1 /* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22 #include <linux/kernel_stat.h> 23 #include <linux/export.h> 24 #include <linux/interrupt.h> 25 #include <linux/percpu.h> 26 #include <linux/init.h> 27 #include <linux/mm.h> 28 #include <linux/swap.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/notifier.h> 31 #include <linux/thread_info.h> 32 #include <linux/time.h> 33 #include <linux/jiffies.h> 34 #include <linux/posix-timers.h> 35 #include <linux/cpu.h> 36 #include <linux/syscalls.h> 37 #include <linux/delay.h> 38 #include <linux/tick.h> 39 #include <linux/kallsyms.h> 40 #include <linux/irq_work.h> 41 #include <linux/sched/signal.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/sched/nohz.h> 44 #include <linux/sched/debug.h> 45 #include <linux/slab.h> 46 #include <linux/compat.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/div64.h> 51 #include <asm/timex.h> 52 #include <asm/io.h> 53 54 #include "tick-internal.h" 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/timer.h> 58 59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 60 61 EXPORT_SYMBOL(jiffies_64); 62 63 /* 64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 66 * level has a different granularity. 67 * 68 * The level granularity is: LVL_CLK_DIV ^ lvl 69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 70 * 71 * The array level of a newly armed timer depends on the relative expiry 72 * time. The farther the expiry time is away the higher the array level and 73 * therefor the granularity becomes. 74 * 75 * Contrary to the original timer wheel implementation, which aims for 'exact' 76 * expiry of the timers, this implementation removes the need for recascading 77 * the timers into the lower array levels. The previous 'classic' timer wheel 78 * implementation of the kernel already violated the 'exact' expiry by adding 79 * slack to the expiry time to provide batched expiration. The granularity 80 * levels provide implicit batching. 81 * 82 * This is an optimization of the original timer wheel implementation for the 83 * majority of the timer wheel use cases: timeouts. The vast majority of 84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 85 * the timeout expires it indicates that normal operation is disturbed, so it 86 * does not matter much whether the timeout comes with a slight delay. 87 * 88 * The only exception to this are networking timers with a small expiry 89 * time. They rely on the granularity. Those fit into the first wheel level, 90 * which has HZ granularity. 91 * 92 * We don't have cascading anymore. timers with a expiry time above the 93 * capacity of the last wheel level are force expired at the maximum timeout 94 * value of the last wheel level. From data sampling we know that the maximum 95 * value observed is 5 days (network connection tracking), so this should not 96 * be an issue. 97 * 98 * The currently chosen array constants values are a good compromise between 99 * array size and granularity. 100 * 101 * This results in the following granularity and range levels: 102 * 103 * HZ 1000 steps 104 * Level Offset Granularity Range 105 * 0 0 1 ms 0 ms - 63 ms 106 * 1 64 8 ms 64 ms - 511 ms 107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 114 * 115 * HZ 300 116 * Level Offset Granularity Range 117 * 0 0 3 ms 0 ms - 210 ms 118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 126 * 127 * HZ 250 128 * Level Offset Granularity Range 129 * 0 0 4 ms 0 ms - 255 ms 130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 138 * 139 * HZ 100 140 * Level Offset Granularity Range 141 * 0 0 10 ms 0 ms - 630 ms 142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 149 */ 150 151 /* Clock divisor for the next level */ 152 #define LVL_CLK_SHIFT 3 153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 157 158 /* 159 * The time start value for each level to select the bucket at enqueue 160 * time. 161 */ 162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 163 164 /* Size of each clock level */ 165 #define LVL_BITS 6 166 #define LVL_SIZE (1UL << LVL_BITS) 167 #define LVL_MASK (LVL_SIZE - 1) 168 #define LVL_OFFS(n) ((n) * LVL_SIZE) 169 170 /* Level depth */ 171 #if HZ > 100 172 # define LVL_DEPTH 9 173 # else 174 # define LVL_DEPTH 8 175 #endif 176 177 /* The cutoff (max. capacity of the wheel) */ 178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 180 181 /* 182 * The resulting wheel size. If NOHZ is configured we allocate two 183 * wheels so we have a separate storage for the deferrable timers. 184 */ 185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 186 187 #ifdef CONFIG_NO_HZ_COMMON 188 # define NR_BASES 2 189 # define BASE_STD 0 190 # define BASE_DEF 1 191 #else 192 # define NR_BASES 1 193 # define BASE_STD 0 194 # define BASE_DEF 0 195 #endif 196 197 struct timer_base { 198 raw_spinlock_t lock; 199 struct timer_list *running_timer; 200 unsigned long clk; 201 unsigned long next_expiry; 202 unsigned int cpu; 203 bool is_idle; 204 bool must_forward_clk; 205 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 206 struct hlist_head vectors[WHEEL_SIZE]; 207 } ____cacheline_aligned; 208 209 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 210 211 #ifdef CONFIG_NO_HZ_COMMON 212 213 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 214 static DEFINE_MUTEX(timer_keys_mutex); 215 216 static void timer_update_keys(struct work_struct *work); 217 static DECLARE_WORK(timer_update_work, timer_update_keys); 218 219 #ifdef CONFIG_SMP 220 unsigned int sysctl_timer_migration = 1; 221 222 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 223 224 static void timers_update_migration(void) 225 { 226 if (sysctl_timer_migration && tick_nohz_active) 227 static_branch_enable(&timers_migration_enabled); 228 else 229 static_branch_disable(&timers_migration_enabled); 230 } 231 #else 232 static inline void timers_update_migration(void) { } 233 #endif /* !CONFIG_SMP */ 234 235 static void timer_update_keys(struct work_struct *work) 236 { 237 mutex_lock(&timer_keys_mutex); 238 timers_update_migration(); 239 static_branch_enable(&timers_nohz_active); 240 mutex_unlock(&timer_keys_mutex); 241 } 242 243 void timers_update_nohz(void) 244 { 245 schedule_work(&timer_update_work); 246 } 247 248 int timer_migration_handler(struct ctl_table *table, int write, 249 void __user *buffer, size_t *lenp, 250 loff_t *ppos) 251 { 252 int ret; 253 254 mutex_lock(&timer_keys_mutex); 255 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 256 if (!ret && write) 257 timers_update_migration(); 258 mutex_unlock(&timer_keys_mutex); 259 return ret; 260 } 261 262 static inline bool is_timers_nohz_active(void) 263 { 264 return static_branch_unlikely(&timers_nohz_active); 265 } 266 #else 267 static inline bool is_timers_nohz_active(void) { return false; } 268 #endif /* NO_HZ_COMMON */ 269 270 static unsigned long round_jiffies_common(unsigned long j, int cpu, 271 bool force_up) 272 { 273 int rem; 274 unsigned long original = j; 275 276 /* 277 * We don't want all cpus firing their timers at once hitting the 278 * same lock or cachelines, so we skew each extra cpu with an extra 279 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 280 * already did this. 281 * The skew is done by adding 3*cpunr, then round, then subtract this 282 * extra offset again. 283 */ 284 j += cpu * 3; 285 286 rem = j % HZ; 287 288 /* 289 * If the target jiffie is just after a whole second (which can happen 290 * due to delays of the timer irq, long irq off times etc etc) then 291 * we should round down to the whole second, not up. Use 1/4th second 292 * as cutoff for this rounding as an extreme upper bound for this. 293 * But never round down if @force_up is set. 294 */ 295 if (rem < HZ/4 && !force_up) /* round down */ 296 j = j - rem; 297 else /* round up */ 298 j = j - rem + HZ; 299 300 /* now that we have rounded, subtract the extra skew again */ 301 j -= cpu * 3; 302 303 /* 304 * Make sure j is still in the future. Otherwise return the 305 * unmodified value. 306 */ 307 return time_is_after_jiffies(j) ? j : original; 308 } 309 310 /** 311 * __round_jiffies - function to round jiffies to a full second 312 * @j: the time in (absolute) jiffies that should be rounded 313 * @cpu: the processor number on which the timeout will happen 314 * 315 * __round_jiffies() rounds an absolute time in the future (in jiffies) 316 * up or down to (approximately) full seconds. This is useful for timers 317 * for which the exact time they fire does not matter too much, as long as 318 * they fire approximately every X seconds. 319 * 320 * By rounding these timers to whole seconds, all such timers will fire 321 * at the same time, rather than at various times spread out. The goal 322 * of this is to have the CPU wake up less, which saves power. 323 * 324 * The exact rounding is skewed for each processor to avoid all 325 * processors firing at the exact same time, which could lead 326 * to lock contention or spurious cache line bouncing. 327 * 328 * The return value is the rounded version of the @j parameter. 329 */ 330 unsigned long __round_jiffies(unsigned long j, int cpu) 331 { 332 return round_jiffies_common(j, cpu, false); 333 } 334 EXPORT_SYMBOL_GPL(__round_jiffies); 335 336 /** 337 * __round_jiffies_relative - function to round jiffies to a full second 338 * @j: the time in (relative) jiffies that should be rounded 339 * @cpu: the processor number on which the timeout will happen 340 * 341 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 342 * up or down to (approximately) full seconds. This is useful for timers 343 * for which the exact time they fire does not matter too much, as long as 344 * they fire approximately every X seconds. 345 * 346 * By rounding these timers to whole seconds, all such timers will fire 347 * at the same time, rather than at various times spread out. The goal 348 * of this is to have the CPU wake up less, which saves power. 349 * 350 * The exact rounding is skewed for each processor to avoid all 351 * processors firing at the exact same time, which could lead 352 * to lock contention or spurious cache line bouncing. 353 * 354 * The return value is the rounded version of the @j parameter. 355 */ 356 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 357 { 358 unsigned long j0 = jiffies; 359 360 /* Use j0 because jiffies might change while we run */ 361 return round_jiffies_common(j + j0, cpu, false) - j0; 362 } 363 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 364 365 /** 366 * round_jiffies - function to round jiffies to a full second 367 * @j: the time in (absolute) jiffies that should be rounded 368 * 369 * round_jiffies() rounds an absolute time in the future (in jiffies) 370 * up or down to (approximately) full seconds. This is useful for timers 371 * for which the exact time they fire does not matter too much, as long as 372 * they fire approximately every X seconds. 373 * 374 * By rounding these timers to whole seconds, all such timers will fire 375 * at the same time, rather than at various times spread out. The goal 376 * of this is to have the CPU wake up less, which saves power. 377 * 378 * The return value is the rounded version of the @j parameter. 379 */ 380 unsigned long round_jiffies(unsigned long j) 381 { 382 return round_jiffies_common(j, raw_smp_processor_id(), false); 383 } 384 EXPORT_SYMBOL_GPL(round_jiffies); 385 386 /** 387 * round_jiffies_relative - function to round jiffies to a full second 388 * @j: the time in (relative) jiffies that should be rounded 389 * 390 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 391 * up or down to (approximately) full seconds. This is useful for timers 392 * for which the exact time they fire does not matter too much, as long as 393 * they fire approximately every X seconds. 394 * 395 * By rounding these timers to whole seconds, all such timers will fire 396 * at the same time, rather than at various times spread out. The goal 397 * of this is to have the CPU wake up less, which saves power. 398 * 399 * The return value is the rounded version of the @j parameter. 400 */ 401 unsigned long round_jiffies_relative(unsigned long j) 402 { 403 return __round_jiffies_relative(j, raw_smp_processor_id()); 404 } 405 EXPORT_SYMBOL_GPL(round_jiffies_relative); 406 407 /** 408 * __round_jiffies_up - function to round jiffies up to a full second 409 * @j: the time in (absolute) jiffies that should be rounded 410 * @cpu: the processor number on which the timeout will happen 411 * 412 * This is the same as __round_jiffies() except that it will never 413 * round down. This is useful for timeouts for which the exact time 414 * of firing does not matter too much, as long as they don't fire too 415 * early. 416 */ 417 unsigned long __round_jiffies_up(unsigned long j, int cpu) 418 { 419 return round_jiffies_common(j, cpu, true); 420 } 421 EXPORT_SYMBOL_GPL(__round_jiffies_up); 422 423 /** 424 * __round_jiffies_up_relative - function to round jiffies up to a full second 425 * @j: the time in (relative) jiffies that should be rounded 426 * @cpu: the processor number on which the timeout will happen 427 * 428 * This is the same as __round_jiffies_relative() except that it will never 429 * round down. This is useful for timeouts for which the exact time 430 * of firing does not matter too much, as long as they don't fire too 431 * early. 432 */ 433 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 434 { 435 unsigned long j0 = jiffies; 436 437 /* Use j0 because jiffies might change while we run */ 438 return round_jiffies_common(j + j0, cpu, true) - j0; 439 } 440 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 441 442 /** 443 * round_jiffies_up - function to round jiffies up to a full second 444 * @j: the time in (absolute) jiffies that should be rounded 445 * 446 * This is the same as round_jiffies() except that it will never 447 * round down. This is useful for timeouts for which the exact time 448 * of firing does not matter too much, as long as they don't fire too 449 * early. 450 */ 451 unsigned long round_jiffies_up(unsigned long j) 452 { 453 return round_jiffies_common(j, raw_smp_processor_id(), true); 454 } 455 EXPORT_SYMBOL_GPL(round_jiffies_up); 456 457 /** 458 * round_jiffies_up_relative - function to round jiffies up to a full second 459 * @j: the time in (relative) jiffies that should be rounded 460 * 461 * This is the same as round_jiffies_relative() except that it will never 462 * round down. This is useful for timeouts for which the exact time 463 * of firing does not matter too much, as long as they don't fire too 464 * early. 465 */ 466 unsigned long round_jiffies_up_relative(unsigned long j) 467 { 468 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 469 } 470 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 471 472 473 static inline unsigned int timer_get_idx(struct timer_list *timer) 474 { 475 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 476 } 477 478 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 479 { 480 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 481 idx << TIMER_ARRAYSHIFT; 482 } 483 484 /* 485 * Helper function to calculate the array index for a given expiry 486 * time. 487 */ 488 static inline unsigned calc_index(unsigned expires, unsigned lvl) 489 { 490 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 491 return LVL_OFFS(lvl) + (expires & LVL_MASK); 492 } 493 494 static int calc_wheel_index(unsigned long expires, unsigned long clk) 495 { 496 unsigned long delta = expires - clk; 497 unsigned int idx; 498 499 if (delta < LVL_START(1)) { 500 idx = calc_index(expires, 0); 501 } else if (delta < LVL_START(2)) { 502 idx = calc_index(expires, 1); 503 } else if (delta < LVL_START(3)) { 504 idx = calc_index(expires, 2); 505 } else if (delta < LVL_START(4)) { 506 idx = calc_index(expires, 3); 507 } else if (delta < LVL_START(5)) { 508 idx = calc_index(expires, 4); 509 } else if (delta < LVL_START(6)) { 510 idx = calc_index(expires, 5); 511 } else if (delta < LVL_START(7)) { 512 idx = calc_index(expires, 6); 513 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 514 idx = calc_index(expires, 7); 515 } else if ((long) delta < 0) { 516 idx = clk & LVL_MASK; 517 } else { 518 /* 519 * Force expire obscene large timeouts to expire at the 520 * capacity limit of the wheel. 521 */ 522 if (expires >= WHEEL_TIMEOUT_CUTOFF) 523 expires = WHEEL_TIMEOUT_MAX; 524 525 idx = calc_index(expires, LVL_DEPTH - 1); 526 } 527 return idx; 528 } 529 530 /* 531 * Enqueue the timer into the hash bucket, mark it pending in 532 * the bitmap and store the index in the timer flags. 533 */ 534 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 535 unsigned int idx) 536 { 537 hlist_add_head(&timer->entry, base->vectors + idx); 538 __set_bit(idx, base->pending_map); 539 timer_set_idx(timer, idx); 540 } 541 542 static void 543 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 544 { 545 unsigned int idx; 546 547 idx = calc_wheel_index(timer->expires, base->clk); 548 enqueue_timer(base, timer, idx); 549 } 550 551 static void 552 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 553 { 554 if (!is_timers_nohz_active()) 555 return; 556 557 /* 558 * TODO: This wants some optimizing similar to the code below, but we 559 * will do that when we switch from push to pull for deferrable timers. 560 */ 561 if (timer->flags & TIMER_DEFERRABLE) { 562 if (tick_nohz_full_cpu(base->cpu)) 563 wake_up_nohz_cpu(base->cpu); 564 return; 565 } 566 567 /* 568 * We might have to IPI the remote CPU if the base is idle and the 569 * timer is not deferrable. If the other CPU is on the way to idle 570 * then it can't set base->is_idle as we hold the base lock: 571 */ 572 if (!base->is_idle) 573 return; 574 575 /* Check whether this is the new first expiring timer: */ 576 if (time_after_eq(timer->expires, base->next_expiry)) 577 return; 578 579 /* 580 * Set the next expiry time and kick the CPU so it can reevaluate the 581 * wheel: 582 */ 583 base->next_expiry = timer->expires; 584 wake_up_nohz_cpu(base->cpu); 585 } 586 587 static void 588 internal_add_timer(struct timer_base *base, struct timer_list *timer) 589 { 590 __internal_add_timer(base, timer); 591 trigger_dyntick_cpu(base, timer); 592 } 593 594 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 595 596 static struct debug_obj_descr timer_debug_descr; 597 598 static void *timer_debug_hint(void *addr) 599 { 600 return ((struct timer_list *) addr)->function; 601 } 602 603 static bool timer_is_static_object(void *addr) 604 { 605 struct timer_list *timer = addr; 606 607 return (timer->entry.pprev == NULL && 608 timer->entry.next == TIMER_ENTRY_STATIC); 609 } 610 611 /* 612 * fixup_init is called when: 613 * - an active object is initialized 614 */ 615 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 616 { 617 struct timer_list *timer = addr; 618 619 switch (state) { 620 case ODEBUG_STATE_ACTIVE: 621 del_timer_sync(timer); 622 debug_object_init(timer, &timer_debug_descr); 623 return true; 624 default: 625 return false; 626 } 627 } 628 629 /* Stub timer callback for improperly used timers. */ 630 static void stub_timer(struct timer_list *unused) 631 { 632 WARN_ON(1); 633 } 634 635 /* 636 * fixup_activate is called when: 637 * - an active object is activated 638 * - an unknown non-static object is activated 639 */ 640 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 641 { 642 struct timer_list *timer = addr; 643 644 switch (state) { 645 case ODEBUG_STATE_NOTAVAILABLE: 646 timer_setup(timer, stub_timer, 0); 647 return true; 648 649 case ODEBUG_STATE_ACTIVE: 650 WARN_ON(1); 651 652 default: 653 return false; 654 } 655 } 656 657 /* 658 * fixup_free is called when: 659 * - an active object is freed 660 */ 661 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 662 { 663 struct timer_list *timer = addr; 664 665 switch (state) { 666 case ODEBUG_STATE_ACTIVE: 667 del_timer_sync(timer); 668 debug_object_free(timer, &timer_debug_descr); 669 return true; 670 default: 671 return false; 672 } 673 } 674 675 /* 676 * fixup_assert_init is called when: 677 * - an untracked/uninit-ed object is found 678 */ 679 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 680 { 681 struct timer_list *timer = addr; 682 683 switch (state) { 684 case ODEBUG_STATE_NOTAVAILABLE: 685 timer_setup(timer, stub_timer, 0); 686 return true; 687 default: 688 return false; 689 } 690 } 691 692 static struct debug_obj_descr timer_debug_descr = { 693 .name = "timer_list", 694 .debug_hint = timer_debug_hint, 695 .is_static_object = timer_is_static_object, 696 .fixup_init = timer_fixup_init, 697 .fixup_activate = timer_fixup_activate, 698 .fixup_free = timer_fixup_free, 699 .fixup_assert_init = timer_fixup_assert_init, 700 }; 701 702 static inline void debug_timer_init(struct timer_list *timer) 703 { 704 debug_object_init(timer, &timer_debug_descr); 705 } 706 707 static inline void debug_timer_activate(struct timer_list *timer) 708 { 709 debug_object_activate(timer, &timer_debug_descr); 710 } 711 712 static inline void debug_timer_deactivate(struct timer_list *timer) 713 { 714 debug_object_deactivate(timer, &timer_debug_descr); 715 } 716 717 static inline void debug_timer_free(struct timer_list *timer) 718 { 719 debug_object_free(timer, &timer_debug_descr); 720 } 721 722 static inline void debug_timer_assert_init(struct timer_list *timer) 723 { 724 debug_object_assert_init(timer, &timer_debug_descr); 725 } 726 727 static void do_init_timer(struct timer_list *timer, 728 void (*func)(struct timer_list *), 729 unsigned int flags, 730 const char *name, struct lock_class_key *key); 731 732 void init_timer_on_stack_key(struct timer_list *timer, 733 void (*func)(struct timer_list *), 734 unsigned int flags, 735 const char *name, struct lock_class_key *key) 736 { 737 debug_object_init_on_stack(timer, &timer_debug_descr); 738 do_init_timer(timer, func, flags, name, key); 739 } 740 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 741 742 void destroy_timer_on_stack(struct timer_list *timer) 743 { 744 debug_object_free(timer, &timer_debug_descr); 745 } 746 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 747 748 #else 749 static inline void debug_timer_init(struct timer_list *timer) { } 750 static inline void debug_timer_activate(struct timer_list *timer) { } 751 static inline void debug_timer_deactivate(struct timer_list *timer) { } 752 static inline void debug_timer_assert_init(struct timer_list *timer) { } 753 #endif 754 755 static inline void debug_init(struct timer_list *timer) 756 { 757 debug_timer_init(timer); 758 trace_timer_init(timer); 759 } 760 761 static inline void 762 debug_activate(struct timer_list *timer, unsigned long expires) 763 { 764 debug_timer_activate(timer); 765 trace_timer_start(timer, expires, timer->flags); 766 } 767 768 static inline void debug_deactivate(struct timer_list *timer) 769 { 770 debug_timer_deactivate(timer); 771 trace_timer_cancel(timer); 772 } 773 774 static inline void debug_assert_init(struct timer_list *timer) 775 { 776 debug_timer_assert_init(timer); 777 } 778 779 static void do_init_timer(struct timer_list *timer, 780 void (*func)(struct timer_list *), 781 unsigned int flags, 782 const char *name, struct lock_class_key *key) 783 { 784 timer->entry.pprev = NULL; 785 timer->function = func; 786 timer->flags = flags | raw_smp_processor_id(); 787 lockdep_init_map(&timer->lockdep_map, name, key, 0); 788 } 789 790 /** 791 * init_timer_key - initialize a timer 792 * @timer: the timer to be initialized 793 * @func: timer callback function 794 * @flags: timer flags 795 * @name: name of the timer 796 * @key: lockdep class key of the fake lock used for tracking timer 797 * sync lock dependencies 798 * 799 * init_timer_key() must be done to a timer prior calling *any* of the 800 * other timer functions. 801 */ 802 void init_timer_key(struct timer_list *timer, 803 void (*func)(struct timer_list *), unsigned int flags, 804 const char *name, struct lock_class_key *key) 805 { 806 debug_init(timer); 807 do_init_timer(timer, func, flags, name, key); 808 } 809 EXPORT_SYMBOL(init_timer_key); 810 811 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 812 { 813 struct hlist_node *entry = &timer->entry; 814 815 debug_deactivate(timer); 816 817 __hlist_del(entry); 818 if (clear_pending) 819 entry->pprev = NULL; 820 entry->next = LIST_POISON2; 821 } 822 823 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 824 bool clear_pending) 825 { 826 unsigned idx = timer_get_idx(timer); 827 828 if (!timer_pending(timer)) 829 return 0; 830 831 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 832 __clear_bit(idx, base->pending_map); 833 834 detach_timer(timer, clear_pending); 835 return 1; 836 } 837 838 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 839 { 840 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 841 842 /* 843 * If the timer is deferrable and NO_HZ_COMMON is set then we need 844 * to use the deferrable base. 845 */ 846 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 847 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 848 return base; 849 } 850 851 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 852 { 853 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 854 855 /* 856 * If the timer is deferrable and NO_HZ_COMMON is set then we need 857 * to use the deferrable base. 858 */ 859 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 860 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 861 return base; 862 } 863 864 static inline struct timer_base *get_timer_base(u32 tflags) 865 { 866 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 867 } 868 869 static inline struct timer_base * 870 get_target_base(struct timer_base *base, unsigned tflags) 871 { 872 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 873 if (static_branch_likely(&timers_migration_enabled) && 874 !(tflags & TIMER_PINNED)) 875 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 876 #endif 877 return get_timer_this_cpu_base(tflags); 878 } 879 880 static inline void forward_timer_base(struct timer_base *base) 881 { 882 #ifdef CONFIG_NO_HZ_COMMON 883 unsigned long jnow; 884 885 /* 886 * We only forward the base when we are idle or have just come out of 887 * idle (must_forward_clk logic), and have a delta between base clock 888 * and jiffies. In the common case, run_timers will take care of it. 889 */ 890 if (likely(!base->must_forward_clk)) 891 return; 892 893 jnow = READ_ONCE(jiffies); 894 base->must_forward_clk = base->is_idle; 895 if ((long)(jnow - base->clk) < 2) 896 return; 897 898 /* 899 * If the next expiry value is > jiffies, then we fast forward to 900 * jiffies otherwise we forward to the next expiry value. 901 */ 902 if (time_after(base->next_expiry, jnow)) 903 base->clk = jnow; 904 else 905 base->clk = base->next_expiry; 906 #endif 907 } 908 909 910 /* 911 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 912 * that all timers which are tied to this base are locked, and the base itself 913 * is locked too. 914 * 915 * So __run_timers/migrate_timers can safely modify all timers which could 916 * be found in the base->vectors array. 917 * 918 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 919 * to wait until the migration is done. 920 */ 921 static struct timer_base *lock_timer_base(struct timer_list *timer, 922 unsigned long *flags) 923 __acquires(timer->base->lock) 924 { 925 for (;;) { 926 struct timer_base *base; 927 u32 tf; 928 929 /* 930 * We need to use READ_ONCE() here, otherwise the compiler 931 * might re-read @tf between the check for TIMER_MIGRATING 932 * and spin_lock(). 933 */ 934 tf = READ_ONCE(timer->flags); 935 936 if (!(tf & TIMER_MIGRATING)) { 937 base = get_timer_base(tf); 938 raw_spin_lock_irqsave(&base->lock, *flags); 939 if (timer->flags == tf) 940 return base; 941 raw_spin_unlock_irqrestore(&base->lock, *flags); 942 } 943 cpu_relax(); 944 } 945 } 946 947 #define MOD_TIMER_PENDING_ONLY 0x01 948 #define MOD_TIMER_REDUCE 0x02 949 950 static inline int 951 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 952 { 953 struct timer_base *base, *new_base; 954 unsigned int idx = UINT_MAX; 955 unsigned long clk = 0, flags; 956 int ret = 0; 957 958 BUG_ON(!timer->function); 959 960 /* 961 * This is a common optimization triggered by the networking code - if 962 * the timer is re-modified to have the same timeout or ends up in the 963 * same array bucket then just return: 964 */ 965 if (timer_pending(timer)) { 966 /* 967 * The downside of this optimization is that it can result in 968 * larger granularity than you would get from adding a new 969 * timer with this expiry. 970 */ 971 long diff = timer->expires - expires; 972 973 if (!diff) 974 return 1; 975 if (options & MOD_TIMER_REDUCE && diff <= 0) 976 return 1; 977 978 /* 979 * We lock timer base and calculate the bucket index right 980 * here. If the timer ends up in the same bucket, then we 981 * just update the expiry time and avoid the whole 982 * dequeue/enqueue dance. 983 */ 984 base = lock_timer_base(timer, &flags); 985 forward_timer_base(base); 986 987 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 988 time_before_eq(timer->expires, expires)) { 989 ret = 1; 990 goto out_unlock; 991 } 992 993 clk = base->clk; 994 idx = calc_wheel_index(expires, clk); 995 996 /* 997 * Retrieve and compare the array index of the pending 998 * timer. If it matches set the expiry to the new value so a 999 * subsequent call will exit in the expires check above. 1000 */ 1001 if (idx == timer_get_idx(timer)) { 1002 if (!(options & MOD_TIMER_REDUCE)) 1003 timer->expires = expires; 1004 else if (time_after(timer->expires, expires)) 1005 timer->expires = expires; 1006 ret = 1; 1007 goto out_unlock; 1008 } 1009 } else { 1010 base = lock_timer_base(timer, &flags); 1011 forward_timer_base(base); 1012 } 1013 1014 ret = detach_if_pending(timer, base, false); 1015 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1016 goto out_unlock; 1017 1018 new_base = get_target_base(base, timer->flags); 1019 1020 if (base != new_base) { 1021 /* 1022 * We are trying to schedule the timer on the new base. 1023 * However we can't change timer's base while it is running, 1024 * otherwise del_timer_sync() can't detect that the timer's 1025 * handler yet has not finished. This also guarantees that the 1026 * timer is serialized wrt itself. 1027 */ 1028 if (likely(base->running_timer != timer)) { 1029 /* See the comment in lock_timer_base() */ 1030 timer->flags |= TIMER_MIGRATING; 1031 1032 raw_spin_unlock(&base->lock); 1033 base = new_base; 1034 raw_spin_lock(&base->lock); 1035 WRITE_ONCE(timer->flags, 1036 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1037 forward_timer_base(base); 1038 } 1039 } 1040 1041 debug_activate(timer, expires); 1042 1043 timer->expires = expires; 1044 /* 1045 * If 'idx' was calculated above and the base time did not advance 1046 * between calculating 'idx' and possibly switching the base, only 1047 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1048 * we need to (re)calculate the wheel index via 1049 * internal_add_timer(). 1050 */ 1051 if (idx != UINT_MAX && clk == base->clk) { 1052 enqueue_timer(base, timer, idx); 1053 trigger_dyntick_cpu(base, timer); 1054 } else { 1055 internal_add_timer(base, timer); 1056 } 1057 1058 out_unlock: 1059 raw_spin_unlock_irqrestore(&base->lock, flags); 1060 1061 return ret; 1062 } 1063 1064 /** 1065 * mod_timer_pending - modify a pending timer's timeout 1066 * @timer: the pending timer to be modified 1067 * @expires: new timeout in jiffies 1068 * 1069 * mod_timer_pending() is the same for pending timers as mod_timer(), 1070 * but will not re-activate and modify already deleted timers. 1071 * 1072 * It is useful for unserialized use of timers. 1073 */ 1074 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1075 { 1076 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1077 } 1078 EXPORT_SYMBOL(mod_timer_pending); 1079 1080 /** 1081 * mod_timer - modify a timer's timeout 1082 * @timer: the timer to be modified 1083 * @expires: new timeout in jiffies 1084 * 1085 * mod_timer() is a more efficient way to update the expire field of an 1086 * active timer (if the timer is inactive it will be activated) 1087 * 1088 * mod_timer(timer, expires) is equivalent to: 1089 * 1090 * del_timer(timer); timer->expires = expires; add_timer(timer); 1091 * 1092 * Note that if there are multiple unserialized concurrent users of the 1093 * same timer, then mod_timer() is the only safe way to modify the timeout, 1094 * since add_timer() cannot modify an already running timer. 1095 * 1096 * The function returns whether it has modified a pending timer or not. 1097 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1098 * active timer returns 1.) 1099 */ 1100 int mod_timer(struct timer_list *timer, unsigned long expires) 1101 { 1102 return __mod_timer(timer, expires, 0); 1103 } 1104 EXPORT_SYMBOL(mod_timer); 1105 1106 /** 1107 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1108 * @timer: The timer to be modified 1109 * @expires: New timeout in jiffies 1110 * 1111 * timer_reduce() is very similar to mod_timer(), except that it will only 1112 * modify a running timer if that would reduce the expiration time (it will 1113 * start a timer that isn't running). 1114 */ 1115 int timer_reduce(struct timer_list *timer, unsigned long expires) 1116 { 1117 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1118 } 1119 EXPORT_SYMBOL(timer_reduce); 1120 1121 /** 1122 * add_timer - start a timer 1123 * @timer: the timer to be added 1124 * 1125 * The kernel will do a ->function(@timer) callback from the 1126 * timer interrupt at the ->expires point in the future. The 1127 * current time is 'jiffies'. 1128 * 1129 * The timer's ->expires, ->function fields must be set prior calling this 1130 * function. 1131 * 1132 * Timers with an ->expires field in the past will be executed in the next 1133 * timer tick. 1134 */ 1135 void add_timer(struct timer_list *timer) 1136 { 1137 BUG_ON(timer_pending(timer)); 1138 mod_timer(timer, timer->expires); 1139 } 1140 EXPORT_SYMBOL(add_timer); 1141 1142 /** 1143 * add_timer_on - start a timer on a particular CPU 1144 * @timer: the timer to be added 1145 * @cpu: the CPU to start it on 1146 * 1147 * This is not very scalable on SMP. Double adds are not possible. 1148 */ 1149 void add_timer_on(struct timer_list *timer, int cpu) 1150 { 1151 struct timer_base *new_base, *base; 1152 unsigned long flags; 1153 1154 BUG_ON(timer_pending(timer) || !timer->function); 1155 1156 new_base = get_timer_cpu_base(timer->flags, cpu); 1157 1158 /* 1159 * If @timer was on a different CPU, it should be migrated with the 1160 * old base locked to prevent other operations proceeding with the 1161 * wrong base locked. See lock_timer_base(). 1162 */ 1163 base = lock_timer_base(timer, &flags); 1164 if (base != new_base) { 1165 timer->flags |= TIMER_MIGRATING; 1166 1167 raw_spin_unlock(&base->lock); 1168 base = new_base; 1169 raw_spin_lock(&base->lock); 1170 WRITE_ONCE(timer->flags, 1171 (timer->flags & ~TIMER_BASEMASK) | cpu); 1172 } 1173 forward_timer_base(base); 1174 1175 debug_activate(timer, timer->expires); 1176 internal_add_timer(base, timer); 1177 raw_spin_unlock_irqrestore(&base->lock, flags); 1178 } 1179 EXPORT_SYMBOL_GPL(add_timer_on); 1180 1181 /** 1182 * del_timer - deactivate a timer. 1183 * @timer: the timer to be deactivated 1184 * 1185 * del_timer() deactivates a timer - this works on both active and inactive 1186 * timers. 1187 * 1188 * The function returns whether it has deactivated a pending timer or not. 1189 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1190 * active timer returns 1.) 1191 */ 1192 int del_timer(struct timer_list *timer) 1193 { 1194 struct timer_base *base; 1195 unsigned long flags; 1196 int ret = 0; 1197 1198 debug_assert_init(timer); 1199 1200 if (timer_pending(timer)) { 1201 base = lock_timer_base(timer, &flags); 1202 ret = detach_if_pending(timer, base, true); 1203 raw_spin_unlock_irqrestore(&base->lock, flags); 1204 } 1205 1206 return ret; 1207 } 1208 EXPORT_SYMBOL(del_timer); 1209 1210 /** 1211 * try_to_del_timer_sync - Try to deactivate a timer 1212 * @timer: timer to delete 1213 * 1214 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1215 * exit the timer is not queued and the handler is not running on any CPU. 1216 */ 1217 int try_to_del_timer_sync(struct timer_list *timer) 1218 { 1219 struct timer_base *base; 1220 unsigned long flags; 1221 int ret = -1; 1222 1223 debug_assert_init(timer); 1224 1225 base = lock_timer_base(timer, &flags); 1226 1227 if (base->running_timer != timer) 1228 ret = detach_if_pending(timer, base, true); 1229 1230 raw_spin_unlock_irqrestore(&base->lock, flags); 1231 1232 return ret; 1233 } 1234 EXPORT_SYMBOL(try_to_del_timer_sync); 1235 1236 #ifdef CONFIG_SMP 1237 /** 1238 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1239 * @timer: the timer to be deactivated 1240 * 1241 * This function only differs from del_timer() on SMP: besides deactivating 1242 * the timer it also makes sure the handler has finished executing on other 1243 * CPUs. 1244 * 1245 * Synchronization rules: Callers must prevent restarting of the timer, 1246 * otherwise this function is meaningless. It must not be called from 1247 * interrupt contexts unless the timer is an irqsafe one. The caller must 1248 * not hold locks which would prevent completion of the timer's 1249 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1250 * timer is not queued and the handler is not running on any CPU. 1251 * 1252 * Note: For !irqsafe timers, you must not hold locks that are held in 1253 * interrupt context while calling this function. Even if the lock has 1254 * nothing to do with the timer in question. Here's why: 1255 * 1256 * CPU0 CPU1 1257 * ---- ---- 1258 * <SOFTIRQ> 1259 * call_timer_fn(); 1260 * base->running_timer = mytimer; 1261 * spin_lock_irq(somelock); 1262 * <IRQ> 1263 * spin_lock(somelock); 1264 * del_timer_sync(mytimer); 1265 * while (base->running_timer == mytimer); 1266 * 1267 * Now del_timer_sync() will never return and never release somelock. 1268 * The interrupt on the other CPU is waiting to grab somelock but 1269 * it has interrupted the softirq that CPU0 is waiting to finish. 1270 * 1271 * The function returns whether it has deactivated a pending timer or not. 1272 */ 1273 int del_timer_sync(struct timer_list *timer) 1274 { 1275 #ifdef CONFIG_LOCKDEP 1276 unsigned long flags; 1277 1278 /* 1279 * If lockdep gives a backtrace here, please reference 1280 * the synchronization rules above. 1281 */ 1282 local_irq_save(flags); 1283 lock_map_acquire(&timer->lockdep_map); 1284 lock_map_release(&timer->lockdep_map); 1285 local_irq_restore(flags); 1286 #endif 1287 /* 1288 * don't use it in hardirq context, because it 1289 * could lead to deadlock. 1290 */ 1291 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1292 for (;;) { 1293 int ret = try_to_del_timer_sync(timer); 1294 if (ret >= 0) 1295 return ret; 1296 cpu_relax(); 1297 } 1298 } 1299 EXPORT_SYMBOL(del_timer_sync); 1300 #endif 1301 1302 static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *)) 1303 { 1304 int count = preempt_count(); 1305 1306 #ifdef CONFIG_LOCKDEP 1307 /* 1308 * It is permissible to free the timer from inside the 1309 * function that is called from it, this we need to take into 1310 * account for lockdep too. To avoid bogus "held lock freed" 1311 * warnings as well as problems when looking into 1312 * timer->lockdep_map, make a copy and use that here. 1313 */ 1314 struct lockdep_map lockdep_map; 1315 1316 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1317 #endif 1318 /* 1319 * Couple the lock chain with the lock chain at 1320 * del_timer_sync() by acquiring the lock_map around the fn() 1321 * call here and in del_timer_sync(). 1322 */ 1323 lock_map_acquire(&lockdep_map); 1324 1325 trace_timer_expire_entry(timer); 1326 fn(timer); 1327 trace_timer_expire_exit(timer); 1328 1329 lock_map_release(&lockdep_map); 1330 1331 if (count != preempt_count()) { 1332 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1333 fn, count, preempt_count()); 1334 /* 1335 * Restore the preempt count. That gives us a decent 1336 * chance to survive and extract information. If the 1337 * callback kept a lock held, bad luck, but not worse 1338 * than the BUG() we had. 1339 */ 1340 preempt_count_set(count); 1341 } 1342 } 1343 1344 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1345 { 1346 while (!hlist_empty(head)) { 1347 struct timer_list *timer; 1348 void (*fn)(struct timer_list *); 1349 1350 timer = hlist_entry(head->first, struct timer_list, entry); 1351 1352 base->running_timer = timer; 1353 detach_timer(timer, true); 1354 1355 fn = timer->function; 1356 1357 if (timer->flags & TIMER_IRQSAFE) { 1358 raw_spin_unlock(&base->lock); 1359 call_timer_fn(timer, fn); 1360 raw_spin_lock(&base->lock); 1361 } else { 1362 raw_spin_unlock_irq(&base->lock); 1363 call_timer_fn(timer, fn); 1364 raw_spin_lock_irq(&base->lock); 1365 } 1366 } 1367 } 1368 1369 static int __collect_expired_timers(struct timer_base *base, 1370 struct hlist_head *heads) 1371 { 1372 unsigned long clk = base->clk; 1373 struct hlist_head *vec; 1374 int i, levels = 0; 1375 unsigned int idx; 1376 1377 for (i = 0; i < LVL_DEPTH; i++) { 1378 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1379 1380 if (__test_and_clear_bit(idx, base->pending_map)) { 1381 vec = base->vectors + idx; 1382 hlist_move_list(vec, heads++); 1383 levels++; 1384 } 1385 /* Is it time to look at the next level? */ 1386 if (clk & LVL_CLK_MASK) 1387 break; 1388 /* Shift clock for the next level granularity */ 1389 clk >>= LVL_CLK_SHIFT; 1390 } 1391 return levels; 1392 } 1393 1394 #ifdef CONFIG_NO_HZ_COMMON 1395 /* 1396 * Find the next pending bucket of a level. Search from level start (@offset) 1397 * + @clk upwards and if nothing there, search from start of the level 1398 * (@offset) up to @offset + clk. 1399 */ 1400 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1401 unsigned clk) 1402 { 1403 unsigned pos, start = offset + clk; 1404 unsigned end = offset + LVL_SIZE; 1405 1406 pos = find_next_bit(base->pending_map, end, start); 1407 if (pos < end) 1408 return pos - start; 1409 1410 pos = find_next_bit(base->pending_map, start, offset); 1411 return pos < start ? pos + LVL_SIZE - start : -1; 1412 } 1413 1414 /* 1415 * Search the first expiring timer in the various clock levels. Caller must 1416 * hold base->lock. 1417 */ 1418 static unsigned long __next_timer_interrupt(struct timer_base *base) 1419 { 1420 unsigned long clk, next, adj; 1421 unsigned lvl, offset = 0; 1422 1423 next = base->clk + NEXT_TIMER_MAX_DELTA; 1424 clk = base->clk; 1425 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1426 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1427 1428 if (pos >= 0) { 1429 unsigned long tmp = clk + (unsigned long) pos; 1430 1431 tmp <<= LVL_SHIFT(lvl); 1432 if (time_before(tmp, next)) 1433 next = tmp; 1434 } 1435 /* 1436 * Clock for the next level. If the current level clock lower 1437 * bits are zero, we look at the next level as is. If not we 1438 * need to advance it by one because that's going to be the 1439 * next expiring bucket in that level. base->clk is the next 1440 * expiring jiffie. So in case of: 1441 * 1442 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1443 * 0 0 0 0 0 0 1444 * 1445 * we have to look at all levels @index 0. With 1446 * 1447 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1448 * 0 0 0 0 0 2 1449 * 1450 * LVL0 has the next expiring bucket @index 2. The upper 1451 * levels have the next expiring bucket @index 1. 1452 * 1453 * In case that the propagation wraps the next level the same 1454 * rules apply: 1455 * 1456 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1457 * 0 0 0 0 F 2 1458 * 1459 * So after looking at LVL0 we get: 1460 * 1461 * LVL5 LVL4 LVL3 LVL2 LVL1 1462 * 0 0 0 1 0 1463 * 1464 * So no propagation from LVL1 to LVL2 because that happened 1465 * with the add already, but then we need to propagate further 1466 * from LVL2 to LVL3. 1467 * 1468 * So the simple check whether the lower bits of the current 1469 * level are 0 or not is sufficient for all cases. 1470 */ 1471 adj = clk & LVL_CLK_MASK ? 1 : 0; 1472 clk >>= LVL_CLK_SHIFT; 1473 clk += adj; 1474 } 1475 return next; 1476 } 1477 1478 /* 1479 * Check, if the next hrtimer event is before the next timer wheel 1480 * event: 1481 */ 1482 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1483 { 1484 u64 nextevt = hrtimer_get_next_event(); 1485 1486 /* 1487 * If high resolution timers are enabled 1488 * hrtimer_get_next_event() returns KTIME_MAX. 1489 */ 1490 if (expires <= nextevt) 1491 return expires; 1492 1493 /* 1494 * If the next timer is already expired, return the tick base 1495 * time so the tick is fired immediately. 1496 */ 1497 if (nextevt <= basem) 1498 return basem; 1499 1500 /* 1501 * Round up to the next jiffie. High resolution timers are 1502 * off, so the hrtimers are expired in the tick and we need to 1503 * make sure that this tick really expires the timer to avoid 1504 * a ping pong of the nohz stop code. 1505 * 1506 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1507 */ 1508 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1509 } 1510 1511 /** 1512 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1513 * @basej: base time jiffies 1514 * @basem: base time clock monotonic 1515 * 1516 * Returns the tick aligned clock monotonic time of the next pending 1517 * timer or KTIME_MAX if no timer is pending. 1518 */ 1519 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1520 { 1521 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1522 u64 expires = KTIME_MAX; 1523 unsigned long nextevt; 1524 bool is_max_delta; 1525 1526 /* 1527 * Pretend that there is no timer pending if the cpu is offline. 1528 * Possible pending timers will be migrated later to an active cpu. 1529 */ 1530 if (cpu_is_offline(smp_processor_id())) 1531 return expires; 1532 1533 raw_spin_lock(&base->lock); 1534 nextevt = __next_timer_interrupt(base); 1535 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1536 base->next_expiry = nextevt; 1537 /* 1538 * We have a fresh next event. Check whether we can forward the 1539 * base. We can only do that when @basej is past base->clk 1540 * otherwise we might rewind base->clk. 1541 */ 1542 if (time_after(basej, base->clk)) { 1543 if (time_after(nextevt, basej)) 1544 base->clk = basej; 1545 else if (time_after(nextevt, base->clk)) 1546 base->clk = nextevt; 1547 } 1548 1549 if (time_before_eq(nextevt, basej)) { 1550 expires = basem; 1551 base->is_idle = false; 1552 } else { 1553 if (!is_max_delta) 1554 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1555 /* 1556 * If we expect to sleep more than a tick, mark the base idle. 1557 * Also the tick is stopped so any added timer must forward 1558 * the base clk itself to keep granularity small. This idle 1559 * logic is only maintained for the BASE_STD base, deferrable 1560 * timers may still see large granularity skew (by design). 1561 */ 1562 if ((expires - basem) > TICK_NSEC) { 1563 base->must_forward_clk = true; 1564 base->is_idle = true; 1565 } 1566 } 1567 raw_spin_unlock(&base->lock); 1568 1569 return cmp_next_hrtimer_event(basem, expires); 1570 } 1571 1572 /** 1573 * timer_clear_idle - Clear the idle state of the timer base 1574 * 1575 * Called with interrupts disabled 1576 */ 1577 void timer_clear_idle(void) 1578 { 1579 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1580 1581 /* 1582 * We do this unlocked. The worst outcome is a remote enqueue sending 1583 * a pointless IPI, but taking the lock would just make the window for 1584 * sending the IPI a few instructions smaller for the cost of taking 1585 * the lock in the exit from idle path. 1586 */ 1587 base->is_idle = false; 1588 } 1589 1590 static int collect_expired_timers(struct timer_base *base, 1591 struct hlist_head *heads) 1592 { 1593 /* 1594 * NOHZ optimization. After a long idle sleep we need to forward the 1595 * base to current jiffies. Avoid a loop by searching the bitfield for 1596 * the next expiring timer. 1597 */ 1598 if ((long)(jiffies - base->clk) > 2) { 1599 unsigned long next = __next_timer_interrupt(base); 1600 1601 /* 1602 * If the next timer is ahead of time forward to current 1603 * jiffies, otherwise forward to the next expiry time: 1604 */ 1605 if (time_after(next, jiffies)) { 1606 /* 1607 * The call site will increment base->clk and then 1608 * terminate the expiry loop immediately. 1609 */ 1610 base->clk = jiffies; 1611 return 0; 1612 } 1613 base->clk = next; 1614 } 1615 return __collect_expired_timers(base, heads); 1616 } 1617 #else 1618 static inline int collect_expired_timers(struct timer_base *base, 1619 struct hlist_head *heads) 1620 { 1621 return __collect_expired_timers(base, heads); 1622 } 1623 #endif 1624 1625 /* 1626 * Called from the timer interrupt handler to charge one tick to the current 1627 * process. user_tick is 1 if the tick is user time, 0 for system. 1628 */ 1629 void update_process_times(int user_tick) 1630 { 1631 struct task_struct *p = current; 1632 1633 /* Note: this timer irq context must be accounted for as well. */ 1634 account_process_tick(p, user_tick); 1635 run_local_timers(); 1636 rcu_check_callbacks(user_tick); 1637 #ifdef CONFIG_IRQ_WORK 1638 if (in_irq()) 1639 irq_work_tick(); 1640 #endif 1641 scheduler_tick(); 1642 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1643 run_posix_cpu_timers(p); 1644 } 1645 1646 /** 1647 * __run_timers - run all expired timers (if any) on this CPU. 1648 * @base: the timer vector to be processed. 1649 */ 1650 static inline void __run_timers(struct timer_base *base) 1651 { 1652 struct hlist_head heads[LVL_DEPTH]; 1653 int levels; 1654 1655 if (!time_after_eq(jiffies, base->clk)) 1656 return; 1657 1658 raw_spin_lock_irq(&base->lock); 1659 1660 while (time_after_eq(jiffies, base->clk)) { 1661 1662 levels = collect_expired_timers(base, heads); 1663 base->clk++; 1664 1665 while (levels--) 1666 expire_timers(base, heads + levels); 1667 } 1668 base->running_timer = NULL; 1669 raw_spin_unlock_irq(&base->lock); 1670 } 1671 1672 /* 1673 * This function runs timers and the timer-tq in bottom half context. 1674 */ 1675 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1676 { 1677 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1678 1679 /* 1680 * must_forward_clk must be cleared before running timers so that any 1681 * timer functions that call mod_timer will not try to forward the 1682 * base. idle trcking / clock forwarding logic is only used with 1683 * BASE_STD timers. 1684 * 1685 * The deferrable base does not do idle tracking at all, so we do 1686 * not forward it. This can result in very large variations in 1687 * granularity for deferrable timers, but they can be deferred for 1688 * long periods due to idle. 1689 */ 1690 base->must_forward_clk = false; 1691 1692 __run_timers(base); 1693 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1694 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1695 } 1696 1697 /* 1698 * Called by the local, per-CPU timer interrupt on SMP. 1699 */ 1700 void run_local_timers(void) 1701 { 1702 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1703 1704 hrtimer_run_queues(); 1705 /* Raise the softirq only if required. */ 1706 if (time_before(jiffies, base->clk)) { 1707 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1708 return; 1709 /* CPU is awake, so check the deferrable base. */ 1710 base++; 1711 if (time_before(jiffies, base->clk)) 1712 return; 1713 } 1714 raise_softirq(TIMER_SOFTIRQ); 1715 } 1716 1717 /* 1718 * Since schedule_timeout()'s timer is defined on the stack, it must store 1719 * the target task on the stack as well. 1720 */ 1721 struct process_timer { 1722 struct timer_list timer; 1723 struct task_struct *task; 1724 }; 1725 1726 static void process_timeout(struct timer_list *t) 1727 { 1728 struct process_timer *timeout = from_timer(timeout, t, timer); 1729 1730 wake_up_process(timeout->task); 1731 } 1732 1733 /** 1734 * schedule_timeout - sleep until timeout 1735 * @timeout: timeout value in jiffies 1736 * 1737 * Make the current task sleep until @timeout jiffies have 1738 * elapsed. The routine will return immediately unless 1739 * the current task state has been set (see set_current_state()). 1740 * 1741 * You can set the task state as follows - 1742 * 1743 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1744 * pass before the routine returns unless the current task is explicitly 1745 * woken up, (e.g. by wake_up_process())". 1746 * 1747 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1748 * delivered to the current task or the current task is explicitly woken 1749 * up. 1750 * 1751 * The current task state is guaranteed to be TASK_RUNNING when this 1752 * routine returns. 1753 * 1754 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1755 * the CPU away without a bound on the timeout. In this case the return 1756 * value will be %MAX_SCHEDULE_TIMEOUT. 1757 * 1758 * Returns 0 when the timer has expired otherwise the remaining time in 1759 * jiffies will be returned. In all cases the return value is guaranteed 1760 * to be non-negative. 1761 */ 1762 signed long __sched schedule_timeout(signed long timeout) 1763 { 1764 struct process_timer timer; 1765 unsigned long expire; 1766 1767 switch (timeout) 1768 { 1769 case MAX_SCHEDULE_TIMEOUT: 1770 /* 1771 * These two special cases are useful to be comfortable 1772 * in the caller. Nothing more. We could take 1773 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1774 * but I' d like to return a valid offset (>=0) to allow 1775 * the caller to do everything it want with the retval. 1776 */ 1777 schedule(); 1778 goto out; 1779 default: 1780 /* 1781 * Another bit of PARANOID. Note that the retval will be 1782 * 0 since no piece of kernel is supposed to do a check 1783 * for a negative retval of schedule_timeout() (since it 1784 * should never happens anyway). You just have the printk() 1785 * that will tell you if something is gone wrong and where. 1786 */ 1787 if (timeout < 0) { 1788 printk(KERN_ERR "schedule_timeout: wrong timeout " 1789 "value %lx\n", timeout); 1790 dump_stack(); 1791 current->state = TASK_RUNNING; 1792 goto out; 1793 } 1794 } 1795 1796 expire = timeout + jiffies; 1797 1798 timer.task = current; 1799 timer_setup_on_stack(&timer.timer, process_timeout, 0); 1800 __mod_timer(&timer.timer, expire, 0); 1801 schedule(); 1802 del_singleshot_timer_sync(&timer.timer); 1803 1804 /* Remove the timer from the object tracker */ 1805 destroy_timer_on_stack(&timer.timer); 1806 1807 timeout = expire - jiffies; 1808 1809 out: 1810 return timeout < 0 ? 0 : timeout; 1811 } 1812 EXPORT_SYMBOL(schedule_timeout); 1813 1814 /* 1815 * We can use __set_current_state() here because schedule_timeout() calls 1816 * schedule() unconditionally. 1817 */ 1818 signed long __sched schedule_timeout_interruptible(signed long timeout) 1819 { 1820 __set_current_state(TASK_INTERRUPTIBLE); 1821 return schedule_timeout(timeout); 1822 } 1823 EXPORT_SYMBOL(schedule_timeout_interruptible); 1824 1825 signed long __sched schedule_timeout_killable(signed long timeout) 1826 { 1827 __set_current_state(TASK_KILLABLE); 1828 return schedule_timeout(timeout); 1829 } 1830 EXPORT_SYMBOL(schedule_timeout_killable); 1831 1832 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1833 { 1834 __set_current_state(TASK_UNINTERRUPTIBLE); 1835 return schedule_timeout(timeout); 1836 } 1837 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1838 1839 /* 1840 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1841 * to load average. 1842 */ 1843 signed long __sched schedule_timeout_idle(signed long timeout) 1844 { 1845 __set_current_state(TASK_IDLE); 1846 return schedule_timeout(timeout); 1847 } 1848 EXPORT_SYMBOL(schedule_timeout_idle); 1849 1850 #ifdef CONFIG_HOTPLUG_CPU 1851 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1852 { 1853 struct timer_list *timer; 1854 int cpu = new_base->cpu; 1855 1856 while (!hlist_empty(head)) { 1857 timer = hlist_entry(head->first, struct timer_list, entry); 1858 detach_timer(timer, false); 1859 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1860 internal_add_timer(new_base, timer); 1861 } 1862 } 1863 1864 int timers_prepare_cpu(unsigned int cpu) 1865 { 1866 struct timer_base *base; 1867 int b; 1868 1869 for (b = 0; b < NR_BASES; b++) { 1870 base = per_cpu_ptr(&timer_bases[b], cpu); 1871 base->clk = jiffies; 1872 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 1873 base->is_idle = false; 1874 base->must_forward_clk = true; 1875 } 1876 return 0; 1877 } 1878 1879 int timers_dead_cpu(unsigned int cpu) 1880 { 1881 struct timer_base *old_base; 1882 struct timer_base *new_base; 1883 int b, i; 1884 1885 BUG_ON(cpu_online(cpu)); 1886 1887 for (b = 0; b < NR_BASES; b++) { 1888 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1889 new_base = get_cpu_ptr(&timer_bases[b]); 1890 /* 1891 * The caller is globally serialized and nobody else 1892 * takes two locks at once, deadlock is not possible. 1893 */ 1894 raw_spin_lock_irq(&new_base->lock); 1895 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1896 1897 BUG_ON(old_base->running_timer); 1898 1899 for (i = 0; i < WHEEL_SIZE; i++) 1900 migrate_timer_list(new_base, old_base->vectors + i); 1901 1902 raw_spin_unlock(&old_base->lock); 1903 raw_spin_unlock_irq(&new_base->lock); 1904 put_cpu_ptr(&timer_bases); 1905 } 1906 return 0; 1907 } 1908 1909 #endif /* CONFIG_HOTPLUG_CPU */ 1910 1911 static void __init init_timer_cpu(int cpu) 1912 { 1913 struct timer_base *base; 1914 int i; 1915 1916 for (i = 0; i < NR_BASES; i++) { 1917 base = per_cpu_ptr(&timer_bases[i], cpu); 1918 base->cpu = cpu; 1919 raw_spin_lock_init(&base->lock); 1920 base->clk = jiffies; 1921 } 1922 } 1923 1924 static void __init init_timer_cpus(void) 1925 { 1926 int cpu; 1927 1928 for_each_possible_cpu(cpu) 1929 init_timer_cpu(cpu); 1930 } 1931 1932 void __init init_timers(void) 1933 { 1934 init_timer_cpus(); 1935 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1936 } 1937 1938 /** 1939 * msleep - sleep safely even with waitqueue interruptions 1940 * @msecs: Time in milliseconds to sleep for 1941 */ 1942 void msleep(unsigned int msecs) 1943 { 1944 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1945 1946 while (timeout) 1947 timeout = schedule_timeout_uninterruptible(timeout); 1948 } 1949 1950 EXPORT_SYMBOL(msleep); 1951 1952 /** 1953 * msleep_interruptible - sleep waiting for signals 1954 * @msecs: Time in milliseconds to sleep for 1955 */ 1956 unsigned long msleep_interruptible(unsigned int msecs) 1957 { 1958 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1959 1960 while (timeout && !signal_pending(current)) 1961 timeout = schedule_timeout_interruptible(timeout); 1962 return jiffies_to_msecs(timeout); 1963 } 1964 1965 EXPORT_SYMBOL(msleep_interruptible); 1966 1967 /** 1968 * usleep_range - Sleep for an approximate time 1969 * @min: Minimum time in usecs to sleep 1970 * @max: Maximum time in usecs to sleep 1971 * 1972 * In non-atomic context where the exact wakeup time is flexible, use 1973 * usleep_range() instead of udelay(). The sleep improves responsiveness 1974 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 1975 * power usage by allowing hrtimers to take advantage of an already- 1976 * scheduled interrupt instead of scheduling a new one just for this sleep. 1977 */ 1978 void __sched usleep_range(unsigned long min, unsigned long max) 1979 { 1980 ktime_t exp = ktime_add_us(ktime_get(), min); 1981 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 1982 1983 for (;;) { 1984 __set_current_state(TASK_UNINTERRUPTIBLE); 1985 /* Do not return before the requested sleep time has elapsed */ 1986 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 1987 break; 1988 } 1989 } 1990 EXPORT_SYMBOL(usleep_range); 1991