xref: /openbmc/linux/kernel/time/timer.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53 
54 #include "tick-internal.h"
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58 
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60 
61 EXPORT_SYMBOL(jiffies_64);
62 
63 /*
64  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66  * level has a different granularity.
67  *
68  * The level granularity is:		LVL_CLK_DIV ^ lvl
69  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
70  *
71  * The array level of a newly armed timer depends on the relative expiry
72  * time. The farther the expiry time is away the higher the array level and
73  * therefor the granularity becomes.
74  *
75  * Contrary to the original timer wheel implementation, which aims for 'exact'
76  * expiry of the timers, this implementation removes the need for recascading
77  * the timers into the lower array levels. The previous 'classic' timer wheel
78  * implementation of the kernel already violated the 'exact' expiry by adding
79  * slack to the expiry time to provide batched expiration. The granularity
80  * levels provide implicit batching.
81  *
82  * This is an optimization of the original timer wheel implementation for the
83  * majority of the timer wheel use cases: timeouts. The vast majority of
84  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85  * the timeout expires it indicates that normal operation is disturbed, so it
86  * does not matter much whether the timeout comes with a slight delay.
87  *
88  * The only exception to this are networking timers with a small expiry
89  * time. They rely on the granularity. Those fit into the first wheel level,
90  * which has HZ granularity.
91  *
92  * We don't have cascading anymore. timers with a expiry time above the
93  * capacity of the last wheel level are force expired at the maximum timeout
94  * value of the last wheel level. From data sampling we know that the maximum
95  * value observed is 5 days (network connection tracking), so this should not
96  * be an issue.
97  *
98  * The currently chosen array constants values are a good compromise between
99  * array size and granularity.
100  *
101  * This results in the following granularity and range levels:
102  *
103  * HZ 1000 steps
104  * Level Offset  Granularity            Range
105  *  0      0         1 ms                0 ms -         63 ms
106  *  1     64         8 ms               64 ms -        511 ms
107  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
108  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
109  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
110  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
111  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
112  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
113  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
114  *
115  * HZ  300
116  * Level Offset  Granularity            Range
117  *  0	   0         3 ms                0 ms -        210 ms
118  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
119  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
120  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
121  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
122  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
123  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
124  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
125  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126  *
127  * HZ  250
128  * Level Offset  Granularity            Range
129  *  0	   0         4 ms                0 ms -        255 ms
130  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
131  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
132  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
133  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
134  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
135  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
136  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
137  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138  *
139  * HZ  100
140  * Level Offset  Granularity            Range
141  *  0	   0         10 ms               0 ms -        630 ms
142  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
143  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
144  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
145  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
146  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
147  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
148  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149  */
150 
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT	3
153 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
157 
158 /*
159  * The time start value for each level to select the bucket at enqueue
160  * time.
161  */
162 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163 
164 /* Size of each clock level */
165 #define LVL_BITS	6
166 #define LVL_SIZE	(1UL << LVL_BITS)
167 #define LVL_MASK	(LVL_SIZE - 1)
168 #define LVL_OFFS(n)	((n) * LVL_SIZE)
169 
170 /* Level depth */
171 #if HZ > 100
172 # define LVL_DEPTH	9
173 # else
174 # define LVL_DEPTH	8
175 #endif
176 
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180 
181 /*
182  * The resulting wheel size. If NOHZ is configured we allocate two
183  * wheels so we have a separate storage for the deferrable timers.
184  */
185 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
186 
187 #ifdef CONFIG_NO_HZ_COMMON
188 # define NR_BASES	2
189 # define BASE_STD	0
190 # define BASE_DEF	1
191 #else
192 # define NR_BASES	1
193 # define BASE_STD	0
194 # define BASE_DEF	0
195 #endif
196 
197 struct timer_base {
198 	raw_spinlock_t		lock;
199 	struct timer_list	*running_timer;
200 #ifdef CONFIG_PREEMPT_RT
201 	spinlock_t		expiry_lock;
202 	atomic_t		timer_waiters;
203 #endif
204 	unsigned long		clk;
205 	unsigned long		next_expiry;
206 	unsigned int		cpu;
207 	bool			is_idle;
208 	bool			must_forward_clk;
209 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
210 	struct hlist_head	vectors[WHEEL_SIZE];
211 } ____cacheline_aligned;
212 
213 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
214 
215 #ifdef CONFIG_NO_HZ_COMMON
216 
217 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
218 static DEFINE_MUTEX(timer_keys_mutex);
219 
220 static void timer_update_keys(struct work_struct *work);
221 static DECLARE_WORK(timer_update_work, timer_update_keys);
222 
223 #ifdef CONFIG_SMP
224 unsigned int sysctl_timer_migration = 1;
225 
226 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
227 
228 static void timers_update_migration(void)
229 {
230 	if (sysctl_timer_migration && tick_nohz_active)
231 		static_branch_enable(&timers_migration_enabled);
232 	else
233 		static_branch_disable(&timers_migration_enabled);
234 }
235 #else
236 static inline void timers_update_migration(void) { }
237 #endif /* !CONFIG_SMP */
238 
239 static void timer_update_keys(struct work_struct *work)
240 {
241 	mutex_lock(&timer_keys_mutex);
242 	timers_update_migration();
243 	static_branch_enable(&timers_nohz_active);
244 	mutex_unlock(&timer_keys_mutex);
245 }
246 
247 void timers_update_nohz(void)
248 {
249 	schedule_work(&timer_update_work);
250 }
251 
252 int timer_migration_handler(struct ctl_table *table, int write,
253 			    void *buffer, size_t *lenp, loff_t *ppos)
254 {
255 	int ret;
256 
257 	mutex_lock(&timer_keys_mutex);
258 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
259 	if (!ret && write)
260 		timers_update_migration();
261 	mutex_unlock(&timer_keys_mutex);
262 	return ret;
263 }
264 
265 static inline bool is_timers_nohz_active(void)
266 {
267 	return static_branch_unlikely(&timers_nohz_active);
268 }
269 #else
270 static inline bool is_timers_nohz_active(void) { return false; }
271 #endif /* NO_HZ_COMMON */
272 
273 static unsigned long round_jiffies_common(unsigned long j, int cpu,
274 		bool force_up)
275 {
276 	int rem;
277 	unsigned long original = j;
278 
279 	/*
280 	 * We don't want all cpus firing their timers at once hitting the
281 	 * same lock or cachelines, so we skew each extra cpu with an extra
282 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
283 	 * already did this.
284 	 * The skew is done by adding 3*cpunr, then round, then subtract this
285 	 * extra offset again.
286 	 */
287 	j += cpu * 3;
288 
289 	rem = j % HZ;
290 
291 	/*
292 	 * If the target jiffie is just after a whole second (which can happen
293 	 * due to delays of the timer irq, long irq off times etc etc) then
294 	 * we should round down to the whole second, not up. Use 1/4th second
295 	 * as cutoff for this rounding as an extreme upper bound for this.
296 	 * But never round down if @force_up is set.
297 	 */
298 	if (rem < HZ/4 && !force_up) /* round down */
299 		j = j - rem;
300 	else /* round up */
301 		j = j - rem + HZ;
302 
303 	/* now that we have rounded, subtract the extra skew again */
304 	j -= cpu * 3;
305 
306 	/*
307 	 * Make sure j is still in the future. Otherwise return the
308 	 * unmodified value.
309 	 */
310 	return time_is_after_jiffies(j) ? j : original;
311 }
312 
313 /**
314  * __round_jiffies - function to round jiffies to a full second
315  * @j: the time in (absolute) jiffies that should be rounded
316  * @cpu: the processor number on which the timeout will happen
317  *
318  * __round_jiffies() rounds an absolute time in the future (in jiffies)
319  * up or down to (approximately) full seconds. This is useful for timers
320  * for which the exact time they fire does not matter too much, as long as
321  * they fire approximately every X seconds.
322  *
323  * By rounding these timers to whole seconds, all such timers will fire
324  * at the same time, rather than at various times spread out. The goal
325  * of this is to have the CPU wake up less, which saves power.
326  *
327  * The exact rounding is skewed for each processor to avoid all
328  * processors firing at the exact same time, which could lead
329  * to lock contention or spurious cache line bouncing.
330  *
331  * The return value is the rounded version of the @j parameter.
332  */
333 unsigned long __round_jiffies(unsigned long j, int cpu)
334 {
335 	return round_jiffies_common(j, cpu, false);
336 }
337 EXPORT_SYMBOL_GPL(__round_jiffies);
338 
339 /**
340  * __round_jiffies_relative - function to round jiffies to a full second
341  * @j: the time in (relative) jiffies that should be rounded
342  * @cpu: the processor number on which the timeout will happen
343  *
344  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
345  * up or down to (approximately) full seconds. This is useful for timers
346  * for which the exact time they fire does not matter too much, as long as
347  * they fire approximately every X seconds.
348  *
349  * By rounding these timers to whole seconds, all such timers will fire
350  * at the same time, rather than at various times spread out. The goal
351  * of this is to have the CPU wake up less, which saves power.
352  *
353  * The exact rounding is skewed for each processor to avoid all
354  * processors firing at the exact same time, which could lead
355  * to lock contention or spurious cache line bouncing.
356  *
357  * The return value is the rounded version of the @j parameter.
358  */
359 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
360 {
361 	unsigned long j0 = jiffies;
362 
363 	/* Use j0 because jiffies might change while we run */
364 	return round_jiffies_common(j + j0, cpu, false) - j0;
365 }
366 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
367 
368 /**
369  * round_jiffies - function to round jiffies to a full second
370  * @j: the time in (absolute) jiffies that should be rounded
371  *
372  * round_jiffies() rounds an absolute time in the future (in jiffies)
373  * up or down to (approximately) full seconds. This is useful for timers
374  * for which the exact time they fire does not matter too much, as long as
375  * they fire approximately every X seconds.
376  *
377  * By rounding these timers to whole seconds, all such timers will fire
378  * at the same time, rather than at various times spread out. The goal
379  * of this is to have the CPU wake up less, which saves power.
380  *
381  * The return value is the rounded version of the @j parameter.
382  */
383 unsigned long round_jiffies(unsigned long j)
384 {
385 	return round_jiffies_common(j, raw_smp_processor_id(), false);
386 }
387 EXPORT_SYMBOL_GPL(round_jiffies);
388 
389 /**
390  * round_jiffies_relative - function to round jiffies to a full second
391  * @j: the time in (relative) jiffies that should be rounded
392  *
393  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
394  * up or down to (approximately) full seconds. This is useful for timers
395  * for which the exact time they fire does not matter too much, as long as
396  * they fire approximately every X seconds.
397  *
398  * By rounding these timers to whole seconds, all such timers will fire
399  * at the same time, rather than at various times spread out. The goal
400  * of this is to have the CPU wake up less, which saves power.
401  *
402  * The return value is the rounded version of the @j parameter.
403  */
404 unsigned long round_jiffies_relative(unsigned long j)
405 {
406 	return __round_jiffies_relative(j, raw_smp_processor_id());
407 }
408 EXPORT_SYMBOL_GPL(round_jiffies_relative);
409 
410 /**
411  * __round_jiffies_up - function to round jiffies up to a full second
412  * @j: the time in (absolute) jiffies that should be rounded
413  * @cpu: the processor number on which the timeout will happen
414  *
415  * This is the same as __round_jiffies() except that it will never
416  * round down.  This is useful for timeouts for which the exact time
417  * of firing does not matter too much, as long as they don't fire too
418  * early.
419  */
420 unsigned long __round_jiffies_up(unsigned long j, int cpu)
421 {
422 	return round_jiffies_common(j, cpu, true);
423 }
424 EXPORT_SYMBOL_GPL(__round_jiffies_up);
425 
426 /**
427  * __round_jiffies_up_relative - function to round jiffies up to a full second
428  * @j: the time in (relative) jiffies that should be rounded
429  * @cpu: the processor number on which the timeout will happen
430  *
431  * This is the same as __round_jiffies_relative() except that it will never
432  * round down.  This is useful for timeouts for which the exact time
433  * of firing does not matter too much, as long as they don't fire too
434  * early.
435  */
436 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
437 {
438 	unsigned long j0 = jiffies;
439 
440 	/* Use j0 because jiffies might change while we run */
441 	return round_jiffies_common(j + j0, cpu, true) - j0;
442 }
443 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
444 
445 /**
446  * round_jiffies_up - function to round jiffies up to a full second
447  * @j: the time in (absolute) jiffies that should be rounded
448  *
449  * This is the same as round_jiffies() except that it will never
450  * round down.  This is useful for timeouts for which the exact time
451  * of firing does not matter too much, as long as they don't fire too
452  * early.
453  */
454 unsigned long round_jiffies_up(unsigned long j)
455 {
456 	return round_jiffies_common(j, raw_smp_processor_id(), true);
457 }
458 EXPORT_SYMBOL_GPL(round_jiffies_up);
459 
460 /**
461  * round_jiffies_up_relative - function to round jiffies up to a full second
462  * @j: the time in (relative) jiffies that should be rounded
463  *
464  * This is the same as round_jiffies_relative() except that it will never
465  * round down.  This is useful for timeouts for which the exact time
466  * of firing does not matter too much, as long as they don't fire too
467  * early.
468  */
469 unsigned long round_jiffies_up_relative(unsigned long j)
470 {
471 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
472 }
473 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
474 
475 
476 static inline unsigned int timer_get_idx(struct timer_list *timer)
477 {
478 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
479 }
480 
481 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
482 {
483 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
484 			idx << TIMER_ARRAYSHIFT;
485 }
486 
487 /*
488  * Helper function to calculate the array index for a given expiry
489  * time.
490  */
491 static inline unsigned calc_index(unsigned expires, unsigned lvl)
492 {
493 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
494 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
495 }
496 
497 static int calc_wheel_index(unsigned long expires, unsigned long clk)
498 {
499 	unsigned long delta = expires - clk;
500 	unsigned int idx;
501 
502 	if (delta < LVL_START(1)) {
503 		idx = calc_index(expires, 0);
504 	} else if (delta < LVL_START(2)) {
505 		idx = calc_index(expires, 1);
506 	} else if (delta < LVL_START(3)) {
507 		idx = calc_index(expires, 2);
508 	} else if (delta < LVL_START(4)) {
509 		idx = calc_index(expires, 3);
510 	} else if (delta < LVL_START(5)) {
511 		idx = calc_index(expires, 4);
512 	} else if (delta < LVL_START(6)) {
513 		idx = calc_index(expires, 5);
514 	} else if (delta < LVL_START(7)) {
515 		idx = calc_index(expires, 6);
516 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
517 		idx = calc_index(expires, 7);
518 	} else if ((long) delta < 0) {
519 		idx = clk & LVL_MASK;
520 	} else {
521 		/*
522 		 * Force expire obscene large timeouts to expire at the
523 		 * capacity limit of the wheel.
524 		 */
525 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
526 			expires = clk + WHEEL_TIMEOUT_MAX;
527 
528 		idx = calc_index(expires, LVL_DEPTH - 1);
529 	}
530 	return idx;
531 }
532 
533 /*
534  * Enqueue the timer into the hash bucket, mark it pending in
535  * the bitmap and store the index in the timer flags.
536  */
537 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
538 			  unsigned int idx)
539 {
540 	hlist_add_head(&timer->entry, base->vectors + idx);
541 	__set_bit(idx, base->pending_map);
542 	timer_set_idx(timer, idx);
543 
544 	trace_timer_start(timer, timer->expires, timer->flags);
545 }
546 
547 static void
548 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
549 {
550 	unsigned int idx;
551 
552 	idx = calc_wheel_index(timer->expires, base->clk);
553 	enqueue_timer(base, timer, idx);
554 }
555 
556 static void
557 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
558 {
559 	if (!is_timers_nohz_active())
560 		return;
561 
562 	/*
563 	 * TODO: This wants some optimizing similar to the code below, but we
564 	 * will do that when we switch from push to pull for deferrable timers.
565 	 */
566 	if (timer->flags & TIMER_DEFERRABLE) {
567 		if (tick_nohz_full_cpu(base->cpu))
568 			wake_up_nohz_cpu(base->cpu);
569 		return;
570 	}
571 
572 	/*
573 	 * We might have to IPI the remote CPU if the base is idle and the
574 	 * timer is not deferrable. If the other CPU is on the way to idle
575 	 * then it can't set base->is_idle as we hold the base lock:
576 	 */
577 	if (!base->is_idle)
578 		return;
579 
580 	/* Check whether this is the new first expiring timer: */
581 	if (time_after_eq(timer->expires, base->next_expiry))
582 		return;
583 
584 	/*
585 	 * Set the next expiry time and kick the CPU so it can reevaluate the
586 	 * wheel:
587 	 */
588 	if (time_before(timer->expires, base->clk)) {
589 		/*
590 		 * Prevent from forward_timer_base() moving the base->clk
591 		 * backward
592 		 */
593 		base->next_expiry = base->clk;
594 	} else {
595 		base->next_expiry = timer->expires;
596 	}
597 	wake_up_nohz_cpu(base->cpu);
598 }
599 
600 static void
601 internal_add_timer(struct timer_base *base, struct timer_list *timer)
602 {
603 	__internal_add_timer(base, timer);
604 	trigger_dyntick_cpu(base, timer);
605 }
606 
607 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
608 
609 static struct debug_obj_descr timer_debug_descr;
610 
611 static void *timer_debug_hint(void *addr)
612 {
613 	return ((struct timer_list *) addr)->function;
614 }
615 
616 static bool timer_is_static_object(void *addr)
617 {
618 	struct timer_list *timer = addr;
619 
620 	return (timer->entry.pprev == NULL &&
621 		timer->entry.next == TIMER_ENTRY_STATIC);
622 }
623 
624 /*
625  * fixup_init is called when:
626  * - an active object is initialized
627  */
628 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
629 {
630 	struct timer_list *timer = addr;
631 
632 	switch (state) {
633 	case ODEBUG_STATE_ACTIVE:
634 		del_timer_sync(timer);
635 		debug_object_init(timer, &timer_debug_descr);
636 		return true;
637 	default:
638 		return false;
639 	}
640 }
641 
642 /* Stub timer callback for improperly used timers. */
643 static void stub_timer(struct timer_list *unused)
644 {
645 	WARN_ON(1);
646 }
647 
648 /*
649  * fixup_activate is called when:
650  * - an active object is activated
651  * - an unknown non-static object is activated
652  */
653 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
654 {
655 	struct timer_list *timer = addr;
656 
657 	switch (state) {
658 	case ODEBUG_STATE_NOTAVAILABLE:
659 		timer_setup(timer, stub_timer, 0);
660 		return true;
661 
662 	case ODEBUG_STATE_ACTIVE:
663 		WARN_ON(1);
664 		/* fall through */
665 	default:
666 		return false;
667 	}
668 }
669 
670 /*
671  * fixup_free is called when:
672  * - an active object is freed
673  */
674 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
675 {
676 	struct timer_list *timer = addr;
677 
678 	switch (state) {
679 	case ODEBUG_STATE_ACTIVE:
680 		del_timer_sync(timer);
681 		debug_object_free(timer, &timer_debug_descr);
682 		return true;
683 	default:
684 		return false;
685 	}
686 }
687 
688 /*
689  * fixup_assert_init is called when:
690  * - an untracked/uninit-ed object is found
691  */
692 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
693 {
694 	struct timer_list *timer = addr;
695 
696 	switch (state) {
697 	case ODEBUG_STATE_NOTAVAILABLE:
698 		timer_setup(timer, stub_timer, 0);
699 		return true;
700 	default:
701 		return false;
702 	}
703 }
704 
705 static struct debug_obj_descr timer_debug_descr = {
706 	.name			= "timer_list",
707 	.debug_hint		= timer_debug_hint,
708 	.is_static_object	= timer_is_static_object,
709 	.fixup_init		= timer_fixup_init,
710 	.fixup_activate		= timer_fixup_activate,
711 	.fixup_free		= timer_fixup_free,
712 	.fixup_assert_init	= timer_fixup_assert_init,
713 };
714 
715 static inline void debug_timer_init(struct timer_list *timer)
716 {
717 	debug_object_init(timer, &timer_debug_descr);
718 }
719 
720 static inline void debug_timer_activate(struct timer_list *timer)
721 {
722 	debug_object_activate(timer, &timer_debug_descr);
723 }
724 
725 static inline void debug_timer_deactivate(struct timer_list *timer)
726 {
727 	debug_object_deactivate(timer, &timer_debug_descr);
728 }
729 
730 static inline void debug_timer_free(struct timer_list *timer)
731 {
732 	debug_object_free(timer, &timer_debug_descr);
733 }
734 
735 static inline void debug_timer_assert_init(struct timer_list *timer)
736 {
737 	debug_object_assert_init(timer, &timer_debug_descr);
738 }
739 
740 static void do_init_timer(struct timer_list *timer,
741 			  void (*func)(struct timer_list *),
742 			  unsigned int flags,
743 			  const char *name, struct lock_class_key *key);
744 
745 void init_timer_on_stack_key(struct timer_list *timer,
746 			     void (*func)(struct timer_list *),
747 			     unsigned int flags,
748 			     const char *name, struct lock_class_key *key)
749 {
750 	debug_object_init_on_stack(timer, &timer_debug_descr);
751 	do_init_timer(timer, func, flags, name, key);
752 }
753 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
754 
755 void destroy_timer_on_stack(struct timer_list *timer)
756 {
757 	debug_object_free(timer, &timer_debug_descr);
758 }
759 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
760 
761 #else
762 static inline void debug_timer_init(struct timer_list *timer) { }
763 static inline void debug_timer_activate(struct timer_list *timer) { }
764 static inline void debug_timer_deactivate(struct timer_list *timer) { }
765 static inline void debug_timer_assert_init(struct timer_list *timer) { }
766 #endif
767 
768 static inline void debug_init(struct timer_list *timer)
769 {
770 	debug_timer_init(timer);
771 	trace_timer_init(timer);
772 }
773 
774 static inline void debug_deactivate(struct timer_list *timer)
775 {
776 	debug_timer_deactivate(timer);
777 	trace_timer_cancel(timer);
778 }
779 
780 static inline void debug_assert_init(struct timer_list *timer)
781 {
782 	debug_timer_assert_init(timer);
783 }
784 
785 static void do_init_timer(struct timer_list *timer,
786 			  void (*func)(struct timer_list *),
787 			  unsigned int flags,
788 			  const char *name, struct lock_class_key *key)
789 {
790 	timer->entry.pprev = NULL;
791 	timer->function = func;
792 	timer->flags = flags | raw_smp_processor_id();
793 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
794 }
795 
796 /**
797  * init_timer_key - initialize a timer
798  * @timer: the timer to be initialized
799  * @func: timer callback function
800  * @flags: timer flags
801  * @name: name of the timer
802  * @key: lockdep class key of the fake lock used for tracking timer
803  *       sync lock dependencies
804  *
805  * init_timer_key() must be done to a timer prior calling *any* of the
806  * other timer functions.
807  */
808 void init_timer_key(struct timer_list *timer,
809 		    void (*func)(struct timer_list *), unsigned int flags,
810 		    const char *name, struct lock_class_key *key)
811 {
812 	debug_init(timer);
813 	do_init_timer(timer, func, flags, name, key);
814 }
815 EXPORT_SYMBOL(init_timer_key);
816 
817 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
818 {
819 	struct hlist_node *entry = &timer->entry;
820 
821 	debug_deactivate(timer);
822 
823 	__hlist_del(entry);
824 	if (clear_pending)
825 		entry->pprev = NULL;
826 	entry->next = LIST_POISON2;
827 }
828 
829 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
830 			     bool clear_pending)
831 {
832 	unsigned idx = timer_get_idx(timer);
833 
834 	if (!timer_pending(timer))
835 		return 0;
836 
837 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
838 		__clear_bit(idx, base->pending_map);
839 
840 	detach_timer(timer, clear_pending);
841 	return 1;
842 }
843 
844 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
845 {
846 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
847 
848 	/*
849 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
850 	 * to use the deferrable base.
851 	 */
852 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
853 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
854 	return base;
855 }
856 
857 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
858 {
859 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
860 
861 	/*
862 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
863 	 * to use the deferrable base.
864 	 */
865 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
866 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
867 	return base;
868 }
869 
870 static inline struct timer_base *get_timer_base(u32 tflags)
871 {
872 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
873 }
874 
875 static inline struct timer_base *
876 get_target_base(struct timer_base *base, unsigned tflags)
877 {
878 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
879 	if (static_branch_likely(&timers_migration_enabled) &&
880 	    !(tflags & TIMER_PINNED))
881 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
882 #endif
883 	return get_timer_this_cpu_base(tflags);
884 }
885 
886 static inline void forward_timer_base(struct timer_base *base)
887 {
888 #ifdef CONFIG_NO_HZ_COMMON
889 	unsigned long jnow;
890 
891 	/*
892 	 * We only forward the base when we are idle or have just come out of
893 	 * idle (must_forward_clk logic), and have a delta between base clock
894 	 * and jiffies. In the common case, run_timers will take care of it.
895 	 */
896 	if (likely(!base->must_forward_clk))
897 		return;
898 
899 	jnow = READ_ONCE(jiffies);
900 	base->must_forward_clk = base->is_idle;
901 	if ((long)(jnow - base->clk) < 2)
902 		return;
903 
904 	/*
905 	 * If the next expiry value is > jiffies, then we fast forward to
906 	 * jiffies otherwise we forward to the next expiry value.
907 	 */
908 	if (time_after(base->next_expiry, jnow)) {
909 		base->clk = jnow;
910 	} else {
911 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
912 			return;
913 		base->clk = base->next_expiry;
914 	}
915 #endif
916 }
917 
918 
919 /*
920  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
921  * that all timers which are tied to this base are locked, and the base itself
922  * is locked too.
923  *
924  * So __run_timers/migrate_timers can safely modify all timers which could
925  * be found in the base->vectors array.
926  *
927  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
928  * to wait until the migration is done.
929  */
930 static struct timer_base *lock_timer_base(struct timer_list *timer,
931 					  unsigned long *flags)
932 	__acquires(timer->base->lock)
933 {
934 	for (;;) {
935 		struct timer_base *base;
936 		u32 tf;
937 
938 		/*
939 		 * We need to use READ_ONCE() here, otherwise the compiler
940 		 * might re-read @tf between the check for TIMER_MIGRATING
941 		 * and spin_lock().
942 		 */
943 		tf = READ_ONCE(timer->flags);
944 
945 		if (!(tf & TIMER_MIGRATING)) {
946 			base = get_timer_base(tf);
947 			raw_spin_lock_irqsave(&base->lock, *flags);
948 			if (timer->flags == tf)
949 				return base;
950 			raw_spin_unlock_irqrestore(&base->lock, *flags);
951 		}
952 		cpu_relax();
953 	}
954 }
955 
956 #define MOD_TIMER_PENDING_ONLY		0x01
957 #define MOD_TIMER_REDUCE		0x02
958 #define MOD_TIMER_NOTPENDING		0x04
959 
960 static inline int
961 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
962 {
963 	struct timer_base *base, *new_base;
964 	unsigned int idx = UINT_MAX;
965 	unsigned long clk = 0, flags;
966 	int ret = 0;
967 
968 	BUG_ON(!timer->function);
969 
970 	/*
971 	 * This is a common optimization triggered by the networking code - if
972 	 * the timer is re-modified to have the same timeout or ends up in the
973 	 * same array bucket then just return:
974 	 */
975 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
976 		/*
977 		 * The downside of this optimization is that it can result in
978 		 * larger granularity than you would get from adding a new
979 		 * timer with this expiry.
980 		 */
981 		long diff = timer->expires - expires;
982 
983 		if (!diff)
984 			return 1;
985 		if (options & MOD_TIMER_REDUCE && diff <= 0)
986 			return 1;
987 
988 		/*
989 		 * We lock timer base and calculate the bucket index right
990 		 * here. If the timer ends up in the same bucket, then we
991 		 * just update the expiry time and avoid the whole
992 		 * dequeue/enqueue dance.
993 		 */
994 		base = lock_timer_base(timer, &flags);
995 		forward_timer_base(base);
996 
997 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
998 		    time_before_eq(timer->expires, expires)) {
999 			ret = 1;
1000 			goto out_unlock;
1001 		}
1002 
1003 		clk = base->clk;
1004 		idx = calc_wheel_index(expires, clk);
1005 
1006 		/*
1007 		 * Retrieve and compare the array index of the pending
1008 		 * timer. If it matches set the expiry to the new value so a
1009 		 * subsequent call will exit in the expires check above.
1010 		 */
1011 		if (idx == timer_get_idx(timer)) {
1012 			if (!(options & MOD_TIMER_REDUCE))
1013 				timer->expires = expires;
1014 			else if (time_after(timer->expires, expires))
1015 				timer->expires = expires;
1016 			ret = 1;
1017 			goto out_unlock;
1018 		}
1019 	} else {
1020 		base = lock_timer_base(timer, &flags);
1021 		forward_timer_base(base);
1022 	}
1023 
1024 	ret = detach_if_pending(timer, base, false);
1025 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1026 		goto out_unlock;
1027 
1028 	new_base = get_target_base(base, timer->flags);
1029 
1030 	if (base != new_base) {
1031 		/*
1032 		 * We are trying to schedule the timer on the new base.
1033 		 * However we can't change timer's base while it is running,
1034 		 * otherwise del_timer_sync() can't detect that the timer's
1035 		 * handler yet has not finished. This also guarantees that the
1036 		 * timer is serialized wrt itself.
1037 		 */
1038 		if (likely(base->running_timer != timer)) {
1039 			/* See the comment in lock_timer_base() */
1040 			timer->flags |= TIMER_MIGRATING;
1041 
1042 			raw_spin_unlock(&base->lock);
1043 			base = new_base;
1044 			raw_spin_lock(&base->lock);
1045 			WRITE_ONCE(timer->flags,
1046 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1047 			forward_timer_base(base);
1048 		}
1049 	}
1050 
1051 	debug_timer_activate(timer);
1052 
1053 	timer->expires = expires;
1054 	/*
1055 	 * If 'idx' was calculated above and the base time did not advance
1056 	 * between calculating 'idx' and possibly switching the base, only
1057 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1058 	 * we need to (re)calculate the wheel index via
1059 	 * internal_add_timer().
1060 	 */
1061 	if (idx != UINT_MAX && clk == base->clk) {
1062 		enqueue_timer(base, timer, idx);
1063 		trigger_dyntick_cpu(base, timer);
1064 	} else {
1065 		internal_add_timer(base, timer);
1066 	}
1067 
1068 out_unlock:
1069 	raw_spin_unlock_irqrestore(&base->lock, flags);
1070 
1071 	return ret;
1072 }
1073 
1074 /**
1075  * mod_timer_pending - modify a pending timer's timeout
1076  * @timer: the pending timer to be modified
1077  * @expires: new timeout in jiffies
1078  *
1079  * mod_timer_pending() is the same for pending timers as mod_timer(),
1080  * but will not re-activate and modify already deleted timers.
1081  *
1082  * It is useful for unserialized use of timers.
1083  */
1084 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1085 {
1086 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1087 }
1088 EXPORT_SYMBOL(mod_timer_pending);
1089 
1090 /**
1091  * mod_timer - modify a timer's timeout
1092  * @timer: the timer to be modified
1093  * @expires: new timeout in jiffies
1094  *
1095  * mod_timer() is a more efficient way to update the expire field of an
1096  * active timer (if the timer is inactive it will be activated)
1097  *
1098  * mod_timer(timer, expires) is equivalent to:
1099  *
1100  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1101  *
1102  * Note that if there are multiple unserialized concurrent users of the
1103  * same timer, then mod_timer() is the only safe way to modify the timeout,
1104  * since add_timer() cannot modify an already running timer.
1105  *
1106  * The function returns whether it has modified a pending timer or not.
1107  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1108  * active timer returns 1.)
1109  */
1110 int mod_timer(struct timer_list *timer, unsigned long expires)
1111 {
1112 	return __mod_timer(timer, expires, 0);
1113 }
1114 EXPORT_SYMBOL(mod_timer);
1115 
1116 /**
1117  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1118  * @timer:	The timer to be modified
1119  * @expires:	New timeout in jiffies
1120  *
1121  * timer_reduce() is very similar to mod_timer(), except that it will only
1122  * modify a running timer if that would reduce the expiration time (it will
1123  * start a timer that isn't running).
1124  */
1125 int timer_reduce(struct timer_list *timer, unsigned long expires)
1126 {
1127 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1128 }
1129 EXPORT_SYMBOL(timer_reduce);
1130 
1131 /**
1132  * add_timer - start a timer
1133  * @timer: the timer to be added
1134  *
1135  * The kernel will do a ->function(@timer) callback from the
1136  * timer interrupt at the ->expires point in the future. The
1137  * current time is 'jiffies'.
1138  *
1139  * The timer's ->expires, ->function fields must be set prior calling this
1140  * function.
1141  *
1142  * Timers with an ->expires field in the past will be executed in the next
1143  * timer tick.
1144  */
1145 void add_timer(struct timer_list *timer)
1146 {
1147 	BUG_ON(timer_pending(timer));
1148 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1149 }
1150 EXPORT_SYMBOL(add_timer);
1151 
1152 /**
1153  * add_timer_on - start a timer on a particular CPU
1154  * @timer: the timer to be added
1155  * @cpu: the CPU to start it on
1156  *
1157  * This is not very scalable on SMP. Double adds are not possible.
1158  */
1159 void add_timer_on(struct timer_list *timer, int cpu)
1160 {
1161 	struct timer_base *new_base, *base;
1162 	unsigned long flags;
1163 
1164 	BUG_ON(timer_pending(timer) || !timer->function);
1165 
1166 	new_base = get_timer_cpu_base(timer->flags, cpu);
1167 
1168 	/*
1169 	 * If @timer was on a different CPU, it should be migrated with the
1170 	 * old base locked to prevent other operations proceeding with the
1171 	 * wrong base locked.  See lock_timer_base().
1172 	 */
1173 	base = lock_timer_base(timer, &flags);
1174 	if (base != new_base) {
1175 		timer->flags |= TIMER_MIGRATING;
1176 
1177 		raw_spin_unlock(&base->lock);
1178 		base = new_base;
1179 		raw_spin_lock(&base->lock);
1180 		WRITE_ONCE(timer->flags,
1181 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1182 	}
1183 	forward_timer_base(base);
1184 
1185 	debug_timer_activate(timer);
1186 	internal_add_timer(base, timer);
1187 	raw_spin_unlock_irqrestore(&base->lock, flags);
1188 }
1189 EXPORT_SYMBOL_GPL(add_timer_on);
1190 
1191 /**
1192  * del_timer - deactivate a timer.
1193  * @timer: the timer to be deactivated
1194  *
1195  * del_timer() deactivates a timer - this works on both active and inactive
1196  * timers.
1197  *
1198  * The function returns whether it has deactivated a pending timer or not.
1199  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1200  * active timer returns 1.)
1201  */
1202 int del_timer(struct timer_list *timer)
1203 {
1204 	struct timer_base *base;
1205 	unsigned long flags;
1206 	int ret = 0;
1207 
1208 	debug_assert_init(timer);
1209 
1210 	if (timer_pending(timer)) {
1211 		base = lock_timer_base(timer, &flags);
1212 		ret = detach_if_pending(timer, base, true);
1213 		raw_spin_unlock_irqrestore(&base->lock, flags);
1214 	}
1215 
1216 	return ret;
1217 }
1218 EXPORT_SYMBOL(del_timer);
1219 
1220 /**
1221  * try_to_del_timer_sync - Try to deactivate a timer
1222  * @timer: timer to delete
1223  *
1224  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1225  * exit the timer is not queued and the handler is not running on any CPU.
1226  */
1227 int try_to_del_timer_sync(struct timer_list *timer)
1228 {
1229 	struct timer_base *base;
1230 	unsigned long flags;
1231 	int ret = -1;
1232 
1233 	debug_assert_init(timer);
1234 
1235 	base = lock_timer_base(timer, &flags);
1236 
1237 	if (base->running_timer != timer)
1238 		ret = detach_if_pending(timer, base, true);
1239 
1240 	raw_spin_unlock_irqrestore(&base->lock, flags);
1241 
1242 	return ret;
1243 }
1244 EXPORT_SYMBOL(try_to_del_timer_sync);
1245 
1246 #ifdef CONFIG_PREEMPT_RT
1247 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1248 {
1249 	spin_lock_init(&base->expiry_lock);
1250 }
1251 
1252 static inline void timer_base_lock_expiry(struct timer_base *base)
1253 {
1254 	spin_lock(&base->expiry_lock);
1255 }
1256 
1257 static inline void timer_base_unlock_expiry(struct timer_base *base)
1258 {
1259 	spin_unlock(&base->expiry_lock);
1260 }
1261 
1262 /*
1263  * The counterpart to del_timer_wait_running().
1264  *
1265  * If there is a waiter for base->expiry_lock, then it was waiting for the
1266  * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1267  * the waiter to acquire the lock and make progress.
1268  */
1269 static void timer_sync_wait_running(struct timer_base *base)
1270 {
1271 	if (atomic_read(&base->timer_waiters)) {
1272 		spin_unlock(&base->expiry_lock);
1273 		spin_lock(&base->expiry_lock);
1274 	}
1275 }
1276 
1277 /*
1278  * This function is called on PREEMPT_RT kernels when the fast path
1279  * deletion of a timer failed because the timer callback function was
1280  * running.
1281  *
1282  * This prevents priority inversion, if the softirq thread on a remote CPU
1283  * got preempted, and it prevents a life lock when the task which tries to
1284  * delete a timer preempted the softirq thread running the timer callback
1285  * function.
1286  */
1287 static void del_timer_wait_running(struct timer_list *timer)
1288 {
1289 	u32 tf;
1290 
1291 	tf = READ_ONCE(timer->flags);
1292 	if (!(tf & TIMER_MIGRATING)) {
1293 		struct timer_base *base = get_timer_base(tf);
1294 
1295 		/*
1296 		 * Mark the base as contended and grab the expiry lock,
1297 		 * which is held by the softirq across the timer
1298 		 * callback. Drop the lock immediately so the softirq can
1299 		 * expire the next timer. In theory the timer could already
1300 		 * be running again, but that's more than unlikely and just
1301 		 * causes another wait loop.
1302 		 */
1303 		atomic_inc(&base->timer_waiters);
1304 		spin_lock_bh(&base->expiry_lock);
1305 		atomic_dec(&base->timer_waiters);
1306 		spin_unlock_bh(&base->expiry_lock);
1307 	}
1308 }
1309 #else
1310 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1311 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1312 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1313 static inline void timer_sync_wait_running(struct timer_base *base) { }
1314 static inline void del_timer_wait_running(struct timer_list *timer) { }
1315 #endif
1316 
1317 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1318 /**
1319  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1320  * @timer: the timer to be deactivated
1321  *
1322  * This function only differs from del_timer() on SMP: besides deactivating
1323  * the timer it also makes sure the handler has finished executing on other
1324  * CPUs.
1325  *
1326  * Synchronization rules: Callers must prevent restarting of the timer,
1327  * otherwise this function is meaningless. It must not be called from
1328  * interrupt contexts unless the timer is an irqsafe one. The caller must
1329  * not hold locks which would prevent completion of the timer's
1330  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1331  * timer is not queued and the handler is not running on any CPU.
1332  *
1333  * Note: For !irqsafe timers, you must not hold locks that are held in
1334  *   interrupt context while calling this function. Even if the lock has
1335  *   nothing to do with the timer in question.  Here's why::
1336  *
1337  *    CPU0                             CPU1
1338  *    ----                             ----
1339  *                                     <SOFTIRQ>
1340  *                                       call_timer_fn();
1341  *                                       base->running_timer = mytimer;
1342  *    spin_lock_irq(somelock);
1343  *                                     <IRQ>
1344  *                                        spin_lock(somelock);
1345  *    del_timer_sync(mytimer);
1346  *    while (base->running_timer == mytimer);
1347  *
1348  * Now del_timer_sync() will never return and never release somelock.
1349  * The interrupt on the other CPU is waiting to grab somelock but
1350  * it has interrupted the softirq that CPU0 is waiting to finish.
1351  *
1352  * The function returns whether it has deactivated a pending timer or not.
1353  */
1354 int del_timer_sync(struct timer_list *timer)
1355 {
1356 	int ret;
1357 
1358 #ifdef CONFIG_LOCKDEP
1359 	unsigned long flags;
1360 
1361 	/*
1362 	 * If lockdep gives a backtrace here, please reference
1363 	 * the synchronization rules above.
1364 	 */
1365 	local_irq_save(flags);
1366 	lock_map_acquire(&timer->lockdep_map);
1367 	lock_map_release(&timer->lockdep_map);
1368 	local_irq_restore(flags);
1369 #endif
1370 	/*
1371 	 * don't use it in hardirq context, because it
1372 	 * could lead to deadlock.
1373 	 */
1374 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1375 
1376 	do {
1377 		ret = try_to_del_timer_sync(timer);
1378 
1379 		if (unlikely(ret < 0)) {
1380 			del_timer_wait_running(timer);
1381 			cpu_relax();
1382 		}
1383 	} while (ret < 0);
1384 
1385 	return ret;
1386 }
1387 EXPORT_SYMBOL(del_timer_sync);
1388 #endif
1389 
1390 static void call_timer_fn(struct timer_list *timer,
1391 			  void (*fn)(struct timer_list *),
1392 			  unsigned long baseclk)
1393 {
1394 	int count = preempt_count();
1395 
1396 #ifdef CONFIG_LOCKDEP
1397 	/*
1398 	 * It is permissible to free the timer from inside the
1399 	 * function that is called from it, this we need to take into
1400 	 * account for lockdep too. To avoid bogus "held lock freed"
1401 	 * warnings as well as problems when looking into
1402 	 * timer->lockdep_map, make a copy and use that here.
1403 	 */
1404 	struct lockdep_map lockdep_map;
1405 
1406 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1407 #endif
1408 	/*
1409 	 * Couple the lock chain with the lock chain at
1410 	 * del_timer_sync() by acquiring the lock_map around the fn()
1411 	 * call here and in del_timer_sync().
1412 	 */
1413 	lock_map_acquire(&lockdep_map);
1414 
1415 	trace_timer_expire_entry(timer, baseclk);
1416 	fn(timer);
1417 	trace_timer_expire_exit(timer);
1418 
1419 	lock_map_release(&lockdep_map);
1420 
1421 	if (count != preempt_count()) {
1422 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1423 			  fn, count, preempt_count());
1424 		/*
1425 		 * Restore the preempt count. That gives us a decent
1426 		 * chance to survive and extract information. If the
1427 		 * callback kept a lock held, bad luck, but not worse
1428 		 * than the BUG() we had.
1429 		 */
1430 		preempt_count_set(count);
1431 	}
1432 }
1433 
1434 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1435 {
1436 	/*
1437 	 * This value is required only for tracing. base->clk was
1438 	 * incremented directly before expire_timers was called. But expiry
1439 	 * is related to the old base->clk value.
1440 	 */
1441 	unsigned long baseclk = base->clk - 1;
1442 
1443 	while (!hlist_empty(head)) {
1444 		struct timer_list *timer;
1445 		void (*fn)(struct timer_list *);
1446 
1447 		timer = hlist_entry(head->first, struct timer_list, entry);
1448 
1449 		base->running_timer = timer;
1450 		detach_timer(timer, true);
1451 
1452 		fn = timer->function;
1453 
1454 		if (timer->flags & TIMER_IRQSAFE) {
1455 			raw_spin_unlock(&base->lock);
1456 			call_timer_fn(timer, fn, baseclk);
1457 			base->running_timer = NULL;
1458 			raw_spin_lock(&base->lock);
1459 		} else {
1460 			raw_spin_unlock_irq(&base->lock);
1461 			call_timer_fn(timer, fn, baseclk);
1462 			base->running_timer = NULL;
1463 			timer_sync_wait_running(base);
1464 			raw_spin_lock_irq(&base->lock);
1465 		}
1466 	}
1467 }
1468 
1469 static int __collect_expired_timers(struct timer_base *base,
1470 				    struct hlist_head *heads)
1471 {
1472 	unsigned long clk = base->clk;
1473 	struct hlist_head *vec;
1474 	int i, levels = 0;
1475 	unsigned int idx;
1476 
1477 	for (i = 0; i < LVL_DEPTH; i++) {
1478 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1479 
1480 		if (__test_and_clear_bit(idx, base->pending_map)) {
1481 			vec = base->vectors + idx;
1482 			hlist_move_list(vec, heads++);
1483 			levels++;
1484 		}
1485 		/* Is it time to look at the next level? */
1486 		if (clk & LVL_CLK_MASK)
1487 			break;
1488 		/* Shift clock for the next level granularity */
1489 		clk >>= LVL_CLK_SHIFT;
1490 	}
1491 	return levels;
1492 }
1493 
1494 #ifdef CONFIG_NO_HZ_COMMON
1495 /*
1496  * Find the next pending bucket of a level. Search from level start (@offset)
1497  * + @clk upwards and if nothing there, search from start of the level
1498  * (@offset) up to @offset + clk.
1499  */
1500 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1501 			       unsigned clk)
1502 {
1503 	unsigned pos, start = offset + clk;
1504 	unsigned end = offset + LVL_SIZE;
1505 
1506 	pos = find_next_bit(base->pending_map, end, start);
1507 	if (pos < end)
1508 		return pos - start;
1509 
1510 	pos = find_next_bit(base->pending_map, start, offset);
1511 	return pos < start ? pos + LVL_SIZE - start : -1;
1512 }
1513 
1514 /*
1515  * Search the first expiring timer in the various clock levels. Caller must
1516  * hold base->lock.
1517  */
1518 static unsigned long __next_timer_interrupt(struct timer_base *base)
1519 {
1520 	unsigned long clk, next, adj;
1521 	unsigned lvl, offset = 0;
1522 
1523 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1524 	clk = base->clk;
1525 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1526 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1527 
1528 		if (pos >= 0) {
1529 			unsigned long tmp = clk + (unsigned long) pos;
1530 
1531 			tmp <<= LVL_SHIFT(lvl);
1532 			if (time_before(tmp, next))
1533 				next = tmp;
1534 		}
1535 		/*
1536 		 * Clock for the next level. If the current level clock lower
1537 		 * bits are zero, we look at the next level as is. If not we
1538 		 * need to advance it by one because that's going to be the
1539 		 * next expiring bucket in that level. base->clk is the next
1540 		 * expiring jiffie. So in case of:
1541 		 *
1542 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1543 		 *  0    0    0    0    0    0
1544 		 *
1545 		 * we have to look at all levels @index 0. With
1546 		 *
1547 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1548 		 *  0    0    0    0    0    2
1549 		 *
1550 		 * LVL0 has the next expiring bucket @index 2. The upper
1551 		 * levels have the next expiring bucket @index 1.
1552 		 *
1553 		 * In case that the propagation wraps the next level the same
1554 		 * rules apply:
1555 		 *
1556 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1557 		 *  0    0    0    0    F    2
1558 		 *
1559 		 * So after looking at LVL0 we get:
1560 		 *
1561 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1562 		 *  0    0    0    1    0
1563 		 *
1564 		 * So no propagation from LVL1 to LVL2 because that happened
1565 		 * with the add already, but then we need to propagate further
1566 		 * from LVL2 to LVL3.
1567 		 *
1568 		 * So the simple check whether the lower bits of the current
1569 		 * level are 0 or not is sufficient for all cases.
1570 		 */
1571 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1572 		clk >>= LVL_CLK_SHIFT;
1573 		clk += adj;
1574 	}
1575 	return next;
1576 }
1577 
1578 /*
1579  * Check, if the next hrtimer event is before the next timer wheel
1580  * event:
1581  */
1582 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1583 {
1584 	u64 nextevt = hrtimer_get_next_event();
1585 
1586 	/*
1587 	 * If high resolution timers are enabled
1588 	 * hrtimer_get_next_event() returns KTIME_MAX.
1589 	 */
1590 	if (expires <= nextevt)
1591 		return expires;
1592 
1593 	/*
1594 	 * If the next timer is already expired, return the tick base
1595 	 * time so the tick is fired immediately.
1596 	 */
1597 	if (nextevt <= basem)
1598 		return basem;
1599 
1600 	/*
1601 	 * Round up to the next jiffie. High resolution timers are
1602 	 * off, so the hrtimers are expired in the tick and we need to
1603 	 * make sure that this tick really expires the timer to avoid
1604 	 * a ping pong of the nohz stop code.
1605 	 *
1606 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1607 	 */
1608 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1609 }
1610 
1611 /**
1612  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1613  * @basej:	base time jiffies
1614  * @basem:	base time clock monotonic
1615  *
1616  * Returns the tick aligned clock monotonic time of the next pending
1617  * timer or KTIME_MAX if no timer is pending.
1618  */
1619 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1620 {
1621 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1622 	u64 expires = KTIME_MAX;
1623 	unsigned long nextevt;
1624 	bool is_max_delta;
1625 
1626 	/*
1627 	 * Pretend that there is no timer pending if the cpu is offline.
1628 	 * Possible pending timers will be migrated later to an active cpu.
1629 	 */
1630 	if (cpu_is_offline(smp_processor_id()))
1631 		return expires;
1632 
1633 	raw_spin_lock(&base->lock);
1634 	nextevt = __next_timer_interrupt(base);
1635 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1636 	base->next_expiry = nextevt;
1637 	/*
1638 	 * We have a fresh next event. Check whether we can forward the
1639 	 * base. We can only do that when @basej is past base->clk
1640 	 * otherwise we might rewind base->clk.
1641 	 */
1642 	if (time_after(basej, base->clk)) {
1643 		if (time_after(nextevt, basej))
1644 			base->clk = basej;
1645 		else if (time_after(nextevt, base->clk))
1646 			base->clk = nextevt;
1647 	}
1648 
1649 	if (time_before_eq(nextevt, basej)) {
1650 		expires = basem;
1651 		base->is_idle = false;
1652 	} else {
1653 		if (!is_max_delta)
1654 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1655 		/*
1656 		 * If we expect to sleep more than a tick, mark the base idle.
1657 		 * Also the tick is stopped so any added timer must forward
1658 		 * the base clk itself to keep granularity small. This idle
1659 		 * logic is only maintained for the BASE_STD base, deferrable
1660 		 * timers may still see large granularity skew (by design).
1661 		 */
1662 		if ((expires - basem) > TICK_NSEC) {
1663 			base->must_forward_clk = true;
1664 			base->is_idle = true;
1665 		}
1666 	}
1667 	raw_spin_unlock(&base->lock);
1668 
1669 	return cmp_next_hrtimer_event(basem, expires);
1670 }
1671 
1672 /**
1673  * timer_clear_idle - Clear the idle state of the timer base
1674  *
1675  * Called with interrupts disabled
1676  */
1677 void timer_clear_idle(void)
1678 {
1679 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1680 
1681 	/*
1682 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1683 	 * a pointless IPI, but taking the lock would just make the window for
1684 	 * sending the IPI a few instructions smaller for the cost of taking
1685 	 * the lock in the exit from idle path.
1686 	 */
1687 	base->is_idle = false;
1688 }
1689 
1690 static int collect_expired_timers(struct timer_base *base,
1691 				  struct hlist_head *heads)
1692 {
1693 	unsigned long now = READ_ONCE(jiffies);
1694 
1695 	/*
1696 	 * NOHZ optimization. After a long idle sleep we need to forward the
1697 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1698 	 * the next expiring timer.
1699 	 */
1700 	if ((long)(now - base->clk) > 2) {
1701 		unsigned long next = __next_timer_interrupt(base);
1702 
1703 		/*
1704 		 * If the next timer is ahead of time forward to current
1705 		 * jiffies, otherwise forward to the next expiry time:
1706 		 */
1707 		if (time_after(next, now)) {
1708 			/*
1709 			 * The call site will increment base->clk and then
1710 			 * terminate the expiry loop immediately.
1711 			 */
1712 			base->clk = now;
1713 			return 0;
1714 		}
1715 		base->clk = next;
1716 	}
1717 	return __collect_expired_timers(base, heads);
1718 }
1719 #else
1720 static inline int collect_expired_timers(struct timer_base *base,
1721 					 struct hlist_head *heads)
1722 {
1723 	return __collect_expired_timers(base, heads);
1724 }
1725 #endif
1726 
1727 /*
1728  * Called from the timer interrupt handler to charge one tick to the current
1729  * process.  user_tick is 1 if the tick is user time, 0 for system.
1730  */
1731 void update_process_times(int user_tick)
1732 {
1733 	struct task_struct *p = current;
1734 
1735 	/* Note: this timer irq context must be accounted for as well. */
1736 	account_process_tick(p, user_tick);
1737 	run_local_timers();
1738 	rcu_sched_clock_irq(user_tick);
1739 #ifdef CONFIG_IRQ_WORK
1740 	if (in_irq())
1741 		irq_work_tick();
1742 #endif
1743 	scheduler_tick();
1744 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1745 		run_posix_cpu_timers();
1746 
1747 	/* The current CPU might make use of net randoms without receiving IRQs
1748 	 * to renew them often enough. Let's update the net_rand_state from a
1749 	 * non-constant value that's not affine to the number of calls to make
1750 	 * sure it's updated when there's some activity (we don't care in idle).
1751 	 */
1752 	this_cpu_add(net_rand_state.s1, rol32(jiffies, 24) + user_tick);
1753 }
1754 
1755 /**
1756  * __run_timers - run all expired timers (if any) on this CPU.
1757  * @base: the timer vector to be processed.
1758  */
1759 static inline void __run_timers(struct timer_base *base)
1760 {
1761 	struct hlist_head heads[LVL_DEPTH];
1762 	int levels;
1763 
1764 	if (!time_after_eq(jiffies, base->clk))
1765 		return;
1766 
1767 	timer_base_lock_expiry(base);
1768 	raw_spin_lock_irq(&base->lock);
1769 
1770 	/*
1771 	 * timer_base::must_forward_clk must be cleared before running
1772 	 * timers so that any timer functions that call mod_timer() will
1773 	 * not try to forward the base. Idle tracking / clock forwarding
1774 	 * logic is only used with BASE_STD timers.
1775 	 *
1776 	 * The must_forward_clk flag is cleared unconditionally also for
1777 	 * the deferrable base. The deferrable base is not affected by idle
1778 	 * tracking and never forwarded, so clearing the flag is a NOOP.
1779 	 *
1780 	 * The fact that the deferrable base is never forwarded can cause
1781 	 * large variations in granularity for deferrable timers, but they
1782 	 * can be deferred for long periods due to idle anyway.
1783 	 */
1784 	base->must_forward_clk = false;
1785 
1786 	while (time_after_eq(jiffies, base->clk)) {
1787 
1788 		levels = collect_expired_timers(base, heads);
1789 		base->clk++;
1790 
1791 		while (levels--)
1792 			expire_timers(base, heads + levels);
1793 	}
1794 	raw_spin_unlock_irq(&base->lock);
1795 	timer_base_unlock_expiry(base);
1796 }
1797 
1798 /*
1799  * This function runs timers and the timer-tq in bottom half context.
1800  */
1801 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1802 {
1803 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1804 
1805 	__run_timers(base);
1806 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1807 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1808 }
1809 
1810 /*
1811  * Called by the local, per-CPU timer interrupt on SMP.
1812  */
1813 void run_local_timers(void)
1814 {
1815 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1816 
1817 	hrtimer_run_queues();
1818 	/* Raise the softirq only if required. */
1819 	if (time_before(jiffies, base->clk)) {
1820 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1821 			return;
1822 		/* CPU is awake, so check the deferrable base. */
1823 		base++;
1824 		if (time_before(jiffies, base->clk))
1825 			return;
1826 	}
1827 	raise_softirq(TIMER_SOFTIRQ);
1828 }
1829 
1830 /*
1831  * Since schedule_timeout()'s timer is defined on the stack, it must store
1832  * the target task on the stack as well.
1833  */
1834 struct process_timer {
1835 	struct timer_list timer;
1836 	struct task_struct *task;
1837 };
1838 
1839 static void process_timeout(struct timer_list *t)
1840 {
1841 	struct process_timer *timeout = from_timer(timeout, t, timer);
1842 
1843 	wake_up_process(timeout->task);
1844 }
1845 
1846 /**
1847  * schedule_timeout - sleep until timeout
1848  * @timeout: timeout value in jiffies
1849  *
1850  * Make the current task sleep until @timeout jiffies have elapsed.
1851  * The function behavior depends on the current task state
1852  * (see also set_current_state() description):
1853  *
1854  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1855  * at all. That happens because sched_submit_work() does nothing for
1856  * tasks in %TASK_RUNNING state.
1857  *
1858  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1859  * pass before the routine returns unless the current task is explicitly
1860  * woken up, (e.g. by wake_up_process()).
1861  *
1862  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1863  * delivered to the current task or the current task is explicitly woken
1864  * up.
1865  *
1866  * The current task state is guaranteed to be %TASK_RUNNING when this
1867  * routine returns.
1868  *
1869  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1870  * the CPU away without a bound on the timeout. In this case the return
1871  * value will be %MAX_SCHEDULE_TIMEOUT.
1872  *
1873  * Returns 0 when the timer has expired otherwise the remaining time in
1874  * jiffies will be returned. In all cases the return value is guaranteed
1875  * to be non-negative.
1876  */
1877 signed long __sched schedule_timeout(signed long timeout)
1878 {
1879 	struct process_timer timer;
1880 	unsigned long expire;
1881 
1882 	switch (timeout)
1883 	{
1884 	case MAX_SCHEDULE_TIMEOUT:
1885 		/*
1886 		 * These two special cases are useful to be comfortable
1887 		 * in the caller. Nothing more. We could take
1888 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1889 		 * but I' d like to return a valid offset (>=0) to allow
1890 		 * the caller to do everything it want with the retval.
1891 		 */
1892 		schedule();
1893 		goto out;
1894 	default:
1895 		/*
1896 		 * Another bit of PARANOID. Note that the retval will be
1897 		 * 0 since no piece of kernel is supposed to do a check
1898 		 * for a negative retval of schedule_timeout() (since it
1899 		 * should never happens anyway). You just have the printk()
1900 		 * that will tell you if something is gone wrong and where.
1901 		 */
1902 		if (timeout < 0) {
1903 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1904 				"value %lx\n", timeout);
1905 			dump_stack();
1906 			current->state = TASK_RUNNING;
1907 			goto out;
1908 		}
1909 	}
1910 
1911 	expire = timeout + jiffies;
1912 
1913 	timer.task = current;
1914 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1915 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1916 	schedule();
1917 	del_singleshot_timer_sync(&timer.timer);
1918 
1919 	/* Remove the timer from the object tracker */
1920 	destroy_timer_on_stack(&timer.timer);
1921 
1922 	timeout = expire - jiffies;
1923 
1924  out:
1925 	return timeout < 0 ? 0 : timeout;
1926 }
1927 EXPORT_SYMBOL(schedule_timeout);
1928 
1929 /*
1930  * We can use __set_current_state() here because schedule_timeout() calls
1931  * schedule() unconditionally.
1932  */
1933 signed long __sched schedule_timeout_interruptible(signed long timeout)
1934 {
1935 	__set_current_state(TASK_INTERRUPTIBLE);
1936 	return schedule_timeout(timeout);
1937 }
1938 EXPORT_SYMBOL(schedule_timeout_interruptible);
1939 
1940 signed long __sched schedule_timeout_killable(signed long timeout)
1941 {
1942 	__set_current_state(TASK_KILLABLE);
1943 	return schedule_timeout(timeout);
1944 }
1945 EXPORT_SYMBOL(schedule_timeout_killable);
1946 
1947 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1948 {
1949 	__set_current_state(TASK_UNINTERRUPTIBLE);
1950 	return schedule_timeout(timeout);
1951 }
1952 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1953 
1954 /*
1955  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1956  * to load average.
1957  */
1958 signed long __sched schedule_timeout_idle(signed long timeout)
1959 {
1960 	__set_current_state(TASK_IDLE);
1961 	return schedule_timeout(timeout);
1962 }
1963 EXPORT_SYMBOL(schedule_timeout_idle);
1964 
1965 #ifdef CONFIG_HOTPLUG_CPU
1966 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1967 {
1968 	struct timer_list *timer;
1969 	int cpu = new_base->cpu;
1970 
1971 	while (!hlist_empty(head)) {
1972 		timer = hlist_entry(head->first, struct timer_list, entry);
1973 		detach_timer(timer, false);
1974 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1975 		internal_add_timer(new_base, timer);
1976 	}
1977 }
1978 
1979 int timers_prepare_cpu(unsigned int cpu)
1980 {
1981 	struct timer_base *base;
1982 	int b;
1983 
1984 	for (b = 0; b < NR_BASES; b++) {
1985 		base = per_cpu_ptr(&timer_bases[b], cpu);
1986 		base->clk = jiffies;
1987 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1988 		base->is_idle = false;
1989 		base->must_forward_clk = true;
1990 	}
1991 	return 0;
1992 }
1993 
1994 int timers_dead_cpu(unsigned int cpu)
1995 {
1996 	struct timer_base *old_base;
1997 	struct timer_base *new_base;
1998 	int b, i;
1999 
2000 	BUG_ON(cpu_online(cpu));
2001 
2002 	for (b = 0; b < NR_BASES; b++) {
2003 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2004 		new_base = get_cpu_ptr(&timer_bases[b]);
2005 		/*
2006 		 * The caller is globally serialized and nobody else
2007 		 * takes two locks at once, deadlock is not possible.
2008 		 */
2009 		raw_spin_lock_irq(&new_base->lock);
2010 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2011 
2012 		/*
2013 		 * The current CPUs base clock might be stale. Update it
2014 		 * before moving the timers over.
2015 		 */
2016 		forward_timer_base(new_base);
2017 
2018 		BUG_ON(old_base->running_timer);
2019 
2020 		for (i = 0; i < WHEEL_SIZE; i++)
2021 			migrate_timer_list(new_base, old_base->vectors + i);
2022 
2023 		raw_spin_unlock(&old_base->lock);
2024 		raw_spin_unlock_irq(&new_base->lock);
2025 		put_cpu_ptr(&timer_bases);
2026 	}
2027 	return 0;
2028 }
2029 
2030 #endif /* CONFIG_HOTPLUG_CPU */
2031 
2032 static void __init init_timer_cpu(int cpu)
2033 {
2034 	struct timer_base *base;
2035 	int i;
2036 
2037 	for (i = 0; i < NR_BASES; i++) {
2038 		base = per_cpu_ptr(&timer_bases[i], cpu);
2039 		base->cpu = cpu;
2040 		raw_spin_lock_init(&base->lock);
2041 		base->clk = jiffies;
2042 		timer_base_init_expiry_lock(base);
2043 	}
2044 }
2045 
2046 static void __init init_timer_cpus(void)
2047 {
2048 	int cpu;
2049 
2050 	for_each_possible_cpu(cpu)
2051 		init_timer_cpu(cpu);
2052 }
2053 
2054 void __init init_timers(void)
2055 {
2056 	init_timer_cpus();
2057 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2058 }
2059 
2060 /**
2061  * msleep - sleep safely even with waitqueue interruptions
2062  * @msecs: Time in milliseconds to sleep for
2063  */
2064 void msleep(unsigned int msecs)
2065 {
2066 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2067 
2068 	while (timeout)
2069 		timeout = schedule_timeout_uninterruptible(timeout);
2070 }
2071 
2072 EXPORT_SYMBOL(msleep);
2073 
2074 /**
2075  * msleep_interruptible - sleep waiting for signals
2076  * @msecs: Time in milliseconds to sleep for
2077  */
2078 unsigned long msleep_interruptible(unsigned int msecs)
2079 {
2080 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2081 
2082 	while (timeout && !signal_pending(current))
2083 		timeout = schedule_timeout_interruptible(timeout);
2084 	return jiffies_to_msecs(timeout);
2085 }
2086 
2087 EXPORT_SYMBOL(msleep_interruptible);
2088 
2089 /**
2090  * usleep_range - Sleep for an approximate time
2091  * @min: Minimum time in usecs to sleep
2092  * @max: Maximum time in usecs to sleep
2093  *
2094  * In non-atomic context where the exact wakeup time is flexible, use
2095  * usleep_range() instead of udelay().  The sleep improves responsiveness
2096  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2097  * power usage by allowing hrtimers to take advantage of an already-
2098  * scheduled interrupt instead of scheduling a new one just for this sleep.
2099  */
2100 void __sched usleep_range(unsigned long min, unsigned long max)
2101 {
2102 	ktime_t exp = ktime_add_us(ktime_get(), min);
2103 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2104 
2105 	for (;;) {
2106 		__set_current_state(TASK_UNINTERRUPTIBLE);
2107 		/* Do not return before the requested sleep time has elapsed */
2108 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2109 			break;
2110 	}
2111 }
2112 EXPORT_SYMBOL(usleep_range);
2113