_BASES; b++) { 1890 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1891 new_base = get_cpu_ptr(&timer_bases[b]); 1892 /* 1893 * The caller is globally serialized and nobody else 1894 * takes two locks at once, deadlock is not possible. 1895 */ 1896 raw_spin_lock_irq(&new_base->lock); 1897 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1898 1899 /* 1900 * The current CPUs base clock might be stale. Update it 1901 * before moving the timers over. 1902 */ 1903 forward_timer_base(new_base); 1904 1905 BUG_ON(old_base->running_timer); 1906 1907 for (i = 0; i < WHEEL_SIZE; i++) 1908 migrate_timer_list(new_base, old_base->vectors + i); 1909 1910 raw_spin_unlock(&old_base->lock); 1911 raw_spin_unlock_irq(&new_base->lock); 1912 put_cpu_ptr(&timer_bases); 1913 } 1914 return 0; 1915 } 1916 1917 #endif /* CONFIG_HOTPLUG_CPU */ 1918 1919 static void __init init_timer_cpu(int cpu) 1920 { 1921 struct timer_base *base; 1922 int i; 1923 1924 for (i = 0; i < NR_BASES; i++) { 1925 base = per_cpu_ptr(&timer_bases[i], cpu); 1926 base->cpu = cpu; 1927 raw_spin_lock_init(&base->lock); 1928 base->clk = jiffies; 1929 } 1930 } 1931 1932 static void __init init_timer_cpus(void) 1933 { 1934 int cpu; 1935 1936 for_each_possible_cpu(cpu) 1937 init_timer_cpu(cpu); 1938 } 1939 1940 void __init init_timers(void) 1941 { 1942 init_timer_cpus(); 1943 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1944 } 1945 1946 /** 1947 * msleep - sleep safely even with waitqueue interruptions 1948 * @msecs: Time in milliseconds to sleep for 1949 */ 1950 void msleep(unsigned int msecs) 1951 { 1952 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1953 1954 while (timeout) 1955 timeout = schedule_timeout_uninterruptible(timeout); 1956 } 1957 1958 EXPORT_SYMBOL(msleep); 1959 1960 /** 1961 * msleep_interruptible - sleep waiting for signals 1962 * @msecs: Time in milliseconds to sleep for 1963 */ 1964 unsigned long msleep_interruptible(unsigned int msecs) 1965 { 1966 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1967 1968 while (timeout && !signal_pending(current)) 1969 timeout = schedule_timeout_interruptible(timeout); 1970 return jiffies_to_msecs(timeout); 1971 } 1972 1973 EXPORT_SYMBOL(msleep_interruptible); 1974 1975 /** 1976 * usleep_range - Sleep for an approximate time 1977 * @min: Minimum time in usecs to sleep 1978 * @max: Maximum time in usecs to sleep 1979 * 1980 * In non-atomic context where the exact wakeup time is flexible, use 1981 * usleep_range() instead of udelay(). The sleep improves responsiveness 1982 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 1983 * power usage by allowing hrtimers to take advantage of an already- 1984 * scheduled interrupt instead of scheduling a new one just for this sleep. 1985 */ 1986 void __sched usleep_range(unsigned long min, unsigned long max) 1987 { 1988 ktime_t exp = ktime_add_us(ktime_get(), min); 1989 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 1990 1991 for (;;) { 1992 __set_current_state(TASK_UNINTERRUPTIBLE); 1993 /* Do not return before the requested sleep time has elapsed */ 1994 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 1995 break; 1996 } 1997 } 1998 EXPORT_SYMBOL(usleep_range); 1999