xref: /openbmc/linux/kernel/time/timer.c (revision 8fedf805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 
47 #include <linux/uaccess.h>
48 #include <asm/unistd.h>
49 #include <asm/div64.h>
50 #include <asm/timex.h>
51 #include <asm/io.h>
52 
53 #include "tick-internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/timer.h>
57 
58 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
59 
60 EXPORT_SYMBOL(jiffies_64);
61 
62 /*
63  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
64  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
65  * level has a different granularity.
66  *
67  * The level granularity is:		LVL_CLK_DIV ^ lvl
68  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
69  *
70  * The array level of a newly armed timer depends on the relative expiry
71  * time. The farther the expiry time is away the higher the array level and
72  * therefor the granularity becomes.
73  *
74  * Contrary to the original timer wheel implementation, which aims for 'exact'
75  * expiry of the timers, this implementation removes the need for recascading
76  * the timers into the lower array levels. The previous 'classic' timer wheel
77  * implementation of the kernel already violated the 'exact' expiry by adding
78  * slack to the expiry time to provide batched expiration. The granularity
79  * levels provide implicit batching.
80  *
81  * This is an optimization of the original timer wheel implementation for the
82  * majority of the timer wheel use cases: timeouts. The vast majority of
83  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
84  * the timeout expires it indicates that normal operation is disturbed, so it
85  * does not matter much whether the timeout comes with a slight delay.
86  *
87  * The only exception to this are networking timers with a small expiry
88  * time. They rely on the granularity. Those fit into the first wheel level,
89  * which has HZ granularity.
90  *
91  * We don't have cascading anymore. timers with a expiry time above the
92  * capacity of the last wheel level are force expired at the maximum timeout
93  * value of the last wheel level. From data sampling we know that the maximum
94  * value observed is 5 days (network connection tracking), so this should not
95  * be an issue.
96  *
97  * The currently chosen array constants values are a good compromise between
98  * array size and granularity.
99  *
100  * This results in the following granularity and range levels:
101  *
102  * HZ 1000 steps
103  * Level Offset  Granularity            Range
104  *  0      0         1 ms                0 ms -         63 ms
105  *  1     64         8 ms               64 ms -        511 ms
106  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
107  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
108  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
109  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
110  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
111  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
112  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
113  *
114  * HZ  300
115  * Level Offset  Granularity            Range
116  *  0	   0         3 ms                0 ms -        210 ms
117  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
118  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
119  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
120  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
121  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
122  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
123  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
124  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
125  *
126  * HZ  250
127  * Level Offset  Granularity            Range
128  *  0	   0         4 ms                0 ms -        255 ms
129  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
130  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
131  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
132  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
133  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
134  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
135  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
136  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
137  *
138  * HZ  100
139  * Level Offset  Granularity            Range
140  *  0	   0         10 ms               0 ms -        630 ms
141  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
142  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
143  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
144  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
145  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
146  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
147  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
148  */
149 
150 /* Clock divisor for the next level */
151 #define LVL_CLK_SHIFT	3
152 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
153 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
154 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
155 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
156 
157 /*
158  * The time start value for each level to select the bucket at enqueue
159  * time.
160  */
161 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
162 
163 /* Size of each clock level */
164 #define LVL_BITS	6
165 #define LVL_SIZE	(1UL << LVL_BITS)
166 #define LVL_MASK	(LVL_SIZE - 1)
167 #define LVL_OFFS(n)	((n) * LVL_SIZE)
168 
169 /* Level depth */
170 #if HZ > 100
171 # define LVL_DEPTH	9
172 # else
173 # define LVL_DEPTH	8
174 #endif
175 
176 /* The cutoff (max. capacity of the wheel) */
177 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
178 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
179 
180 /*
181  * The resulting wheel size. If NOHZ is configured we allocate two
182  * wheels so we have a separate storage for the deferrable timers.
183  */
184 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
185 
186 #ifdef CONFIG_NO_HZ_COMMON
187 # define NR_BASES	2
188 # define BASE_STD	0
189 # define BASE_DEF	1
190 #else
191 # define NR_BASES	1
192 # define BASE_STD	0
193 # define BASE_DEF	0
194 #endif
195 
196 struct timer_base {
197 	raw_spinlock_t		lock;
198 	struct timer_list	*running_timer;
199 	unsigned long		clk;
200 	unsigned long		next_expiry;
201 	unsigned int		cpu;
202 	bool			is_idle;
203 	bool			must_forward_clk;
204 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
205 	struct hlist_head	vectors[WHEEL_SIZE];
206 } ____cacheline_aligned;
207 
208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
209 
210 #ifdef CONFIG_NO_HZ_COMMON
211 
212 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
213 static DEFINE_MUTEX(timer_keys_mutex);
214 
215 static void timer_update_keys(struct work_struct *work);
216 static DECLARE_WORK(timer_update_work, timer_update_keys);
217 
218 #ifdef CONFIG_SMP
219 unsigned int sysctl_timer_migration = 1;
220 
221 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
222 
223 static void timers_update_migration(void)
224 {
225 	if (sysctl_timer_migration && tick_nohz_active)
226 		static_branch_enable(&timers_migration_enabled);
227 	else
228 		static_branch_disable(&timers_migration_enabled);
229 }
230 #else
231 static inline void timers_update_migration(void) { }
232 #endif /* !CONFIG_SMP */
233 
234 static void timer_update_keys(struct work_struct *work)
235 {
236 	mutex_lock(&timer_keys_mutex);
237 	timers_update_migration();
238 	static_branch_enable(&timers_nohz_active);
239 	mutex_unlock(&timer_keys_mutex);
240 }
241 
242 void timers_update_nohz(void)
243 {
244 	schedule_work(&timer_update_work);
245 }
246 
247 int timer_migration_handler(struct ctl_table *table, int write,
248 			    void __user *buffer, size_t *lenp,
249 			    loff_t *ppos)
250 {
251 	int ret;
252 
253 	mutex_lock(&timer_keys_mutex);
254 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
255 	if (!ret && write)
256 		timers_update_migration();
257 	mutex_unlock(&timer_keys_mutex);
258 	return ret;
259 }
260 
261 static inline bool is_timers_nohz_active(void)
262 {
263 	return static_branch_unlikely(&timers_nohz_active);
264 }
265 #else
266 static inline bool is_timers_nohz_active(void) { return false; }
267 #endif /* NO_HZ_COMMON */
268 
269 static unsigned long round_jiffies_common(unsigned long j, int cpu,
270 		bool force_up)
271 {
272 	int rem;
273 	unsigned long original = j;
274 
275 	/*
276 	 * We don't want all cpus firing their timers at once hitting the
277 	 * same lock or cachelines, so we skew each extra cpu with an extra
278 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
279 	 * already did this.
280 	 * The skew is done by adding 3*cpunr, then round, then subtract this
281 	 * extra offset again.
282 	 */
283 	j += cpu * 3;
284 
285 	rem = j % HZ;
286 
287 	/*
288 	 * If the target jiffie is just after a whole second (which can happen
289 	 * due to delays of the timer irq, long irq off times etc etc) then
290 	 * we should round down to the whole second, not up. Use 1/4th second
291 	 * as cutoff for this rounding as an extreme upper bound for this.
292 	 * But never round down if @force_up is set.
293 	 */
294 	if (rem < HZ/4 && !force_up) /* round down */
295 		j = j - rem;
296 	else /* round up */
297 		j = j - rem + HZ;
298 
299 	/* now that we have rounded, subtract the extra skew again */
300 	j -= cpu * 3;
301 
302 	/*
303 	 * Make sure j is still in the future. Otherwise return the
304 	 * unmodified value.
305 	 */
306 	return time_is_after_jiffies(j) ? j : original;
307 }
308 
309 /**
310  * __round_jiffies - function to round jiffies to a full second
311  * @j: the time in (absolute) jiffies that should be rounded
312  * @cpu: the processor number on which the timeout will happen
313  *
314  * __round_jiffies() rounds an absolute time in the future (in jiffies)
315  * up or down to (approximately) full seconds. This is useful for timers
316  * for which the exact time they fire does not matter too much, as long as
317  * they fire approximately every X seconds.
318  *
319  * By rounding these timers to whole seconds, all such timers will fire
320  * at the same time, rather than at various times spread out. The goal
321  * of this is to have the CPU wake up less, which saves power.
322  *
323  * The exact rounding is skewed for each processor to avoid all
324  * processors firing at the exact same time, which could lead
325  * to lock contention or spurious cache line bouncing.
326  *
327  * The return value is the rounded version of the @j parameter.
328  */
329 unsigned long __round_jiffies(unsigned long j, int cpu)
330 {
331 	return round_jiffies_common(j, cpu, false);
332 }
333 EXPORT_SYMBOL_GPL(__round_jiffies);
334 
335 /**
336  * __round_jiffies_relative - function to round jiffies to a full second
337  * @j: the time in (relative) jiffies that should be rounded
338  * @cpu: the processor number on which the timeout will happen
339  *
340  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
341  * up or down to (approximately) full seconds. This is useful for timers
342  * for which the exact time they fire does not matter too much, as long as
343  * they fire approximately every X seconds.
344  *
345  * By rounding these timers to whole seconds, all such timers will fire
346  * at the same time, rather than at various times spread out. The goal
347  * of this is to have the CPU wake up less, which saves power.
348  *
349  * The exact rounding is skewed for each processor to avoid all
350  * processors firing at the exact same time, which could lead
351  * to lock contention or spurious cache line bouncing.
352  *
353  * The return value is the rounded version of the @j parameter.
354  */
355 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
356 {
357 	unsigned long j0 = jiffies;
358 
359 	/* Use j0 because jiffies might change while we run */
360 	return round_jiffies_common(j + j0, cpu, false) - j0;
361 }
362 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
363 
364 /**
365  * round_jiffies - function to round jiffies to a full second
366  * @j: the time in (absolute) jiffies that should be rounded
367  *
368  * round_jiffies() rounds an absolute time in the future (in jiffies)
369  * up or down to (approximately) full seconds. This is useful for timers
370  * for which the exact time they fire does not matter too much, as long as
371  * they fire approximately every X seconds.
372  *
373  * By rounding these timers to whole seconds, all such timers will fire
374  * at the same time, rather than at various times spread out. The goal
375  * of this is to have the CPU wake up less, which saves power.
376  *
377  * The return value is the rounded version of the @j parameter.
378  */
379 unsigned long round_jiffies(unsigned long j)
380 {
381 	return round_jiffies_common(j, raw_smp_processor_id(), false);
382 }
383 EXPORT_SYMBOL_GPL(round_jiffies);
384 
385 /**
386  * round_jiffies_relative - function to round jiffies to a full second
387  * @j: the time in (relative) jiffies that should be rounded
388  *
389  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
390  * up or down to (approximately) full seconds. This is useful for timers
391  * for which the exact time they fire does not matter too much, as long as
392  * they fire approximately every X seconds.
393  *
394  * By rounding these timers to whole seconds, all such timers will fire
395  * at the same time, rather than at various times spread out. The goal
396  * of this is to have the CPU wake up less, which saves power.
397  *
398  * The return value is the rounded version of the @j parameter.
399  */
400 unsigned long round_jiffies_relative(unsigned long j)
401 {
402 	return __round_jiffies_relative(j, raw_smp_processor_id());
403 }
404 EXPORT_SYMBOL_GPL(round_jiffies_relative);
405 
406 /**
407  * __round_jiffies_up - function to round jiffies up to a full second
408  * @j: the time in (absolute) jiffies that should be rounded
409  * @cpu: the processor number on which the timeout will happen
410  *
411  * This is the same as __round_jiffies() except that it will never
412  * round down.  This is useful for timeouts for which the exact time
413  * of firing does not matter too much, as long as they don't fire too
414  * early.
415  */
416 unsigned long __round_jiffies_up(unsigned long j, int cpu)
417 {
418 	return round_jiffies_common(j, cpu, true);
419 }
420 EXPORT_SYMBOL_GPL(__round_jiffies_up);
421 
422 /**
423  * __round_jiffies_up_relative - function to round jiffies up to a full second
424  * @j: the time in (relative) jiffies that should be rounded
425  * @cpu: the processor number on which the timeout will happen
426  *
427  * This is the same as __round_jiffies_relative() except that it will never
428  * round down.  This is useful for timeouts for which the exact time
429  * of firing does not matter too much, as long as they don't fire too
430  * early.
431  */
432 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
433 {
434 	unsigned long j0 = jiffies;
435 
436 	/* Use j0 because jiffies might change while we run */
437 	return round_jiffies_common(j + j0, cpu, true) - j0;
438 }
439 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
440 
441 /**
442  * round_jiffies_up - function to round jiffies up to a full second
443  * @j: the time in (absolute) jiffies that should be rounded
444  *
445  * This is the same as round_jiffies() except that it will never
446  * round down.  This is useful for timeouts for which the exact time
447  * of firing does not matter too much, as long as they don't fire too
448  * early.
449  */
450 unsigned long round_jiffies_up(unsigned long j)
451 {
452 	return round_jiffies_common(j, raw_smp_processor_id(), true);
453 }
454 EXPORT_SYMBOL_GPL(round_jiffies_up);
455 
456 /**
457  * round_jiffies_up_relative - function to round jiffies up to a full second
458  * @j: the time in (relative) jiffies that should be rounded
459  *
460  * This is the same as round_jiffies_relative() except that it will never
461  * round down.  This is useful for timeouts for which the exact time
462  * of firing does not matter too much, as long as they don't fire too
463  * early.
464  */
465 unsigned long round_jiffies_up_relative(unsigned long j)
466 {
467 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
468 }
469 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
470 
471 
472 static inline unsigned int timer_get_idx(struct timer_list *timer)
473 {
474 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
475 }
476 
477 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
478 {
479 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
480 			idx << TIMER_ARRAYSHIFT;
481 }
482 
483 /*
484  * Helper function to calculate the array index for a given expiry
485  * time.
486  */
487 static inline unsigned calc_index(unsigned expires, unsigned lvl)
488 {
489 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
490 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
491 }
492 
493 static int calc_wheel_index(unsigned long expires, unsigned long clk)
494 {
495 	unsigned long delta = expires - clk;
496 	unsigned int idx;
497 
498 	if (delta < LVL_START(1)) {
499 		idx = calc_index(expires, 0);
500 	} else if (delta < LVL_START(2)) {
501 		idx = calc_index(expires, 1);
502 	} else if (delta < LVL_START(3)) {
503 		idx = calc_index(expires, 2);
504 	} else if (delta < LVL_START(4)) {
505 		idx = calc_index(expires, 3);
506 	} else if (delta < LVL_START(5)) {
507 		idx = calc_index(expires, 4);
508 	} else if (delta < LVL_START(6)) {
509 		idx = calc_index(expires, 5);
510 	} else if (delta < LVL_START(7)) {
511 		idx = calc_index(expires, 6);
512 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
513 		idx = calc_index(expires, 7);
514 	} else if ((long) delta < 0) {
515 		idx = clk & LVL_MASK;
516 	} else {
517 		/*
518 		 * Force expire obscene large timeouts to expire at the
519 		 * capacity limit of the wheel.
520 		 */
521 		if (expires >= WHEEL_TIMEOUT_CUTOFF)
522 			expires = WHEEL_TIMEOUT_MAX;
523 
524 		idx = calc_index(expires, LVL_DEPTH - 1);
525 	}
526 	return idx;
527 }
528 
529 /*
530  * Enqueue the timer into the hash bucket, mark it pending in
531  * the bitmap and store the index in the timer flags.
532  */
533 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
534 			  unsigned int idx)
535 {
536 	hlist_add_head(&timer->entry, base->vectors + idx);
537 	__set_bit(idx, base->pending_map);
538 	timer_set_idx(timer, idx);
539 
540 	trace_timer_start(timer, timer->expires, timer->flags);
541 }
542 
543 static void
544 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
545 {
546 	unsigned int idx;
547 
548 	idx = calc_wheel_index(timer->expires, base->clk);
549 	enqueue_timer(base, timer, idx);
550 }
551 
552 static void
553 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
554 {
555 	if (!is_timers_nohz_active())
556 		return;
557 
558 	/*
559 	 * TODO: This wants some optimizing similar to the code below, but we
560 	 * will do that when we switch from push to pull for deferrable timers.
561 	 */
562 	if (timer->flags & TIMER_DEFERRABLE) {
563 		if (tick_nohz_full_cpu(base->cpu))
564 			wake_up_nohz_cpu(base->cpu);
565 		return;
566 	}
567 
568 	/*
569 	 * We might have to IPI the remote CPU if the base is idle and the
570 	 * timer is not deferrable. If the other CPU is on the way to idle
571 	 * then it can't set base->is_idle as we hold the base lock:
572 	 */
573 	if (!base->is_idle)
574 		return;
575 
576 	/* Check whether this is the new first expiring timer: */
577 	if (time_after_eq(timer->expires, base->next_expiry))
578 		return;
579 
580 	/*
581 	 * Set the next expiry time and kick the CPU so it can reevaluate the
582 	 * wheel:
583 	 */
584 	base->next_expiry = timer->expires;
585 	wake_up_nohz_cpu(base->cpu);
586 }
587 
588 static void
589 internal_add_timer(struct timer_base *base, struct timer_list *timer)
590 {
591 	__internal_add_timer(base, timer);
592 	trigger_dyntick_cpu(base, timer);
593 }
594 
595 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
596 
597 static struct debug_obj_descr timer_debug_descr;
598 
599 static void *timer_debug_hint(void *addr)
600 {
601 	return ((struct timer_list *) addr)->function;
602 }
603 
604 static bool timer_is_static_object(void *addr)
605 {
606 	struct timer_list *timer = addr;
607 
608 	return (timer->entry.pprev == NULL &&
609 		timer->entry.next == TIMER_ENTRY_STATIC);
610 }
611 
612 /*
613  * fixup_init is called when:
614  * - an active object is initialized
615  */
616 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
617 {
618 	struct timer_list *timer = addr;
619 
620 	switch (state) {
621 	case ODEBUG_STATE_ACTIVE:
622 		del_timer_sync(timer);
623 		debug_object_init(timer, &timer_debug_descr);
624 		return true;
625 	default:
626 		return false;
627 	}
628 }
629 
630 /* Stub timer callback for improperly used timers. */
631 static void stub_timer(struct timer_list *unused)
632 {
633 	WARN_ON(1);
634 }
635 
636 /*
637  * fixup_activate is called when:
638  * - an active object is activated
639  * - an unknown non-static object is activated
640  */
641 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
642 {
643 	struct timer_list *timer = addr;
644 
645 	switch (state) {
646 	case ODEBUG_STATE_NOTAVAILABLE:
647 		timer_setup(timer, stub_timer, 0);
648 		return true;
649 
650 	case ODEBUG_STATE_ACTIVE:
651 		WARN_ON(1);
652 		/* fall through */
653 	default:
654 		return false;
655 	}
656 }
657 
658 /*
659  * fixup_free is called when:
660  * - an active object is freed
661  */
662 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
663 {
664 	struct timer_list *timer = addr;
665 
666 	switch (state) {
667 	case ODEBUG_STATE_ACTIVE:
668 		del_timer_sync(timer);
669 		debug_object_free(timer, &timer_debug_descr);
670 		return true;
671 	default:
672 		return false;
673 	}
674 }
675 
676 /*
677  * fixup_assert_init is called when:
678  * - an untracked/uninit-ed object is found
679  */
680 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
681 {
682 	struct timer_list *timer = addr;
683 
684 	switch (state) {
685 	case ODEBUG_STATE_NOTAVAILABLE:
686 		timer_setup(timer, stub_timer, 0);
687 		return true;
688 	default:
689 		return false;
690 	}
691 }
692 
693 static struct debug_obj_descr timer_debug_descr = {
694 	.name			= "timer_list",
695 	.debug_hint		= timer_debug_hint,
696 	.is_static_object	= timer_is_static_object,
697 	.fixup_init		= timer_fixup_init,
698 	.fixup_activate		= timer_fixup_activate,
699 	.fixup_free		= timer_fixup_free,
700 	.fixup_assert_init	= timer_fixup_assert_init,
701 };
702 
703 static inline void debug_timer_init(struct timer_list *timer)
704 {
705 	debug_object_init(timer, &timer_debug_descr);
706 }
707 
708 static inline void debug_timer_activate(struct timer_list *timer)
709 {
710 	debug_object_activate(timer, &timer_debug_descr);
711 }
712 
713 static inline void debug_timer_deactivate(struct timer_list *timer)
714 {
715 	debug_object_deactivate(timer, &timer_debug_descr);
716 }
717 
718 static inline void debug_timer_free(struct timer_list *timer)
719 {
720 	debug_object_free(timer, &timer_debug_descr);
721 }
722 
723 static inline void debug_timer_assert_init(struct timer_list *timer)
724 {
725 	debug_object_assert_init(timer, &timer_debug_descr);
726 }
727 
728 static void do_init_timer(struct timer_list *timer,
729 			  void (*func)(struct timer_list *),
730 			  unsigned int flags,
731 			  const char *name, struct lock_class_key *key);
732 
733 void init_timer_on_stack_key(struct timer_list *timer,
734 			     void (*func)(struct timer_list *),
735 			     unsigned int flags,
736 			     const char *name, struct lock_class_key *key)
737 {
738 	debug_object_init_on_stack(timer, &timer_debug_descr);
739 	do_init_timer(timer, func, flags, name, key);
740 }
741 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
742 
743 void destroy_timer_on_stack(struct timer_list *timer)
744 {
745 	debug_object_free(timer, &timer_debug_descr);
746 }
747 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
748 
749 #else
750 static inline void debug_timer_init(struct timer_list *timer) { }
751 static inline void debug_timer_activate(struct timer_list *timer) { }
752 static inline void debug_timer_deactivate(struct timer_list *timer) { }
753 static inline void debug_timer_assert_init(struct timer_list *timer) { }
754 #endif
755 
756 static inline void debug_init(struct timer_list *timer)
757 {
758 	debug_timer_init(timer);
759 	trace_timer_init(timer);
760 }
761 
762 static inline void debug_deactivate(struct timer_list *timer)
763 {
764 	debug_timer_deactivate(timer);
765 	trace_timer_cancel(timer);
766 }
767 
768 static inline void debug_assert_init(struct timer_list *timer)
769 {
770 	debug_timer_assert_init(timer);
771 }
772 
773 static void do_init_timer(struct timer_list *timer,
774 			  void (*func)(struct timer_list *),
775 			  unsigned int flags,
776 			  const char *name, struct lock_class_key *key)
777 {
778 	timer->entry.pprev = NULL;
779 	timer->function = func;
780 	timer->flags = flags | raw_smp_processor_id();
781 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
782 }
783 
784 /**
785  * init_timer_key - initialize a timer
786  * @timer: the timer to be initialized
787  * @func: timer callback function
788  * @flags: timer flags
789  * @name: name of the timer
790  * @key: lockdep class key of the fake lock used for tracking timer
791  *       sync lock dependencies
792  *
793  * init_timer_key() must be done to a timer prior calling *any* of the
794  * other timer functions.
795  */
796 void init_timer_key(struct timer_list *timer,
797 		    void (*func)(struct timer_list *), unsigned int flags,
798 		    const char *name, struct lock_class_key *key)
799 {
800 	debug_init(timer);
801 	do_init_timer(timer, func, flags, name, key);
802 }
803 EXPORT_SYMBOL(init_timer_key);
804 
805 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
806 {
807 	struct hlist_node *entry = &timer->entry;
808 
809 	debug_deactivate(timer);
810 
811 	__hlist_del(entry);
812 	if (clear_pending)
813 		entry->pprev = NULL;
814 	entry->next = LIST_POISON2;
815 }
816 
817 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
818 			     bool clear_pending)
819 {
820 	unsigned idx = timer_get_idx(timer);
821 
822 	if (!timer_pending(timer))
823 		return 0;
824 
825 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
826 		__clear_bit(idx, base->pending_map);
827 
828 	detach_timer(timer, clear_pending);
829 	return 1;
830 }
831 
832 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
833 {
834 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
835 
836 	/*
837 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
838 	 * to use the deferrable base.
839 	 */
840 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
841 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
842 	return base;
843 }
844 
845 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
846 {
847 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
848 
849 	/*
850 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
851 	 * to use the deferrable base.
852 	 */
853 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
854 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
855 	return base;
856 }
857 
858 static inline struct timer_base *get_timer_base(u32 tflags)
859 {
860 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
861 }
862 
863 static inline struct timer_base *
864 get_target_base(struct timer_base *base, unsigned tflags)
865 {
866 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
867 	if (static_branch_likely(&timers_migration_enabled) &&
868 	    !(tflags & TIMER_PINNED))
869 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
870 #endif
871 	return get_timer_this_cpu_base(tflags);
872 }
873 
874 static inline void forward_timer_base(struct timer_base *base)
875 {
876 #ifdef CONFIG_NO_HZ_COMMON
877 	unsigned long jnow;
878 
879 	/*
880 	 * We only forward the base when we are idle or have just come out of
881 	 * idle (must_forward_clk logic), and have a delta between base clock
882 	 * and jiffies. In the common case, run_timers will take care of it.
883 	 */
884 	if (likely(!base->must_forward_clk))
885 		return;
886 
887 	jnow = READ_ONCE(jiffies);
888 	base->must_forward_clk = base->is_idle;
889 	if ((long)(jnow - base->clk) < 2)
890 		return;
891 
892 	/*
893 	 * If the next expiry value is > jiffies, then we fast forward to
894 	 * jiffies otherwise we forward to the next expiry value.
895 	 */
896 	if (time_after(base->next_expiry, jnow))
897 		base->clk = jnow;
898 	else
899 		base->clk = base->next_expiry;
900 #endif
901 }
902 
903 
904 /*
905  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
906  * that all timers which are tied to this base are locked, and the base itself
907  * is locked too.
908  *
909  * So __run_timers/migrate_timers can safely modify all timers which could
910  * be found in the base->vectors array.
911  *
912  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
913  * to wait until the migration is done.
914  */
915 static struct timer_base *lock_timer_base(struct timer_list *timer,
916 					  unsigned long *flags)
917 	__acquires(timer->base->lock)
918 {
919 	for (;;) {
920 		struct timer_base *base;
921 		u32 tf;
922 
923 		/*
924 		 * We need to use READ_ONCE() here, otherwise the compiler
925 		 * might re-read @tf between the check for TIMER_MIGRATING
926 		 * and spin_lock().
927 		 */
928 		tf = READ_ONCE(timer->flags);
929 
930 		if (!(tf & TIMER_MIGRATING)) {
931 			base = get_timer_base(tf);
932 			raw_spin_lock_irqsave(&base->lock, *flags);
933 			if (timer->flags == tf)
934 				return base;
935 			raw_spin_unlock_irqrestore(&base->lock, *flags);
936 		}
937 		cpu_relax();
938 	}
939 }
940 
941 #define MOD_TIMER_PENDING_ONLY		0x01
942 #define MOD_TIMER_REDUCE		0x02
943 
944 static inline int
945 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
946 {
947 	struct timer_base *base, *new_base;
948 	unsigned int idx = UINT_MAX;
949 	unsigned long clk = 0, flags;
950 	int ret = 0;
951 
952 	BUG_ON(!timer->function);
953 
954 	/*
955 	 * This is a common optimization triggered by the networking code - if
956 	 * the timer is re-modified to have the same timeout or ends up in the
957 	 * same array bucket then just return:
958 	 */
959 	if (timer_pending(timer)) {
960 		/*
961 		 * The downside of this optimization is that it can result in
962 		 * larger granularity than you would get from adding a new
963 		 * timer with this expiry.
964 		 */
965 		long diff = timer->expires - expires;
966 
967 		if (!diff)
968 			return 1;
969 		if (options & MOD_TIMER_REDUCE && diff <= 0)
970 			return 1;
971 
972 		/*
973 		 * We lock timer base and calculate the bucket index right
974 		 * here. If the timer ends up in the same bucket, then we
975 		 * just update the expiry time and avoid the whole
976 		 * dequeue/enqueue dance.
977 		 */
978 		base = lock_timer_base(timer, &flags);
979 		forward_timer_base(base);
980 
981 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
982 		    time_before_eq(timer->expires, expires)) {
983 			ret = 1;
984 			goto out_unlock;
985 		}
986 
987 		clk = base->clk;
988 		idx = calc_wheel_index(expires, clk);
989 
990 		/*
991 		 * Retrieve and compare the array index of the pending
992 		 * timer. If it matches set the expiry to the new value so a
993 		 * subsequent call will exit in the expires check above.
994 		 */
995 		if (idx == timer_get_idx(timer)) {
996 			if (!(options & MOD_TIMER_REDUCE))
997 				timer->expires = expires;
998 			else if (time_after(timer->expires, expires))
999 				timer->expires = expires;
1000 			ret = 1;
1001 			goto out_unlock;
1002 		}
1003 	} else {
1004 		base = lock_timer_base(timer, &flags);
1005 		forward_timer_base(base);
1006 	}
1007 
1008 	ret = detach_if_pending(timer, base, false);
1009 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1010 		goto out_unlock;
1011 
1012 	new_base = get_target_base(base, timer->flags);
1013 
1014 	if (base != new_base) {
1015 		/*
1016 		 * We are trying to schedule the timer on the new base.
1017 		 * However we can't change timer's base while it is running,
1018 		 * otherwise del_timer_sync() can't detect that the timer's
1019 		 * handler yet has not finished. This also guarantees that the
1020 		 * timer is serialized wrt itself.
1021 		 */
1022 		if (likely(base->running_timer != timer)) {
1023 			/* See the comment in lock_timer_base() */
1024 			timer->flags |= TIMER_MIGRATING;
1025 
1026 			raw_spin_unlock(&base->lock);
1027 			base = new_base;
1028 			raw_spin_lock(&base->lock);
1029 			WRITE_ONCE(timer->flags,
1030 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1031 			forward_timer_base(base);
1032 		}
1033 	}
1034 
1035 	debug_timer_activate(timer);
1036 
1037 	timer->expires = expires;
1038 	/*
1039 	 * If 'idx' was calculated above and the base time did not advance
1040 	 * between calculating 'idx' and possibly switching the base, only
1041 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1042 	 * we need to (re)calculate the wheel index via
1043 	 * internal_add_timer().
1044 	 */
1045 	if (idx != UINT_MAX && clk == base->clk) {
1046 		enqueue_timer(base, timer, idx);
1047 		trigger_dyntick_cpu(base, timer);
1048 	} else {
1049 		internal_add_timer(base, timer);
1050 	}
1051 
1052 out_unlock:
1053 	raw_spin_unlock_irqrestore(&base->lock, flags);
1054 
1055 	return ret;
1056 }
1057 
1058 /**
1059  * mod_timer_pending - modify a pending timer's timeout
1060  * @timer: the pending timer to be modified
1061  * @expires: new timeout in jiffies
1062  *
1063  * mod_timer_pending() is the same for pending timers as mod_timer(),
1064  * but will not re-activate and modify already deleted timers.
1065  *
1066  * It is useful for unserialized use of timers.
1067  */
1068 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1069 {
1070 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1071 }
1072 EXPORT_SYMBOL(mod_timer_pending);
1073 
1074 /**
1075  * mod_timer - modify a timer's timeout
1076  * @timer: the timer to be modified
1077  * @expires: new timeout in jiffies
1078  *
1079  * mod_timer() is a more efficient way to update the expire field of an
1080  * active timer (if the timer is inactive it will be activated)
1081  *
1082  * mod_timer(timer, expires) is equivalent to:
1083  *
1084  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1085  *
1086  * Note that if there are multiple unserialized concurrent users of the
1087  * same timer, then mod_timer() is the only safe way to modify the timeout,
1088  * since add_timer() cannot modify an already running timer.
1089  *
1090  * The function returns whether it has modified a pending timer or not.
1091  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1092  * active timer returns 1.)
1093  */
1094 int mod_timer(struct timer_list *timer, unsigned long expires)
1095 {
1096 	return __mod_timer(timer, expires, 0);
1097 }
1098 EXPORT_SYMBOL(mod_timer);
1099 
1100 /**
1101  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1102  * @timer:	The timer to be modified
1103  * @expires:	New timeout in jiffies
1104  *
1105  * timer_reduce() is very similar to mod_timer(), except that it will only
1106  * modify a running timer if that would reduce the expiration time (it will
1107  * start a timer that isn't running).
1108  */
1109 int timer_reduce(struct timer_list *timer, unsigned long expires)
1110 {
1111 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1112 }
1113 EXPORT_SYMBOL(timer_reduce);
1114 
1115 /**
1116  * add_timer - start a timer
1117  * @timer: the timer to be added
1118  *
1119  * The kernel will do a ->function(@timer) callback from the
1120  * timer interrupt at the ->expires point in the future. The
1121  * current time is 'jiffies'.
1122  *
1123  * The timer's ->expires, ->function fields must be set prior calling this
1124  * function.
1125  *
1126  * Timers with an ->expires field in the past will be executed in the next
1127  * timer tick.
1128  */
1129 void add_timer(struct timer_list *timer)
1130 {
1131 	BUG_ON(timer_pending(timer));
1132 	mod_timer(timer, timer->expires);
1133 }
1134 EXPORT_SYMBOL(add_timer);
1135 
1136 /**
1137  * add_timer_on - start a timer on a particular CPU
1138  * @timer: the timer to be added
1139  * @cpu: the CPU to start it on
1140  *
1141  * This is not very scalable on SMP. Double adds are not possible.
1142  */
1143 void add_timer_on(struct timer_list *timer, int cpu)
1144 {
1145 	struct timer_base *new_base, *base;
1146 	unsigned long flags;
1147 
1148 	BUG_ON(timer_pending(timer) || !timer->function);
1149 
1150 	new_base = get_timer_cpu_base(timer->flags, cpu);
1151 
1152 	/*
1153 	 * If @timer was on a different CPU, it should be migrated with the
1154 	 * old base locked to prevent other operations proceeding with the
1155 	 * wrong base locked.  See lock_timer_base().
1156 	 */
1157 	base = lock_timer_base(timer, &flags);
1158 	if (base != new_base) {
1159 		timer->flags |= TIMER_MIGRATING;
1160 
1161 		raw_spin_unlock(&base->lock);
1162 		base = new_base;
1163 		raw_spin_lock(&base->lock);
1164 		WRITE_ONCE(timer->flags,
1165 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1166 	}
1167 	forward_timer_base(base);
1168 
1169 	debug_timer_activate(timer);
1170 	internal_add_timer(base, timer);
1171 	raw_spin_unlock_irqrestore(&base->lock, flags);
1172 }
1173 EXPORT_SYMBOL_GPL(add_timer_on);
1174 
1175 /**
1176  * del_timer - deactivate a timer.
1177  * @timer: the timer to be deactivated
1178  *
1179  * del_timer() deactivates a timer - this works on both active and inactive
1180  * timers.
1181  *
1182  * The function returns whether it has deactivated a pending timer or not.
1183  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1184  * active timer returns 1.)
1185  */
1186 int del_timer(struct timer_list *timer)
1187 {
1188 	struct timer_base *base;
1189 	unsigned long flags;
1190 	int ret = 0;
1191 
1192 	debug_assert_init(timer);
1193 
1194 	if (timer_pending(timer)) {
1195 		base = lock_timer_base(timer, &flags);
1196 		ret = detach_if_pending(timer, base, true);
1197 		raw_spin_unlock_irqrestore(&base->lock, flags);
1198 	}
1199 
1200 	return ret;
1201 }
1202 EXPORT_SYMBOL(del_timer);
1203 
1204 /**
1205  * try_to_del_timer_sync - Try to deactivate a timer
1206  * @timer: timer to delete
1207  *
1208  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1209  * exit the timer is not queued and the handler is not running on any CPU.
1210  */
1211 int try_to_del_timer_sync(struct timer_list *timer)
1212 {
1213 	struct timer_base *base;
1214 	unsigned long flags;
1215 	int ret = -1;
1216 
1217 	debug_assert_init(timer);
1218 
1219 	base = lock_timer_base(timer, &flags);
1220 
1221 	if (base->running_timer != timer)
1222 		ret = detach_if_pending(timer, base, true);
1223 
1224 	raw_spin_unlock_irqrestore(&base->lock, flags);
1225 
1226 	return ret;
1227 }
1228 EXPORT_SYMBOL(try_to_del_timer_sync);
1229 
1230 #ifdef CONFIG_SMP
1231 /**
1232  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1233  * @timer: the timer to be deactivated
1234  *
1235  * This function only differs from del_timer() on SMP: besides deactivating
1236  * the timer it also makes sure the handler has finished executing on other
1237  * CPUs.
1238  *
1239  * Synchronization rules: Callers must prevent restarting of the timer,
1240  * otherwise this function is meaningless. It must not be called from
1241  * interrupt contexts unless the timer is an irqsafe one. The caller must
1242  * not hold locks which would prevent completion of the timer's
1243  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1244  * timer is not queued and the handler is not running on any CPU.
1245  *
1246  * Note: For !irqsafe timers, you must not hold locks that are held in
1247  *   interrupt context while calling this function. Even if the lock has
1248  *   nothing to do with the timer in question.  Here's why::
1249  *
1250  *    CPU0                             CPU1
1251  *    ----                             ----
1252  *                                     <SOFTIRQ>
1253  *                                       call_timer_fn();
1254  *                                       base->running_timer = mytimer;
1255  *    spin_lock_irq(somelock);
1256  *                                     <IRQ>
1257  *                                        spin_lock(somelock);
1258  *    del_timer_sync(mytimer);
1259  *    while (base->running_timer == mytimer);
1260  *
1261  * Now del_timer_sync() will never return and never release somelock.
1262  * The interrupt on the other CPU is waiting to grab somelock but
1263  * it has interrupted the softirq that CPU0 is waiting to finish.
1264  *
1265  * The function returns whether it has deactivated a pending timer or not.
1266  */
1267 int del_timer_sync(struct timer_list *timer)
1268 {
1269 #ifdef CONFIG_LOCKDEP
1270 	unsigned long flags;
1271 
1272 	/*
1273 	 * If lockdep gives a backtrace here, please reference
1274 	 * the synchronization rules above.
1275 	 */
1276 	local_irq_save(flags);
1277 	lock_map_acquire(&timer->lockdep_map);
1278 	lock_map_release(&timer->lockdep_map);
1279 	local_irq_restore(flags);
1280 #endif
1281 	/*
1282 	 * don't use it in hardirq context, because it
1283 	 * could lead to deadlock.
1284 	 */
1285 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1286 	for (;;) {
1287 		int ret = try_to_del_timer_sync(timer);
1288 		if (ret >= 0)
1289 			return ret;
1290 		cpu_relax();
1291 	}
1292 }
1293 EXPORT_SYMBOL(del_timer_sync);
1294 #endif
1295 
1296 static void call_timer_fn(struct timer_list *timer,
1297 			  void (*fn)(struct timer_list *),
1298 			  unsigned long baseclk)
1299 {
1300 	int count = preempt_count();
1301 
1302 #ifdef CONFIG_LOCKDEP
1303 	/*
1304 	 * It is permissible to free the timer from inside the
1305 	 * function that is called from it, this we need to take into
1306 	 * account for lockdep too. To avoid bogus "held lock freed"
1307 	 * warnings as well as problems when looking into
1308 	 * timer->lockdep_map, make a copy and use that here.
1309 	 */
1310 	struct lockdep_map lockdep_map;
1311 
1312 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1313 #endif
1314 	/*
1315 	 * Couple the lock chain with the lock chain at
1316 	 * del_timer_sync() by acquiring the lock_map around the fn()
1317 	 * call here and in del_timer_sync().
1318 	 */
1319 	lock_map_acquire(&lockdep_map);
1320 
1321 	trace_timer_expire_entry(timer, baseclk);
1322 	fn(timer);
1323 	trace_timer_expire_exit(timer);
1324 
1325 	lock_map_release(&lockdep_map);
1326 
1327 	if (count != preempt_count()) {
1328 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1329 			  fn, count, preempt_count());
1330 		/*
1331 		 * Restore the preempt count. That gives us a decent
1332 		 * chance to survive and extract information. If the
1333 		 * callback kept a lock held, bad luck, but not worse
1334 		 * than the BUG() we had.
1335 		 */
1336 		preempt_count_set(count);
1337 	}
1338 }
1339 
1340 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1341 {
1342 	/*
1343 	 * This value is required only for tracing. base->clk was
1344 	 * incremented directly before expire_timers was called. But expiry
1345 	 * is related to the old base->clk value.
1346 	 */
1347 	unsigned long baseclk = base->clk - 1;
1348 
1349 	while (!hlist_empty(head)) {
1350 		struct timer_list *timer;
1351 		void (*fn)(struct timer_list *);
1352 
1353 		timer = hlist_entry(head->first, struct timer_list, entry);
1354 
1355 		base->running_timer = timer;
1356 		detach_timer(timer, true);
1357 
1358 		fn = timer->function;
1359 
1360 		if (timer->flags & TIMER_IRQSAFE) {
1361 			raw_spin_unlock(&base->lock);
1362 			call_timer_fn(timer, fn, baseclk);
1363 			raw_spin_lock(&base->lock);
1364 		} else {
1365 			raw_spin_unlock_irq(&base->lock);
1366 			call_timer_fn(timer, fn, baseclk);
1367 			raw_spin_lock_irq(&base->lock);
1368 		}
1369 	}
1370 }
1371 
1372 static int __collect_expired_timers(struct timer_base *base,
1373 				    struct hlist_head *heads)
1374 {
1375 	unsigned long clk = base->clk;
1376 	struct hlist_head *vec;
1377 	int i, levels = 0;
1378 	unsigned int idx;
1379 
1380 	for (i = 0; i < LVL_DEPTH; i++) {
1381 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1382 
1383 		if (__test_and_clear_bit(idx, base->pending_map)) {
1384 			vec = base->vectors + idx;
1385 			hlist_move_list(vec, heads++);
1386 			levels++;
1387 		}
1388 		/* Is it time to look at the next level? */
1389 		if (clk & LVL_CLK_MASK)
1390 			break;
1391 		/* Shift clock for the next level granularity */
1392 		clk >>= LVL_CLK_SHIFT;
1393 	}
1394 	return levels;
1395 }
1396 
1397 #ifdef CONFIG_NO_HZ_COMMON
1398 /*
1399  * Find the next pending bucket of a level. Search from level start (@offset)
1400  * + @clk upwards and if nothing there, search from start of the level
1401  * (@offset) up to @offset + clk.
1402  */
1403 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1404 			       unsigned clk)
1405 {
1406 	unsigned pos, start = offset + clk;
1407 	unsigned end = offset + LVL_SIZE;
1408 
1409 	pos = find_next_bit(base->pending_map, end, start);
1410 	if (pos < end)
1411 		return pos - start;
1412 
1413 	pos = find_next_bit(base->pending_map, start, offset);
1414 	return pos < start ? pos + LVL_SIZE - start : -1;
1415 }
1416 
1417 /*
1418  * Search the first expiring timer in the various clock levels. Caller must
1419  * hold base->lock.
1420  */
1421 static unsigned long __next_timer_interrupt(struct timer_base *base)
1422 {
1423 	unsigned long clk, next, adj;
1424 	unsigned lvl, offset = 0;
1425 
1426 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1427 	clk = base->clk;
1428 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1429 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1430 
1431 		if (pos >= 0) {
1432 			unsigned long tmp = clk + (unsigned long) pos;
1433 
1434 			tmp <<= LVL_SHIFT(lvl);
1435 			if (time_before(tmp, next))
1436 				next = tmp;
1437 		}
1438 		/*
1439 		 * Clock for the next level. If the current level clock lower
1440 		 * bits are zero, we look at the next level as is. If not we
1441 		 * need to advance it by one because that's going to be the
1442 		 * next expiring bucket in that level. base->clk is the next
1443 		 * expiring jiffie. So in case of:
1444 		 *
1445 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1446 		 *  0    0    0    0    0    0
1447 		 *
1448 		 * we have to look at all levels @index 0. With
1449 		 *
1450 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1451 		 *  0    0    0    0    0    2
1452 		 *
1453 		 * LVL0 has the next expiring bucket @index 2. The upper
1454 		 * levels have the next expiring bucket @index 1.
1455 		 *
1456 		 * In case that the propagation wraps the next level the same
1457 		 * rules apply:
1458 		 *
1459 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1460 		 *  0    0    0    0    F    2
1461 		 *
1462 		 * So after looking at LVL0 we get:
1463 		 *
1464 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1465 		 *  0    0    0    1    0
1466 		 *
1467 		 * So no propagation from LVL1 to LVL2 because that happened
1468 		 * with the add already, but then we need to propagate further
1469 		 * from LVL2 to LVL3.
1470 		 *
1471 		 * So the simple check whether the lower bits of the current
1472 		 * level are 0 or not is sufficient for all cases.
1473 		 */
1474 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1475 		clk >>= LVL_CLK_SHIFT;
1476 		clk += adj;
1477 	}
1478 	return next;
1479 }
1480 
1481 /*
1482  * Check, if the next hrtimer event is before the next timer wheel
1483  * event:
1484  */
1485 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1486 {
1487 	u64 nextevt = hrtimer_get_next_event();
1488 
1489 	/*
1490 	 * If high resolution timers are enabled
1491 	 * hrtimer_get_next_event() returns KTIME_MAX.
1492 	 */
1493 	if (expires <= nextevt)
1494 		return expires;
1495 
1496 	/*
1497 	 * If the next timer is already expired, return the tick base
1498 	 * time so the tick is fired immediately.
1499 	 */
1500 	if (nextevt <= basem)
1501 		return basem;
1502 
1503 	/*
1504 	 * Round up to the next jiffie. High resolution timers are
1505 	 * off, so the hrtimers are expired in the tick and we need to
1506 	 * make sure that this tick really expires the timer to avoid
1507 	 * a ping pong of the nohz stop code.
1508 	 *
1509 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1510 	 */
1511 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1512 }
1513 
1514 /**
1515  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1516  * @basej:	base time jiffies
1517  * @basem:	base time clock monotonic
1518  *
1519  * Returns the tick aligned clock monotonic time of the next pending
1520  * timer or KTIME_MAX if no timer is pending.
1521  */
1522 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1523 {
1524 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1525 	u64 expires = KTIME_MAX;
1526 	unsigned long nextevt;
1527 	bool is_max_delta;
1528 
1529 	/*
1530 	 * Pretend that there is no timer pending if the cpu is offline.
1531 	 * Possible pending timers will be migrated later to an active cpu.
1532 	 */
1533 	if (cpu_is_offline(smp_processor_id()))
1534 		return expires;
1535 
1536 	raw_spin_lock(&base->lock);
1537 	nextevt = __next_timer_interrupt(base);
1538 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1539 	base->next_expiry = nextevt;
1540 	/*
1541 	 * We have a fresh next event. Check whether we can forward the
1542 	 * base. We can only do that when @basej is past base->clk
1543 	 * otherwise we might rewind base->clk.
1544 	 */
1545 	if (time_after(basej, base->clk)) {
1546 		if (time_after(nextevt, basej))
1547 			base->clk = basej;
1548 		else if (time_after(nextevt, base->clk))
1549 			base->clk = nextevt;
1550 	}
1551 
1552 	if (time_before_eq(nextevt, basej)) {
1553 		expires = basem;
1554 		base->is_idle = false;
1555 	} else {
1556 		if (!is_max_delta)
1557 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1558 		/*
1559 		 * If we expect to sleep more than a tick, mark the base idle.
1560 		 * Also the tick is stopped so any added timer must forward
1561 		 * the base clk itself to keep granularity small. This idle
1562 		 * logic is only maintained for the BASE_STD base, deferrable
1563 		 * timers may still see large granularity skew (by design).
1564 		 */
1565 		if ((expires - basem) > TICK_NSEC) {
1566 			base->must_forward_clk = true;
1567 			base->is_idle = true;
1568 		}
1569 	}
1570 	raw_spin_unlock(&base->lock);
1571 
1572 	return cmp_next_hrtimer_event(basem, expires);
1573 }
1574 
1575 /**
1576  * timer_clear_idle - Clear the idle state of the timer base
1577  *
1578  * Called with interrupts disabled
1579  */
1580 void timer_clear_idle(void)
1581 {
1582 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1583 
1584 	/*
1585 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1586 	 * a pointless IPI, but taking the lock would just make the window for
1587 	 * sending the IPI a few instructions smaller for the cost of taking
1588 	 * the lock in the exit from idle path.
1589 	 */
1590 	base->is_idle = false;
1591 }
1592 
1593 static int collect_expired_timers(struct timer_base *base,
1594 				  struct hlist_head *heads)
1595 {
1596 	/*
1597 	 * NOHZ optimization. After a long idle sleep we need to forward the
1598 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1599 	 * the next expiring timer.
1600 	 */
1601 	if ((long)(jiffies - base->clk) > 2) {
1602 		unsigned long next = __next_timer_interrupt(base);
1603 
1604 		/*
1605 		 * If the next timer is ahead of time forward to current
1606 		 * jiffies, otherwise forward to the next expiry time:
1607 		 */
1608 		if (time_after(next, jiffies)) {
1609 			/*
1610 			 * The call site will increment base->clk and then
1611 			 * terminate the expiry loop immediately.
1612 			 */
1613 			base->clk = jiffies;
1614 			return 0;
1615 		}
1616 		base->clk = next;
1617 	}
1618 	return __collect_expired_timers(base, heads);
1619 }
1620 #else
1621 static inline int collect_expired_timers(struct timer_base *base,
1622 					 struct hlist_head *heads)
1623 {
1624 	return __collect_expired_timers(base, heads);
1625 }
1626 #endif
1627 
1628 /*
1629  * Called from the timer interrupt handler to charge one tick to the current
1630  * process.  user_tick is 1 if the tick is user time, 0 for system.
1631  */
1632 void update_process_times(int user_tick)
1633 {
1634 	struct task_struct *p = current;
1635 
1636 	/* Note: this timer irq context must be accounted for as well. */
1637 	account_process_tick(p, user_tick);
1638 	run_local_timers();
1639 	rcu_sched_clock_irq(user_tick);
1640 #ifdef CONFIG_IRQ_WORK
1641 	if (in_irq())
1642 		irq_work_tick();
1643 #endif
1644 	scheduler_tick();
1645 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1646 		run_posix_cpu_timers(p);
1647 }
1648 
1649 /**
1650  * __run_timers - run all expired timers (if any) on this CPU.
1651  * @base: the timer vector to be processed.
1652  */
1653 static inline void __run_timers(struct timer_base *base)
1654 {
1655 	struct hlist_head heads[LVL_DEPTH];
1656 	int levels;
1657 
1658 	if (!time_after_eq(jiffies, base->clk))
1659 		return;
1660 
1661 	raw_spin_lock_irq(&base->lock);
1662 
1663 	/*
1664 	 * timer_base::must_forward_clk must be cleared before running
1665 	 * timers so that any timer functions that call mod_timer() will
1666 	 * not try to forward the base. Idle tracking / clock forwarding
1667 	 * logic is only used with BASE_STD timers.
1668 	 *
1669 	 * The must_forward_clk flag is cleared unconditionally also for
1670 	 * the deferrable base. The deferrable base is not affected by idle
1671 	 * tracking and never forwarded, so clearing the flag is a NOOP.
1672 	 *
1673 	 * The fact that the deferrable base is never forwarded can cause
1674 	 * large variations in granularity for deferrable timers, but they
1675 	 * can be deferred for long periods due to idle anyway.
1676 	 */
1677 	base->must_forward_clk = false;
1678 
1679 	while (time_after_eq(jiffies, base->clk)) {
1680 
1681 		levels = collect_expired_timers(base, heads);
1682 		base->clk++;
1683 
1684 		while (levels--)
1685 			expire_timers(base, heads + levels);
1686 	}
1687 	base->running_timer = NULL;
1688 	raw_spin_unlock_irq(&base->lock);
1689 }
1690 
1691 /*
1692  * This function runs timers and the timer-tq in bottom half context.
1693  */
1694 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1695 {
1696 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1697 
1698 	__run_timers(base);
1699 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1700 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1701 }
1702 
1703 /*
1704  * Called by the local, per-CPU timer interrupt on SMP.
1705  */
1706 void run_local_timers(void)
1707 {
1708 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1709 
1710 	hrtimer_run_queues();
1711 	/* Raise the softirq only if required. */
1712 	if (time_before(jiffies, base->clk)) {
1713 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1714 			return;
1715 		/* CPU is awake, so check the deferrable base. */
1716 		base++;
1717 		if (time_before(jiffies, base->clk))
1718 			return;
1719 	}
1720 	raise_softirq(TIMER_SOFTIRQ);
1721 }
1722 
1723 /*
1724  * Since schedule_timeout()'s timer is defined on the stack, it must store
1725  * the target task on the stack as well.
1726  */
1727 struct process_timer {
1728 	struct timer_list timer;
1729 	struct task_struct *task;
1730 };
1731 
1732 static void process_timeout(struct timer_list *t)
1733 {
1734 	struct process_timer *timeout = from_timer(timeout, t, timer);
1735 
1736 	wake_up_process(timeout->task);
1737 }
1738 
1739 /**
1740  * schedule_timeout - sleep until timeout
1741  * @timeout: timeout value in jiffies
1742  *
1743  * Make the current task sleep until @timeout jiffies have
1744  * elapsed. The routine will return immediately unless
1745  * the current task state has been set (see set_current_state()).
1746  *
1747  * You can set the task state as follows -
1748  *
1749  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1750  * pass before the routine returns unless the current task is explicitly
1751  * woken up, (e.g. by wake_up_process())".
1752  *
1753  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1754  * delivered to the current task or the current task is explicitly woken
1755  * up.
1756  *
1757  * The current task state is guaranteed to be TASK_RUNNING when this
1758  * routine returns.
1759  *
1760  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1761  * the CPU away without a bound on the timeout. In this case the return
1762  * value will be %MAX_SCHEDULE_TIMEOUT.
1763  *
1764  * Returns 0 when the timer has expired otherwise the remaining time in
1765  * jiffies will be returned.  In all cases the return value is guaranteed
1766  * to be non-negative.
1767  */
1768 signed long __sched schedule_timeout(signed long timeout)
1769 {
1770 	struct process_timer timer;
1771 	unsigned long expire;
1772 
1773 	switch (timeout)
1774 	{
1775 	case MAX_SCHEDULE_TIMEOUT:
1776 		/*
1777 		 * These two special cases are useful to be comfortable
1778 		 * in the caller. Nothing more. We could take
1779 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1780 		 * but I' d like to return a valid offset (>=0) to allow
1781 		 * the caller to do everything it want with the retval.
1782 		 */
1783 		schedule();
1784 		goto out;
1785 	default:
1786 		/*
1787 		 * Another bit of PARANOID. Note that the retval will be
1788 		 * 0 since no piece of kernel is supposed to do a check
1789 		 * for a negative retval of schedule_timeout() (since it
1790 		 * should never happens anyway). You just have the printk()
1791 		 * that will tell you if something is gone wrong and where.
1792 		 */
1793 		if (timeout < 0) {
1794 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1795 				"value %lx\n", timeout);
1796 			dump_stack();
1797 			current->state = TASK_RUNNING;
1798 			goto out;
1799 		}
1800 	}
1801 
1802 	expire = timeout + jiffies;
1803 
1804 	timer.task = current;
1805 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1806 	__mod_timer(&timer.timer, expire, 0);
1807 	schedule();
1808 	del_singleshot_timer_sync(&timer.timer);
1809 
1810 	/* Remove the timer from the object tracker */
1811 	destroy_timer_on_stack(&timer.timer);
1812 
1813 	timeout = expire - jiffies;
1814 
1815  out:
1816 	return timeout < 0 ? 0 : timeout;
1817 }
1818 EXPORT_SYMBOL(schedule_timeout);
1819 
1820 /*
1821  * We can use __set_current_state() here because schedule_timeout() calls
1822  * schedule() unconditionally.
1823  */
1824 signed long __sched schedule_timeout_interruptible(signed long timeout)
1825 {
1826 	__set_current_state(TASK_INTERRUPTIBLE);
1827 	return schedule_timeout(timeout);
1828 }
1829 EXPORT_SYMBOL(schedule_timeout_interruptible);
1830 
1831 signed long __sched schedule_timeout_killable(signed long timeout)
1832 {
1833 	__set_current_state(TASK_KILLABLE);
1834 	return schedule_timeout(timeout);
1835 }
1836 EXPORT_SYMBOL(schedule_timeout_killable);
1837 
1838 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1839 {
1840 	__set_current_state(TASK_UNINTERRUPTIBLE);
1841 	return schedule_timeout(timeout);
1842 }
1843 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1844 
1845 /*
1846  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1847  * to load average.
1848  */
1849 signed long __sched schedule_timeout_idle(signed long timeout)
1850 {
1851 	__set_current_state(TASK_IDLE);
1852 	return schedule_timeout(timeout);
1853 }
1854 EXPORT_SYMBOL(schedule_timeout_idle);
1855 
1856 #ifdef CONFIG_HOTPLUG_CPU
1857 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1858 {
1859 	struct timer_list *timer;
1860 	int cpu = new_base->cpu;
1861 
1862 	while (!hlist_empty(head)) {
1863 		timer = hlist_entry(head->first, struct timer_list, entry);
1864 		detach_timer(timer, false);
1865 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1866 		internal_add_timer(new_base, timer);
1867 	}
1868 }
1869 
1870 int timers_prepare_cpu(unsigned int cpu)
1871 {
1872 	struct timer_base *base;
1873 	int b;
1874 
1875 	for (b = 0; b < NR_BASES; b++) {
1876 		base = per_cpu_ptr(&timer_bases[b], cpu);
1877 		base->clk = jiffies;
1878 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1879 		base->is_idle = false;
1880 		base->must_forward_clk = true;
1881 	}
1882 	return 0;
1883 }
1884 
1885 int timers_dead_cpu(unsigned int cpu)
1886 {
1887 	struct timer_base *old_base;
1888 	struct timer_base *new_base;
1889 	int b, i;
1890 
1891 	BUG_ON(cpu_online(cpu));
1892 
1893 	for (b = 0; b < NR_BASES; b++) {
1894 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1895 		new_base = get_cpu_ptr(&timer_bases[b]);
1896 		/*
1897 		 * The caller is globally serialized and nobody else
1898 		 * takes two locks at once, deadlock is not possible.
1899 		 */
1900 		raw_spin_lock_irq(&new_base->lock);
1901 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1902 
1903 		/*
1904 		 * The current CPUs base clock might be stale. Update it
1905 		 * before moving the timers over.
1906 		 */
1907 		forward_timer_base(new_base);
1908 
1909 		BUG_ON(old_base->running_timer);
1910 
1911 		for (i = 0; i < WHEEL_SIZE; i++)
1912 			migrate_timer_list(new_base, old_base->vectors + i);
1913 
1914 		raw_spin_unlock(&old_base->lock);
1915 		raw_spin_unlock_irq(&new_base->lock);
1916 		put_cpu_ptr(&timer_bases);
1917 	}
1918 	return 0;
1919 }
1920 
1921 #endif /* CONFIG_HOTPLUG_CPU */
1922 
1923 static void __init init_timer_cpu(int cpu)
1924 {
1925 	struct timer_base *base;
1926 	int i;
1927 
1928 	for (i = 0; i < NR_BASES; i++) {
1929 		base = per_cpu_ptr(&timer_bases[i], cpu);
1930 		base->cpu = cpu;
1931 		raw_spin_lock_init(&base->lock);
1932 		base->clk = jiffies;
1933 	}
1934 }
1935 
1936 static void __init init_timer_cpus(void)
1937 {
1938 	int cpu;
1939 
1940 	for_each_possible_cpu(cpu)
1941 		init_timer_cpu(cpu);
1942 }
1943 
1944 void __init init_timers(void)
1945 {
1946 	init_timer_cpus();
1947 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1948 }
1949 
1950 /**
1951  * msleep - sleep safely even with waitqueue interruptions
1952  * @msecs: Time in milliseconds to sleep for
1953  */
1954 void msleep(unsigned int msecs)
1955 {
1956 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1957 
1958 	while (timeout)
1959 		timeout = schedule_timeout_uninterruptible(timeout);
1960 }
1961 
1962 EXPORT_SYMBOL(msleep);
1963 
1964 /**
1965  * msleep_interruptible - sleep waiting for signals
1966  * @msecs: Time in milliseconds to sleep for
1967  */
1968 unsigned long msleep_interruptible(unsigned int msecs)
1969 {
1970 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1971 
1972 	while (timeout && !signal_pending(current))
1973 		timeout = schedule_timeout_interruptible(timeout);
1974 	return jiffies_to_msecs(timeout);
1975 }
1976 
1977 EXPORT_SYMBOL(msleep_interruptible);
1978 
1979 /**
1980  * usleep_range - Sleep for an approximate time
1981  * @min: Minimum time in usecs to sleep
1982  * @max: Maximum time in usecs to sleep
1983  *
1984  * In non-atomic context where the exact wakeup time is flexible, use
1985  * usleep_range() instead of udelay().  The sleep improves responsiveness
1986  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1987  * power usage by allowing hrtimers to take advantage of an already-
1988  * scheduled interrupt instead of scheduling a new one just for this sleep.
1989  */
1990 void __sched usleep_range(unsigned long min, unsigned long max)
1991 {
1992 	ktime_t exp = ktime_add_us(ktime_get(), min);
1993 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1994 
1995 	for (;;) {
1996 		__set_current_state(TASK_UNINTERRUPTIBLE);
1997 		/* Do not return before the requested sleep time has elapsed */
1998 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1999 			break;
2000 	}
2001 }
2002 EXPORT_SYMBOL(usleep_range);
2003