1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/sched/nohz.h> 43 #include <linux/sched/debug.h> 44 #include <linux/slab.h> 45 #include <linux/compat.h> 46 47 #include <linux/uaccess.h> 48 #include <asm/unistd.h> 49 #include <asm/div64.h> 50 #include <asm/timex.h> 51 #include <asm/io.h> 52 53 #include "tick-internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/timer.h> 57 58 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 59 60 EXPORT_SYMBOL(jiffies_64); 61 62 /* 63 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 64 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 65 * level has a different granularity. 66 * 67 * The level granularity is: LVL_CLK_DIV ^ lvl 68 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 69 * 70 * The array level of a newly armed timer depends on the relative expiry 71 * time. The farther the expiry time is away the higher the array level and 72 * therefor the granularity becomes. 73 * 74 * Contrary to the original timer wheel implementation, which aims for 'exact' 75 * expiry of the timers, this implementation removes the need for recascading 76 * the timers into the lower array levels. The previous 'classic' timer wheel 77 * implementation of the kernel already violated the 'exact' expiry by adding 78 * slack to the expiry time to provide batched expiration. The granularity 79 * levels provide implicit batching. 80 * 81 * This is an optimization of the original timer wheel implementation for the 82 * majority of the timer wheel use cases: timeouts. The vast majority of 83 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 84 * the timeout expires it indicates that normal operation is disturbed, so it 85 * does not matter much whether the timeout comes with a slight delay. 86 * 87 * The only exception to this are networking timers with a small expiry 88 * time. They rely on the granularity. Those fit into the first wheel level, 89 * which has HZ granularity. 90 * 91 * We don't have cascading anymore. timers with a expiry time above the 92 * capacity of the last wheel level are force expired at the maximum timeout 93 * value of the last wheel level. From data sampling we know that the maximum 94 * value observed is 5 days (network connection tracking), so this should not 95 * be an issue. 96 * 97 * The currently chosen array constants values are a good compromise between 98 * array size and granularity. 99 * 100 * This results in the following granularity and range levels: 101 * 102 * HZ 1000 steps 103 * Level Offset Granularity Range 104 * 0 0 1 ms 0 ms - 63 ms 105 * 1 64 8 ms 64 ms - 511 ms 106 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 107 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 108 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 109 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 110 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 111 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 112 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 113 * 114 * HZ 300 115 * Level Offset Granularity Range 116 * 0 0 3 ms 0 ms - 210 ms 117 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 118 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 119 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 120 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 121 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 122 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 123 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 124 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 125 * 126 * HZ 250 127 * Level Offset Granularity Range 128 * 0 0 4 ms 0 ms - 255 ms 129 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 130 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 131 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 132 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 133 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 134 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 135 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 136 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 137 * 138 * HZ 100 139 * Level Offset Granularity Range 140 * 0 0 10 ms 0 ms - 630 ms 141 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 142 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 143 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 144 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 145 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 146 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 147 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 148 */ 149 150 /* Clock divisor for the next level */ 151 #define LVL_CLK_SHIFT 3 152 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 153 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 154 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 155 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 156 157 /* 158 * The time start value for each level to select the bucket at enqueue 159 * time. 160 */ 161 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 162 163 /* Size of each clock level */ 164 #define LVL_BITS 6 165 #define LVL_SIZE (1UL << LVL_BITS) 166 #define LVL_MASK (LVL_SIZE - 1) 167 #define LVL_OFFS(n) ((n) * LVL_SIZE) 168 169 /* Level depth */ 170 #if HZ > 100 171 # define LVL_DEPTH 9 172 # else 173 # define LVL_DEPTH 8 174 #endif 175 176 /* The cutoff (max. capacity of the wheel) */ 177 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 178 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 179 180 /* 181 * The resulting wheel size. If NOHZ is configured we allocate two 182 * wheels so we have a separate storage for the deferrable timers. 183 */ 184 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 185 186 #ifdef CONFIG_NO_HZ_COMMON 187 # define NR_BASES 2 188 # define BASE_STD 0 189 # define BASE_DEF 1 190 #else 191 # define NR_BASES 1 192 # define BASE_STD 0 193 # define BASE_DEF 0 194 #endif 195 196 struct timer_base { 197 raw_spinlock_t lock; 198 struct timer_list *running_timer; 199 #ifdef CONFIG_PREEMPT_RT 200 spinlock_t expiry_lock; 201 atomic_t timer_waiters; 202 #endif 203 unsigned long clk; 204 unsigned long next_expiry; 205 unsigned int cpu; 206 bool is_idle; 207 bool must_forward_clk; 208 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 209 struct hlist_head vectors[WHEEL_SIZE]; 210 } ____cacheline_aligned; 211 212 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 213 214 #ifdef CONFIG_NO_HZ_COMMON 215 216 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 217 static DEFINE_MUTEX(timer_keys_mutex); 218 219 static void timer_update_keys(struct work_struct *work); 220 static DECLARE_WORK(timer_update_work, timer_update_keys); 221 222 #ifdef CONFIG_SMP 223 unsigned int sysctl_timer_migration = 1; 224 225 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 226 227 static void timers_update_migration(void) 228 { 229 if (sysctl_timer_migration && tick_nohz_active) 230 static_branch_enable(&timers_migration_enabled); 231 else 232 static_branch_disable(&timers_migration_enabled); 233 } 234 #else 235 static inline void timers_update_migration(void) { } 236 #endif /* !CONFIG_SMP */ 237 238 static void timer_update_keys(struct work_struct *work) 239 { 240 mutex_lock(&timer_keys_mutex); 241 timers_update_migration(); 242 static_branch_enable(&timers_nohz_active); 243 mutex_unlock(&timer_keys_mutex); 244 } 245 246 void timers_update_nohz(void) 247 { 248 schedule_work(&timer_update_work); 249 } 250 251 int timer_migration_handler(struct ctl_table *table, int write, 252 void __user *buffer, size_t *lenp, 253 loff_t *ppos) 254 { 255 int ret; 256 257 mutex_lock(&timer_keys_mutex); 258 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 259 if (!ret && write) 260 timers_update_migration(); 261 mutex_unlock(&timer_keys_mutex); 262 return ret; 263 } 264 265 static inline bool is_timers_nohz_active(void) 266 { 267 return static_branch_unlikely(&timers_nohz_active); 268 } 269 #else 270 static inline bool is_timers_nohz_active(void) { return false; } 271 #endif /* NO_HZ_COMMON */ 272 273 static unsigned long round_jiffies_common(unsigned long j, int cpu, 274 bool force_up) 275 { 276 int rem; 277 unsigned long original = j; 278 279 /* 280 * We don't want all cpus firing their timers at once hitting the 281 * same lock or cachelines, so we skew each extra cpu with an extra 282 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 283 * already did this. 284 * The skew is done by adding 3*cpunr, then round, then subtract this 285 * extra offset again. 286 */ 287 j += cpu * 3; 288 289 rem = j % HZ; 290 291 /* 292 * If the target jiffie is just after a whole second (which can happen 293 * due to delays of the timer irq, long irq off times etc etc) then 294 * we should round down to the whole second, not up. Use 1/4th second 295 * as cutoff for this rounding as an extreme upper bound for this. 296 * But never round down if @force_up is set. 297 */ 298 if (rem < HZ/4 && !force_up) /* round down */ 299 j = j - rem; 300 else /* round up */ 301 j = j - rem + HZ; 302 303 /* now that we have rounded, subtract the extra skew again */ 304 j -= cpu * 3; 305 306 /* 307 * Make sure j is still in the future. Otherwise return the 308 * unmodified value. 309 */ 310 return time_is_after_jiffies(j) ? j : original; 311 } 312 313 /** 314 * __round_jiffies - function to round jiffies to a full second 315 * @j: the time in (absolute) jiffies that should be rounded 316 * @cpu: the processor number on which the timeout will happen 317 * 318 * __round_jiffies() rounds an absolute time in the future (in jiffies) 319 * up or down to (approximately) full seconds. This is useful for timers 320 * for which the exact time they fire does not matter too much, as long as 321 * they fire approximately every X seconds. 322 * 323 * By rounding these timers to whole seconds, all such timers will fire 324 * at the same time, rather than at various times spread out. The goal 325 * of this is to have the CPU wake up less, which saves power. 326 * 327 * The exact rounding is skewed for each processor to avoid all 328 * processors firing at the exact same time, which could lead 329 * to lock contention or spurious cache line bouncing. 330 * 331 * The return value is the rounded version of the @j parameter. 332 */ 333 unsigned long __round_jiffies(unsigned long j, int cpu) 334 { 335 return round_jiffies_common(j, cpu, false); 336 } 337 EXPORT_SYMBOL_GPL(__round_jiffies); 338 339 /** 340 * __round_jiffies_relative - function to round jiffies to a full second 341 * @j: the time in (relative) jiffies that should be rounded 342 * @cpu: the processor number on which the timeout will happen 343 * 344 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 345 * up or down to (approximately) full seconds. This is useful for timers 346 * for which the exact time they fire does not matter too much, as long as 347 * they fire approximately every X seconds. 348 * 349 * By rounding these timers to whole seconds, all such timers will fire 350 * at the same time, rather than at various times spread out. The goal 351 * of this is to have the CPU wake up less, which saves power. 352 * 353 * The exact rounding is skewed for each processor to avoid all 354 * processors firing at the exact same time, which could lead 355 * to lock contention or spurious cache line bouncing. 356 * 357 * The return value is the rounded version of the @j parameter. 358 */ 359 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 360 { 361 unsigned long j0 = jiffies; 362 363 /* Use j0 because jiffies might change while we run */ 364 return round_jiffies_common(j + j0, cpu, false) - j0; 365 } 366 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 367 368 /** 369 * round_jiffies - function to round jiffies to a full second 370 * @j: the time in (absolute) jiffies that should be rounded 371 * 372 * round_jiffies() rounds an absolute time in the future (in jiffies) 373 * up or down to (approximately) full seconds. This is useful for timers 374 * for which the exact time they fire does not matter too much, as long as 375 * they fire approximately every X seconds. 376 * 377 * By rounding these timers to whole seconds, all such timers will fire 378 * at the same time, rather than at various times spread out. The goal 379 * of this is to have the CPU wake up less, which saves power. 380 * 381 * The return value is the rounded version of the @j parameter. 382 */ 383 unsigned long round_jiffies(unsigned long j) 384 { 385 return round_jiffies_common(j, raw_smp_processor_id(), false); 386 } 387 EXPORT_SYMBOL_GPL(round_jiffies); 388 389 /** 390 * round_jiffies_relative - function to round jiffies to a full second 391 * @j: the time in (relative) jiffies that should be rounded 392 * 393 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 394 * up or down to (approximately) full seconds. This is useful for timers 395 * for which the exact time they fire does not matter too much, as long as 396 * they fire approximately every X seconds. 397 * 398 * By rounding these timers to whole seconds, all such timers will fire 399 * at the same time, rather than at various times spread out. The goal 400 * of this is to have the CPU wake up less, which saves power. 401 * 402 * The return value is the rounded version of the @j parameter. 403 */ 404 unsigned long round_jiffies_relative(unsigned long j) 405 { 406 return __round_jiffies_relative(j, raw_smp_processor_id()); 407 } 408 EXPORT_SYMBOL_GPL(round_jiffies_relative); 409 410 /** 411 * __round_jiffies_up - function to round jiffies up to a full second 412 * @j: the time in (absolute) jiffies that should be rounded 413 * @cpu: the processor number on which the timeout will happen 414 * 415 * This is the same as __round_jiffies() except that it will never 416 * round down. This is useful for timeouts for which the exact time 417 * of firing does not matter too much, as long as they don't fire too 418 * early. 419 */ 420 unsigned long __round_jiffies_up(unsigned long j, int cpu) 421 { 422 return round_jiffies_common(j, cpu, true); 423 } 424 EXPORT_SYMBOL_GPL(__round_jiffies_up); 425 426 /** 427 * __round_jiffies_up_relative - function to round jiffies up to a full second 428 * @j: the time in (relative) jiffies that should be rounded 429 * @cpu: the processor number on which the timeout will happen 430 * 431 * This is the same as __round_jiffies_relative() except that it will never 432 * round down. This is useful for timeouts for which the exact time 433 * of firing does not matter too much, as long as they don't fire too 434 * early. 435 */ 436 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 437 { 438 unsigned long j0 = jiffies; 439 440 /* Use j0 because jiffies might change while we run */ 441 return round_jiffies_common(j + j0, cpu, true) - j0; 442 } 443 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 444 445 /** 446 * round_jiffies_up - function to round jiffies up to a full second 447 * @j: the time in (absolute) jiffies that should be rounded 448 * 449 * This is the same as round_jiffies() except that it will never 450 * round down. This is useful for timeouts for which the exact time 451 * of firing does not matter too much, as long as they don't fire too 452 * early. 453 */ 454 unsigned long round_jiffies_up(unsigned long j) 455 { 456 return round_jiffies_common(j, raw_smp_processor_id(), true); 457 } 458 EXPORT_SYMBOL_GPL(round_jiffies_up); 459 460 /** 461 * round_jiffies_up_relative - function to round jiffies up to a full second 462 * @j: the time in (relative) jiffies that should be rounded 463 * 464 * This is the same as round_jiffies_relative() except that it will never 465 * round down. This is useful for timeouts for which the exact time 466 * of firing does not matter too much, as long as they don't fire too 467 * early. 468 */ 469 unsigned long round_jiffies_up_relative(unsigned long j) 470 { 471 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 472 } 473 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 474 475 476 static inline unsigned int timer_get_idx(struct timer_list *timer) 477 { 478 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 479 } 480 481 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 482 { 483 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 484 idx << TIMER_ARRAYSHIFT; 485 } 486 487 /* 488 * Helper function to calculate the array index for a given expiry 489 * time. 490 */ 491 static inline unsigned calc_index(unsigned expires, unsigned lvl) 492 { 493 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 494 return LVL_OFFS(lvl) + (expires & LVL_MASK); 495 } 496 497 static int calc_wheel_index(unsigned long expires, unsigned long clk) 498 { 499 unsigned long delta = expires - clk; 500 unsigned int idx; 501 502 if (delta < LVL_START(1)) { 503 idx = calc_index(expires, 0); 504 } else if (delta < LVL_START(2)) { 505 idx = calc_index(expires, 1); 506 } else if (delta < LVL_START(3)) { 507 idx = calc_index(expires, 2); 508 } else if (delta < LVL_START(4)) { 509 idx = calc_index(expires, 3); 510 } else if (delta < LVL_START(5)) { 511 idx = calc_index(expires, 4); 512 } else if (delta < LVL_START(6)) { 513 idx = calc_index(expires, 5); 514 } else if (delta < LVL_START(7)) { 515 idx = calc_index(expires, 6); 516 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 517 idx = calc_index(expires, 7); 518 } else if ((long) delta < 0) { 519 idx = clk & LVL_MASK; 520 } else { 521 /* 522 * Force expire obscene large timeouts to expire at the 523 * capacity limit of the wheel. 524 */ 525 if (expires >= WHEEL_TIMEOUT_CUTOFF) 526 expires = WHEEL_TIMEOUT_MAX; 527 528 idx = calc_index(expires, LVL_DEPTH - 1); 529 } 530 return idx; 531 } 532 533 /* 534 * Enqueue the timer into the hash bucket, mark it pending in 535 * the bitmap and store the index in the timer flags. 536 */ 537 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 538 unsigned int idx) 539 { 540 hlist_add_head(&timer->entry, base->vectors + idx); 541 __set_bit(idx, base->pending_map); 542 timer_set_idx(timer, idx); 543 544 trace_timer_start(timer, timer->expires, timer->flags); 545 } 546 547 static void 548 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 549 { 550 unsigned int idx; 551 552 idx = calc_wheel_index(timer->expires, base->clk); 553 enqueue_timer(base, timer, idx); 554 } 555 556 static void 557 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 558 { 559 if (!is_timers_nohz_active()) 560 return; 561 562 /* 563 * TODO: This wants some optimizing similar to the code below, but we 564 * will do that when we switch from push to pull for deferrable timers. 565 */ 566 if (timer->flags & TIMER_DEFERRABLE) { 567 if (tick_nohz_full_cpu(base->cpu)) 568 wake_up_nohz_cpu(base->cpu); 569 return; 570 } 571 572 /* 573 * We might have to IPI the remote CPU if the base is idle and the 574 * timer is not deferrable. If the other CPU is on the way to idle 575 * then it can't set base->is_idle as we hold the base lock: 576 */ 577 if (!base->is_idle) 578 return; 579 580 /* Check whether this is the new first expiring timer: */ 581 if (time_after_eq(timer->expires, base->next_expiry)) 582 return; 583 584 /* 585 * Set the next expiry time and kick the CPU so it can reevaluate the 586 * wheel: 587 */ 588 base->next_expiry = timer->expires; 589 wake_up_nohz_cpu(base->cpu); 590 } 591 592 static void 593 internal_add_timer(struct timer_base *base, struct timer_list *timer) 594 { 595 __internal_add_timer(base, timer); 596 trigger_dyntick_cpu(base, timer); 597 } 598 599 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 600 601 static struct debug_obj_descr timer_debug_descr; 602 603 static void *timer_debug_hint(void *addr) 604 { 605 return ((struct timer_list *) addr)->function; 606 } 607 608 static bool timer_is_static_object(void *addr) 609 { 610 struct timer_list *timer = addr; 611 612 return (timer->entry.pprev == NULL && 613 timer->entry.next == TIMER_ENTRY_STATIC); 614 } 615 616 /* 617 * fixup_init is called when: 618 * - an active object is initialized 619 */ 620 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 621 { 622 struct timer_list *timer = addr; 623 624 switch (state) { 625 case ODEBUG_STATE_ACTIVE: 626 del_timer_sync(timer); 627 debug_object_init(timer, &timer_debug_descr); 628 return true; 629 default: 630 return false; 631 } 632 } 633 634 /* Stub timer callback for improperly used timers. */ 635 static void stub_timer(struct timer_list *unused) 636 { 637 WARN_ON(1); 638 } 639 640 /* 641 * fixup_activate is called when: 642 * - an active object is activated 643 * - an unknown non-static object is activated 644 */ 645 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 646 { 647 struct timer_list *timer = addr; 648 649 switch (state) { 650 case ODEBUG_STATE_NOTAVAILABLE: 651 timer_setup(timer, stub_timer, 0); 652 return true; 653 654 case ODEBUG_STATE_ACTIVE: 655 WARN_ON(1); 656 /* fall through */ 657 default: 658 return false; 659 } 660 } 661 662 /* 663 * fixup_free is called when: 664 * - an active object is freed 665 */ 666 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 667 { 668 struct timer_list *timer = addr; 669 670 switch (state) { 671 case ODEBUG_STATE_ACTIVE: 672 del_timer_sync(timer); 673 debug_object_free(timer, &timer_debug_descr); 674 return true; 675 default: 676 return false; 677 } 678 } 679 680 /* 681 * fixup_assert_init is called when: 682 * - an untracked/uninit-ed object is found 683 */ 684 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 685 { 686 struct timer_list *timer = addr; 687 688 switch (state) { 689 case ODEBUG_STATE_NOTAVAILABLE: 690 timer_setup(timer, stub_timer, 0); 691 return true; 692 default: 693 return false; 694 } 695 } 696 697 static struct debug_obj_descr timer_debug_descr = { 698 .name = "timer_list", 699 .debug_hint = timer_debug_hint, 700 .is_static_object = timer_is_static_object, 701 .fixup_init = timer_fixup_init, 702 .fixup_activate = timer_fixup_activate, 703 .fixup_free = timer_fixup_free, 704 .fixup_assert_init = timer_fixup_assert_init, 705 }; 706 707 static inline void debug_timer_init(struct timer_list *timer) 708 { 709 debug_object_init(timer, &timer_debug_descr); 710 } 711 712 static inline void debug_timer_activate(struct timer_list *timer) 713 { 714 debug_object_activate(timer, &timer_debug_descr); 715 } 716 717 static inline void debug_timer_deactivate(struct timer_list *timer) 718 { 719 debug_object_deactivate(timer, &timer_debug_descr); 720 } 721 722 static inline void debug_timer_free(struct timer_list *timer) 723 { 724 debug_object_free(timer, &timer_debug_descr); 725 } 726 727 static inline void debug_timer_assert_init(struct timer_list *timer) 728 { 729 debug_object_assert_init(timer, &timer_debug_descr); 730 } 731 732 static void do_init_timer(struct timer_list *timer, 733 void (*func)(struct timer_list *), 734 unsigned int flags, 735 const char *name, struct lock_class_key *key); 736 737 void init_timer_on_stack_key(struct timer_list *timer, 738 void (*func)(struct timer_list *), 739 unsigned int flags, 740 const char *name, struct lock_class_key *key) 741 { 742 debug_object_init_on_stack(timer, &timer_debug_descr); 743 do_init_timer(timer, func, flags, name, key); 744 } 745 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 746 747 void destroy_timer_on_stack(struct timer_list *timer) 748 { 749 debug_object_free(timer, &timer_debug_descr); 750 } 751 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 752 753 #else 754 static inline void debug_timer_init(struct timer_list *timer) { } 755 static inline void debug_timer_activate(struct timer_list *timer) { } 756 static inline void debug_timer_deactivate(struct timer_list *timer) { } 757 static inline void debug_timer_assert_init(struct timer_list *timer) { } 758 #endif 759 760 static inline void debug_init(struct timer_list *timer) 761 { 762 debug_timer_init(timer); 763 trace_timer_init(timer); 764 } 765 766 static inline void debug_deactivate(struct timer_list *timer) 767 { 768 debug_timer_deactivate(timer); 769 trace_timer_cancel(timer); 770 } 771 772 static inline void debug_assert_init(struct timer_list *timer) 773 { 774 debug_timer_assert_init(timer); 775 } 776 777 static void do_init_timer(struct timer_list *timer, 778 void (*func)(struct timer_list *), 779 unsigned int flags, 780 const char *name, struct lock_class_key *key) 781 { 782 timer->entry.pprev = NULL; 783 timer->function = func; 784 timer->flags = flags | raw_smp_processor_id(); 785 lockdep_init_map(&timer->lockdep_map, name, key, 0); 786 } 787 788 /** 789 * init_timer_key - initialize a timer 790 * @timer: the timer to be initialized 791 * @func: timer callback function 792 * @flags: timer flags 793 * @name: name of the timer 794 * @key: lockdep class key of the fake lock used for tracking timer 795 * sync lock dependencies 796 * 797 * init_timer_key() must be done to a timer prior calling *any* of the 798 * other timer functions. 799 */ 800 void init_timer_key(struct timer_list *timer, 801 void (*func)(struct timer_list *), unsigned int flags, 802 const char *name, struct lock_class_key *key) 803 { 804 debug_init(timer); 805 do_init_timer(timer, func, flags, name, key); 806 } 807 EXPORT_SYMBOL(init_timer_key); 808 809 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 810 { 811 struct hlist_node *entry = &timer->entry; 812 813 debug_deactivate(timer); 814 815 __hlist_del(entry); 816 if (clear_pending) 817 entry->pprev = NULL; 818 entry->next = LIST_POISON2; 819 } 820 821 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 822 bool clear_pending) 823 { 824 unsigned idx = timer_get_idx(timer); 825 826 if (!timer_pending(timer)) 827 return 0; 828 829 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 830 __clear_bit(idx, base->pending_map); 831 832 detach_timer(timer, clear_pending); 833 return 1; 834 } 835 836 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 837 { 838 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 839 840 /* 841 * If the timer is deferrable and NO_HZ_COMMON is set then we need 842 * to use the deferrable base. 843 */ 844 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 845 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 846 return base; 847 } 848 849 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 850 { 851 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 852 853 /* 854 * If the timer is deferrable and NO_HZ_COMMON is set then we need 855 * to use the deferrable base. 856 */ 857 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 858 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 859 return base; 860 } 861 862 static inline struct timer_base *get_timer_base(u32 tflags) 863 { 864 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 865 } 866 867 static inline struct timer_base * 868 get_target_base(struct timer_base *base, unsigned tflags) 869 { 870 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 871 if (static_branch_likely(&timers_migration_enabled) && 872 !(tflags & TIMER_PINNED)) 873 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 874 #endif 875 return get_timer_this_cpu_base(tflags); 876 } 877 878 static inline void forward_timer_base(struct timer_base *base) 879 { 880 #ifdef CONFIG_NO_HZ_COMMON 881 unsigned long jnow; 882 883 /* 884 * We only forward the base when we are idle or have just come out of 885 * idle (must_forward_clk logic), and have a delta between base clock 886 * and jiffies. In the common case, run_timers will take care of it. 887 */ 888 if (likely(!base->must_forward_clk)) 889 return; 890 891 jnow = READ_ONCE(jiffies); 892 base->must_forward_clk = base->is_idle; 893 if ((long)(jnow - base->clk) < 2) 894 return; 895 896 /* 897 * If the next expiry value is > jiffies, then we fast forward to 898 * jiffies otherwise we forward to the next expiry value. 899 */ 900 if (time_after(base->next_expiry, jnow)) 901 base->clk = jnow; 902 else 903 base->clk = base->next_expiry; 904 #endif 905 } 906 907 908 /* 909 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 910 * that all timers which are tied to this base are locked, and the base itself 911 * is locked too. 912 * 913 * So __run_timers/migrate_timers can safely modify all timers which could 914 * be found in the base->vectors array. 915 * 916 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 917 * to wait until the migration is done. 918 */ 919 static struct timer_base *lock_timer_base(struct timer_list *timer, 920 unsigned long *flags) 921 __acquires(timer->base->lock) 922 { 923 for (;;) { 924 struct timer_base *base; 925 u32 tf; 926 927 /* 928 * We need to use READ_ONCE() here, otherwise the compiler 929 * might re-read @tf between the check for TIMER_MIGRATING 930 * and spin_lock(). 931 */ 932 tf = READ_ONCE(timer->flags); 933 934 if (!(tf & TIMER_MIGRATING)) { 935 base = get_timer_base(tf); 936 raw_spin_lock_irqsave(&base->lock, *flags); 937 if (timer->flags == tf) 938 return base; 939 raw_spin_unlock_irqrestore(&base->lock, *flags); 940 } 941 cpu_relax(); 942 } 943 } 944 945 #define MOD_TIMER_PENDING_ONLY 0x01 946 #define MOD_TIMER_REDUCE 0x02 947 #define MOD_TIMER_NOTPENDING 0x04 948 949 static inline int 950 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 951 { 952 struct timer_base *base, *new_base; 953 unsigned int idx = UINT_MAX; 954 unsigned long clk = 0, flags; 955 int ret = 0; 956 957 BUG_ON(!timer->function); 958 959 /* 960 * This is a common optimization triggered by the networking code - if 961 * the timer is re-modified to have the same timeout or ends up in the 962 * same array bucket then just return: 963 */ 964 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { 965 /* 966 * The downside of this optimization is that it can result in 967 * larger granularity than you would get from adding a new 968 * timer with this expiry. 969 */ 970 long diff = timer->expires - expires; 971 972 if (!diff) 973 return 1; 974 if (options & MOD_TIMER_REDUCE && diff <= 0) 975 return 1; 976 977 /* 978 * We lock timer base and calculate the bucket index right 979 * here. If the timer ends up in the same bucket, then we 980 * just update the expiry time and avoid the whole 981 * dequeue/enqueue dance. 982 */ 983 base = lock_timer_base(timer, &flags); 984 forward_timer_base(base); 985 986 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 987 time_before_eq(timer->expires, expires)) { 988 ret = 1; 989 goto out_unlock; 990 } 991 992 clk = base->clk; 993 idx = calc_wheel_index(expires, clk); 994 995 /* 996 * Retrieve and compare the array index of the pending 997 * timer. If it matches set the expiry to the new value so a 998 * subsequent call will exit in the expires check above. 999 */ 1000 if (idx == timer_get_idx(timer)) { 1001 if (!(options & MOD_TIMER_REDUCE)) 1002 timer->expires = expires; 1003 else if (time_after(timer->expires, expires)) 1004 timer->expires = expires; 1005 ret = 1; 1006 goto out_unlock; 1007 } 1008 } else { 1009 base = lock_timer_base(timer, &flags); 1010 forward_timer_base(base); 1011 } 1012 1013 ret = detach_if_pending(timer, base, false); 1014 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1015 goto out_unlock; 1016 1017 new_base = get_target_base(base, timer->flags); 1018 1019 if (base != new_base) { 1020 /* 1021 * We are trying to schedule the timer on the new base. 1022 * However we can't change timer's base while it is running, 1023 * otherwise del_timer_sync() can't detect that the timer's 1024 * handler yet has not finished. This also guarantees that the 1025 * timer is serialized wrt itself. 1026 */ 1027 if (likely(base->running_timer != timer)) { 1028 /* See the comment in lock_timer_base() */ 1029 timer->flags |= TIMER_MIGRATING; 1030 1031 raw_spin_unlock(&base->lock); 1032 base = new_base; 1033 raw_spin_lock(&base->lock); 1034 WRITE_ONCE(timer->flags, 1035 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1036 forward_timer_base(base); 1037 } 1038 } 1039 1040 debug_timer_activate(timer); 1041 1042 timer->expires = expires; 1043 /* 1044 * If 'idx' was calculated above and the base time did not advance 1045 * between calculating 'idx' and possibly switching the base, only 1046 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1047 * we need to (re)calculate the wheel index via 1048 * internal_add_timer(). 1049 */ 1050 if (idx != UINT_MAX && clk == base->clk) { 1051 enqueue_timer(base, timer, idx); 1052 trigger_dyntick_cpu(base, timer); 1053 } else { 1054 internal_add_timer(base, timer); 1055 } 1056 1057 out_unlock: 1058 raw_spin_unlock_irqrestore(&base->lock, flags); 1059 1060 return ret; 1061 } 1062 1063 /** 1064 * mod_timer_pending - modify a pending timer's timeout 1065 * @timer: the pending timer to be modified 1066 * @expires: new timeout in jiffies 1067 * 1068 * mod_timer_pending() is the same for pending timers as mod_timer(), 1069 * but will not re-activate and modify already deleted timers. 1070 * 1071 * It is useful for unserialized use of timers. 1072 */ 1073 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1074 { 1075 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1076 } 1077 EXPORT_SYMBOL(mod_timer_pending); 1078 1079 /** 1080 * mod_timer - modify a timer's timeout 1081 * @timer: the timer to be modified 1082 * @expires: new timeout in jiffies 1083 * 1084 * mod_timer() is a more efficient way to update the expire field of an 1085 * active timer (if the timer is inactive it will be activated) 1086 * 1087 * mod_timer(timer, expires) is equivalent to: 1088 * 1089 * del_timer(timer); timer->expires = expires; add_timer(timer); 1090 * 1091 * Note that if there are multiple unserialized concurrent users of the 1092 * same timer, then mod_timer() is the only safe way to modify the timeout, 1093 * since add_timer() cannot modify an already running timer. 1094 * 1095 * The function returns whether it has modified a pending timer or not. 1096 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1097 * active timer returns 1.) 1098 */ 1099 int mod_timer(struct timer_list *timer, unsigned long expires) 1100 { 1101 return __mod_timer(timer, expires, 0); 1102 } 1103 EXPORT_SYMBOL(mod_timer); 1104 1105 /** 1106 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1107 * @timer: The timer to be modified 1108 * @expires: New timeout in jiffies 1109 * 1110 * timer_reduce() is very similar to mod_timer(), except that it will only 1111 * modify a running timer if that would reduce the expiration time (it will 1112 * start a timer that isn't running). 1113 */ 1114 int timer_reduce(struct timer_list *timer, unsigned long expires) 1115 { 1116 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1117 } 1118 EXPORT_SYMBOL(timer_reduce); 1119 1120 /** 1121 * add_timer - start a timer 1122 * @timer: the timer to be added 1123 * 1124 * The kernel will do a ->function(@timer) callback from the 1125 * timer interrupt at the ->expires point in the future. The 1126 * current time is 'jiffies'. 1127 * 1128 * The timer's ->expires, ->function fields must be set prior calling this 1129 * function. 1130 * 1131 * Timers with an ->expires field in the past will be executed in the next 1132 * timer tick. 1133 */ 1134 void add_timer(struct timer_list *timer) 1135 { 1136 BUG_ON(timer_pending(timer)); 1137 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1138 } 1139 EXPORT_SYMBOL(add_timer); 1140 1141 /** 1142 * add_timer_on - start a timer on a particular CPU 1143 * @timer: the timer to be added 1144 * @cpu: the CPU to start it on 1145 * 1146 * This is not very scalable on SMP. Double adds are not possible. 1147 */ 1148 void add_timer_on(struct timer_list *timer, int cpu) 1149 { 1150 struct timer_base *new_base, *base; 1151 unsigned long flags; 1152 1153 BUG_ON(timer_pending(timer) || !timer->function); 1154 1155 new_base = get_timer_cpu_base(timer->flags, cpu); 1156 1157 /* 1158 * If @timer was on a different CPU, it should be migrated with the 1159 * old base locked to prevent other operations proceeding with the 1160 * wrong base locked. See lock_timer_base(). 1161 */ 1162 base = lock_timer_base(timer, &flags); 1163 if (base != new_base) { 1164 timer->flags |= TIMER_MIGRATING; 1165 1166 raw_spin_unlock(&base->lock); 1167 base = new_base; 1168 raw_spin_lock(&base->lock); 1169 WRITE_ONCE(timer->flags, 1170 (timer->flags & ~TIMER_BASEMASK) | cpu); 1171 } 1172 forward_timer_base(base); 1173 1174 debug_timer_activate(timer); 1175 internal_add_timer(base, timer); 1176 raw_spin_unlock_irqrestore(&base->lock, flags); 1177 } 1178 EXPORT_SYMBOL_GPL(add_timer_on); 1179 1180 /** 1181 * del_timer - deactivate a timer. 1182 * @timer: the timer to be deactivated 1183 * 1184 * del_timer() deactivates a timer - this works on both active and inactive 1185 * timers. 1186 * 1187 * The function returns whether it has deactivated a pending timer or not. 1188 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1189 * active timer returns 1.) 1190 */ 1191 int del_timer(struct timer_list *timer) 1192 { 1193 struct timer_base *base; 1194 unsigned long flags; 1195 int ret = 0; 1196 1197 debug_assert_init(timer); 1198 1199 if (timer_pending(timer)) { 1200 base = lock_timer_base(timer, &flags); 1201 ret = detach_if_pending(timer, base, true); 1202 raw_spin_unlock_irqrestore(&base->lock, flags); 1203 } 1204 1205 return ret; 1206 } 1207 EXPORT_SYMBOL(del_timer); 1208 1209 /** 1210 * try_to_del_timer_sync - Try to deactivate a timer 1211 * @timer: timer to delete 1212 * 1213 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1214 * exit the timer is not queued and the handler is not running on any CPU. 1215 */ 1216 int try_to_del_timer_sync(struct timer_list *timer) 1217 { 1218 struct timer_base *base; 1219 unsigned long flags; 1220 int ret = -1; 1221 1222 debug_assert_init(timer); 1223 1224 base = lock_timer_base(timer, &flags); 1225 1226 if (base->running_timer != timer) 1227 ret = detach_if_pending(timer, base, true); 1228 1229 raw_spin_unlock_irqrestore(&base->lock, flags); 1230 1231 return ret; 1232 } 1233 EXPORT_SYMBOL(try_to_del_timer_sync); 1234 1235 #ifdef CONFIG_PREEMPT_RT 1236 static __init void timer_base_init_expiry_lock(struct timer_base *base) 1237 { 1238 spin_lock_init(&base->expiry_lock); 1239 } 1240 1241 static inline void timer_base_lock_expiry(struct timer_base *base) 1242 { 1243 spin_lock(&base->expiry_lock); 1244 } 1245 1246 static inline void timer_base_unlock_expiry(struct timer_base *base) 1247 { 1248 spin_unlock(&base->expiry_lock); 1249 } 1250 1251 /* 1252 * The counterpart to del_timer_wait_running(). 1253 * 1254 * If there is a waiter for base->expiry_lock, then it was waiting for the 1255 * timer callback to finish. Drop expiry_lock and reaquire it. That allows 1256 * the waiter to acquire the lock and make progress. 1257 */ 1258 static void timer_sync_wait_running(struct timer_base *base) 1259 { 1260 if (atomic_read(&base->timer_waiters)) { 1261 spin_unlock(&base->expiry_lock); 1262 spin_lock(&base->expiry_lock); 1263 } 1264 } 1265 1266 /* 1267 * This function is called on PREEMPT_RT kernels when the fast path 1268 * deletion of a timer failed because the timer callback function was 1269 * running. 1270 * 1271 * This prevents priority inversion, if the softirq thread on a remote CPU 1272 * got preempted, and it prevents a life lock when the task which tries to 1273 * delete a timer preempted the softirq thread running the timer callback 1274 * function. 1275 */ 1276 static void del_timer_wait_running(struct timer_list *timer) 1277 { 1278 u32 tf; 1279 1280 tf = READ_ONCE(timer->flags); 1281 if (!(tf & TIMER_MIGRATING)) { 1282 struct timer_base *base = get_timer_base(tf); 1283 1284 /* 1285 * Mark the base as contended and grab the expiry lock, 1286 * which is held by the softirq across the timer 1287 * callback. Drop the lock immediately so the softirq can 1288 * expire the next timer. In theory the timer could already 1289 * be running again, but that's more than unlikely and just 1290 * causes another wait loop. 1291 */ 1292 atomic_inc(&base->timer_waiters); 1293 spin_lock_bh(&base->expiry_lock); 1294 atomic_dec(&base->timer_waiters); 1295 spin_unlock_bh(&base->expiry_lock); 1296 } 1297 } 1298 #else 1299 static inline void timer_base_init_expiry_lock(struct timer_base *base) { } 1300 static inline void timer_base_lock_expiry(struct timer_base *base) { } 1301 static inline void timer_base_unlock_expiry(struct timer_base *base) { } 1302 static inline void timer_sync_wait_running(struct timer_base *base) { } 1303 static inline void del_timer_wait_running(struct timer_list *timer) { } 1304 #endif 1305 1306 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 1307 /** 1308 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1309 * @timer: the timer to be deactivated 1310 * 1311 * This function only differs from del_timer() on SMP: besides deactivating 1312 * the timer it also makes sure the handler has finished executing on other 1313 * CPUs. 1314 * 1315 * Synchronization rules: Callers must prevent restarting of the timer, 1316 * otherwise this function is meaningless. It must not be called from 1317 * interrupt contexts unless the timer is an irqsafe one. The caller must 1318 * not hold locks which would prevent completion of the timer's 1319 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1320 * timer is not queued and the handler is not running on any CPU. 1321 * 1322 * Note: For !irqsafe timers, you must not hold locks that are held in 1323 * interrupt context while calling this function. Even if the lock has 1324 * nothing to do with the timer in question. Here's why:: 1325 * 1326 * CPU0 CPU1 1327 * ---- ---- 1328 * <SOFTIRQ> 1329 * call_timer_fn(); 1330 * base->running_timer = mytimer; 1331 * spin_lock_irq(somelock); 1332 * <IRQ> 1333 * spin_lock(somelock); 1334 * del_timer_sync(mytimer); 1335 * while (base->running_timer == mytimer); 1336 * 1337 * Now del_timer_sync() will never return and never release somelock. 1338 * The interrupt on the other CPU is waiting to grab somelock but 1339 * it has interrupted the softirq that CPU0 is waiting to finish. 1340 * 1341 * The function returns whether it has deactivated a pending timer or not. 1342 */ 1343 int del_timer_sync(struct timer_list *timer) 1344 { 1345 int ret; 1346 1347 #ifdef CONFIG_LOCKDEP 1348 unsigned long flags; 1349 1350 /* 1351 * If lockdep gives a backtrace here, please reference 1352 * the synchronization rules above. 1353 */ 1354 local_irq_save(flags); 1355 lock_map_acquire(&timer->lockdep_map); 1356 lock_map_release(&timer->lockdep_map); 1357 local_irq_restore(flags); 1358 #endif 1359 /* 1360 * don't use it in hardirq context, because it 1361 * could lead to deadlock. 1362 */ 1363 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1364 1365 do { 1366 ret = try_to_del_timer_sync(timer); 1367 1368 if (unlikely(ret < 0)) { 1369 del_timer_wait_running(timer); 1370 cpu_relax(); 1371 } 1372 } while (ret < 0); 1373 1374 return ret; 1375 } 1376 EXPORT_SYMBOL(del_timer_sync); 1377 #endif 1378 1379 static void call_timer_fn(struct timer_list *timer, 1380 void (*fn)(struct timer_list *), 1381 unsigned long baseclk) 1382 { 1383 int count = preempt_count(); 1384 1385 #ifdef CONFIG_LOCKDEP 1386 /* 1387 * It is permissible to free the timer from inside the 1388 * function that is called from it, this we need to take into 1389 * account for lockdep too. To avoid bogus "held lock freed" 1390 * warnings as well as problems when looking into 1391 * timer->lockdep_map, make a copy and use that here. 1392 */ 1393 struct lockdep_map lockdep_map; 1394 1395 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1396 #endif 1397 /* 1398 * Couple the lock chain with the lock chain at 1399 * del_timer_sync() by acquiring the lock_map around the fn() 1400 * call here and in del_timer_sync(). 1401 */ 1402 lock_map_acquire(&lockdep_map); 1403 1404 trace_timer_expire_entry(timer, baseclk); 1405 fn(timer); 1406 trace_timer_expire_exit(timer); 1407 1408 lock_map_release(&lockdep_map); 1409 1410 if (count != preempt_count()) { 1411 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", 1412 fn, count, preempt_count()); 1413 /* 1414 * Restore the preempt count. That gives us a decent 1415 * chance to survive and extract information. If the 1416 * callback kept a lock held, bad luck, but not worse 1417 * than the BUG() we had. 1418 */ 1419 preempt_count_set(count); 1420 } 1421 } 1422 1423 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1424 { 1425 /* 1426 * This value is required only for tracing. base->clk was 1427 * incremented directly before expire_timers was called. But expiry 1428 * is related to the old base->clk value. 1429 */ 1430 unsigned long baseclk = base->clk - 1; 1431 1432 while (!hlist_empty(head)) { 1433 struct timer_list *timer; 1434 void (*fn)(struct timer_list *); 1435 1436 timer = hlist_entry(head->first, struct timer_list, entry); 1437 1438 base->running_timer = timer; 1439 detach_timer(timer, true); 1440 1441 fn = timer->function; 1442 1443 if (timer->flags & TIMER_IRQSAFE) { 1444 raw_spin_unlock(&base->lock); 1445 call_timer_fn(timer, fn, baseclk); 1446 base->running_timer = NULL; 1447 raw_spin_lock(&base->lock); 1448 } else { 1449 raw_spin_unlock_irq(&base->lock); 1450 call_timer_fn(timer, fn, baseclk); 1451 base->running_timer = NULL; 1452 timer_sync_wait_running(base); 1453 raw_spin_lock_irq(&base->lock); 1454 } 1455 } 1456 } 1457 1458 static int __collect_expired_timers(struct timer_base *base, 1459 struct hlist_head *heads) 1460 { 1461 unsigned long clk = base->clk; 1462 struct hlist_head *vec; 1463 int i, levels = 0; 1464 unsigned int idx; 1465 1466 for (i = 0; i < LVL_DEPTH; i++) { 1467 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1468 1469 if (__test_and_clear_bit(idx, base->pending_map)) { 1470 vec = base->vectors + idx; 1471 hlist_move_list(vec, heads++); 1472 levels++; 1473 } 1474 /* Is it time to look at the next level? */ 1475 if (clk & LVL_CLK_MASK) 1476 break; 1477 /* Shift clock for the next level granularity */ 1478 clk >>= LVL_CLK_SHIFT; 1479 } 1480 return levels; 1481 } 1482 1483 #ifdef CONFIG_NO_HZ_COMMON 1484 /* 1485 * Find the next pending bucket of a level. Search from level start (@offset) 1486 * + @clk upwards and if nothing there, search from start of the level 1487 * (@offset) up to @offset + clk. 1488 */ 1489 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1490 unsigned clk) 1491 { 1492 unsigned pos, start = offset + clk; 1493 unsigned end = offset + LVL_SIZE; 1494 1495 pos = find_next_bit(base->pending_map, end, start); 1496 if (pos < end) 1497 return pos - start; 1498 1499 pos = find_next_bit(base->pending_map, start, offset); 1500 return pos < start ? pos + LVL_SIZE - start : -1; 1501 } 1502 1503 /* 1504 * Search the first expiring timer in the various clock levels. Caller must 1505 * hold base->lock. 1506 */ 1507 static unsigned long __next_timer_interrupt(struct timer_base *base) 1508 { 1509 unsigned long clk, next, adj; 1510 unsigned lvl, offset = 0; 1511 1512 next = base->clk + NEXT_TIMER_MAX_DELTA; 1513 clk = base->clk; 1514 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1515 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1516 1517 if (pos >= 0) { 1518 unsigned long tmp = clk + (unsigned long) pos; 1519 1520 tmp <<= LVL_SHIFT(lvl); 1521 if (time_before(tmp, next)) 1522 next = tmp; 1523 } 1524 /* 1525 * Clock for the next level. If the current level clock lower 1526 * bits are zero, we look at the next level as is. If not we 1527 * need to advance it by one because that's going to be the 1528 * next expiring bucket in that level. base->clk is the next 1529 * expiring jiffie. So in case of: 1530 * 1531 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1532 * 0 0 0 0 0 0 1533 * 1534 * we have to look at all levels @index 0. With 1535 * 1536 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1537 * 0 0 0 0 0 2 1538 * 1539 * LVL0 has the next expiring bucket @index 2. The upper 1540 * levels have the next expiring bucket @index 1. 1541 * 1542 * In case that the propagation wraps the next level the same 1543 * rules apply: 1544 * 1545 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1546 * 0 0 0 0 F 2 1547 * 1548 * So after looking at LVL0 we get: 1549 * 1550 * LVL5 LVL4 LVL3 LVL2 LVL1 1551 * 0 0 0 1 0 1552 * 1553 * So no propagation from LVL1 to LVL2 because that happened 1554 * with the add already, but then we need to propagate further 1555 * from LVL2 to LVL3. 1556 * 1557 * So the simple check whether the lower bits of the current 1558 * level are 0 or not is sufficient for all cases. 1559 */ 1560 adj = clk & LVL_CLK_MASK ? 1 : 0; 1561 clk >>= LVL_CLK_SHIFT; 1562 clk += adj; 1563 } 1564 return next; 1565 } 1566 1567 /* 1568 * Check, if the next hrtimer event is before the next timer wheel 1569 * event: 1570 */ 1571 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1572 { 1573 u64 nextevt = hrtimer_get_next_event(); 1574 1575 /* 1576 * If high resolution timers are enabled 1577 * hrtimer_get_next_event() returns KTIME_MAX. 1578 */ 1579 if (expires <= nextevt) 1580 return expires; 1581 1582 /* 1583 * If the next timer is already expired, return the tick base 1584 * time so the tick is fired immediately. 1585 */ 1586 if (nextevt <= basem) 1587 return basem; 1588 1589 /* 1590 * Round up to the next jiffie. High resolution timers are 1591 * off, so the hrtimers are expired in the tick and we need to 1592 * make sure that this tick really expires the timer to avoid 1593 * a ping pong of the nohz stop code. 1594 * 1595 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1596 */ 1597 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1598 } 1599 1600 /** 1601 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1602 * @basej: base time jiffies 1603 * @basem: base time clock monotonic 1604 * 1605 * Returns the tick aligned clock monotonic time of the next pending 1606 * timer or KTIME_MAX if no timer is pending. 1607 */ 1608 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1609 { 1610 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1611 u64 expires = KTIME_MAX; 1612 unsigned long nextevt; 1613 bool is_max_delta; 1614 1615 /* 1616 * Pretend that there is no timer pending if the cpu is offline. 1617 * Possible pending timers will be migrated later to an active cpu. 1618 */ 1619 if (cpu_is_offline(smp_processor_id())) 1620 return expires; 1621 1622 raw_spin_lock(&base->lock); 1623 nextevt = __next_timer_interrupt(base); 1624 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1625 base->next_expiry = nextevt; 1626 /* 1627 * We have a fresh next event. Check whether we can forward the 1628 * base. We can only do that when @basej is past base->clk 1629 * otherwise we might rewind base->clk. 1630 */ 1631 if (time_after(basej, base->clk)) { 1632 if (time_after(nextevt, basej)) 1633 base->clk = basej; 1634 else if (time_after(nextevt, base->clk)) 1635 base->clk = nextevt; 1636 } 1637 1638 if (time_before_eq(nextevt, basej)) { 1639 expires = basem; 1640 base->is_idle = false; 1641 } else { 1642 if (!is_max_delta) 1643 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1644 /* 1645 * If we expect to sleep more than a tick, mark the base idle. 1646 * Also the tick is stopped so any added timer must forward 1647 * the base clk itself to keep granularity small. This idle 1648 * logic is only maintained for the BASE_STD base, deferrable 1649 * timers may still see large granularity skew (by design). 1650 */ 1651 if ((expires - basem) > TICK_NSEC) { 1652 base->must_forward_clk = true; 1653 base->is_idle = true; 1654 } 1655 } 1656 raw_spin_unlock(&base->lock); 1657 1658 return cmp_next_hrtimer_event(basem, expires); 1659 } 1660 1661 /** 1662 * timer_clear_idle - Clear the idle state of the timer base 1663 * 1664 * Called with interrupts disabled 1665 */ 1666 void timer_clear_idle(void) 1667 { 1668 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1669 1670 /* 1671 * We do this unlocked. The worst outcome is a remote enqueue sending 1672 * a pointless IPI, but taking the lock would just make the window for 1673 * sending the IPI a few instructions smaller for the cost of taking 1674 * the lock in the exit from idle path. 1675 */ 1676 base->is_idle = false; 1677 } 1678 1679 static int collect_expired_timers(struct timer_base *base, 1680 struct hlist_head *heads) 1681 { 1682 unsigned long now = READ_ONCE(jiffies); 1683 1684 /* 1685 * NOHZ optimization. After a long idle sleep we need to forward the 1686 * base to current jiffies. Avoid a loop by searching the bitfield for 1687 * the next expiring timer. 1688 */ 1689 if ((long)(now - base->clk) > 2) { 1690 unsigned long next = __next_timer_interrupt(base); 1691 1692 /* 1693 * If the next timer is ahead of time forward to current 1694 * jiffies, otherwise forward to the next expiry time: 1695 */ 1696 if (time_after(next, now)) { 1697 /* 1698 * The call site will increment base->clk and then 1699 * terminate the expiry loop immediately. 1700 */ 1701 base->clk = now; 1702 return 0; 1703 } 1704 base->clk = next; 1705 } 1706 return __collect_expired_timers(base, heads); 1707 } 1708 #else 1709 static inline int collect_expired_timers(struct timer_base *base, 1710 struct hlist_head *heads) 1711 { 1712 return __collect_expired_timers(base, heads); 1713 } 1714 #endif 1715 1716 /* 1717 * Called from the timer interrupt handler to charge one tick to the current 1718 * process. user_tick is 1 if the tick is user time, 0 for system. 1719 */ 1720 void update_process_times(int user_tick) 1721 { 1722 struct task_struct *p = current; 1723 1724 /* Note: this timer irq context must be accounted for as well. */ 1725 account_process_tick(p, user_tick); 1726 run_local_timers(); 1727 rcu_sched_clock_irq(user_tick); 1728 #ifdef CONFIG_IRQ_WORK 1729 if (in_irq()) 1730 irq_work_tick(); 1731 #endif 1732 scheduler_tick(); 1733 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1734 run_posix_cpu_timers(); 1735 } 1736 1737 /** 1738 * __run_timers - run all expired timers (if any) on this CPU. 1739 * @base: the timer vector to be processed. 1740 */ 1741 static inline void __run_timers(struct timer_base *base) 1742 { 1743 struct hlist_head heads[LVL_DEPTH]; 1744 int levels; 1745 1746 if (!time_after_eq(jiffies, base->clk)) 1747 return; 1748 1749 timer_base_lock_expiry(base); 1750 raw_spin_lock_irq(&base->lock); 1751 1752 /* 1753 * timer_base::must_forward_clk must be cleared before running 1754 * timers so that any timer functions that call mod_timer() will 1755 * not try to forward the base. Idle tracking / clock forwarding 1756 * logic is only used with BASE_STD timers. 1757 * 1758 * The must_forward_clk flag is cleared unconditionally also for 1759 * the deferrable base. The deferrable base is not affected by idle 1760 * tracking and never forwarded, so clearing the flag is a NOOP. 1761 * 1762 * The fact that the deferrable base is never forwarded can cause 1763 * large variations in granularity for deferrable timers, but they 1764 * can be deferred for long periods due to idle anyway. 1765 */ 1766 base->must_forward_clk = false; 1767 1768 while (time_after_eq(jiffies, base->clk)) { 1769 1770 levels = collect_expired_timers(base, heads); 1771 base->clk++; 1772 1773 while (levels--) 1774 expire_timers(base, heads + levels); 1775 } 1776 raw_spin_unlock_irq(&base->lock); 1777 timer_base_unlock_expiry(base); 1778 } 1779 1780 /* 1781 * This function runs timers and the timer-tq in bottom half context. 1782 */ 1783 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1784 { 1785 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1786 1787 __run_timers(base); 1788 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1789 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1790 } 1791 1792 /* 1793 * Called by the local, per-CPU timer interrupt on SMP. 1794 */ 1795 void run_local_timers(void) 1796 { 1797 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1798 1799 hrtimer_run_queues(); 1800 /* Raise the softirq only if required. */ 1801 if (time_before(jiffies, base->clk)) { 1802 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1803 return; 1804 /* CPU is awake, so check the deferrable base. */ 1805 base++; 1806 if (time_before(jiffies, base->clk)) 1807 return; 1808 } 1809 raise_softirq(TIMER_SOFTIRQ); 1810 } 1811 1812 /* 1813 * Since schedule_timeout()'s timer is defined on the stack, it must store 1814 * the target task on the stack as well. 1815 */ 1816 struct process_timer { 1817 struct timer_list timer; 1818 struct task_struct *task; 1819 }; 1820 1821 static void process_timeout(struct timer_list *t) 1822 { 1823 struct process_timer *timeout = from_timer(timeout, t, timer); 1824 1825 wake_up_process(timeout->task); 1826 } 1827 1828 /** 1829 * schedule_timeout - sleep until timeout 1830 * @timeout: timeout value in jiffies 1831 * 1832 * Make the current task sleep until @timeout jiffies have elapsed. 1833 * The function behavior depends on the current task state 1834 * (see also set_current_state() description): 1835 * 1836 * %TASK_RUNNING - the scheduler is called, but the task does not sleep 1837 * at all. That happens because sched_submit_work() does nothing for 1838 * tasks in %TASK_RUNNING state. 1839 * 1840 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1841 * pass before the routine returns unless the current task is explicitly 1842 * woken up, (e.g. by wake_up_process()). 1843 * 1844 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1845 * delivered to the current task or the current task is explicitly woken 1846 * up. 1847 * 1848 * The current task state is guaranteed to be %TASK_RUNNING when this 1849 * routine returns. 1850 * 1851 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1852 * the CPU away without a bound on the timeout. In this case the return 1853 * value will be %MAX_SCHEDULE_TIMEOUT. 1854 * 1855 * Returns 0 when the timer has expired otherwise the remaining time in 1856 * jiffies will be returned. In all cases the return value is guaranteed 1857 * to be non-negative. 1858 */ 1859 signed long __sched schedule_timeout(signed long timeout) 1860 { 1861 struct process_timer timer; 1862 unsigned long expire; 1863 1864 switch (timeout) 1865 { 1866 case MAX_SCHEDULE_TIMEOUT: 1867 /* 1868 * These two special cases are useful to be comfortable 1869 * in the caller. Nothing more. We could take 1870 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1871 * but I' d like to return a valid offset (>=0) to allow 1872 * the caller to do everything it want with the retval. 1873 */ 1874 schedule(); 1875 goto out; 1876 default: 1877 /* 1878 * Another bit of PARANOID. Note that the retval will be 1879 * 0 since no piece of kernel is supposed to do a check 1880 * for a negative retval of schedule_timeout() (since it 1881 * should never happens anyway). You just have the printk() 1882 * that will tell you if something is gone wrong and where. 1883 */ 1884 if (timeout < 0) { 1885 printk(KERN_ERR "schedule_timeout: wrong timeout " 1886 "value %lx\n", timeout); 1887 dump_stack(); 1888 current->state = TASK_RUNNING; 1889 goto out; 1890 } 1891 } 1892 1893 expire = timeout + jiffies; 1894 1895 timer.task = current; 1896 timer_setup_on_stack(&timer.timer, process_timeout, 0); 1897 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); 1898 schedule(); 1899 del_singleshot_timer_sync(&timer.timer); 1900 1901 /* Remove the timer from the object tracker */ 1902 destroy_timer_on_stack(&timer.timer); 1903 1904 timeout = expire - jiffies; 1905 1906 out: 1907 return timeout < 0 ? 0 : timeout; 1908 } 1909 EXPORT_SYMBOL(schedule_timeout); 1910 1911 /* 1912 * We can use __set_current_state() here because schedule_timeout() calls 1913 * schedule() unconditionally. 1914 */ 1915 signed long __sched schedule_timeout_interruptible(signed long timeout) 1916 { 1917 __set_current_state(TASK_INTERRUPTIBLE); 1918 return schedule_timeout(timeout); 1919 } 1920 EXPORT_SYMBOL(schedule_timeout_interruptible); 1921 1922 signed long __sched schedule_timeout_killable(signed long timeout) 1923 { 1924 __set_current_state(TASK_KILLABLE); 1925 return schedule_timeout(timeout); 1926 } 1927 EXPORT_SYMBOL(schedule_timeout_killable); 1928 1929 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1930 { 1931 __set_current_state(TASK_UNINTERRUPTIBLE); 1932 return schedule_timeout(timeout); 1933 } 1934 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1935 1936 /* 1937 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1938 * to load average. 1939 */ 1940 signed long __sched schedule_timeout_idle(signed long timeout) 1941 { 1942 __set_current_state(TASK_IDLE); 1943 return schedule_timeout(timeout); 1944 } 1945 EXPORT_SYMBOL(schedule_timeout_idle); 1946 1947 #ifdef CONFIG_HOTPLUG_CPU 1948 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1949 { 1950 struct timer_list *timer; 1951 int cpu = new_base->cpu; 1952 1953 while (!hlist_empty(head)) { 1954 timer = hlist_entry(head->first, struct timer_list, entry); 1955 detach_timer(timer, false); 1956 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1957 internal_add_timer(new_base, timer); 1958 } 1959 } 1960 1961 int timers_prepare_cpu(unsigned int cpu) 1962 { 1963 struct timer_base *base; 1964 int b; 1965 1966 for (b = 0; b < NR_BASES; b++) { 1967 base = per_cpu_ptr(&timer_bases[b], cpu); 1968 base->clk = jiffies; 1969 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 1970 base->is_idle = false; 1971 base->must_forward_clk = true; 1972 } 1973 return 0; 1974 } 1975 1976 int timers_dead_cpu(unsigned int cpu) 1977 { 1978 struct timer_base *old_base; 1979 struct timer_base *new_base; 1980 int b, i; 1981 1982 BUG_ON(cpu_online(cpu)); 1983 1984 for (b = 0; b < NR_BASES; b++) { 1985 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1986 new_base = get_cpu_ptr(&timer_bases[b]); 1987 /* 1988 * The caller is globally serialized and nobody else 1989 * takes two locks at once, deadlock is not possible. 1990 */ 1991 raw_spin_lock_irq(&new_base->lock); 1992 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1993 1994 /* 1995 * The current CPUs base clock might be stale. Update it 1996 * before moving the timers over. 1997 */ 1998 forward_timer_base(new_base); 1999 2000 BUG_ON(old_base->running_timer); 2001 2002 for (i = 0; i < WHEEL_SIZE; i++) 2003 migrate_timer_list(new_base, old_base->vectors + i); 2004 2005 raw_spin_unlock(&old_base->lock); 2006 raw_spin_unlock_irq(&new_base->lock); 2007 put_cpu_ptr(&timer_bases); 2008 } 2009 return 0; 2010 } 2011 2012 #endif /* CONFIG_HOTPLUG_CPU */ 2013 2014 static void __init init_timer_cpu(int cpu) 2015 { 2016 struct timer_base *base; 2017 int i; 2018 2019 for (i = 0; i < NR_BASES; i++) { 2020 base = per_cpu_ptr(&timer_bases[i], cpu); 2021 base->cpu = cpu; 2022 raw_spin_lock_init(&base->lock); 2023 base->clk = jiffies; 2024 timer_base_init_expiry_lock(base); 2025 } 2026 } 2027 2028 static void __init init_timer_cpus(void) 2029 { 2030 int cpu; 2031 2032 for_each_possible_cpu(cpu) 2033 init_timer_cpu(cpu); 2034 } 2035 2036 void __init init_timers(void) 2037 { 2038 init_timer_cpus(); 2039 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 2040 } 2041 2042 /** 2043 * msleep - sleep safely even with waitqueue interruptions 2044 * @msecs: Time in milliseconds to sleep for 2045 */ 2046 void msleep(unsigned int msecs) 2047 { 2048 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2049 2050 while (timeout) 2051 timeout = schedule_timeout_uninterruptible(timeout); 2052 } 2053 2054 EXPORT_SYMBOL(msleep); 2055 2056 /** 2057 * msleep_interruptible - sleep waiting for signals 2058 * @msecs: Time in milliseconds to sleep for 2059 */ 2060 unsigned long msleep_interruptible(unsigned int msecs) 2061 { 2062 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2063 2064 while (timeout && !signal_pending(current)) 2065 timeout = schedule_timeout_interruptible(timeout); 2066 return jiffies_to_msecs(timeout); 2067 } 2068 2069 EXPORT_SYMBOL(msleep_interruptible); 2070 2071 /** 2072 * usleep_range - Sleep for an approximate time 2073 * @min: Minimum time in usecs to sleep 2074 * @max: Maximum time in usecs to sleep 2075 * 2076 * In non-atomic context where the exact wakeup time is flexible, use 2077 * usleep_range() instead of udelay(). The sleep improves responsiveness 2078 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 2079 * power usage by allowing hrtimers to take advantage of an already- 2080 * scheduled interrupt instead of scheduling a new one just for this sleep. 2081 */ 2082 void __sched usleep_range(unsigned long min, unsigned long max) 2083 { 2084 ktime_t exp = ktime_add_us(ktime_get(), min); 2085 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 2086 2087 for (;;) { 2088 __set_current_state(TASK_UNINTERRUPTIBLE); 2089 /* Do not return before the requested sleep time has elapsed */ 2090 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 2091 break; 2092 } 2093 } 2094 EXPORT_SYMBOL(usleep_range); 2095