xref: /openbmc/linux/kernel/time/timer.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 
47 #include <linux/uaccess.h>
48 #include <asm/unistd.h>
49 #include <asm/div64.h>
50 #include <asm/timex.h>
51 #include <asm/io.h>
52 
53 #include "tick-internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/timer.h>
57 
58 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
59 
60 EXPORT_SYMBOL(jiffies_64);
61 
62 /*
63  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
64  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
65  * level has a different granularity.
66  *
67  * The level granularity is:		LVL_CLK_DIV ^ lvl
68  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
69  *
70  * The array level of a newly armed timer depends on the relative expiry
71  * time. The farther the expiry time is away the higher the array level and
72  * therefor the granularity becomes.
73  *
74  * Contrary to the original timer wheel implementation, which aims for 'exact'
75  * expiry of the timers, this implementation removes the need for recascading
76  * the timers into the lower array levels. The previous 'classic' timer wheel
77  * implementation of the kernel already violated the 'exact' expiry by adding
78  * slack to the expiry time to provide batched expiration. The granularity
79  * levels provide implicit batching.
80  *
81  * This is an optimization of the original timer wheel implementation for the
82  * majority of the timer wheel use cases: timeouts. The vast majority of
83  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
84  * the timeout expires it indicates that normal operation is disturbed, so it
85  * does not matter much whether the timeout comes with a slight delay.
86  *
87  * The only exception to this are networking timers with a small expiry
88  * time. They rely on the granularity. Those fit into the first wheel level,
89  * which has HZ granularity.
90  *
91  * We don't have cascading anymore. timers with a expiry time above the
92  * capacity of the last wheel level are force expired at the maximum timeout
93  * value of the last wheel level. From data sampling we know that the maximum
94  * value observed is 5 days (network connection tracking), so this should not
95  * be an issue.
96  *
97  * The currently chosen array constants values are a good compromise between
98  * array size and granularity.
99  *
100  * This results in the following granularity and range levels:
101  *
102  * HZ 1000 steps
103  * Level Offset  Granularity            Range
104  *  0      0         1 ms                0 ms -         63 ms
105  *  1     64         8 ms               64 ms -        511 ms
106  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
107  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
108  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
109  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
110  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
111  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
112  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
113  *
114  * HZ  300
115  * Level Offset  Granularity            Range
116  *  0	   0         3 ms                0 ms -        210 ms
117  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
118  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
119  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
120  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
121  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
122  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
123  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
124  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
125  *
126  * HZ  250
127  * Level Offset  Granularity            Range
128  *  0	   0         4 ms                0 ms -        255 ms
129  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
130  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
131  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
132  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
133  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
134  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
135  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
136  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
137  *
138  * HZ  100
139  * Level Offset  Granularity            Range
140  *  0	   0         10 ms               0 ms -        630 ms
141  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
142  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
143  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
144  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
145  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
146  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
147  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
148  */
149 
150 /* Clock divisor for the next level */
151 #define LVL_CLK_SHIFT	3
152 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
153 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
154 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
155 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
156 
157 /*
158  * The time start value for each level to select the bucket at enqueue
159  * time.
160  */
161 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
162 
163 /* Size of each clock level */
164 #define LVL_BITS	6
165 #define LVL_SIZE	(1UL << LVL_BITS)
166 #define LVL_MASK	(LVL_SIZE - 1)
167 #define LVL_OFFS(n)	((n) * LVL_SIZE)
168 
169 /* Level depth */
170 #if HZ > 100
171 # define LVL_DEPTH	9
172 # else
173 # define LVL_DEPTH	8
174 #endif
175 
176 /* The cutoff (max. capacity of the wheel) */
177 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
178 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
179 
180 /*
181  * The resulting wheel size. If NOHZ is configured we allocate two
182  * wheels so we have a separate storage for the deferrable timers.
183  */
184 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
185 
186 #ifdef CONFIG_NO_HZ_COMMON
187 # define NR_BASES	2
188 # define BASE_STD	0
189 # define BASE_DEF	1
190 #else
191 # define NR_BASES	1
192 # define BASE_STD	0
193 # define BASE_DEF	0
194 #endif
195 
196 struct timer_base {
197 	raw_spinlock_t		lock;
198 	struct timer_list	*running_timer;
199 	unsigned long		clk;
200 	unsigned long		next_expiry;
201 	unsigned int		cpu;
202 	bool			is_idle;
203 	bool			must_forward_clk;
204 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
205 	struct hlist_head	vectors[WHEEL_SIZE];
206 } ____cacheline_aligned;
207 
208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
209 
210 #ifdef CONFIG_NO_HZ_COMMON
211 
212 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
213 static DEFINE_MUTEX(timer_keys_mutex);
214 
215 static void timer_update_keys(struct work_struct *work);
216 static DECLARE_WORK(timer_update_work, timer_update_keys);
217 
218 #ifdef CONFIG_SMP
219 unsigned int sysctl_timer_migration = 1;
220 
221 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
222 
223 static void timers_update_migration(void)
224 {
225 	if (sysctl_timer_migration && tick_nohz_active)
226 		static_branch_enable(&timers_migration_enabled);
227 	else
228 		static_branch_disable(&timers_migration_enabled);
229 }
230 #else
231 static inline void timers_update_migration(void) { }
232 #endif /* !CONFIG_SMP */
233 
234 static void timer_update_keys(struct work_struct *work)
235 {
236 	mutex_lock(&timer_keys_mutex);
237 	timers_update_migration();
238 	static_branch_enable(&timers_nohz_active);
239 	mutex_unlock(&timer_keys_mutex);
240 }
241 
242 void timers_update_nohz(void)
243 {
244 	schedule_work(&timer_update_work);
245 }
246 
247 int timer_migration_handler(struct ctl_table *table, int write,
248 			    void __user *buffer, size_t *lenp,
249 			    loff_t *ppos)
250 {
251 	int ret;
252 
253 	mutex_lock(&timer_keys_mutex);
254 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
255 	if (!ret && write)
256 		timers_update_migration();
257 	mutex_unlock(&timer_keys_mutex);
258 	return ret;
259 }
260 
261 static inline bool is_timers_nohz_active(void)
262 {
263 	return static_branch_unlikely(&timers_nohz_active);
264 }
265 #else
266 static inline bool is_timers_nohz_active(void) { return false; }
267 #endif /* NO_HZ_COMMON */
268 
269 static unsigned long round_jiffies_common(unsigned long j, int cpu,
270 		bool force_up)
271 {
272 	int rem;
273 	unsigned long original = j;
274 
275 	/*
276 	 * We don't want all cpus firing their timers at once hitting the
277 	 * same lock or cachelines, so we skew each extra cpu with an extra
278 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
279 	 * already did this.
280 	 * The skew is done by adding 3*cpunr, then round, then subtract this
281 	 * extra offset again.
282 	 */
283 	j += cpu * 3;
284 
285 	rem = j % HZ;
286 
287 	/*
288 	 * If the target jiffie is just after a whole second (which can happen
289 	 * due to delays of the timer irq, long irq off times etc etc) then
290 	 * we should round down to the whole second, not up. Use 1/4th second
291 	 * as cutoff for this rounding as an extreme upper bound for this.
292 	 * But never round down if @force_up is set.
293 	 */
294 	if (rem < HZ/4 && !force_up) /* round down */
295 		j = j - rem;
296 	else /* round up */
297 		j = j - rem + HZ;
298 
299 	/* now that we have rounded, subtract the extra skew again */
300 	j -= cpu * 3;
301 
302 	/*
303 	 * Make sure j is still in the future. Otherwise return the
304 	 * unmodified value.
305 	 */
306 	return time_is_after_jiffies(j) ? j : original;
307 }
308 
309 /**
310  * __round_jiffies - function to round jiffies to a full second
311  * @j: the time in (absolute) jiffies that should be rounded
312  * @cpu: the processor number on which the timeout will happen
313  *
314  * __round_jiffies() rounds an absolute time in the future (in jiffies)
315  * up or down to (approximately) full seconds. This is useful for timers
316  * for which the exact time they fire does not matter too much, as long as
317  * they fire approximately every X seconds.
318  *
319  * By rounding these timers to whole seconds, all such timers will fire
320  * at the same time, rather than at various times spread out. The goal
321  * of this is to have the CPU wake up less, which saves power.
322  *
323  * The exact rounding is skewed for each processor to avoid all
324  * processors firing at the exact same time, which could lead
325  * to lock contention or spurious cache line bouncing.
326  *
327  * The return value is the rounded version of the @j parameter.
328  */
329 unsigned long __round_jiffies(unsigned long j, int cpu)
330 {
331 	return round_jiffies_common(j, cpu, false);
332 }
333 EXPORT_SYMBOL_GPL(__round_jiffies);
334 
335 /**
336  * __round_jiffies_relative - function to round jiffies to a full second
337  * @j: the time in (relative) jiffies that should be rounded
338  * @cpu: the processor number on which the timeout will happen
339  *
340  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
341  * up or down to (approximately) full seconds. This is useful for timers
342  * for which the exact time they fire does not matter too much, as long as
343  * they fire approximately every X seconds.
344  *
345  * By rounding these timers to whole seconds, all such timers will fire
346  * at the same time, rather than at various times spread out. The goal
347  * of this is to have the CPU wake up less, which saves power.
348  *
349  * The exact rounding is skewed for each processor to avoid all
350  * processors firing at the exact same time, which could lead
351  * to lock contention or spurious cache line bouncing.
352  *
353  * The return value is the rounded version of the @j parameter.
354  */
355 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
356 {
357 	unsigned long j0 = jiffies;
358 
359 	/* Use j0 because jiffies might change while we run */
360 	return round_jiffies_common(j + j0, cpu, false) - j0;
361 }
362 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
363 
364 /**
365  * round_jiffies - function to round jiffies to a full second
366  * @j: the time in (absolute) jiffies that should be rounded
367  *
368  * round_jiffies() rounds an absolute time in the future (in jiffies)
369  * up or down to (approximately) full seconds. This is useful for timers
370  * for which the exact time they fire does not matter too much, as long as
371  * they fire approximately every X seconds.
372  *
373  * By rounding these timers to whole seconds, all such timers will fire
374  * at the same time, rather than at various times spread out. The goal
375  * of this is to have the CPU wake up less, which saves power.
376  *
377  * The return value is the rounded version of the @j parameter.
378  */
379 unsigned long round_jiffies(unsigned long j)
380 {
381 	return round_jiffies_common(j, raw_smp_processor_id(), false);
382 }
383 EXPORT_SYMBOL_GPL(round_jiffies);
384 
385 /**
386  * round_jiffies_relative - function to round jiffies to a full second
387  * @j: the time in (relative) jiffies that should be rounded
388  *
389  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
390  * up or down to (approximately) full seconds. This is useful for timers
391  * for which the exact time they fire does not matter too much, as long as
392  * they fire approximately every X seconds.
393  *
394  * By rounding these timers to whole seconds, all such timers will fire
395  * at the same time, rather than at various times spread out. The goal
396  * of this is to have the CPU wake up less, which saves power.
397  *
398  * The return value is the rounded version of the @j parameter.
399  */
400 unsigned long round_jiffies_relative(unsigned long j)
401 {
402 	return __round_jiffies_relative(j, raw_smp_processor_id());
403 }
404 EXPORT_SYMBOL_GPL(round_jiffies_relative);
405 
406 /**
407  * __round_jiffies_up - function to round jiffies up to a full second
408  * @j: the time in (absolute) jiffies that should be rounded
409  * @cpu: the processor number on which the timeout will happen
410  *
411  * This is the same as __round_jiffies() except that it will never
412  * round down.  This is useful for timeouts for which the exact time
413  * of firing does not matter too much, as long as they don't fire too
414  * early.
415  */
416 unsigned long __round_jiffies_up(unsigned long j, int cpu)
417 {
418 	return round_jiffies_common(j, cpu, true);
419 }
420 EXPORT_SYMBOL_GPL(__round_jiffies_up);
421 
422 /**
423  * __round_jiffies_up_relative - function to round jiffies up to a full second
424  * @j: the time in (relative) jiffies that should be rounded
425  * @cpu: the processor number on which the timeout will happen
426  *
427  * This is the same as __round_jiffies_relative() except that it will never
428  * round down.  This is useful for timeouts for which the exact time
429  * of firing does not matter too much, as long as they don't fire too
430  * early.
431  */
432 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
433 {
434 	unsigned long j0 = jiffies;
435 
436 	/* Use j0 because jiffies might change while we run */
437 	return round_jiffies_common(j + j0, cpu, true) - j0;
438 }
439 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
440 
441 /**
442  * round_jiffies_up - function to round jiffies up to a full second
443  * @j: the time in (absolute) jiffies that should be rounded
444  *
445  * This is the same as round_jiffies() except that it will never
446  * round down.  This is useful for timeouts for which the exact time
447  * of firing does not matter too much, as long as they don't fire too
448  * early.
449  */
450 unsigned long round_jiffies_up(unsigned long j)
451 {
452 	return round_jiffies_common(j, raw_smp_processor_id(), true);
453 }
454 EXPORT_SYMBOL_GPL(round_jiffies_up);
455 
456 /**
457  * round_jiffies_up_relative - function to round jiffies up to a full second
458  * @j: the time in (relative) jiffies that should be rounded
459  *
460  * This is the same as round_jiffies_relative() except that it will never
461  * round down.  This is useful for timeouts for which the exact time
462  * of firing does not matter too much, as long as they don't fire too
463  * early.
464  */
465 unsigned long round_jiffies_up_relative(unsigned long j)
466 {
467 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
468 }
469 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
470 
471 
472 static inline unsigned int timer_get_idx(struct timer_list *timer)
473 {
474 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
475 }
476 
477 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
478 {
479 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
480 			idx << TIMER_ARRAYSHIFT;
481 }
482 
483 /*
484  * Helper function to calculate the array index for a given expiry
485  * time.
486  */
487 static inline unsigned calc_index(unsigned expires, unsigned lvl)
488 {
489 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
490 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
491 }
492 
493 static int calc_wheel_index(unsigned long expires, unsigned long clk)
494 {
495 	unsigned long delta = expires - clk;
496 	unsigned int idx;
497 
498 	if (delta < LVL_START(1)) {
499 		idx = calc_index(expires, 0);
500 	} else if (delta < LVL_START(2)) {
501 		idx = calc_index(expires, 1);
502 	} else if (delta < LVL_START(3)) {
503 		idx = calc_index(expires, 2);
504 	} else if (delta < LVL_START(4)) {
505 		idx = calc_index(expires, 3);
506 	} else if (delta < LVL_START(5)) {
507 		idx = calc_index(expires, 4);
508 	} else if (delta < LVL_START(6)) {
509 		idx = calc_index(expires, 5);
510 	} else if (delta < LVL_START(7)) {
511 		idx = calc_index(expires, 6);
512 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
513 		idx = calc_index(expires, 7);
514 	} else if ((long) delta < 0) {
515 		idx = clk & LVL_MASK;
516 	} else {
517 		/*
518 		 * Force expire obscene large timeouts to expire at the
519 		 * capacity limit of the wheel.
520 		 */
521 		if (expires >= WHEEL_TIMEOUT_CUTOFF)
522 			expires = WHEEL_TIMEOUT_MAX;
523 
524 		idx = calc_index(expires, LVL_DEPTH - 1);
525 	}
526 	return idx;
527 }
528 
529 /*
530  * Enqueue the timer into the hash bucket, mark it pending in
531  * the bitmap and store the index in the timer flags.
532  */
533 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
534 			  unsigned int idx)
535 {
536 	hlist_add_head(&timer->entry, base->vectors + idx);
537 	__set_bit(idx, base->pending_map);
538 	timer_set_idx(timer, idx);
539 }
540 
541 static void
542 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
543 {
544 	unsigned int idx;
545 
546 	idx = calc_wheel_index(timer->expires, base->clk);
547 	enqueue_timer(base, timer, idx);
548 }
549 
550 static void
551 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
552 {
553 	if (!is_timers_nohz_active())
554 		return;
555 
556 	/*
557 	 * TODO: This wants some optimizing similar to the code below, but we
558 	 * will do that when we switch from push to pull for deferrable timers.
559 	 */
560 	if (timer->flags & TIMER_DEFERRABLE) {
561 		if (tick_nohz_full_cpu(base->cpu))
562 			wake_up_nohz_cpu(base->cpu);
563 		return;
564 	}
565 
566 	/*
567 	 * We might have to IPI the remote CPU if the base is idle and the
568 	 * timer is not deferrable. If the other CPU is on the way to idle
569 	 * then it can't set base->is_idle as we hold the base lock:
570 	 */
571 	if (!base->is_idle)
572 		return;
573 
574 	/* Check whether this is the new first expiring timer: */
575 	if (time_after_eq(timer->expires, base->next_expiry))
576 		return;
577 
578 	/*
579 	 * Set the next expiry time and kick the CPU so it can reevaluate the
580 	 * wheel:
581 	 */
582 	base->next_expiry = timer->expires;
583 	wake_up_nohz_cpu(base->cpu);
584 }
585 
586 static void
587 internal_add_timer(struct timer_base *base, struct timer_list *timer)
588 {
589 	__internal_add_timer(base, timer);
590 	trigger_dyntick_cpu(base, timer);
591 }
592 
593 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
594 
595 static struct debug_obj_descr timer_debug_descr;
596 
597 static void *timer_debug_hint(void *addr)
598 {
599 	return ((struct timer_list *) addr)->function;
600 }
601 
602 static bool timer_is_static_object(void *addr)
603 {
604 	struct timer_list *timer = addr;
605 
606 	return (timer->entry.pprev == NULL &&
607 		timer->entry.next == TIMER_ENTRY_STATIC);
608 }
609 
610 /*
611  * fixup_init is called when:
612  * - an active object is initialized
613  */
614 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
615 {
616 	struct timer_list *timer = addr;
617 
618 	switch (state) {
619 	case ODEBUG_STATE_ACTIVE:
620 		del_timer_sync(timer);
621 		debug_object_init(timer, &timer_debug_descr);
622 		return true;
623 	default:
624 		return false;
625 	}
626 }
627 
628 /* Stub timer callback for improperly used timers. */
629 static void stub_timer(struct timer_list *unused)
630 {
631 	WARN_ON(1);
632 }
633 
634 /*
635  * fixup_activate is called when:
636  * - an active object is activated
637  * - an unknown non-static object is activated
638  */
639 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
640 {
641 	struct timer_list *timer = addr;
642 
643 	switch (state) {
644 	case ODEBUG_STATE_NOTAVAILABLE:
645 		timer_setup(timer, stub_timer, 0);
646 		return true;
647 
648 	case ODEBUG_STATE_ACTIVE:
649 		WARN_ON(1);
650 
651 	default:
652 		return false;
653 	}
654 }
655 
656 /*
657  * fixup_free is called when:
658  * - an active object is freed
659  */
660 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
661 {
662 	struct timer_list *timer = addr;
663 
664 	switch (state) {
665 	case ODEBUG_STATE_ACTIVE:
666 		del_timer_sync(timer);
667 		debug_object_free(timer, &timer_debug_descr);
668 		return true;
669 	default:
670 		return false;
671 	}
672 }
673 
674 /*
675  * fixup_assert_init is called when:
676  * - an untracked/uninit-ed object is found
677  */
678 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
679 {
680 	struct timer_list *timer = addr;
681 
682 	switch (state) {
683 	case ODEBUG_STATE_NOTAVAILABLE:
684 		timer_setup(timer, stub_timer, 0);
685 		return true;
686 	default:
687 		return false;
688 	}
689 }
690 
691 static struct debug_obj_descr timer_debug_descr = {
692 	.name			= "timer_list",
693 	.debug_hint		= timer_debug_hint,
694 	.is_static_object	= timer_is_static_object,
695 	.fixup_init		= timer_fixup_init,
696 	.fixup_activate		= timer_fixup_activate,
697 	.fixup_free		= timer_fixup_free,
698 	.fixup_assert_init	= timer_fixup_assert_init,
699 };
700 
701 static inline void debug_timer_init(struct timer_list *timer)
702 {
703 	debug_object_init(timer, &timer_debug_descr);
704 }
705 
706 static inline void debug_timer_activate(struct timer_list *timer)
707 {
708 	debug_object_activate(timer, &timer_debug_descr);
709 }
710 
711 static inline void debug_timer_deactivate(struct timer_list *timer)
712 {
713 	debug_object_deactivate(timer, &timer_debug_descr);
714 }
715 
716 static inline void debug_timer_free(struct timer_list *timer)
717 {
718 	debug_object_free(timer, &timer_debug_descr);
719 }
720 
721 static inline void debug_timer_assert_init(struct timer_list *timer)
722 {
723 	debug_object_assert_init(timer, &timer_debug_descr);
724 }
725 
726 static void do_init_timer(struct timer_list *timer,
727 			  void (*func)(struct timer_list *),
728 			  unsigned int flags,
729 			  const char *name, struct lock_class_key *key);
730 
731 void init_timer_on_stack_key(struct timer_list *timer,
732 			     void (*func)(struct timer_list *),
733 			     unsigned int flags,
734 			     const char *name, struct lock_class_key *key)
735 {
736 	debug_object_init_on_stack(timer, &timer_debug_descr);
737 	do_init_timer(timer, func, flags, name, key);
738 }
739 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
740 
741 void destroy_timer_on_stack(struct timer_list *timer)
742 {
743 	debug_object_free(timer, &timer_debug_descr);
744 }
745 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
746 
747 #else
748 static inline void debug_timer_init(struct timer_list *timer) { }
749 static inline void debug_timer_activate(struct timer_list *timer) { }
750 static inline void debug_timer_deactivate(struct timer_list *timer) { }
751 static inline void debug_timer_assert_init(struct timer_list *timer) { }
752 #endif
753 
754 static inline void debug_init(struct timer_list *timer)
755 {
756 	debug_timer_init(timer);
757 	trace_timer_init(timer);
758 }
759 
760 static inline void
761 debug_activate(struct timer_list *timer, unsigned long expires)
762 {
763 	debug_timer_activate(timer);
764 	trace_timer_start(timer, expires, timer->flags);
765 }
766 
767 static inline void debug_deactivate(struct timer_list *timer)
768 {
769 	debug_timer_deactivate(timer);
770 	trace_timer_cancel(timer);
771 }
772 
773 static inline void debug_assert_init(struct timer_list *timer)
774 {
775 	debug_timer_assert_init(timer);
776 }
777 
778 static void do_init_timer(struct timer_list *timer,
779 			  void (*func)(struct timer_list *),
780 			  unsigned int flags,
781 			  const char *name, struct lock_class_key *key)
782 {
783 	timer->entry.pprev = NULL;
784 	timer->function = func;
785 	timer->flags = flags | raw_smp_processor_id();
786 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
787 }
788 
789 /**
790  * init_timer_key - initialize a timer
791  * @timer: the timer to be initialized
792  * @func: timer callback function
793  * @flags: timer flags
794  * @name: name of the timer
795  * @key: lockdep class key of the fake lock used for tracking timer
796  *       sync lock dependencies
797  *
798  * init_timer_key() must be done to a timer prior calling *any* of the
799  * other timer functions.
800  */
801 void init_timer_key(struct timer_list *timer,
802 		    void (*func)(struct timer_list *), unsigned int flags,
803 		    const char *name, struct lock_class_key *key)
804 {
805 	debug_init(timer);
806 	do_init_timer(timer, func, flags, name, key);
807 }
808 EXPORT_SYMBOL(init_timer_key);
809 
810 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
811 {
812 	struct hlist_node *entry = &timer->entry;
813 
814 	debug_deactivate(timer);
815 
816 	__hlist_del(entry);
817 	if (clear_pending)
818 		entry->pprev = NULL;
819 	entry->next = LIST_POISON2;
820 }
821 
822 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
823 			     bool clear_pending)
824 {
825 	unsigned idx = timer_get_idx(timer);
826 
827 	if (!timer_pending(timer))
828 		return 0;
829 
830 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
831 		__clear_bit(idx, base->pending_map);
832 
833 	detach_timer(timer, clear_pending);
834 	return 1;
835 }
836 
837 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
838 {
839 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
840 
841 	/*
842 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
843 	 * to use the deferrable base.
844 	 */
845 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
846 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
847 	return base;
848 }
849 
850 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
851 {
852 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
853 
854 	/*
855 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
856 	 * to use the deferrable base.
857 	 */
858 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
859 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
860 	return base;
861 }
862 
863 static inline struct timer_base *get_timer_base(u32 tflags)
864 {
865 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
866 }
867 
868 static inline struct timer_base *
869 get_target_base(struct timer_base *base, unsigned tflags)
870 {
871 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
872 	if (static_branch_likely(&timers_migration_enabled) &&
873 	    !(tflags & TIMER_PINNED))
874 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
875 #endif
876 	return get_timer_this_cpu_base(tflags);
877 }
878 
879 static inline void forward_timer_base(struct timer_base *base)
880 {
881 #ifdef CONFIG_NO_HZ_COMMON
882 	unsigned long jnow;
883 
884 	/*
885 	 * We only forward the base when we are idle or have just come out of
886 	 * idle (must_forward_clk logic), and have a delta between base clock
887 	 * and jiffies. In the common case, run_timers will take care of it.
888 	 */
889 	if (likely(!base->must_forward_clk))
890 		return;
891 
892 	jnow = READ_ONCE(jiffies);
893 	base->must_forward_clk = base->is_idle;
894 	if ((long)(jnow - base->clk) < 2)
895 		return;
896 
897 	/*
898 	 * If the next expiry value is > jiffies, then we fast forward to
899 	 * jiffies otherwise we forward to the next expiry value.
900 	 */
901 	if (time_after(base->next_expiry, jnow))
902 		base->clk = jnow;
903 	else
904 		base->clk = base->next_expiry;
905 #endif
906 }
907 
908 
909 /*
910  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
911  * that all timers which are tied to this base are locked, and the base itself
912  * is locked too.
913  *
914  * So __run_timers/migrate_timers can safely modify all timers which could
915  * be found in the base->vectors array.
916  *
917  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
918  * to wait until the migration is done.
919  */
920 static struct timer_base *lock_timer_base(struct timer_list *timer,
921 					  unsigned long *flags)
922 	__acquires(timer->base->lock)
923 {
924 	for (;;) {
925 		struct timer_base *base;
926 		u32 tf;
927 
928 		/*
929 		 * We need to use READ_ONCE() here, otherwise the compiler
930 		 * might re-read @tf between the check for TIMER_MIGRATING
931 		 * and spin_lock().
932 		 */
933 		tf = READ_ONCE(timer->flags);
934 
935 		if (!(tf & TIMER_MIGRATING)) {
936 			base = get_timer_base(tf);
937 			raw_spin_lock_irqsave(&base->lock, *flags);
938 			if (timer->flags == tf)
939 				return base;
940 			raw_spin_unlock_irqrestore(&base->lock, *flags);
941 		}
942 		cpu_relax();
943 	}
944 }
945 
946 #define MOD_TIMER_PENDING_ONLY		0x01
947 #define MOD_TIMER_REDUCE		0x02
948 
949 static inline int
950 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
951 {
952 	struct timer_base *base, *new_base;
953 	unsigned int idx = UINT_MAX;
954 	unsigned long clk = 0, flags;
955 	int ret = 0;
956 
957 	BUG_ON(!timer->function);
958 
959 	/*
960 	 * This is a common optimization triggered by the networking code - if
961 	 * the timer is re-modified to have the same timeout or ends up in the
962 	 * same array bucket then just return:
963 	 */
964 	if (timer_pending(timer)) {
965 		/*
966 		 * The downside of this optimization is that it can result in
967 		 * larger granularity than you would get from adding a new
968 		 * timer with this expiry.
969 		 */
970 		long diff = timer->expires - expires;
971 
972 		if (!diff)
973 			return 1;
974 		if (options & MOD_TIMER_REDUCE && diff <= 0)
975 			return 1;
976 
977 		/*
978 		 * We lock timer base and calculate the bucket index right
979 		 * here. If the timer ends up in the same bucket, then we
980 		 * just update the expiry time and avoid the whole
981 		 * dequeue/enqueue dance.
982 		 */
983 		base = lock_timer_base(timer, &flags);
984 		forward_timer_base(base);
985 
986 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
987 		    time_before_eq(timer->expires, expires)) {
988 			ret = 1;
989 			goto out_unlock;
990 		}
991 
992 		clk = base->clk;
993 		idx = calc_wheel_index(expires, clk);
994 
995 		/*
996 		 * Retrieve and compare the array index of the pending
997 		 * timer. If it matches set the expiry to the new value so a
998 		 * subsequent call will exit in the expires check above.
999 		 */
1000 		if (idx == timer_get_idx(timer)) {
1001 			if (!(options & MOD_TIMER_REDUCE))
1002 				timer->expires = expires;
1003 			else if (time_after(timer->expires, expires))
1004 				timer->expires = expires;
1005 			ret = 1;
1006 			goto out_unlock;
1007 		}
1008 	} else {
1009 		base = lock_timer_base(timer, &flags);
1010 		forward_timer_base(base);
1011 	}
1012 
1013 	ret = detach_if_pending(timer, base, false);
1014 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1015 		goto out_unlock;
1016 
1017 	new_base = get_target_base(base, timer->flags);
1018 
1019 	if (base != new_base) {
1020 		/*
1021 		 * We are trying to schedule the timer on the new base.
1022 		 * However we can't change timer's base while it is running,
1023 		 * otherwise del_timer_sync() can't detect that the timer's
1024 		 * handler yet has not finished. This also guarantees that the
1025 		 * timer is serialized wrt itself.
1026 		 */
1027 		if (likely(base->running_timer != timer)) {
1028 			/* See the comment in lock_timer_base() */
1029 			timer->flags |= TIMER_MIGRATING;
1030 
1031 			raw_spin_unlock(&base->lock);
1032 			base = new_base;
1033 			raw_spin_lock(&base->lock);
1034 			WRITE_ONCE(timer->flags,
1035 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1036 			forward_timer_base(base);
1037 		}
1038 	}
1039 
1040 	debug_activate(timer, expires);
1041 
1042 	timer->expires = expires;
1043 	/*
1044 	 * If 'idx' was calculated above and the base time did not advance
1045 	 * between calculating 'idx' and possibly switching the base, only
1046 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1047 	 * we need to (re)calculate the wheel index via
1048 	 * internal_add_timer().
1049 	 */
1050 	if (idx != UINT_MAX && clk == base->clk) {
1051 		enqueue_timer(base, timer, idx);
1052 		trigger_dyntick_cpu(base, timer);
1053 	} else {
1054 		internal_add_timer(base, timer);
1055 	}
1056 
1057 out_unlock:
1058 	raw_spin_unlock_irqrestore(&base->lock, flags);
1059 
1060 	return ret;
1061 }
1062 
1063 /**
1064  * mod_timer_pending - modify a pending timer's timeout
1065  * @timer: the pending timer to be modified
1066  * @expires: new timeout in jiffies
1067  *
1068  * mod_timer_pending() is the same for pending timers as mod_timer(),
1069  * but will not re-activate and modify already deleted timers.
1070  *
1071  * It is useful for unserialized use of timers.
1072  */
1073 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1074 {
1075 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1076 }
1077 EXPORT_SYMBOL(mod_timer_pending);
1078 
1079 /**
1080  * mod_timer - modify a timer's timeout
1081  * @timer: the timer to be modified
1082  * @expires: new timeout in jiffies
1083  *
1084  * mod_timer() is a more efficient way to update the expire field of an
1085  * active timer (if the timer is inactive it will be activated)
1086  *
1087  * mod_timer(timer, expires) is equivalent to:
1088  *
1089  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1090  *
1091  * Note that if there are multiple unserialized concurrent users of the
1092  * same timer, then mod_timer() is the only safe way to modify the timeout,
1093  * since add_timer() cannot modify an already running timer.
1094  *
1095  * The function returns whether it has modified a pending timer or not.
1096  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1097  * active timer returns 1.)
1098  */
1099 int mod_timer(struct timer_list *timer, unsigned long expires)
1100 {
1101 	return __mod_timer(timer, expires, 0);
1102 }
1103 EXPORT_SYMBOL(mod_timer);
1104 
1105 /**
1106  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1107  * @timer:	The timer to be modified
1108  * @expires:	New timeout in jiffies
1109  *
1110  * timer_reduce() is very similar to mod_timer(), except that it will only
1111  * modify a running timer if that would reduce the expiration time (it will
1112  * start a timer that isn't running).
1113  */
1114 int timer_reduce(struct timer_list *timer, unsigned long expires)
1115 {
1116 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1117 }
1118 EXPORT_SYMBOL(timer_reduce);
1119 
1120 /**
1121  * add_timer - start a timer
1122  * @timer: the timer to be added
1123  *
1124  * The kernel will do a ->function(@timer) callback from the
1125  * timer interrupt at the ->expires point in the future. The
1126  * current time is 'jiffies'.
1127  *
1128  * The timer's ->expires, ->function fields must be set prior calling this
1129  * function.
1130  *
1131  * Timers with an ->expires field in the past will be executed in the next
1132  * timer tick.
1133  */
1134 void add_timer(struct timer_list *timer)
1135 {
1136 	BUG_ON(timer_pending(timer));
1137 	mod_timer(timer, timer->expires);
1138 }
1139 EXPORT_SYMBOL(add_timer);
1140 
1141 /**
1142  * add_timer_on - start a timer on a particular CPU
1143  * @timer: the timer to be added
1144  * @cpu: the CPU to start it on
1145  *
1146  * This is not very scalable on SMP. Double adds are not possible.
1147  */
1148 void add_timer_on(struct timer_list *timer, int cpu)
1149 {
1150 	struct timer_base *new_base, *base;
1151 	unsigned long flags;
1152 
1153 	BUG_ON(timer_pending(timer) || !timer->function);
1154 
1155 	new_base = get_timer_cpu_base(timer->flags, cpu);
1156 
1157 	/*
1158 	 * If @timer was on a different CPU, it should be migrated with the
1159 	 * old base locked to prevent other operations proceeding with the
1160 	 * wrong base locked.  See lock_timer_base().
1161 	 */
1162 	base = lock_timer_base(timer, &flags);
1163 	if (base != new_base) {
1164 		timer->flags |= TIMER_MIGRATING;
1165 
1166 		raw_spin_unlock(&base->lock);
1167 		base = new_base;
1168 		raw_spin_lock(&base->lock);
1169 		WRITE_ONCE(timer->flags,
1170 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1171 	}
1172 	forward_timer_base(base);
1173 
1174 	debug_activate(timer, timer->expires);
1175 	internal_add_timer(base, timer);
1176 	raw_spin_unlock_irqrestore(&base->lock, flags);
1177 }
1178 EXPORT_SYMBOL_GPL(add_timer_on);
1179 
1180 /**
1181  * del_timer - deactivate a timer.
1182  * @timer: the timer to be deactivated
1183  *
1184  * del_timer() deactivates a timer - this works on both active and inactive
1185  * timers.
1186  *
1187  * The function returns whether it has deactivated a pending timer or not.
1188  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1189  * active timer returns 1.)
1190  */
1191 int del_timer(struct timer_list *timer)
1192 {
1193 	struct timer_base *base;
1194 	unsigned long flags;
1195 	int ret = 0;
1196 
1197 	debug_assert_init(timer);
1198 
1199 	if (timer_pending(timer)) {
1200 		base = lock_timer_base(timer, &flags);
1201 		ret = detach_if_pending(timer, base, true);
1202 		raw_spin_unlock_irqrestore(&base->lock, flags);
1203 	}
1204 
1205 	return ret;
1206 }
1207 EXPORT_SYMBOL(del_timer);
1208 
1209 /**
1210  * try_to_del_timer_sync - Try to deactivate a timer
1211  * @timer: timer to delete
1212  *
1213  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1214  * exit the timer is not queued and the handler is not running on any CPU.
1215  */
1216 int try_to_del_timer_sync(struct timer_list *timer)
1217 {
1218 	struct timer_base *base;
1219 	unsigned long flags;
1220 	int ret = -1;
1221 
1222 	debug_assert_init(timer);
1223 
1224 	base = lock_timer_base(timer, &flags);
1225 
1226 	if (base->running_timer != timer)
1227 		ret = detach_if_pending(timer, base, true);
1228 
1229 	raw_spin_unlock_irqrestore(&base->lock, flags);
1230 
1231 	return ret;
1232 }
1233 EXPORT_SYMBOL(try_to_del_timer_sync);
1234 
1235 #ifdef CONFIG_SMP
1236 /**
1237  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1238  * @timer: the timer to be deactivated
1239  *
1240  * This function only differs from del_timer() on SMP: besides deactivating
1241  * the timer it also makes sure the handler has finished executing on other
1242  * CPUs.
1243  *
1244  * Synchronization rules: Callers must prevent restarting of the timer,
1245  * otherwise this function is meaningless. It must not be called from
1246  * interrupt contexts unless the timer is an irqsafe one. The caller must
1247  * not hold locks which would prevent completion of the timer's
1248  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1249  * timer is not queued and the handler is not running on any CPU.
1250  *
1251  * Note: For !irqsafe timers, you must not hold locks that are held in
1252  *   interrupt context while calling this function. Even if the lock has
1253  *   nothing to do with the timer in question.  Here's why::
1254  *
1255  *    CPU0                             CPU1
1256  *    ----                             ----
1257  *                                     <SOFTIRQ>
1258  *                                       call_timer_fn();
1259  *                                       base->running_timer = mytimer;
1260  *    spin_lock_irq(somelock);
1261  *                                     <IRQ>
1262  *                                        spin_lock(somelock);
1263  *    del_timer_sync(mytimer);
1264  *    while (base->running_timer == mytimer);
1265  *
1266  * Now del_timer_sync() will never return and never release somelock.
1267  * The interrupt on the other CPU is waiting to grab somelock but
1268  * it has interrupted the softirq that CPU0 is waiting to finish.
1269  *
1270  * The function returns whether it has deactivated a pending timer or not.
1271  */
1272 int del_timer_sync(struct timer_list *timer)
1273 {
1274 #ifdef CONFIG_LOCKDEP
1275 	unsigned long flags;
1276 
1277 	/*
1278 	 * If lockdep gives a backtrace here, please reference
1279 	 * the synchronization rules above.
1280 	 */
1281 	local_irq_save(flags);
1282 	lock_map_acquire(&timer->lockdep_map);
1283 	lock_map_release(&timer->lockdep_map);
1284 	local_irq_restore(flags);
1285 #endif
1286 	/*
1287 	 * don't use it in hardirq context, because it
1288 	 * could lead to deadlock.
1289 	 */
1290 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1291 	for (;;) {
1292 		int ret = try_to_del_timer_sync(timer);
1293 		if (ret >= 0)
1294 			return ret;
1295 		cpu_relax();
1296 	}
1297 }
1298 EXPORT_SYMBOL(del_timer_sync);
1299 #endif
1300 
1301 static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *))
1302 {
1303 	int count = preempt_count();
1304 
1305 #ifdef CONFIG_LOCKDEP
1306 	/*
1307 	 * It is permissible to free the timer from inside the
1308 	 * function that is called from it, this we need to take into
1309 	 * account for lockdep too. To avoid bogus "held lock freed"
1310 	 * warnings as well as problems when looking into
1311 	 * timer->lockdep_map, make a copy and use that here.
1312 	 */
1313 	struct lockdep_map lockdep_map;
1314 
1315 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1316 #endif
1317 	/*
1318 	 * Couple the lock chain with the lock chain at
1319 	 * del_timer_sync() by acquiring the lock_map around the fn()
1320 	 * call here and in del_timer_sync().
1321 	 */
1322 	lock_map_acquire(&lockdep_map);
1323 
1324 	trace_timer_expire_entry(timer);
1325 	fn(timer);
1326 	trace_timer_expire_exit(timer);
1327 
1328 	lock_map_release(&lockdep_map);
1329 
1330 	if (count != preempt_count()) {
1331 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1332 			  fn, count, preempt_count());
1333 		/*
1334 		 * Restore the preempt count. That gives us a decent
1335 		 * chance to survive and extract information. If the
1336 		 * callback kept a lock held, bad luck, but not worse
1337 		 * than the BUG() we had.
1338 		 */
1339 		preempt_count_set(count);
1340 	}
1341 }
1342 
1343 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1344 {
1345 	while (!hlist_empty(head)) {
1346 		struct timer_list *timer;
1347 		void (*fn)(struct timer_list *);
1348 
1349 		timer = hlist_entry(head->first, struct timer_list, entry);
1350 
1351 		base->running_timer = timer;
1352 		detach_timer(timer, true);
1353 
1354 		fn = timer->function;
1355 
1356 		if (timer->flags & TIMER_IRQSAFE) {
1357 			raw_spin_unlock(&base->lock);
1358 			call_timer_fn(timer, fn);
1359 			raw_spin_lock(&base->lock);
1360 		} else {
1361 			raw_spin_unlock_irq(&base->lock);
1362 			call_timer_fn(timer, fn);
1363 			raw_spin_lock_irq(&base->lock);
1364 		}
1365 	}
1366 }
1367 
1368 static int __collect_expired_timers(struct timer_base *base,
1369 				    struct hlist_head *heads)
1370 {
1371 	unsigned long clk = base->clk;
1372 	struct hlist_head *vec;
1373 	int i, levels = 0;
1374 	unsigned int idx;
1375 
1376 	for (i = 0; i < LVL_DEPTH; i++) {
1377 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1378 
1379 		if (__test_and_clear_bit(idx, base->pending_map)) {
1380 			vec = base->vectors + idx;
1381 			hlist_move_list(vec, heads++);
1382 			levels++;
1383 		}
1384 		/* Is it time to look at the next level? */
1385 		if (clk & LVL_CLK_MASK)
1386 			break;
1387 		/* Shift clock for the next level granularity */
1388 		clk >>= LVL_CLK_SHIFT;
1389 	}
1390 	return levels;
1391 }
1392 
1393 #ifdef CONFIG_NO_HZ_COMMON
1394 /*
1395  * Find the next pending bucket of a level. Search from level start (@offset)
1396  * + @clk upwards and if nothing there, search from start of the level
1397  * (@offset) up to @offset + clk.
1398  */
1399 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1400 			       unsigned clk)
1401 {
1402 	unsigned pos, start = offset + clk;
1403 	unsigned end = offset + LVL_SIZE;
1404 
1405 	pos = find_next_bit(base->pending_map, end, start);
1406 	if (pos < end)
1407 		return pos - start;
1408 
1409 	pos = find_next_bit(base->pending_map, start, offset);
1410 	return pos < start ? pos + LVL_SIZE - start : -1;
1411 }
1412 
1413 /*
1414  * Search the first expiring timer in the various clock levels. Caller must
1415  * hold base->lock.
1416  */
1417 static unsigned long __next_timer_interrupt(struct timer_base *base)
1418 {
1419 	unsigned long clk, next, adj;
1420 	unsigned lvl, offset = 0;
1421 
1422 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1423 	clk = base->clk;
1424 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1425 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1426 
1427 		if (pos >= 0) {
1428 			unsigned long tmp = clk + (unsigned long) pos;
1429 
1430 			tmp <<= LVL_SHIFT(lvl);
1431 			if (time_before(tmp, next))
1432 				next = tmp;
1433 		}
1434 		/*
1435 		 * Clock for the next level. If the current level clock lower
1436 		 * bits are zero, we look at the next level as is. If not we
1437 		 * need to advance it by one because that's going to be the
1438 		 * next expiring bucket in that level. base->clk is the next
1439 		 * expiring jiffie. So in case of:
1440 		 *
1441 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1442 		 *  0    0    0    0    0    0
1443 		 *
1444 		 * we have to look at all levels @index 0. With
1445 		 *
1446 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1447 		 *  0    0    0    0    0    2
1448 		 *
1449 		 * LVL0 has the next expiring bucket @index 2. The upper
1450 		 * levels have the next expiring bucket @index 1.
1451 		 *
1452 		 * In case that the propagation wraps the next level the same
1453 		 * rules apply:
1454 		 *
1455 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1456 		 *  0    0    0    0    F    2
1457 		 *
1458 		 * So after looking at LVL0 we get:
1459 		 *
1460 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1461 		 *  0    0    0    1    0
1462 		 *
1463 		 * So no propagation from LVL1 to LVL2 because that happened
1464 		 * with the add already, but then we need to propagate further
1465 		 * from LVL2 to LVL3.
1466 		 *
1467 		 * So the simple check whether the lower bits of the current
1468 		 * level are 0 or not is sufficient for all cases.
1469 		 */
1470 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1471 		clk >>= LVL_CLK_SHIFT;
1472 		clk += adj;
1473 	}
1474 	return next;
1475 }
1476 
1477 /*
1478  * Check, if the next hrtimer event is before the next timer wheel
1479  * event:
1480  */
1481 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1482 {
1483 	u64 nextevt = hrtimer_get_next_event();
1484 
1485 	/*
1486 	 * If high resolution timers are enabled
1487 	 * hrtimer_get_next_event() returns KTIME_MAX.
1488 	 */
1489 	if (expires <= nextevt)
1490 		return expires;
1491 
1492 	/*
1493 	 * If the next timer is already expired, return the tick base
1494 	 * time so the tick is fired immediately.
1495 	 */
1496 	if (nextevt <= basem)
1497 		return basem;
1498 
1499 	/*
1500 	 * Round up to the next jiffie. High resolution timers are
1501 	 * off, so the hrtimers are expired in the tick and we need to
1502 	 * make sure that this tick really expires the timer to avoid
1503 	 * a ping pong of the nohz stop code.
1504 	 *
1505 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1506 	 */
1507 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1508 }
1509 
1510 /**
1511  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1512  * @basej:	base time jiffies
1513  * @basem:	base time clock monotonic
1514  *
1515  * Returns the tick aligned clock monotonic time of the next pending
1516  * timer or KTIME_MAX if no timer is pending.
1517  */
1518 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1519 {
1520 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1521 	u64 expires = KTIME_MAX;
1522 	unsigned long nextevt;
1523 	bool is_max_delta;
1524 
1525 	/*
1526 	 * Pretend that there is no timer pending if the cpu is offline.
1527 	 * Possible pending timers will be migrated later to an active cpu.
1528 	 */
1529 	if (cpu_is_offline(smp_processor_id()))
1530 		return expires;
1531 
1532 	raw_spin_lock(&base->lock);
1533 	nextevt = __next_timer_interrupt(base);
1534 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1535 	base->next_expiry = nextevt;
1536 	/*
1537 	 * We have a fresh next event. Check whether we can forward the
1538 	 * base. We can only do that when @basej is past base->clk
1539 	 * otherwise we might rewind base->clk.
1540 	 */
1541 	if (time_after(basej, base->clk)) {
1542 		if (time_after(nextevt, basej))
1543 			base->clk = basej;
1544 		else if (time_after(nextevt, base->clk))
1545 			base->clk = nextevt;
1546 	}
1547 
1548 	if (time_before_eq(nextevt, basej)) {
1549 		expires = basem;
1550 		base->is_idle = false;
1551 	} else {
1552 		if (!is_max_delta)
1553 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1554 		/*
1555 		 * If we expect to sleep more than a tick, mark the base idle.
1556 		 * Also the tick is stopped so any added timer must forward
1557 		 * the base clk itself to keep granularity small. This idle
1558 		 * logic is only maintained for the BASE_STD base, deferrable
1559 		 * timers may still see large granularity skew (by design).
1560 		 */
1561 		if ((expires - basem) > TICK_NSEC) {
1562 			base->must_forward_clk = true;
1563 			base->is_idle = true;
1564 		}
1565 	}
1566 	raw_spin_unlock(&base->lock);
1567 
1568 	return cmp_next_hrtimer_event(basem, expires);
1569 }
1570 
1571 /**
1572  * timer_clear_idle - Clear the idle state of the timer base
1573  *
1574  * Called with interrupts disabled
1575  */
1576 void timer_clear_idle(void)
1577 {
1578 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1579 
1580 	/*
1581 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1582 	 * a pointless IPI, but taking the lock would just make the window for
1583 	 * sending the IPI a few instructions smaller for the cost of taking
1584 	 * the lock in the exit from idle path.
1585 	 */
1586 	base->is_idle = false;
1587 }
1588 
1589 static int collect_expired_timers(struct timer_base *base,
1590 				  struct hlist_head *heads)
1591 {
1592 	/*
1593 	 * NOHZ optimization. After a long idle sleep we need to forward the
1594 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1595 	 * the next expiring timer.
1596 	 */
1597 	if ((long)(jiffies - base->clk) > 2) {
1598 		unsigned long next = __next_timer_interrupt(base);
1599 
1600 		/*
1601 		 * If the next timer is ahead of time forward to current
1602 		 * jiffies, otherwise forward to the next expiry time:
1603 		 */
1604 		if (time_after(next, jiffies)) {
1605 			/*
1606 			 * The call site will increment base->clk and then
1607 			 * terminate the expiry loop immediately.
1608 			 */
1609 			base->clk = jiffies;
1610 			return 0;
1611 		}
1612 		base->clk = next;
1613 	}
1614 	return __collect_expired_timers(base, heads);
1615 }
1616 #else
1617 static inline int collect_expired_timers(struct timer_base *base,
1618 					 struct hlist_head *heads)
1619 {
1620 	return __collect_expired_timers(base, heads);
1621 }
1622 #endif
1623 
1624 /*
1625  * Called from the timer interrupt handler to charge one tick to the current
1626  * process.  user_tick is 1 if the tick is user time, 0 for system.
1627  */
1628 void update_process_times(int user_tick)
1629 {
1630 	struct task_struct *p = current;
1631 
1632 	/* Note: this timer irq context must be accounted for as well. */
1633 	account_process_tick(p, user_tick);
1634 	run_local_timers();
1635 	rcu_check_callbacks(user_tick);
1636 #ifdef CONFIG_IRQ_WORK
1637 	if (in_irq())
1638 		irq_work_tick();
1639 #endif
1640 	scheduler_tick();
1641 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1642 		run_posix_cpu_timers(p);
1643 }
1644 
1645 /**
1646  * __run_timers - run all expired timers (if any) on this CPU.
1647  * @base: the timer vector to be processed.
1648  */
1649 static inline void __run_timers(struct timer_base *base)
1650 {
1651 	struct hlist_head heads[LVL_DEPTH];
1652 	int levels;
1653 
1654 	if (!time_after_eq(jiffies, base->clk))
1655 		return;
1656 
1657 	raw_spin_lock_irq(&base->lock);
1658 
1659 	/*
1660 	 * timer_base::must_forward_clk must be cleared before running
1661 	 * timers so that any timer functions that call mod_timer() will
1662 	 * not try to forward the base. Idle tracking / clock forwarding
1663 	 * logic is only used with BASE_STD timers.
1664 	 *
1665 	 * The must_forward_clk flag is cleared unconditionally also for
1666 	 * the deferrable base. The deferrable base is not affected by idle
1667 	 * tracking and never forwarded, so clearing the flag is a NOOP.
1668 	 *
1669 	 * The fact that the deferrable base is never forwarded can cause
1670 	 * large variations in granularity for deferrable timers, but they
1671 	 * can be deferred for long periods due to idle anyway.
1672 	 */
1673 	base->must_forward_clk = false;
1674 
1675 	while (time_after_eq(jiffies, base->clk)) {
1676 
1677 		levels = collect_expired_timers(base, heads);
1678 		base->clk++;
1679 
1680 		while (levels--)
1681 			expire_timers(base, heads + levels);
1682 	}
1683 	base->running_timer = NULL;
1684 	raw_spin_unlock_irq(&base->lock);
1685 }
1686 
1687 /*
1688  * This function runs timers and the timer-tq in bottom half context.
1689  */
1690 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1691 {
1692 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1693 
1694 	__run_timers(base);
1695 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1696 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1697 }
1698 
1699 /*
1700  * Called by the local, per-CPU timer interrupt on SMP.
1701  */
1702 void run_local_timers(void)
1703 {
1704 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1705 
1706 	hrtimer_run_queues();
1707 	/* Raise the softirq only if required. */
1708 	if (time_before(jiffies, base->clk)) {
1709 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1710 			return;
1711 		/* CPU is awake, so check the deferrable base. */
1712 		base++;
1713 		if (time_before(jiffies, base->clk))
1714 			return;
1715 	}
1716 	raise_softirq(TIMER_SOFTIRQ);
1717 }
1718 
1719 /*
1720  * Since schedule_timeout()'s timer is defined on the stack, it must store
1721  * the target task on the stack as well.
1722  */
1723 struct process_timer {
1724 	struct timer_list timer;
1725 	struct task_struct *task;
1726 };
1727 
1728 static void process_timeout(struct timer_list *t)
1729 {
1730 	struct process_timer *timeout = from_timer(timeout, t, timer);
1731 
1732 	wake_up_process(timeout->task);
1733 }
1734 
1735 /**
1736  * schedule_timeout - sleep until timeout
1737  * @timeout: timeout value in jiffies
1738  *
1739  * Make the current task sleep until @timeout jiffies have
1740  * elapsed. The routine will return immediately unless
1741  * the current task state has been set (see set_current_state()).
1742  *
1743  * You can set the task state as follows -
1744  *
1745  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1746  * pass before the routine returns unless the current task is explicitly
1747  * woken up, (e.g. by wake_up_process())".
1748  *
1749  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1750  * delivered to the current task or the current task is explicitly woken
1751  * up.
1752  *
1753  * The current task state is guaranteed to be TASK_RUNNING when this
1754  * routine returns.
1755  *
1756  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1757  * the CPU away without a bound on the timeout. In this case the return
1758  * value will be %MAX_SCHEDULE_TIMEOUT.
1759  *
1760  * Returns 0 when the timer has expired otherwise the remaining time in
1761  * jiffies will be returned.  In all cases the return value is guaranteed
1762  * to be non-negative.
1763  */
1764 signed long __sched schedule_timeout(signed long timeout)
1765 {
1766 	struct process_timer timer;
1767 	unsigned long expire;
1768 
1769 	switch (timeout)
1770 	{
1771 	case MAX_SCHEDULE_TIMEOUT:
1772 		/*
1773 		 * These two special cases are useful to be comfortable
1774 		 * in the caller. Nothing more. We could take
1775 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1776 		 * but I' d like to return a valid offset (>=0) to allow
1777 		 * the caller to do everything it want with the retval.
1778 		 */
1779 		schedule();
1780 		goto out;
1781 	default:
1782 		/*
1783 		 * Another bit of PARANOID. Note that the retval will be
1784 		 * 0 since no piece of kernel is supposed to do a check
1785 		 * for a negative retval of schedule_timeout() (since it
1786 		 * should never happens anyway). You just have the printk()
1787 		 * that will tell you if something is gone wrong and where.
1788 		 */
1789 		if (timeout < 0) {
1790 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1791 				"value %lx\n", timeout);
1792 			dump_stack();
1793 			current->state = TASK_RUNNING;
1794 			goto out;
1795 		}
1796 	}
1797 
1798 	expire = timeout + jiffies;
1799 
1800 	timer.task = current;
1801 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1802 	__mod_timer(&timer.timer, expire, 0);
1803 	schedule();
1804 	del_singleshot_timer_sync(&timer.timer);
1805 
1806 	/* Remove the timer from the object tracker */
1807 	destroy_timer_on_stack(&timer.timer);
1808 
1809 	timeout = expire - jiffies;
1810 
1811  out:
1812 	return timeout < 0 ? 0 : timeout;
1813 }
1814 EXPORT_SYMBOL(schedule_timeout);
1815 
1816 /*
1817  * We can use __set_current_state() here because schedule_timeout() calls
1818  * schedule() unconditionally.
1819  */
1820 signed long __sched schedule_timeout_interruptible(signed long timeout)
1821 {
1822 	__set_current_state(TASK_INTERRUPTIBLE);
1823 	return schedule_timeout(timeout);
1824 }
1825 EXPORT_SYMBOL(schedule_timeout_interruptible);
1826 
1827 signed long __sched schedule_timeout_killable(signed long timeout)
1828 {
1829 	__set_current_state(TASK_KILLABLE);
1830 	return schedule_timeout(timeout);
1831 }
1832 EXPORT_SYMBOL(schedule_timeout_killable);
1833 
1834 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1835 {
1836 	__set_current_state(TASK_UNINTERRUPTIBLE);
1837 	return schedule_timeout(timeout);
1838 }
1839 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1840 
1841 /*
1842  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1843  * to load average.
1844  */
1845 signed long __sched schedule_timeout_idle(signed long timeout)
1846 {
1847 	__set_current_state(TASK_IDLE);
1848 	return schedule_timeout(timeout);
1849 }
1850 EXPORT_SYMBOL(schedule_timeout_idle);
1851 
1852 #ifdef CONFIG_HOTPLUG_CPU
1853 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1854 {
1855 	struct timer_list *timer;
1856 	int cpu = new_base->cpu;
1857 
1858 	while (!hlist_empty(head)) {
1859 		timer = hlist_entry(head->first, struct timer_list, entry);
1860 		detach_timer(timer, false);
1861 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1862 		internal_add_timer(new_base, timer);
1863 	}
1864 }
1865 
1866 int timers_prepare_cpu(unsigned int cpu)
1867 {
1868 	struct timer_base *base;
1869 	int b;
1870 
1871 	for (b = 0; b < NR_BASES; b++) {
1872 		base = per_cpu_ptr(&timer_bases[b], cpu);
1873 		base->clk = jiffies;
1874 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1875 		base->is_idle = false;
1876 		base->must_forward_clk = true;
1877 	}
1878 	return 0;
1879 }
1880 
1881 int timers_dead_cpu(unsigned int cpu)
1882 {
1883 	struct timer_base *old_base;
1884 	struct timer_base *new_base;
1885 	int b, i;
1886 
1887 	BUG_ON(cpu_online(cpu));
1888 
1889 	for (b = 0; b < NR_BASES; b++) {
1890 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1891 		new_base = get_cpu_ptr(&timer_bases[b]);
1892 		/*
1893 		 * The caller is globally serialized and nobody else
1894 		 * takes two locks at once, deadlock is not possible.
1895 		 */
1896 		raw_spin_lock_irq(&new_base->lock);
1897 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1898 
1899 		/*
1900 		 * The current CPUs base clock might be stale. Update it
1901 		 * before moving the timers over.
1902 		 */
1903 		forward_timer_base(new_base);
1904 
1905 		BUG_ON(old_base->running_timer);
1906 
1907 		for (i = 0; i < WHEEL_SIZE; i++)
1908 			migrate_timer_list(new_base, old_base->vectors + i);
1909 
1910 		raw_spin_unlock(&old_base->lock);
1911 		raw_spin_unlock_irq(&new_base->lock);
1912 		put_cpu_ptr(&timer_bases);
1913 	}
1914 	return 0;
1915 }
1916 
1917 #endif /* CONFIG_HOTPLUG_CPU */
1918 
1919 static void __init init_timer_cpu(int cpu)
1920 {
1921 	struct timer_base *base;
1922 	int i;
1923 
1924 	for (i = 0; i < NR_BASES; i++) {
1925 		base = per_cpu_ptr(&timer_bases[i], cpu);
1926 		base->cpu = cpu;
1927 		raw_spin_lock_init(&base->lock);
1928 		base->clk = jiffies;
1929 	}
1930 }
1931 
1932 static void __init init_timer_cpus(void)
1933 {
1934 	int cpu;
1935 
1936 	for_each_possible_cpu(cpu)
1937 		init_timer_cpu(cpu);
1938 }
1939 
1940 void __init init_timers(void)
1941 {
1942 	init_timer_cpus();
1943 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1944 }
1945 
1946 /**
1947  * msleep - sleep safely even with waitqueue interruptions
1948  * @msecs: Time in milliseconds to sleep for
1949  */
1950 void msleep(unsigned int msecs)
1951 {
1952 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1953 
1954 	while (timeout)
1955 		timeout = schedule_timeout_uninterruptible(timeout);
1956 }
1957 
1958 EXPORT_SYMBOL(msleep);
1959 
1960 /**
1961  * msleep_interruptible - sleep waiting for signals
1962  * @msecs: Time in milliseconds to sleep for
1963  */
1964 unsigned long msleep_interruptible(unsigned int msecs)
1965 {
1966 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1967 
1968 	while (timeout && !signal_pending(current))
1969 		timeout = schedule_timeout_interruptible(timeout);
1970 	return jiffies_to_msecs(timeout);
1971 }
1972 
1973 EXPORT_SYMBOL(msleep_interruptible);
1974 
1975 /**
1976  * usleep_range - Sleep for an approximate time
1977  * @min: Minimum time in usecs to sleep
1978  * @max: Maximum time in usecs to sleep
1979  *
1980  * In non-atomic context where the exact wakeup time is flexible, use
1981  * usleep_range() instead of udelay().  The sleep improves responsiveness
1982  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1983  * power usage by allowing hrtimers to take advantage of an already-
1984  * scheduled interrupt instead of scheduling a new one just for this sleep.
1985  */
1986 void __sched usleep_range(unsigned long min, unsigned long max)
1987 {
1988 	ktime_t exp = ktime_add_us(ktime_get(), min);
1989 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1990 
1991 	for (;;) {
1992 		__set_current_state(TASK_UNINTERRUPTIBLE);
1993 		/* Do not return before the requested sleep time has elapsed */
1994 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1995 			break;
1996 	}
1997 }
1998 EXPORT_SYMBOL(usleep_range);
1999