xref: /openbmc/linux/kernel/time/timer.c (revision b8265621)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 
47 #include <linux/uaccess.h>
48 #include <asm/unistd.h>
49 #include <asm/div64.h>
50 #include <asm/timex.h>
51 #include <asm/io.h>
52 
53 #include "tick-internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/timer.h>
57 
58 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
59 
60 EXPORT_SYMBOL(jiffies_64);
61 
62 /*
63  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
64  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
65  * level has a different granularity.
66  *
67  * The level granularity is:		LVL_CLK_DIV ^ lvl
68  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
69  *
70  * The array level of a newly armed timer depends on the relative expiry
71  * time. The farther the expiry time is away the higher the array level and
72  * therefor the granularity becomes.
73  *
74  * Contrary to the original timer wheel implementation, which aims for 'exact'
75  * expiry of the timers, this implementation removes the need for recascading
76  * the timers into the lower array levels. The previous 'classic' timer wheel
77  * implementation of the kernel already violated the 'exact' expiry by adding
78  * slack to the expiry time to provide batched expiration. The granularity
79  * levels provide implicit batching.
80  *
81  * This is an optimization of the original timer wheel implementation for the
82  * majority of the timer wheel use cases: timeouts. The vast majority of
83  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
84  * the timeout expires it indicates that normal operation is disturbed, so it
85  * does not matter much whether the timeout comes with a slight delay.
86  *
87  * The only exception to this are networking timers with a small expiry
88  * time. They rely on the granularity. Those fit into the first wheel level,
89  * which has HZ granularity.
90  *
91  * We don't have cascading anymore. timers with a expiry time above the
92  * capacity of the last wheel level are force expired at the maximum timeout
93  * value of the last wheel level. From data sampling we know that the maximum
94  * value observed is 5 days (network connection tracking), so this should not
95  * be an issue.
96  *
97  * The currently chosen array constants values are a good compromise between
98  * array size and granularity.
99  *
100  * This results in the following granularity and range levels:
101  *
102  * HZ 1000 steps
103  * Level Offset  Granularity            Range
104  *  0      0         1 ms                0 ms -         63 ms
105  *  1     64         8 ms               64 ms -        511 ms
106  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
107  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
108  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
109  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
110  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
111  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
112  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
113  *
114  * HZ  300
115  * Level Offset  Granularity            Range
116  *  0	   0         3 ms                0 ms -        210 ms
117  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
118  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
119  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
120  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
121  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
122  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
123  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
124  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
125  *
126  * HZ  250
127  * Level Offset  Granularity            Range
128  *  0	   0         4 ms                0 ms -        255 ms
129  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
130  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
131  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
132  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
133  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
134  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
135  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
136  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
137  *
138  * HZ  100
139  * Level Offset  Granularity            Range
140  *  0	   0         10 ms               0 ms -        630 ms
141  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
142  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
143  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
144  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
145  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
146  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
147  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
148  */
149 
150 /* Clock divisor for the next level */
151 #define LVL_CLK_SHIFT	3
152 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
153 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
154 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
155 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
156 
157 /*
158  * The time start value for each level to select the bucket at enqueue
159  * time.
160  */
161 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
162 
163 /* Size of each clock level */
164 #define LVL_BITS	6
165 #define LVL_SIZE	(1UL << LVL_BITS)
166 #define LVL_MASK	(LVL_SIZE - 1)
167 #define LVL_OFFS(n)	((n) * LVL_SIZE)
168 
169 /* Level depth */
170 #if HZ > 100
171 # define LVL_DEPTH	9
172 # else
173 # define LVL_DEPTH	8
174 #endif
175 
176 /* The cutoff (max. capacity of the wheel) */
177 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
178 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
179 
180 /*
181  * The resulting wheel size. If NOHZ is configured we allocate two
182  * wheels so we have a separate storage for the deferrable timers.
183  */
184 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
185 
186 #ifdef CONFIG_NO_HZ_COMMON
187 # define NR_BASES	2
188 # define BASE_STD	0
189 # define BASE_DEF	1
190 #else
191 # define NR_BASES	1
192 # define BASE_STD	0
193 # define BASE_DEF	0
194 #endif
195 
196 struct timer_base {
197 	raw_spinlock_t		lock;
198 	struct timer_list	*running_timer;
199 #ifdef CONFIG_PREEMPT_RT
200 	spinlock_t		expiry_lock;
201 	atomic_t		timer_waiters;
202 #endif
203 	unsigned long		clk;
204 	unsigned long		next_expiry;
205 	unsigned int		cpu;
206 	bool			is_idle;
207 	bool			must_forward_clk;
208 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
209 	struct hlist_head	vectors[WHEEL_SIZE];
210 } ____cacheline_aligned;
211 
212 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
213 
214 #ifdef CONFIG_NO_HZ_COMMON
215 
216 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
217 static DEFINE_MUTEX(timer_keys_mutex);
218 
219 static void timer_update_keys(struct work_struct *work);
220 static DECLARE_WORK(timer_update_work, timer_update_keys);
221 
222 #ifdef CONFIG_SMP
223 unsigned int sysctl_timer_migration = 1;
224 
225 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
226 
227 static void timers_update_migration(void)
228 {
229 	if (sysctl_timer_migration && tick_nohz_active)
230 		static_branch_enable(&timers_migration_enabled);
231 	else
232 		static_branch_disable(&timers_migration_enabled);
233 }
234 #else
235 static inline void timers_update_migration(void) { }
236 #endif /* !CONFIG_SMP */
237 
238 static void timer_update_keys(struct work_struct *work)
239 {
240 	mutex_lock(&timer_keys_mutex);
241 	timers_update_migration();
242 	static_branch_enable(&timers_nohz_active);
243 	mutex_unlock(&timer_keys_mutex);
244 }
245 
246 void timers_update_nohz(void)
247 {
248 	schedule_work(&timer_update_work);
249 }
250 
251 int timer_migration_handler(struct ctl_table *table, int write,
252 			    void *buffer, size_t *lenp, loff_t *ppos)
253 {
254 	int ret;
255 
256 	mutex_lock(&timer_keys_mutex);
257 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
258 	if (!ret && write)
259 		timers_update_migration();
260 	mutex_unlock(&timer_keys_mutex);
261 	return ret;
262 }
263 
264 static inline bool is_timers_nohz_active(void)
265 {
266 	return static_branch_unlikely(&timers_nohz_active);
267 }
268 #else
269 static inline bool is_timers_nohz_active(void) { return false; }
270 #endif /* NO_HZ_COMMON */
271 
272 static unsigned long round_jiffies_common(unsigned long j, int cpu,
273 		bool force_up)
274 {
275 	int rem;
276 	unsigned long original = j;
277 
278 	/*
279 	 * We don't want all cpus firing their timers at once hitting the
280 	 * same lock or cachelines, so we skew each extra cpu with an extra
281 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
282 	 * already did this.
283 	 * The skew is done by adding 3*cpunr, then round, then subtract this
284 	 * extra offset again.
285 	 */
286 	j += cpu * 3;
287 
288 	rem = j % HZ;
289 
290 	/*
291 	 * If the target jiffie is just after a whole second (which can happen
292 	 * due to delays of the timer irq, long irq off times etc etc) then
293 	 * we should round down to the whole second, not up. Use 1/4th second
294 	 * as cutoff for this rounding as an extreme upper bound for this.
295 	 * But never round down if @force_up is set.
296 	 */
297 	if (rem < HZ/4 && !force_up) /* round down */
298 		j = j - rem;
299 	else /* round up */
300 		j = j - rem + HZ;
301 
302 	/* now that we have rounded, subtract the extra skew again */
303 	j -= cpu * 3;
304 
305 	/*
306 	 * Make sure j is still in the future. Otherwise return the
307 	 * unmodified value.
308 	 */
309 	return time_is_after_jiffies(j) ? j : original;
310 }
311 
312 /**
313  * __round_jiffies - function to round jiffies to a full second
314  * @j: the time in (absolute) jiffies that should be rounded
315  * @cpu: the processor number on which the timeout will happen
316  *
317  * __round_jiffies() rounds an absolute time in the future (in jiffies)
318  * up or down to (approximately) full seconds. This is useful for timers
319  * for which the exact time they fire does not matter too much, as long as
320  * they fire approximately every X seconds.
321  *
322  * By rounding these timers to whole seconds, all such timers will fire
323  * at the same time, rather than at various times spread out. The goal
324  * of this is to have the CPU wake up less, which saves power.
325  *
326  * The exact rounding is skewed for each processor to avoid all
327  * processors firing at the exact same time, which could lead
328  * to lock contention or spurious cache line bouncing.
329  *
330  * The return value is the rounded version of the @j parameter.
331  */
332 unsigned long __round_jiffies(unsigned long j, int cpu)
333 {
334 	return round_jiffies_common(j, cpu, false);
335 }
336 EXPORT_SYMBOL_GPL(__round_jiffies);
337 
338 /**
339  * __round_jiffies_relative - function to round jiffies to a full second
340  * @j: the time in (relative) jiffies that should be rounded
341  * @cpu: the processor number on which the timeout will happen
342  *
343  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
344  * up or down to (approximately) full seconds. This is useful for timers
345  * for which the exact time they fire does not matter too much, as long as
346  * they fire approximately every X seconds.
347  *
348  * By rounding these timers to whole seconds, all such timers will fire
349  * at the same time, rather than at various times spread out. The goal
350  * of this is to have the CPU wake up less, which saves power.
351  *
352  * The exact rounding is skewed for each processor to avoid all
353  * processors firing at the exact same time, which could lead
354  * to lock contention or spurious cache line bouncing.
355  *
356  * The return value is the rounded version of the @j parameter.
357  */
358 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
359 {
360 	unsigned long j0 = jiffies;
361 
362 	/* Use j0 because jiffies might change while we run */
363 	return round_jiffies_common(j + j0, cpu, false) - j0;
364 }
365 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
366 
367 /**
368  * round_jiffies - function to round jiffies to a full second
369  * @j: the time in (absolute) jiffies that should be rounded
370  *
371  * round_jiffies() rounds an absolute time in the future (in jiffies)
372  * up or down to (approximately) full seconds. This is useful for timers
373  * for which the exact time they fire does not matter too much, as long as
374  * they fire approximately every X seconds.
375  *
376  * By rounding these timers to whole seconds, all such timers will fire
377  * at the same time, rather than at various times spread out. The goal
378  * of this is to have the CPU wake up less, which saves power.
379  *
380  * The return value is the rounded version of the @j parameter.
381  */
382 unsigned long round_jiffies(unsigned long j)
383 {
384 	return round_jiffies_common(j, raw_smp_processor_id(), false);
385 }
386 EXPORT_SYMBOL_GPL(round_jiffies);
387 
388 /**
389  * round_jiffies_relative - function to round jiffies to a full second
390  * @j: the time in (relative) jiffies that should be rounded
391  *
392  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
393  * up or down to (approximately) full seconds. This is useful for timers
394  * for which the exact time they fire does not matter too much, as long as
395  * they fire approximately every X seconds.
396  *
397  * By rounding these timers to whole seconds, all such timers will fire
398  * at the same time, rather than at various times spread out. The goal
399  * of this is to have the CPU wake up less, which saves power.
400  *
401  * The return value is the rounded version of the @j parameter.
402  */
403 unsigned long round_jiffies_relative(unsigned long j)
404 {
405 	return __round_jiffies_relative(j, raw_smp_processor_id());
406 }
407 EXPORT_SYMBOL_GPL(round_jiffies_relative);
408 
409 /**
410  * __round_jiffies_up - function to round jiffies up to a full second
411  * @j: the time in (absolute) jiffies that should be rounded
412  * @cpu: the processor number on which the timeout will happen
413  *
414  * This is the same as __round_jiffies() except that it will never
415  * round down.  This is useful for timeouts for which the exact time
416  * of firing does not matter too much, as long as they don't fire too
417  * early.
418  */
419 unsigned long __round_jiffies_up(unsigned long j, int cpu)
420 {
421 	return round_jiffies_common(j, cpu, true);
422 }
423 EXPORT_SYMBOL_GPL(__round_jiffies_up);
424 
425 /**
426  * __round_jiffies_up_relative - function to round jiffies up to a full second
427  * @j: the time in (relative) jiffies that should be rounded
428  * @cpu: the processor number on which the timeout will happen
429  *
430  * This is the same as __round_jiffies_relative() except that it will never
431  * round down.  This is useful for timeouts for which the exact time
432  * of firing does not matter too much, as long as they don't fire too
433  * early.
434  */
435 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
436 {
437 	unsigned long j0 = jiffies;
438 
439 	/* Use j0 because jiffies might change while we run */
440 	return round_jiffies_common(j + j0, cpu, true) - j0;
441 }
442 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
443 
444 /**
445  * round_jiffies_up - function to round jiffies up to a full second
446  * @j: the time in (absolute) jiffies that should be rounded
447  *
448  * This is the same as round_jiffies() except that it will never
449  * round down.  This is useful for timeouts for which the exact time
450  * of firing does not matter too much, as long as they don't fire too
451  * early.
452  */
453 unsigned long round_jiffies_up(unsigned long j)
454 {
455 	return round_jiffies_common(j, raw_smp_processor_id(), true);
456 }
457 EXPORT_SYMBOL_GPL(round_jiffies_up);
458 
459 /**
460  * round_jiffies_up_relative - function to round jiffies up to a full second
461  * @j: the time in (relative) jiffies that should be rounded
462  *
463  * This is the same as round_jiffies_relative() except that it will never
464  * round down.  This is useful for timeouts for which the exact time
465  * of firing does not matter too much, as long as they don't fire too
466  * early.
467  */
468 unsigned long round_jiffies_up_relative(unsigned long j)
469 {
470 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
471 }
472 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
473 
474 
475 static inline unsigned int timer_get_idx(struct timer_list *timer)
476 {
477 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
478 }
479 
480 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
481 {
482 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
483 			idx << TIMER_ARRAYSHIFT;
484 }
485 
486 /*
487  * Helper function to calculate the array index for a given expiry
488  * time.
489  */
490 static inline unsigned calc_index(unsigned expires, unsigned lvl)
491 {
492 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
493 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
494 }
495 
496 static int calc_wheel_index(unsigned long expires, unsigned long clk)
497 {
498 	unsigned long delta = expires - clk;
499 	unsigned int idx;
500 
501 	if (delta < LVL_START(1)) {
502 		idx = calc_index(expires, 0);
503 	} else if (delta < LVL_START(2)) {
504 		idx = calc_index(expires, 1);
505 	} else if (delta < LVL_START(3)) {
506 		idx = calc_index(expires, 2);
507 	} else if (delta < LVL_START(4)) {
508 		idx = calc_index(expires, 3);
509 	} else if (delta < LVL_START(5)) {
510 		idx = calc_index(expires, 4);
511 	} else if (delta < LVL_START(6)) {
512 		idx = calc_index(expires, 5);
513 	} else if (delta < LVL_START(7)) {
514 		idx = calc_index(expires, 6);
515 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
516 		idx = calc_index(expires, 7);
517 	} else if ((long) delta < 0) {
518 		idx = clk & LVL_MASK;
519 	} else {
520 		/*
521 		 * Force expire obscene large timeouts to expire at the
522 		 * capacity limit of the wheel.
523 		 */
524 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
525 			expires = clk + WHEEL_TIMEOUT_MAX;
526 
527 		idx = calc_index(expires, LVL_DEPTH - 1);
528 	}
529 	return idx;
530 }
531 
532 /*
533  * Enqueue the timer into the hash bucket, mark it pending in
534  * the bitmap and store the index in the timer flags.
535  */
536 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
537 			  unsigned int idx)
538 {
539 	hlist_add_head(&timer->entry, base->vectors + idx);
540 	__set_bit(idx, base->pending_map);
541 	timer_set_idx(timer, idx);
542 
543 	trace_timer_start(timer, timer->expires, timer->flags);
544 }
545 
546 static void
547 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
548 {
549 	unsigned int idx;
550 
551 	idx = calc_wheel_index(timer->expires, base->clk);
552 	enqueue_timer(base, timer, idx);
553 }
554 
555 static void
556 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
557 {
558 	if (!is_timers_nohz_active())
559 		return;
560 
561 	/*
562 	 * TODO: This wants some optimizing similar to the code below, but we
563 	 * will do that when we switch from push to pull for deferrable timers.
564 	 */
565 	if (timer->flags & TIMER_DEFERRABLE) {
566 		if (tick_nohz_full_cpu(base->cpu))
567 			wake_up_nohz_cpu(base->cpu);
568 		return;
569 	}
570 
571 	/*
572 	 * We might have to IPI the remote CPU if the base is idle and the
573 	 * timer is not deferrable. If the other CPU is on the way to idle
574 	 * then it can't set base->is_idle as we hold the base lock:
575 	 */
576 	if (!base->is_idle)
577 		return;
578 
579 	/* Check whether this is the new first expiring timer: */
580 	if (time_after_eq(timer->expires, base->next_expiry))
581 		return;
582 
583 	/*
584 	 * Set the next expiry time and kick the CPU so it can reevaluate the
585 	 * wheel:
586 	 */
587 	if (time_before(timer->expires, base->clk)) {
588 		/*
589 		 * Prevent from forward_timer_base() moving the base->clk
590 		 * backward
591 		 */
592 		base->next_expiry = base->clk;
593 	} else {
594 		base->next_expiry = timer->expires;
595 	}
596 	wake_up_nohz_cpu(base->cpu);
597 }
598 
599 static void
600 internal_add_timer(struct timer_base *base, struct timer_list *timer)
601 {
602 	__internal_add_timer(base, timer);
603 	trigger_dyntick_cpu(base, timer);
604 }
605 
606 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
607 
608 static struct debug_obj_descr timer_debug_descr;
609 
610 static void *timer_debug_hint(void *addr)
611 {
612 	return ((struct timer_list *) addr)->function;
613 }
614 
615 static bool timer_is_static_object(void *addr)
616 {
617 	struct timer_list *timer = addr;
618 
619 	return (timer->entry.pprev == NULL &&
620 		timer->entry.next == TIMER_ENTRY_STATIC);
621 }
622 
623 /*
624  * fixup_init is called when:
625  * - an active object is initialized
626  */
627 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
628 {
629 	struct timer_list *timer = addr;
630 
631 	switch (state) {
632 	case ODEBUG_STATE_ACTIVE:
633 		del_timer_sync(timer);
634 		debug_object_init(timer, &timer_debug_descr);
635 		return true;
636 	default:
637 		return false;
638 	}
639 }
640 
641 /* Stub timer callback for improperly used timers. */
642 static void stub_timer(struct timer_list *unused)
643 {
644 	WARN_ON(1);
645 }
646 
647 /*
648  * fixup_activate is called when:
649  * - an active object is activated
650  * - an unknown non-static object is activated
651  */
652 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
653 {
654 	struct timer_list *timer = addr;
655 
656 	switch (state) {
657 	case ODEBUG_STATE_NOTAVAILABLE:
658 		timer_setup(timer, stub_timer, 0);
659 		return true;
660 
661 	case ODEBUG_STATE_ACTIVE:
662 		WARN_ON(1);
663 		/* fall through */
664 	default:
665 		return false;
666 	}
667 }
668 
669 /*
670  * fixup_free is called when:
671  * - an active object is freed
672  */
673 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
674 {
675 	struct timer_list *timer = addr;
676 
677 	switch (state) {
678 	case ODEBUG_STATE_ACTIVE:
679 		del_timer_sync(timer);
680 		debug_object_free(timer, &timer_debug_descr);
681 		return true;
682 	default:
683 		return false;
684 	}
685 }
686 
687 /*
688  * fixup_assert_init is called when:
689  * - an untracked/uninit-ed object is found
690  */
691 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
692 {
693 	struct timer_list *timer = addr;
694 
695 	switch (state) {
696 	case ODEBUG_STATE_NOTAVAILABLE:
697 		timer_setup(timer, stub_timer, 0);
698 		return true;
699 	default:
700 		return false;
701 	}
702 }
703 
704 static struct debug_obj_descr timer_debug_descr = {
705 	.name			= "timer_list",
706 	.debug_hint		= timer_debug_hint,
707 	.is_static_object	= timer_is_static_object,
708 	.fixup_init		= timer_fixup_init,
709 	.fixup_activate		= timer_fixup_activate,
710 	.fixup_free		= timer_fixup_free,
711 	.fixup_assert_init	= timer_fixup_assert_init,
712 };
713 
714 static inline void debug_timer_init(struct timer_list *timer)
715 {
716 	debug_object_init(timer, &timer_debug_descr);
717 }
718 
719 static inline void debug_timer_activate(struct timer_list *timer)
720 {
721 	debug_object_activate(timer, &timer_debug_descr);
722 }
723 
724 static inline void debug_timer_deactivate(struct timer_list *timer)
725 {
726 	debug_object_deactivate(timer, &timer_debug_descr);
727 }
728 
729 static inline void debug_timer_free(struct timer_list *timer)
730 {
731 	debug_object_free(timer, &timer_debug_descr);
732 }
733 
734 static inline void debug_timer_assert_init(struct timer_list *timer)
735 {
736 	debug_object_assert_init(timer, &timer_debug_descr);
737 }
738 
739 static void do_init_timer(struct timer_list *timer,
740 			  void (*func)(struct timer_list *),
741 			  unsigned int flags,
742 			  const char *name, struct lock_class_key *key);
743 
744 void init_timer_on_stack_key(struct timer_list *timer,
745 			     void (*func)(struct timer_list *),
746 			     unsigned int flags,
747 			     const char *name, struct lock_class_key *key)
748 {
749 	debug_object_init_on_stack(timer, &timer_debug_descr);
750 	do_init_timer(timer, func, flags, name, key);
751 }
752 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
753 
754 void destroy_timer_on_stack(struct timer_list *timer)
755 {
756 	debug_object_free(timer, &timer_debug_descr);
757 }
758 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
759 
760 #else
761 static inline void debug_timer_init(struct timer_list *timer) { }
762 static inline void debug_timer_activate(struct timer_list *timer) { }
763 static inline void debug_timer_deactivate(struct timer_list *timer) { }
764 static inline void debug_timer_assert_init(struct timer_list *timer) { }
765 #endif
766 
767 static inline void debug_init(struct timer_list *timer)
768 {
769 	debug_timer_init(timer);
770 	trace_timer_init(timer);
771 }
772 
773 static inline void debug_deactivate(struct timer_list *timer)
774 {
775 	debug_timer_deactivate(timer);
776 	trace_timer_cancel(timer);
777 }
778 
779 static inline void debug_assert_init(struct timer_list *timer)
780 {
781 	debug_timer_assert_init(timer);
782 }
783 
784 static void do_init_timer(struct timer_list *timer,
785 			  void (*func)(struct timer_list *),
786 			  unsigned int flags,
787 			  const char *name, struct lock_class_key *key)
788 {
789 	timer->entry.pprev = NULL;
790 	timer->function = func;
791 	timer->flags = flags | raw_smp_processor_id();
792 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
793 }
794 
795 /**
796  * init_timer_key - initialize a timer
797  * @timer: the timer to be initialized
798  * @func: timer callback function
799  * @flags: timer flags
800  * @name: name of the timer
801  * @key: lockdep class key of the fake lock used for tracking timer
802  *       sync lock dependencies
803  *
804  * init_timer_key() must be done to a timer prior calling *any* of the
805  * other timer functions.
806  */
807 void init_timer_key(struct timer_list *timer,
808 		    void (*func)(struct timer_list *), unsigned int flags,
809 		    const char *name, struct lock_class_key *key)
810 {
811 	debug_init(timer);
812 	do_init_timer(timer, func, flags, name, key);
813 }
814 EXPORT_SYMBOL(init_timer_key);
815 
816 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
817 {
818 	struct hlist_node *entry = &timer->entry;
819 
820 	debug_deactivate(timer);
821 
822 	__hlist_del(entry);
823 	if (clear_pending)
824 		entry->pprev = NULL;
825 	entry->next = LIST_POISON2;
826 }
827 
828 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
829 			     bool clear_pending)
830 {
831 	unsigned idx = timer_get_idx(timer);
832 
833 	if (!timer_pending(timer))
834 		return 0;
835 
836 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
837 		__clear_bit(idx, base->pending_map);
838 
839 	detach_timer(timer, clear_pending);
840 	return 1;
841 }
842 
843 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
844 {
845 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
846 
847 	/*
848 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
849 	 * to use the deferrable base.
850 	 */
851 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
852 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
853 	return base;
854 }
855 
856 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
857 {
858 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
859 
860 	/*
861 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
862 	 * to use the deferrable base.
863 	 */
864 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
865 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
866 	return base;
867 }
868 
869 static inline struct timer_base *get_timer_base(u32 tflags)
870 {
871 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
872 }
873 
874 static inline struct timer_base *
875 get_target_base(struct timer_base *base, unsigned tflags)
876 {
877 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
878 	if (static_branch_likely(&timers_migration_enabled) &&
879 	    !(tflags & TIMER_PINNED))
880 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
881 #endif
882 	return get_timer_this_cpu_base(tflags);
883 }
884 
885 static inline void forward_timer_base(struct timer_base *base)
886 {
887 #ifdef CONFIG_NO_HZ_COMMON
888 	unsigned long jnow;
889 
890 	/*
891 	 * We only forward the base when we are idle or have just come out of
892 	 * idle (must_forward_clk logic), and have a delta between base clock
893 	 * and jiffies. In the common case, run_timers will take care of it.
894 	 */
895 	if (likely(!base->must_forward_clk))
896 		return;
897 
898 	jnow = READ_ONCE(jiffies);
899 	base->must_forward_clk = base->is_idle;
900 	if ((long)(jnow - base->clk) < 2)
901 		return;
902 
903 	/*
904 	 * If the next expiry value is > jiffies, then we fast forward to
905 	 * jiffies otherwise we forward to the next expiry value.
906 	 */
907 	if (time_after(base->next_expiry, jnow)) {
908 		base->clk = jnow;
909 	} else {
910 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
911 			return;
912 		base->clk = base->next_expiry;
913 	}
914 #endif
915 }
916 
917 
918 /*
919  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
920  * that all timers which are tied to this base are locked, and the base itself
921  * is locked too.
922  *
923  * So __run_timers/migrate_timers can safely modify all timers which could
924  * be found in the base->vectors array.
925  *
926  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
927  * to wait until the migration is done.
928  */
929 static struct timer_base *lock_timer_base(struct timer_list *timer,
930 					  unsigned long *flags)
931 	__acquires(timer->base->lock)
932 {
933 	for (;;) {
934 		struct timer_base *base;
935 		u32 tf;
936 
937 		/*
938 		 * We need to use READ_ONCE() here, otherwise the compiler
939 		 * might re-read @tf between the check for TIMER_MIGRATING
940 		 * and spin_lock().
941 		 */
942 		tf = READ_ONCE(timer->flags);
943 
944 		if (!(tf & TIMER_MIGRATING)) {
945 			base = get_timer_base(tf);
946 			raw_spin_lock_irqsave(&base->lock, *flags);
947 			if (timer->flags == tf)
948 				return base;
949 			raw_spin_unlock_irqrestore(&base->lock, *flags);
950 		}
951 		cpu_relax();
952 	}
953 }
954 
955 #define MOD_TIMER_PENDING_ONLY		0x01
956 #define MOD_TIMER_REDUCE		0x02
957 #define MOD_TIMER_NOTPENDING		0x04
958 
959 static inline int
960 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
961 {
962 	struct timer_base *base, *new_base;
963 	unsigned int idx = UINT_MAX;
964 	unsigned long clk = 0, flags;
965 	int ret = 0;
966 
967 	BUG_ON(!timer->function);
968 
969 	/*
970 	 * This is a common optimization triggered by the networking code - if
971 	 * the timer is re-modified to have the same timeout or ends up in the
972 	 * same array bucket then just return:
973 	 */
974 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
975 		/*
976 		 * The downside of this optimization is that it can result in
977 		 * larger granularity than you would get from adding a new
978 		 * timer with this expiry.
979 		 */
980 		long diff = timer->expires - expires;
981 
982 		if (!diff)
983 			return 1;
984 		if (options & MOD_TIMER_REDUCE && diff <= 0)
985 			return 1;
986 
987 		/*
988 		 * We lock timer base and calculate the bucket index right
989 		 * here. If the timer ends up in the same bucket, then we
990 		 * just update the expiry time and avoid the whole
991 		 * dequeue/enqueue dance.
992 		 */
993 		base = lock_timer_base(timer, &flags);
994 		forward_timer_base(base);
995 
996 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
997 		    time_before_eq(timer->expires, expires)) {
998 			ret = 1;
999 			goto out_unlock;
1000 		}
1001 
1002 		clk = base->clk;
1003 		idx = calc_wheel_index(expires, clk);
1004 
1005 		/*
1006 		 * Retrieve and compare the array index of the pending
1007 		 * timer. If it matches set the expiry to the new value so a
1008 		 * subsequent call will exit in the expires check above.
1009 		 */
1010 		if (idx == timer_get_idx(timer)) {
1011 			if (!(options & MOD_TIMER_REDUCE))
1012 				timer->expires = expires;
1013 			else if (time_after(timer->expires, expires))
1014 				timer->expires = expires;
1015 			ret = 1;
1016 			goto out_unlock;
1017 		}
1018 	} else {
1019 		base = lock_timer_base(timer, &flags);
1020 		forward_timer_base(base);
1021 	}
1022 
1023 	ret = detach_if_pending(timer, base, false);
1024 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1025 		goto out_unlock;
1026 
1027 	new_base = get_target_base(base, timer->flags);
1028 
1029 	if (base != new_base) {
1030 		/*
1031 		 * We are trying to schedule the timer on the new base.
1032 		 * However we can't change timer's base while it is running,
1033 		 * otherwise del_timer_sync() can't detect that the timer's
1034 		 * handler yet has not finished. This also guarantees that the
1035 		 * timer is serialized wrt itself.
1036 		 */
1037 		if (likely(base->running_timer != timer)) {
1038 			/* See the comment in lock_timer_base() */
1039 			timer->flags |= TIMER_MIGRATING;
1040 
1041 			raw_spin_unlock(&base->lock);
1042 			base = new_base;
1043 			raw_spin_lock(&base->lock);
1044 			WRITE_ONCE(timer->flags,
1045 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1046 			forward_timer_base(base);
1047 		}
1048 	}
1049 
1050 	debug_timer_activate(timer);
1051 
1052 	timer->expires = expires;
1053 	/*
1054 	 * If 'idx' was calculated above and the base time did not advance
1055 	 * between calculating 'idx' and possibly switching the base, only
1056 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1057 	 * we need to (re)calculate the wheel index via
1058 	 * internal_add_timer().
1059 	 */
1060 	if (idx != UINT_MAX && clk == base->clk) {
1061 		enqueue_timer(base, timer, idx);
1062 		trigger_dyntick_cpu(base, timer);
1063 	} else {
1064 		internal_add_timer(base, timer);
1065 	}
1066 
1067 out_unlock:
1068 	raw_spin_unlock_irqrestore(&base->lock, flags);
1069 
1070 	return ret;
1071 }
1072 
1073 /**
1074  * mod_timer_pending - modify a pending timer's timeout
1075  * @timer: the pending timer to be modified
1076  * @expires: new timeout in jiffies
1077  *
1078  * mod_timer_pending() is the same for pending timers as mod_timer(),
1079  * but will not re-activate and modify already deleted timers.
1080  *
1081  * It is useful for unserialized use of timers.
1082  */
1083 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1084 {
1085 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1086 }
1087 EXPORT_SYMBOL(mod_timer_pending);
1088 
1089 /**
1090  * mod_timer - modify a timer's timeout
1091  * @timer: the timer to be modified
1092  * @expires: new timeout in jiffies
1093  *
1094  * mod_timer() is a more efficient way to update the expire field of an
1095  * active timer (if the timer is inactive it will be activated)
1096  *
1097  * mod_timer(timer, expires) is equivalent to:
1098  *
1099  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1100  *
1101  * Note that if there are multiple unserialized concurrent users of the
1102  * same timer, then mod_timer() is the only safe way to modify the timeout,
1103  * since add_timer() cannot modify an already running timer.
1104  *
1105  * The function returns whether it has modified a pending timer or not.
1106  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1107  * active timer returns 1.)
1108  */
1109 int mod_timer(struct timer_list *timer, unsigned long expires)
1110 {
1111 	return __mod_timer(timer, expires, 0);
1112 }
1113 EXPORT_SYMBOL(mod_timer);
1114 
1115 /**
1116  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1117  * @timer:	The timer to be modified
1118  * @expires:	New timeout in jiffies
1119  *
1120  * timer_reduce() is very similar to mod_timer(), except that it will only
1121  * modify a running timer if that would reduce the expiration time (it will
1122  * start a timer that isn't running).
1123  */
1124 int timer_reduce(struct timer_list *timer, unsigned long expires)
1125 {
1126 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1127 }
1128 EXPORT_SYMBOL(timer_reduce);
1129 
1130 /**
1131  * add_timer - start a timer
1132  * @timer: the timer to be added
1133  *
1134  * The kernel will do a ->function(@timer) callback from the
1135  * timer interrupt at the ->expires point in the future. The
1136  * current time is 'jiffies'.
1137  *
1138  * The timer's ->expires, ->function fields must be set prior calling this
1139  * function.
1140  *
1141  * Timers with an ->expires field in the past will be executed in the next
1142  * timer tick.
1143  */
1144 void add_timer(struct timer_list *timer)
1145 {
1146 	BUG_ON(timer_pending(timer));
1147 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1148 }
1149 EXPORT_SYMBOL(add_timer);
1150 
1151 /**
1152  * add_timer_on - start a timer on a particular CPU
1153  * @timer: the timer to be added
1154  * @cpu: the CPU to start it on
1155  *
1156  * This is not very scalable on SMP. Double adds are not possible.
1157  */
1158 void add_timer_on(struct timer_list *timer, int cpu)
1159 {
1160 	struct timer_base *new_base, *base;
1161 	unsigned long flags;
1162 
1163 	BUG_ON(timer_pending(timer) || !timer->function);
1164 
1165 	new_base = get_timer_cpu_base(timer->flags, cpu);
1166 
1167 	/*
1168 	 * If @timer was on a different CPU, it should be migrated with the
1169 	 * old base locked to prevent other operations proceeding with the
1170 	 * wrong base locked.  See lock_timer_base().
1171 	 */
1172 	base = lock_timer_base(timer, &flags);
1173 	if (base != new_base) {
1174 		timer->flags |= TIMER_MIGRATING;
1175 
1176 		raw_spin_unlock(&base->lock);
1177 		base = new_base;
1178 		raw_spin_lock(&base->lock);
1179 		WRITE_ONCE(timer->flags,
1180 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1181 	}
1182 	forward_timer_base(base);
1183 
1184 	debug_timer_activate(timer);
1185 	internal_add_timer(base, timer);
1186 	raw_spin_unlock_irqrestore(&base->lock, flags);
1187 }
1188 EXPORT_SYMBOL_GPL(add_timer_on);
1189 
1190 /**
1191  * del_timer - deactivate a timer.
1192  * @timer: the timer to be deactivated
1193  *
1194  * del_timer() deactivates a timer - this works on both active and inactive
1195  * timers.
1196  *
1197  * The function returns whether it has deactivated a pending timer or not.
1198  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1199  * active timer returns 1.)
1200  */
1201 int del_timer(struct timer_list *timer)
1202 {
1203 	struct timer_base *base;
1204 	unsigned long flags;
1205 	int ret = 0;
1206 
1207 	debug_assert_init(timer);
1208 
1209 	if (timer_pending(timer)) {
1210 		base = lock_timer_base(timer, &flags);
1211 		ret = detach_if_pending(timer, base, true);
1212 		raw_spin_unlock_irqrestore(&base->lock, flags);
1213 	}
1214 
1215 	return ret;
1216 }
1217 EXPORT_SYMBOL(del_timer);
1218 
1219 /**
1220  * try_to_del_timer_sync - Try to deactivate a timer
1221  * @timer: timer to delete
1222  *
1223  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1224  * exit the timer is not queued and the handler is not running on any CPU.
1225  */
1226 int try_to_del_timer_sync(struct timer_list *timer)
1227 {
1228 	struct timer_base *base;
1229 	unsigned long flags;
1230 	int ret = -1;
1231 
1232 	debug_assert_init(timer);
1233 
1234 	base = lock_timer_base(timer, &flags);
1235 
1236 	if (base->running_timer != timer)
1237 		ret = detach_if_pending(timer, base, true);
1238 
1239 	raw_spin_unlock_irqrestore(&base->lock, flags);
1240 
1241 	return ret;
1242 }
1243 EXPORT_SYMBOL(try_to_del_timer_sync);
1244 
1245 #ifdef CONFIG_PREEMPT_RT
1246 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1247 {
1248 	spin_lock_init(&base->expiry_lock);
1249 }
1250 
1251 static inline void timer_base_lock_expiry(struct timer_base *base)
1252 {
1253 	spin_lock(&base->expiry_lock);
1254 }
1255 
1256 static inline void timer_base_unlock_expiry(struct timer_base *base)
1257 {
1258 	spin_unlock(&base->expiry_lock);
1259 }
1260 
1261 /*
1262  * The counterpart to del_timer_wait_running().
1263  *
1264  * If there is a waiter for base->expiry_lock, then it was waiting for the
1265  * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1266  * the waiter to acquire the lock and make progress.
1267  */
1268 static void timer_sync_wait_running(struct timer_base *base)
1269 {
1270 	if (atomic_read(&base->timer_waiters)) {
1271 		spin_unlock(&base->expiry_lock);
1272 		spin_lock(&base->expiry_lock);
1273 	}
1274 }
1275 
1276 /*
1277  * This function is called on PREEMPT_RT kernels when the fast path
1278  * deletion of a timer failed because the timer callback function was
1279  * running.
1280  *
1281  * This prevents priority inversion, if the softirq thread on a remote CPU
1282  * got preempted, and it prevents a life lock when the task which tries to
1283  * delete a timer preempted the softirq thread running the timer callback
1284  * function.
1285  */
1286 static void del_timer_wait_running(struct timer_list *timer)
1287 {
1288 	u32 tf;
1289 
1290 	tf = READ_ONCE(timer->flags);
1291 	if (!(tf & TIMER_MIGRATING)) {
1292 		struct timer_base *base = get_timer_base(tf);
1293 
1294 		/*
1295 		 * Mark the base as contended and grab the expiry lock,
1296 		 * which is held by the softirq across the timer
1297 		 * callback. Drop the lock immediately so the softirq can
1298 		 * expire the next timer. In theory the timer could already
1299 		 * be running again, but that's more than unlikely and just
1300 		 * causes another wait loop.
1301 		 */
1302 		atomic_inc(&base->timer_waiters);
1303 		spin_lock_bh(&base->expiry_lock);
1304 		atomic_dec(&base->timer_waiters);
1305 		spin_unlock_bh(&base->expiry_lock);
1306 	}
1307 }
1308 #else
1309 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1310 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1311 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1312 static inline void timer_sync_wait_running(struct timer_base *base) { }
1313 static inline void del_timer_wait_running(struct timer_list *timer) { }
1314 #endif
1315 
1316 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1317 /**
1318  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1319  * @timer: the timer to be deactivated
1320  *
1321  * This function only differs from del_timer() on SMP: besides deactivating
1322  * the timer it also makes sure the handler has finished executing on other
1323  * CPUs.
1324  *
1325  * Synchronization rules: Callers must prevent restarting of the timer,
1326  * otherwise this function is meaningless. It must not be called from
1327  * interrupt contexts unless the timer is an irqsafe one. The caller must
1328  * not hold locks which would prevent completion of the timer's
1329  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1330  * timer is not queued and the handler is not running on any CPU.
1331  *
1332  * Note: For !irqsafe timers, you must not hold locks that are held in
1333  *   interrupt context while calling this function. Even if the lock has
1334  *   nothing to do with the timer in question.  Here's why::
1335  *
1336  *    CPU0                             CPU1
1337  *    ----                             ----
1338  *                                     <SOFTIRQ>
1339  *                                       call_timer_fn();
1340  *                                       base->running_timer = mytimer;
1341  *    spin_lock_irq(somelock);
1342  *                                     <IRQ>
1343  *                                        spin_lock(somelock);
1344  *    del_timer_sync(mytimer);
1345  *    while (base->running_timer == mytimer);
1346  *
1347  * Now del_timer_sync() will never return and never release somelock.
1348  * The interrupt on the other CPU is waiting to grab somelock but
1349  * it has interrupted the softirq that CPU0 is waiting to finish.
1350  *
1351  * The function returns whether it has deactivated a pending timer or not.
1352  */
1353 int del_timer_sync(struct timer_list *timer)
1354 {
1355 	int ret;
1356 
1357 #ifdef CONFIG_LOCKDEP
1358 	unsigned long flags;
1359 
1360 	/*
1361 	 * If lockdep gives a backtrace here, please reference
1362 	 * the synchronization rules above.
1363 	 */
1364 	local_irq_save(flags);
1365 	lock_map_acquire(&timer->lockdep_map);
1366 	lock_map_release(&timer->lockdep_map);
1367 	local_irq_restore(flags);
1368 #endif
1369 	/*
1370 	 * don't use it in hardirq context, because it
1371 	 * could lead to deadlock.
1372 	 */
1373 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1374 
1375 	do {
1376 		ret = try_to_del_timer_sync(timer);
1377 
1378 		if (unlikely(ret < 0)) {
1379 			del_timer_wait_running(timer);
1380 			cpu_relax();
1381 		}
1382 	} while (ret < 0);
1383 
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL(del_timer_sync);
1387 #endif
1388 
1389 static void call_timer_fn(struct timer_list *timer,
1390 			  void (*fn)(struct timer_list *),
1391 			  unsigned long baseclk)
1392 {
1393 	int count = preempt_count();
1394 
1395 #ifdef CONFIG_LOCKDEP
1396 	/*
1397 	 * It is permissible to free the timer from inside the
1398 	 * function that is called from it, this we need to take into
1399 	 * account for lockdep too. To avoid bogus "held lock freed"
1400 	 * warnings as well as problems when looking into
1401 	 * timer->lockdep_map, make a copy and use that here.
1402 	 */
1403 	struct lockdep_map lockdep_map;
1404 
1405 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1406 #endif
1407 	/*
1408 	 * Couple the lock chain with the lock chain at
1409 	 * del_timer_sync() by acquiring the lock_map around the fn()
1410 	 * call here and in del_timer_sync().
1411 	 */
1412 	lock_map_acquire(&lockdep_map);
1413 
1414 	trace_timer_expire_entry(timer, baseclk);
1415 	fn(timer);
1416 	trace_timer_expire_exit(timer);
1417 
1418 	lock_map_release(&lockdep_map);
1419 
1420 	if (count != preempt_count()) {
1421 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1422 			  fn, count, preempt_count());
1423 		/*
1424 		 * Restore the preempt count. That gives us a decent
1425 		 * chance to survive and extract information. If the
1426 		 * callback kept a lock held, bad luck, but not worse
1427 		 * than the BUG() we had.
1428 		 */
1429 		preempt_count_set(count);
1430 	}
1431 }
1432 
1433 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1434 {
1435 	/*
1436 	 * This value is required only for tracing. base->clk was
1437 	 * incremented directly before expire_timers was called. But expiry
1438 	 * is related to the old base->clk value.
1439 	 */
1440 	unsigned long baseclk = base->clk - 1;
1441 
1442 	while (!hlist_empty(head)) {
1443 		struct timer_list *timer;
1444 		void (*fn)(struct timer_list *);
1445 
1446 		timer = hlist_entry(head->first, struct timer_list, entry);
1447 
1448 		base->running_timer = timer;
1449 		detach_timer(timer, true);
1450 
1451 		fn = timer->function;
1452 
1453 		if (timer->flags & TIMER_IRQSAFE) {
1454 			raw_spin_unlock(&base->lock);
1455 			call_timer_fn(timer, fn, baseclk);
1456 			base->running_timer = NULL;
1457 			raw_spin_lock(&base->lock);
1458 		} else {
1459 			raw_spin_unlock_irq(&base->lock);
1460 			call_timer_fn(timer, fn, baseclk);
1461 			base->running_timer = NULL;
1462 			timer_sync_wait_running(base);
1463 			raw_spin_lock_irq(&base->lock);
1464 		}
1465 	}
1466 }
1467 
1468 static int __collect_expired_timers(struct timer_base *base,
1469 				    struct hlist_head *heads)
1470 {
1471 	unsigned long clk = base->clk;
1472 	struct hlist_head *vec;
1473 	int i, levels = 0;
1474 	unsigned int idx;
1475 
1476 	for (i = 0; i < LVL_DEPTH; i++) {
1477 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1478 
1479 		if (__test_and_clear_bit(idx, base->pending_map)) {
1480 			vec = base->vectors + idx;
1481 			hlist_move_list(vec, heads++);
1482 			levels++;
1483 		}
1484 		/* Is it time to look at the next level? */
1485 		if (clk & LVL_CLK_MASK)
1486 			break;
1487 		/* Shift clock for the next level granularity */
1488 		clk >>= LVL_CLK_SHIFT;
1489 	}
1490 	return levels;
1491 }
1492 
1493 #ifdef CONFIG_NO_HZ_COMMON
1494 /*
1495  * Find the next pending bucket of a level. Search from level start (@offset)
1496  * + @clk upwards and if nothing there, search from start of the level
1497  * (@offset) up to @offset + clk.
1498  */
1499 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1500 			       unsigned clk)
1501 {
1502 	unsigned pos, start = offset + clk;
1503 	unsigned end = offset + LVL_SIZE;
1504 
1505 	pos = find_next_bit(base->pending_map, end, start);
1506 	if (pos < end)
1507 		return pos - start;
1508 
1509 	pos = find_next_bit(base->pending_map, start, offset);
1510 	return pos < start ? pos + LVL_SIZE - start : -1;
1511 }
1512 
1513 /*
1514  * Search the first expiring timer in the various clock levels. Caller must
1515  * hold base->lock.
1516  */
1517 static unsigned long __next_timer_interrupt(struct timer_base *base)
1518 {
1519 	unsigned long clk, next, adj;
1520 	unsigned lvl, offset = 0;
1521 
1522 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1523 	clk = base->clk;
1524 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1525 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1526 
1527 		if (pos >= 0) {
1528 			unsigned long tmp = clk + (unsigned long) pos;
1529 
1530 			tmp <<= LVL_SHIFT(lvl);
1531 			if (time_before(tmp, next))
1532 				next = tmp;
1533 		}
1534 		/*
1535 		 * Clock for the next level. If the current level clock lower
1536 		 * bits are zero, we look at the next level as is. If not we
1537 		 * need to advance it by one because that's going to be the
1538 		 * next expiring bucket in that level. base->clk is the next
1539 		 * expiring jiffie. So in case of:
1540 		 *
1541 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1542 		 *  0    0    0    0    0    0
1543 		 *
1544 		 * we have to look at all levels @index 0. With
1545 		 *
1546 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1547 		 *  0    0    0    0    0    2
1548 		 *
1549 		 * LVL0 has the next expiring bucket @index 2. The upper
1550 		 * levels have the next expiring bucket @index 1.
1551 		 *
1552 		 * In case that the propagation wraps the next level the same
1553 		 * rules apply:
1554 		 *
1555 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1556 		 *  0    0    0    0    F    2
1557 		 *
1558 		 * So after looking at LVL0 we get:
1559 		 *
1560 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1561 		 *  0    0    0    1    0
1562 		 *
1563 		 * So no propagation from LVL1 to LVL2 because that happened
1564 		 * with the add already, but then we need to propagate further
1565 		 * from LVL2 to LVL3.
1566 		 *
1567 		 * So the simple check whether the lower bits of the current
1568 		 * level are 0 or not is sufficient for all cases.
1569 		 */
1570 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1571 		clk >>= LVL_CLK_SHIFT;
1572 		clk += adj;
1573 	}
1574 	return next;
1575 }
1576 
1577 /*
1578  * Check, if the next hrtimer event is before the next timer wheel
1579  * event:
1580  */
1581 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1582 {
1583 	u64 nextevt = hrtimer_get_next_event();
1584 
1585 	/*
1586 	 * If high resolution timers are enabled
1587 	 * hrtimer_get_next_event() returns KTIME_MAX.
1588 	 */
1589 	if (expires <= nextevt)
1590 		return expires;
1591 
1592 	/*
1593 	 * If the next timer is already expired, return the tick base
1594 	 * time so the tick is fired immediately.
1595 	 */
1596 	if (nextevt <= basem)
1597 		return basem;
1598 
1599 	/*
1600 	 * Round up to the next jiffie. High resolution timers are
1601 	 * off, so the hrtimers are expired in the tick and we need to
1602 	 * make sure that this tick really expires the timer to avoid
1603 	 * a ping pong of the nohz stop code.
1604 	 *
1605 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1606 	 */
1607 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1608 }
1609 
1610 /**
1611  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1612  * @basej:	base time jiffies
1613  * @basem:	base time clock monotonic
1614  *
1615  * Returns the tick aligned clock monotonic time of the next pending
1616  * timer or KTIME_MAX if no timer is pending.
1617  */
1618 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1619 {
1620 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1621 	u64 expires = KTIME_MAX;
1622 	unsigned long nextevt;
1623 	bool is_max_delta;
1624 
1625 	/*
1626 	 * Pretend that there is no timer pending if the cpu is offline.
1627 	 * Possible pending timers will be migrated later to an active cpu.
1628 	 */
1629 	if (cpu_is_offline(smp_processor_id()))
1630 		return expires;
1631 
1632 	raw_spin_lock(&base->lock);
1633 	nextevt = __next_timer_interrupt(base);
1634 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1635 	base->next_expiry = nextevt;
1636 	/*
1637 	 * We have a fresh next event. Check whether we can forward the
1638 	 * base. We can only do that when @basej is past base->clk
1639 	 * otherwise we might rewind base->clk.
1640 	 */
1641 	if (time_after(basej, base->clk)) {
1642 		if (time_after(nextevt, basej))
1643 			base->clk = basej;
1644 		else if (time_after(nextevt, base->clk))
1645 			base->clk = nextevt;
1646 	}
1647 
1648 	if (time_before_eq(nextevt, basej)) {
1649 		expires = basem;
1650 		base->is_idle = false;
1651 	} else {
1652 		if (!is_max_delta)
1653 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1654 		/*
1655 		 * If we expect to sleep more than a tick, mark the base idle.
1656 		 * Also the tick is stopped so any added timer must forward
1657 		 * the base clk itself to keep granularity small. This idle
1658 		 * logic is only maintained for the BASE_STD base, deferrable
1659 		 * timers may still see large granularity skew (by design).
1660 		 */
1661 		if ((expires - basem) > TICK_NSEC) {
1662 			base->must_forward_clk = true;
1663 			base->is_idle = true;
1664 		}
1665 	}
1666 	raw_spin_unlock(&base->lock);
1667 
1668 	return cmp_next_hrtimer_event(basem, expires);
1669 }
1670 
1671 /**
1672  * timer_clear_idle - Clear the idle state of the timer base
1673  *
1674  * Called with interrupts disabled
1675  */
1676 void timer_clear_idle(void)
1677 {
1678 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1679 
1680 	/*
1681 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1682 	 * a pointless IPI, but taking the lock would just make the window for
1683 	 * sending the IPI a few instructions smaller for the cost of taking
1684 	 * the lock in the exit from idle path.
1685 	 */
1686 	base->is_idle = false;
1687 }
1688 
1689 static int collect_expired_timers(struct timer_base *base,
1690 				  struct hlist_head *heads)
1691 {
1692 	unsigned long now = READ_ONCE(jiffies);
1693 
1694 	/*
1695 	 * NOHZ optimization. After a long idle sleep we need to forward the
1696 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1697 	 * the next expiring timer.
1698 	 */
1699 	if ((long)(now - base->clk) > 2) {
1700 		unsigned long next = __next_timer_interrupt(base);
1701 
1702 		/*
1703 		 * If the next timer is ahead of time forward to current
1704 		 * jiffies, otherwise forward to the next expiry time:
1705 		 */
1706 		if (time_after(next, now)) {
1707 			/*
1708 			 * The call site will increment base->clk and then
1709 			 * terminate the expiry loop immediately.
1710 			 */
1711 			base->clk = now;
1712 			return 0;
1713 		}
1714 		base->clk = next;
1715 	}
1716 	return __collect_expired_timers(base, heads);
1717 }
1718 #else
1719 static inline int collect_expired_timers(struct timer_base *base,
1720 					 struct hlist_head *heads)
1721 {
1722 	return __collect_expired_timers(base, heads);
1723 }
1724 #endif
1725 
1726 /*
1727  * Called from the timer interrupt handler to charge one tick to the current
1728  * process.  user_tick is 1 if the tick is user time, 0 for system.
1729  */
1730 void update_process_times(int user_tick)
1731 {
1732 	struct task_struct *p = current;
1733 
1734 	/* Note: this timer irq context must be accounted for as well. */
1735 	account_process_tick(p, user_tick);
1736 	run_local_timers();
1737 	rcu_sched_clock_irq(user_tick);
1738 #ifdef CONFIG_IRQ_WORK
1739 	if (in_irq())
1740 		irq_work_tick();
1741 #endif
1742 	scheduler_tick();
1743 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1744 		run_posix_cpu_timers();
1745 }
1746 
1747 /**
1748  * __run_timers - run all expired timers (if any) on this CPU.
1749  * @base: the timer vector to be processed.
1750  */
1751 static inline void __run_timers(struct timer_base *base)
1752 {
1753 	struct hlist_head heads[LVL_DEPTH];
1754 	int levels;
1755 
1756 	if (!time_after_eq(jiffies, base->clk))
1757 		return;
1758 
1759 	timer_base_lock_expiry(base);
1760 	raw_spin_lock_irq(&base->lock);
1761 
1762 	/*
1763 	 * timer_base::must_forward_clk must be cleared before running
1764 	 * timers so that any timer functions that call mod_timer() will
1765 	 * not try to forward the base. Idle tracking / clock forwarding
1766 	 * logic is only used with BASE_STD timers.
1767 	 *
1768 	 * The must_forward_clk flag is cleared unconditionally also for
1769 	 * the deferrable base. The deferrable base is not affected by idle
1770 	 * tracking and never forwarded, so clearing the flag is a NOOP.
1771 	 *
1772 	 * The fact that the deferrable base is never forwarded can cause
1773 	 * large variations in granularity for deferrable timers, but they
1774 	 * can be deferred for long periods due to idle anyway.
1775 	 */
1776 	base->must_forward_clk = false;
1777 
1778 	while (time_after_eq(jiffies, base->clk)) {
1779 
1780 		levels = collect_expired_timers(base, heads);
1781 		base->clk++;
1782 
1783 		while (levels--)
1784 			expire_timers(base, heads + levels);
1785 	}
1786 	raw_spin_unlock_irq(&base->lock);
1787 	timer_base_unlock_expiry(base);
1788 }
1789 
1790 /*
1791  * This function runs timers and the timer-tq in bottom half context.
1792  */
1793 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1794 {
1795 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1796 
1797 	__run_timers(base);
1798 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1799 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1800 }
1801 
1802 /*
1803  * Called by the local, per-CPU timer interrupt on SMP.
1804  */
1805 void run_local_timers(void)
1806 {
1807 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1808 
1809 	hrtimer_run_queues();
1810 	/* Raise the softirq only if required. */
1811 	if (time_before(jiffies, base->clk)) {
1812 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1813 			return;
1814 		/* CPU is awake, so check the deferrable base. */
1815 		base++;
1816 		if (time_before(jiffies, base->clk))
1817 			return;
1818 	}
1819 	raise_softirq(TIMER_SOFTIRQ);
1820 }
1821 
1822 /*
1823  * Since schedule_timeout()'s timer is defined on the stack, it must store
1824  * the target task on the stack as well.
1825  */
1826 struct process_timer {
1827 	struct timer_list timer;
1828 	struct task_struct *task;
1829 };
1830 
1831 static void process_timeout(struct timer_list *t)
1832 {
1833 	struct process_timer *timeout = from_timer(timeout, t, timer);
1834 
1835 	wake_up_process(timeout->task);
1836 }
1837 
1838 /**
1839  * schedule_timeout - sleep until timeout
1840  * @timeout: timeout value in jiffies
1841  *
1842  * Make the current task sleep until @timeout jiffies have elapsed.
1843  * The function behavior depends on the current task state
1844  * (see also set_current_state() description):
1845  *
1846  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1847  * at all. That happens because sched_submit_work() does nothing for
1848  * tasks in %TASK_RUNNING state.
1849  *
1850  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1851  * pass before the routine returns unless the current task is explicitly
1852  * woken up, (e.g. by wake_up_process()).
1853  *
1854  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1855  * delivered to the current task or the current task is explicitly woken
1856  * up.
1857  *
1858  * The current task state is guaranteed to be %TASK_RUNNING when this
1859  * routine returns.
1860  *
1861  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1862  * the CPU away without a bound on the timeout. In this case the return
1863  * value will be %MAX_SCHEDULE_TIMEOUT.
1864  *
1865  * Returns 0 when the timer has expired otherwise the remaining time in
1866  * jiffies will be returned. In all cases the return value is guaranteed
1867  * to be non-negative.
1868  */
1869 signed long __sched schedule_timeout(signed long timeout)
1870 {
1871 	struct process_timer timer;
1872 	unsigned long expire;
1873 
1874 	switch (timeout)
1875 	{
1876 	case MAX_SCHEDULE_TIMEOUT:
1877 		/*
1878 		 * These two special cases are useful to be comfortable
1879 		 * in the caller. Nothing more. We could take
1880 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1881 		 * but I' d like to return a valid offset (>=0) to allow
1882 		 * the caller to do everything it want with the retval.
1883 		 */
1884 		schedule();
1885 		goto out;
1886 	default:
1887 		/*
1888 		 * Another bit of PARANOID. Note that the retval will be
1889 		 * 0 since no piece of kernel is supposed to do a check
1890 		 * for a negative retval of schedule_timeout() (since it
1891 		 * should never happens anyway). You just have the printk()
1892 		 * that will tell you if something is gone wrong and where.
1893 		 */
1894 		if (timeout < 0) {
1895 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1896 				"value %lx\n", timeout);
1897 			dump_stack();
1898 			current->state = TASK_RUNNING;
1899 			goto out;
1900 		}
1901 	}
1902 
1903 	expire = timeout + jiffies;
1904 
1905 	timer.task = current;
1906 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1907 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1908 	schedule();
1909 	del_singleshot_timer_sync(&timer.timer);
1910 
1911 	/* Remove the timer from the object tracker */
1912 	destroy_timer_on_stack(&timer.timer);
1913 
1914 	timeout = expire - jiffies;
1915 
1916  out:
1917 	return timeout < 0 ? 0 : timeout;
1918 }
1919 EXPORT_SYMBOL(schedule_timeout);
1920 
1921 /*
1922  * We can use __set_current_state() here because schedule_timeout() calls
1923  * schedule() unconditionally.
1924  */
1925 signed long __sched schedule_timeout_interruptible(signed long timeout)
1926 {
1927 	__set_current_state(TASK_INTERRUPTIBLE);
1928 	return schedule_timeout(timeout);
1929 }
1930 EXPORT_SYMBOL(schedule_timeout_interruptible);
1931 
1932 signed long __sched schedule_timeout_killable(signed long timeout)
1933 {
1934 	__set_current_state(TASK_KILLABLE);
1935 	return schedule_timeout(timeout);
1936 }
1937 EXPORT_SYMBOL(schedule_timeout_killable);
1938 
1939 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1940 {
1941 	__set_current_state(TASK_UNINTERRUPTIBLE);
1942 	return schedule_timeout(timeout);
1943 }
1944 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1945 
1946 /*
1947  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1948  * to load average.
1949  */
1950 signed long __sched schedule_timeout_idle(signed long timeout)
1951 {
1952 	__set_current_state(TASK_IDLE);
1953 	return schedule_timeout(timeout);
1954 }
1955 EXPORT_SYMBOL(schedule_timeout_idle);
1956 
1957 #ifdef CONFIG_HOTPLUG_CPU
1958 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1959 {
1960 	struct timer_list *timer;
1961 	int cpu = new_base->cpu;
1962 
1963 	while (!hlist_empty(head)) {
1964 		timer = hlist_entry(head->first, struct timer_list, entry);
1965 		detach_timer(timer, false);
1966 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1967 		internal_add_timer(new_base, timer);
1968 	}
1969 }
1970 
1971 int timers_prepare_cpu(unsigned int cpu)
1972 {
1973 	struct timer_base *base;
1974 	int b;
1975 
1976 	for (b = 0; b < NR_BASES; b++) {
1977 		base = per_cpu_ptr(&timer_bases[b], cpu);
1978 		base->clk = jiffies;
1979 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1980 		base->is_idle = false;
1981 		base->must_forward_clk = true;
1982 	}
1983 	return 0;
1984 }
1985 
1986 int timers_dead_cpu(unsigned int cpu)
1987 {
1988 	struct timer_base *old_base;
1989 	struct timer_base *new_base;
1990 	int b, i;
1991 
1992 	BUG_ON(cpu_online(cpu));
1993 
1994 	for (b = 0; b < NR_BASES; b++) {
1995 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1996 		new_base = get_cpu_ptr(&timer_bases[b]);
1997 		/*
1998 		 * The caller is globally serialized and nobody else
1999 		 * takes two locks at once, deadlock is not possible.
2000 		 */
2001 		raw_spin_lock_irq(&new_base->lock);
2002 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2003 
2004 		/*
2005 		 * The current CPUs base clock might be stale. Update it
2006 		 * before moving the timers over.
2007 		 */
2008 		forward_timer_base(new_base);
2009 
2010 		BUG_ON(old_base->running_timer);
2011 
2012 		for (i = 0; i < WHEEL_SIZE; i++)
2013 			migrate_timer_list(new_base, old_base->vectors + i);
2014 
2015 		raw_spin_unlock(&old_base->lock);
2016 		raw_spin_unlock_irq(&new_base->lock);
2017 		put_cpu_ptr(&timer_bases);
2018 	}
2019 	return 0;
2020 }
2021 
2022 #endif /* CONFIG_HOTPLUG_CPU */
2023 
2024 static void __init init_timer_cpu(int cpu)
2025 {
2026 	struct timer_base *base;
2027 	int i;
2028 
2029 	for (i = 0; i < NR_BASES; i++) {
2030 		base = per_cpu_ptr(&timer_bases[i], cpu);
2031 		base->cpu = cpu;
2032 		raw_spin_lock_init(&base->lock);
2033 		base->clk = jiffies;
2034 		timer_base_init_expiry_lock(base);
2035 	}
2036 }
2037 
2038 static void __init init_timer_cpus(void)
2039 {
2040 	int cpu;
2041 
2042 	for_each_possible_cpu(cpu)
2043 		init_timer_cpu(cpu);
2044 }
2045 
2046 void __init init_timers(void)
2047 {
2048 	init_timer_cpus();
2049 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2050 }
2051 
2052 /**
2053  * msleep - sleep safely even with waitqueue interruptions
2054  * @msecs: Time in milliseconds to sleep for
2055  */
2056 void msleep(unsigned int msecs)
2057 {
2058 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2059 
2060 	while (timeout)
2061 		timeout = schedule_timeout_uninterruptible(timeout);
2062 }
2063 
2064 EXPORT_SYMBOL(msleep);
2065 
2066 /**
2067  * msleep_interruptible - sleep waiting for signals
2068  * @msecs: Time in milliseconds to sleep for
2069  */
2070 unsigned long msleep_interruptible(unsigned int msecs)
2071 {
2072 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2073 
2074 	while (timeout && !signal_pending(current))
2075 		timeout = schedule_timeout_interruptible(timeout);
2076 	return jiffies_to_msecs(timeout);
2077 }
2078 
2079 EXPORT_SYMBOL(msleep_interruptible);
2080 
2081 /**
2082  * usleep_range - Sleep for an approximate time
2083  * @min: Minimum time in usecs to sleep
2084  * @max: Maximum time in usecs to sleep
2085  *
2086  * In non-atomic context where the exact wakeup time is flexible, use
2087  * usleep_range() instead of udelay().  The sleep improves responsiveness
2088  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2089  * power usage by allowing hrtimers to take advantage of an already-
2090  * scheduled interrupt instead of scheduling a new one just for this sleep.
2091  */
2092 void __sched usleep_range(unsigned long min, unsigned long max)
2093 {
2094 	ktime_t exp = ktime_add_us(ktime_get(), min);
2095 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2096 
2097 	for (;;) {
2098 		__set_current_state(TASK_UNINTERRUPTIBLE);
2099 		/* Do not return before the requested sleep time has elapsed */
2100 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2101 			break;
2102 	}
2103 }
2104 EXPORT_SYMBOL(usleep_range);
2105