1 /* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22 #include <linux/kernel_stat.h> 23 #include <linux/export.h> 24 #include <linux/interrupt.h> 25 #include <linux/percpu.h> 26 #include <linux/init.h> 27 #include <linux/mm.h> 28 #include <linux/swap.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/notifier.h> 31 #include <linux/thread_info.h> 32 #include <linux/time.h> 33 #include <linux/jiffies.h> 34 #include <linux/posix-timers.h> 35 #include <linux/cpu.h> 36 #include <linux/syscalls.h> 37 #include <linux/delay.h> 38 #include <linux/tick.h> 39 #include <linux/kallsyms.h> 40 #include <linux/irq_work.h> 41 #include <linux/sched.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/slab.h> 44 #include <linux/compat.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/unistd.h> 48 #include <asm/div64.h> 49 #include <asm/timex.h> 50 #include <asm/io.h> 51 52 #include "tick-internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/timer.h> 56 57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 58 59 EXPORT_SYMBOL(jiffies_64); 60 61 /* 62 * per-CPU timer vector definitions: 63 */ 64 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) 65 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) 66 #define TVN_SIZE (1 << TVN_BITS) 67 #define TVR_SIZE (1 << TVR_BITS) 68 #define TVN_MASK (TVN_SIZE - 1) 69 #define TVR_MASK (TVR_SIZE - 1) 70 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1)) 71 72 struct tvec { 73 struct hlist_head vec[TVN_SIZE]; 74 }; 75 76 struct tvec_root { 77 struct hlist_head vec[TVR_SIZE]; 78 }; 79 80 struct tvec_base { 81 spinlock_t lock; 82 struct timer_list *running_timer; 83 unsigned long timer_jiffies; 84 unsigned long next_timer; 85 unsigned long active_timers; 86 unsigned long all_timers; 87 int cpu; 88 bool migration_enabled; 89 bool nohz_active; 90 struct tvec_root tv1; 91 struct tvec tv2; 92 struct tvec tv3; 93 struct tvec tv4; 94 struct tvec tv5; 95 } ____cacheline_aligned; 96 97 98 static DEFINE_PER_CPU(struct tvec_base, tvec_bases); 99 100 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 101 unsigned int sysctl_timer_migration = 1; 102 103 void timers_update_migration(bool update_nohz) 104 { 105 bool on = sysctl_timer_migration && tick_nohz_active; 106 unsigned int cpu; 107 108 /* Avoid the loop, if nothing to update */ 109 if (this_cpu_read(tvec_bases.migration_enabled) == on) 110 return; 111 112 for_each_possible_cpu(cpu) { 113 per_cpu(tvec_bases.migration_enabled, cpu) = on; 114 per_cpu(hrtimer_bases.migration_enabled, cpu) = on; 115 if (!update_nohz) 116 continue; 117 per_cpu(tvec_bases.nohz_active, cpu) = true; 118 per_cpu(hrtimer_bases.nohz_active, cpu) = true; 119 } 120 } 121 122 int timer_migration_handler(struct ctl_table *table, int write, 123 void __user *buffer, size_t *lenp, 124 loff_t *ppos) 125 { 126 static DEFINE_MUTEX(mutex); 127 int ret; 128 129 mutex_lock(&mutex); 130 ret = proc_dointvec(table, write, buffer, lenp, ppos); 131 if (!ret && write) 132 timers_update_migration(false); 133 mutex_unlock(&mutex); 134 return ret; 135 } 136 137 static inline struct tvec_base *get_target_base(struct tvec_base *base, 138 int pinned) 139 { 140 if (pinned || !base->migration_enabled) 141 return this_cpu_ptr(&tvec_bases); 142 return per_cpu_ptr(&tvec_bases, get_nohz_timer_target()); 143 } 144 #else 145 static inline struct tvec_base *get_target_base(struct tvec_base *base, 146 int pinned) 147 { 148 return this_cpu_ptr(&tvec_bases); 149 } 150 #endif 151 152 static unsigned long round_jiffies_common(unsigned long j, int cpu, 153 bool force_up) 154 { 155 int rem; 156 unsigned long original = j; 157 158 /* 159 * We don't want all cpus firing their timers at once hitting the 160 * same lock or cachelines, so we skew each extra cpu with an extra 161 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 162 * already did this. 163 * The skew is done by adding 3*cpunr, then round, then subtract this 164 * extra offset again. 165 */ 166 j += cpu * 3; 167 168 rem = j % HZ; 169 170 /* 171 * If the target jiffie is just after a whole second (which can happen 172 * due to delays of the timer irq, long irq off times etc etc) then 173 * we should round down to the whole second, not up. Use 1/4th second 174 * as cutoff for this rounding as an extreme upper bound for this. 175 * But never round down if @force_up is set. 176 */ 177 if (rem < HZ/4 && !force_up) /* round down */ 178 j = j - rem; 179 else /* round up */ 180 j = j - rem + HZ; 181 182 /* now that we have rounded, subtract the extra skew again */ 183 j -= cpu * 3; 184 185 /* 186 * Make sure j is still in the future. Otherwise return the 187 * unmodified value. 188 */ 189 return time_is_after_jiffies(j) ? j : original; 190 } 191 192 /** 193 * __round_jiffies - function to round jiffies to a full second 194 * @j: the time in (absolute) jiffies that should be rounded 195 * @cpu: the processor number on which the timeout will happen 196 * 197 * __round_jiffies() rounds an absolute time in the future (in jiffies) 198 * up or down to (approximately) full seconds. This is useful for timers 199 * for which the exact time they fire does not matter too much, as long as 200 * they fire approximately every X seconds. 201 * 202 * By rounding these timers to whole seconds, all such timers will fire 203 * at the same time, rather than at various times spread out. The goal 204 * of this is to have the CPU wake up less, which saves power. 205 * 206 * The exact rounding is skewed for each processor to avoid all 207 * processors firing at the exact same time, which could lead 208 * to lock contention or spurious cache line bouncing. 209 * 210 * The return value is the rounded version of the @j parameter. 211 */ 212 unsigned long __round_jiffies(unsigned long j, int cpu) 213 { 214 return round_jiffies_common(j, cpu, false); 215 } 216 EXPORT_SYMBOL_GPL(__round_jiffies); 217 218 /** 219 * __round_jiffies_relative - function to round jiffies to a full second 220 * @j: the time in (relative) jiffies that should be rounded 221 * @cpu: the processor number on which the timeout will happen 222 * 223 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 224 * up or down to (approximately) full seconds. This is useful for timers 225 * for which the exact time they fire does not matter too much, as long as 226 * they fire approximately every X seconds. 227 * 228 * By rounding these timers to whole seconds, all such timers will fire 229 * at the same time, rather than at various times spread out. The goal 230 * of this is to have the CPU wake up less, which saves power. 231 * 232 * The exact rounding is skewed for each processor to avoid all 233 * processors firing at the exact same time, which could lead 234 * to lock contention or spurious cache line bouncing. 235 * 236 * The return value is the rounded version of the @j parameter. 237 */ 238 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 239 { 240 unsigned long j0 = jiffies; 241 242 /* Use j0 because jiffies might change while we run */ 243 return round_jiffies_common(j + j0, cpu, false) - j0; 244 } 245 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 246 247 /** 248 * round_jiffies - function to round jiffies to a full second 249 * @j: the time in (absolute) jiffies that should be rounded 250 * 251 * round_jiffies() rounds an absolute time in the future (in jiffies) 252 * up or down to (approximately) full seconds. This is useful for timers 253 * for which the exact time they fire does not matter too much, as long as 254 * they fire approximately every X seconds. 255 * 256 * By rounding these timers to whole seconds, all such timers will fire 257 * at the same time, rather than at various times spread out. The goal 258 * of this is to have the CPU wake up less, which saves power. 259 * 260 * The return value is the rounded version of the @j parameter. 261 */ 262 unsigned long round_jiffies(unsigned long j) 263 { 264 return round_jiffies_common(j, raw_smp_processor_id(), false); 265 } 266 EXPORT_SYMBOL_GPL(round_jiffies); 267 268 /** 269 * round_jiffies_relative - function to round jiffies to a full second 270 * @j: the time in (relative) jiffies that should be rounded 271 * 272 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 273 * up or down to (approximately) full seconds. This is useful for timers 274 * for which the exact time they fire does not matter too much, as long as 275 * they fire approximately every X seconds. 276 * 277 * By rounding these timers to whole seconds, all such timers will fire 278 * at the same time, rather than at various times spread out. The goal 279 * of this is to have the CPU wake up less, which saves power. 280 * 281 * The return value is the rounded version of the @j parameter. 282 */ 283 unsigned long round_jiffies_relative(unsigned long j) 284 { 285 return __round_jiffies_relative(j, raw_smp_processor_id()); 286 } 287 EXPORT_SYMBOL_GPL(round_jiffies_relative); 288 289 /** 290 * __round_jiffies_up - function to round jiffies up to a full second 291 * @j: the time in (absolute) jiffies that should be rounded 292 * @cpu: the processor number on which the timeout will happen 293 * 294 * This is the same as __round_jiffies() except that it will never 295 * round down. This is useful for timeouts for which the exact time 296 * of firing does not matter too much, as long as they don't fire too 297 * early. 298 */ 299 unsigned long __round_jiffies_up(unsigned long j, int cpu) 300 { 301 return round_jiffies_common(j, cpu, true); 302 } 303 EXPORT_SYMBOL_GPL(__round_jiffies_up); 304 305 /** 306 * __round_jiffies_up_relative - function to round jiffies up to a full second 307 * @j: the time in (relative) jiffies that should be rounded 308 * @cpu: the processor number on which the timeout will happen 309 * 310 * This is the same as __round_jiffies_relative() except that it will never 311 * round down. This is useful for timeouts for which the exact time 312 * of firing does not matter too much, as long as they don't fire too 313 * early. 314 */ 315 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 316 { 317 unsigned long j0 = jiffies; 318 319 /* Use j0 because jiffies might change while we run */ 320 return round_jiffies_common(j + j0, cpu, true) - j0; 321 } 322 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 323 324 /** 325 * round_jiffies_up - function to round jiffies up to a full second 326 * @j: the time in (absolute) jiffies that should be rounded 327 * 328 * This is the same as round_jiffies() except that it will never 329 * round down. This is useful for timeouts for which the exact time 330 * of firing does not matter too much, as long as they don't fire too 331 * early. 332 */ 333 unsigned long round_jiffies_up(unsigned long j) 334 { 335 return round_jiffies_common(j, raw_smp_processor_id(), true); 336 } 337 EXPORT_SYMBOL_GPL(round_jiffies_up); 338 339 /** 340 * round_jiffies_up_relative - function to round jiffies up to a full second 341 * @j: the time in (relative) jiffies that should be rounded 342 * 343 * This is the same as round_jiffies_relative() except that it will never 344 * round down. This is useful for timeouts for which the exact time 345 * of firing does not matter too much, as long as they don't fire too 346 * early. 347 */ 348 unsigned long round_jiffies_up_relative(unsigned long j) 349 { 350 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 351 } 352 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 353 354 /** 355 * set_timer_slack - set the allowed slack for a timer 356 * @timer: the timer to be modified 357 * @slack_hz: the amount of time (in jiffies) allowed for rounding 358 * 359 * Set the amount of time, in jiffies, that a certain timer has 360 * in terms of slack. By setting this value, the timer subsystem 361 * will schedule the actual timer somewhere between 362 * the time mod_timer() asks for, and that time plus the slack. 363 * 364 * By setting the slack to -1, a percentage of the delay is used 365 * instead. 366 */ 367 void set_timer_slack(struct timer_list *timer, int slack_hz) 368 { 369 timer->slack = slack_hz; 370 } 371 EXPORT_SYMBOL_GPL(set_timer_slack); 372 373 static void 374 __internal_add_timer(struct tvec_base *base, struct timer_list *timer) 375 { 376 unsigned long expires = timer->expires; 377 unsigned long idx = expires - base->timer_jiffies; 378 struct hlist_head *vec; 379 380 if (idx < TVR_SIZE) { 381 int i = expires & TVR_MASK; 382 vec = base->tv1.vec + i; 383 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { 384 int i = (expires >> TVR_BITS) & TVN_MASK; 385 vec = base->tv2.vec + i; 386 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { 387 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; 388 vec = base->tv3.vec + i; 389 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { 390 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; 391 vec = base->tv4.vec + i; 392 } else if ((signed long) idx < 0) { 393 /* 394 * Can happen if you add a timer with expires == jiffies, 395 * or you set a timer to go off in the past 396 */ 397 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); 398 } else { 399 int i; 400 /* If the timeout is larger than MAX_TVAL (on 64-bit 401 * architectures or with CONFIG_BASE_SMALL=1) then we 402 * use the maximum timeout. 403 */ 404 if (idx > MAX_TVAL) { 405 idx = MAX_TVAL; 406 expires = idx + base->timer_jiffies; 407 } 408 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; 409 vec = base->tv5.vec + i; 410 } 411 412 hlist_add_head(&timer->entry, vec); 413 } 414 415 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) 416 { 417 /* Advance base->jiffies, if the base is empty */ 418 if (!base->all_timers++) 419 base->timer_jiffies = jiffies; 420 421 __internal_add_timer(base, timer); 422 /* 423 * Update base->active_timers and base->next_timer 424 */ 425 if (!(timer->flags & TIMER_DEFERRABLE)) { 426 if (!base->active_timers++ || 427 time_before(timer->expires, base->next_timer)) 428 base->next_timer = timer->expires; 429 } 430 431 /* 432 * Check whether the other CPU is in dynticks mode and needs 433 * to be triggered to reevaluate the timer wheel. 434 * We are protected against the other CPU fiddling 435 * with the timer by holding the timer base lock. This also 436 * makes sure that a CPU on the way to stop its tick can not 437 * evaluate the timer wheel. 438 * 439 * Spare the IPI for deferrable timers on idle targets though. 440 * The next busy ticks will take care of it. Except full dynticks 441 * require special care against races with idle_cpu(), lets deal 442 * with that later. 443 */ 444 if (base->nohz_active) { 445 if (!(timer->flags & TIMER_DEFERRABLE) || 446 tick_nohz_full_cpu(base->cpu)) 447 wake_up_nohz_cpu(base->cpu); 448 } 449 } 450 451 #ifdef CONFIG_TIMER_STATS 452 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) 453 { 454 if (timer->start_site) 455 return; 456 457 timer->start_site = addr; 458 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 459 timer->start_pid = current->pid; 460 } 461 462 static void timer_stats_account_timer(struct timer_list *timer) 463 { 464 void *site; 465 466 /* 467 * start_site can be concurrently reset by 468 * timer_stats_timer_clear_start_info() 469 */ 470 site = READ_ONCE(timer->start_site); 471 if (likely(!site)) 472 return; 473 474 timer_stats_update_stats(timer, timer->start_pid, site, 475 timer->function, timer->start_comm, 476 timer->flags); 477 } 478 479 #else 480 static void timer_stats_account_timer(struct timer_list *timer) {} 481 #endif 482 483 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 484 485 static struct debug_obj_descr timer_debug_descr; 486 487 static void *timer_debug_hint(void *addr) 488 { 489 return ((struct timer_list *) addr)->function; 490 } 491 492 static bool timer_is_static_object(void *addr) 493 { 494 struct timer_list *timer = addr; 495 496 return (timer->entry.pprev == NULL && 497 timer->entry.next == TIMER_ENTRY_STATIC); 498 } 499 500 /* 501 * fixup_init is called when: 502 * - an active object is initialized 503 */ 504 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 505 { 506 struct timer_list *timer = addr; 507 508 switch (state) { 509 case ODEBUG_STATE_ACTIVE: 510 del_timer_sync(timer); 511 debug_object_init(timer, &timer_debug_descr); 512 return true; 513 default: 514 return false; 515 } 516 } 517 518 /* Stub timer callback for improperly used timers. */ 519 static void stub_timer(unsigned long data) 520 { 521 WARN_ON(1); 522 } 523 524 /* 525 * fixup_activate is called when: 526 * - an active object is activated 527 * - an unknown non-static object is activated 528 */ 529 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 530 { 531 struct timer_list *timer = addr; 532 533 switch (state) { 534 case ODEBUG_STATE_NOTAVAILABLE: 535 setup_timer(timer, stub_timer, 0); 536 return true; 537 538 case ODEBUG_STATE_ACTIVE: 539 WARN_ON(1); 540 541 default: 542 return false; 543 } 544 } 545 546 /* 547 * fixup_free is called when: 548 * - an active object is freed 549 */ 550 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 551 { 552 struct timer_list *timer = addr; 553 554 switch (state) { 555 case ODEBUG_STATE_ACTIVE: 556 del_timer_sync(timer); 557 debug_object_free(timer, &timer_debug_descr); 558 return true; 559 default: 560 return false; 561 } 562 } 563 564 /* 565 * fixup_assert_init is called when: 566 * - an untracked/uninit-ed object is found 567 */ 568 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 569 { 570 struct timer_list *timer = addr; 571 572 switch (state) { 573 case ODEBUG_STATE_NOTAVAILABLE: 574 setup_timer(timer, stub_timer, 0); 575 return true; 576 default: 577 return false; 578 } 579 } 580 581 static struct debug_obj_descr timer_debug_descr = { 582 .name = "timer_list", 583 .debug_hint = timer_debug_hint, 584 .is_static_object = timer_is_static_object, 585 .fixup_init = timer_fixup_init, 586 .fixup_activate = timer_fixup_activate, 587 .fixup_free = timer_fixup_free, 588 .fixup_assert_init = timer_fixup_assert_init, 589 }; 590 591 static inline void debug_timer_init(struct timer_list *timer) 592 { 593 debug_object_init(timer, &timer_debug_descr); 594 } 595 596 static inline void debug_timer_activate(struct timer_list *timer) 597 { 598 debug_object_activate(timer, &timer_debug_descr); 599 } 600 601 static inline void debug_timer_deactivate(struct timer_list *timer) 602 { 603 debug_object_deactivate(timer, &timer_debug_descr); 604 } 605 606 static inline void debug_timer_free(struct timer_list *timer) 607 { 608 debug_object_free(timer, &timer_debug_descr); 609 } 610 611 static inline void debug_timer_assert_init(struct timer_list *timer) 612 { 613 debug_object_assert_init(timer, &timer_debug_descr); 614 } 615 616 static void do_init_timer(struct timer_list *timer, unsigned int flags, 617 const char *name, struct lock_class_key *key); 618 619 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags, 620 const char *name, struct lock_class_key *key) 621 { 622 debug_object_init_on_stack(timer, &timer_debug_descr); 623 do_init_timer(timer, flags, name, key); 624 } 625 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 626 627 void destroy_timer_on_stack(struct timer_list *timer) 628 { 629 debug_object_free(timer, &timer_debug_descr); 630 } 631 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 632 633 #else 634 static inline void debug_timer_init(struct timer_list *timer) { } 635 static inline void debug_timer_activate(struct timer_list *timer) { } 636 static inline void debug_timer_deactivate(struct timer_list *timer) { } 637 static inline void debug_timer_assert_init(struct timer_list *timer) { } 638 #endif 639 640 static inline void debug_init(struct timer_list *timer) 641 { 642 debug_timer_init(timer); 643 trace_timer_init(timer); 644 } 645 646 static inline void 647 debug_activate(struct timer_list *timer, unsigned long expires) 648 { 649 debug_timer_activate(timer); 650 trace_timer_start(timer, expires, timer->flags); 651 } 652 653 static inline void debug_deactivate(struct timer_list *timer) 654 { 655 debug_timer_deactivate(timer); 656 trace_timer_cancel(timer); 657 } 658 659 static inline void debug_assert_init(struct timer_list *timer) 660 { 661 debug_timer_assert_init(timer); 662 } 663 664 static void do_init_timer(struct timer_list *timer, unsigned int flags, 665 const char *name, struct lock_class_key *key) 666 { 667 timer->entry.pprev = NULL; 668 timer->flags = flags | raw_smp_processor_id(); 669 timer->slack = -1; 670 #ifdef CONFIG_TIMER_STATS 671 timer->start_site = NULL; 672 timer->start_pid = -1; 673 memset(timer->start_comm, 0, TASK_COMM_LEN); 674 #endif 675 lockdep_init_map(&timer->lockdep_map, name, key, 0); 676 } 677 678 /** 679 * init_timer_key - initialize a timer 680 * @timer: the timer to be initialized 681 * @flags: timer flags 682 * @name: name of the timer 683 * @key: lockdep class key of the fake lock used for tracking timer 684 * sync lock dependencies 685 * 686 * init_timer_key() must be done to a timer prior calling *any* of the 687 * other timer functions. 688 */ 689 void init_timer_key(struct timer_list *timer, unsigned int flags, 690 const char *name, struct lock_class_key *key) 691 { 692 debug_init(timer); 693 do_init_timer(timer, flags, name, key); 694 } 695 EXPORT_SYMBOL(init_timer_key); 696 697 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 698 { 699 struct hlist_node *entry = &timer->entry; 700 701 debug_deactivate(timer); 702 703 __hlist_del(entry); 704 if (clear_pending) 705 entry->pprev = NULL; 706 entry->next = LIST_POISON2; 707 } 708 709 static inline void 710 detach_expired_timer(struct timer_list *timer, struct tvec_base *base) 711 { 712 detach_timer(timer, true); 713 if (!(timer->flags & TIMER_DEFERRABLE)) 714 base->active_timers--; 715 base->all_timers--; 716 } 717 718 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base, 719 bool clear_pending) 720 { 721 if (!timer_pending(timer)) 722 return 0; 723 724 detach_timer(timer, clear_pending); 725 if (!(timer->flags & TIMER_DEFERRABLE)) { 726 base->active_timers--; 727 if (timer->expires == base->next_timer) 728 base->next_timer = base->timer_jiffies; 729 } 730 /* If this was the last timer, advance base->jiffies */ 731 if (!--base->all_timers) 732 base->timer_jiffies = jiffies; 733 return 1; 734 } 735 736 /* 737 * We are using hashed locking: holding per_cpu(tvec_bases).lock 738 * means that all timers which are tied to this base via timer->base are 739 * locked, and the base itself is locked too. 740 * 741 * So __run_timers/migrate_timers can safely modify all timers which could 742 * be found on ->tvX lists. 743 * 744 * When the timer's base is locked and removed from the list, the 745 * TIMER_MIGRATING flag is set, FIXME 746 */ 747 static struct tvec_base *lock_timer_base(struct timer_list *timer, 748 unsigned long *flags) 749 __acquires(timer->base->lock) 750 { 751 for (;;) { 752 u32 tf = timer->flags; 753 struct tvec_base *base; 754 755 if (!(tf & TIMER_MIGRATING)) { 756 base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK); 757 spin_lock_irqsave(&base->lock, *flags); 758 if (timer->flags == tf) 759 return base; 760 spin_unlock_irqrestore(&base->lock, *flags); 761 } 762 cpu_relax(); 763 } 764 } 765 766 static inline int 767 __mod_timer(struct timer_list *timer, unsigned long expires, 768 bool pending_only, int pinned) 769 { 770 struct tvec_base *base, *new_base; 771 unsigned long flags; 772 int ret = 0; 773 774 timer_stats_timer_set_start_info(timer); 775 BUG_ON(!timer->function); 776 777 base = lock_timer_base(timer, &flags); 778 779 ret = detach_if_pending(timer, base, false); 780 if (!ret && pending_only) 781 goto out_unlock; 782 783 debug_activate(timer, expires); 784 785 new_base = get_target_base(base, pinned); 786 787 if (base != new_base) { 788 /* 789 * We are trying to schedule the timer on the local CPU. 790 * However we can't change timer's base while it is running, 791 * otherwise del_timer_sync() can't detect that the timer's 792 * handler yet has not finished. This also guarantees that 793 * the timer is serialized wrt itself. 794 */ 795 if (likely(base->running_timer != timer)) { 796 /* See the comment in lock_timer_base() */ 797 timer->flags |= TIMER_MIGRATING; 798 799 spin_unlock(&base->lock); 800 base = new_base; 801 spin_lock(&base->lock); 802 WRITE_ONCE(timer->flags, 803 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 804 } 805 } 806 807 timer->expires = expires; 808 internal_add_timer(base, timer); 809 810 out_unlock: 811 spin_unlock_irqrestore(&base->lock, flags); 812 813 return ret; 814 } 815 816 /** 817 * mod_timer_pending - modify a pending timer's timeout 818 * @timer: the pending timer to be modified 819 * @expires: new timeout in jiffies 820 * 821 * mod_timer_pending() is the same for pending timers as mod_timer(), 822 * but will not re-activate and modify already deleted timers. 823 * 824 * It is useful for unserialized use of timers. 825 */ 826 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 827 { 828 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED); 829 } 830 EXPORT_SYMBOL(mod_timer_pending); 831 832 /* 833 * Decide where to put the timer while taking the slack into account 834 * 835 * Algorithm: 836 * 1) calculate the maximum (absolute) time 837 * 2) calculate the highest bit where the expires and new max are different 838 * 3) use this bit to make a mask 839 * 4) use the bitmask to round down the maximum time, so that all last 840 * bits are zeros 841 */ 842 static inline 843 unsigned long apply_slack(struct timer_list *timer, unsigned long expires) 844 { 845 unsigned long expires_limit, mask; 846 int bit; 847 848 if (timer->slack >= 0) { 849 expires_limit = expires + timer->slack; 850 } else { 851 long delta = expires - jiffies; 852 853 if (delta < 256) 854 return expires; 855 856 expires_limit = expires + delta / 256; 857 } 858 mask = expires ^ expires_limit; 859 if (mask == 0) 860 return expires; 861 862 bit = __fls(mask); 863 864 mask = (1UL << bit) - 1; 865 866 expires_limit = expires_limit & ~(mask); 867 868 return expires_limit; 869 } 870 871 /** 872 * mod_timer - modify a timer's timeout 873 * @timer: the timer to be modified 874 * @expires: new timeout in jiffies 875 * 876 * mod_timer() is a more efficient way to update the expire field of an 877 * active timer (if the timer is inactive it will be activated) 878 * 879 * mod_timer(timer, expires) is equivalent to: 880 * 881 * del_timer(timer); timer->expires = expires; add_timer(timer); 882 * 883 * Note that if there are multiple unserialized concurrent users of the 884 * same timer, then mod_timer() is the only safe way to modify the timeout, 885 * since add_timer() cannot modify an already running timer. 886 * 887 * The function returns whether it has modified a pending timer or not. 888 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 889 * active timer returns 1.) 890 */ 891 int mod_timer(struct timer_list *timer, unsigned long expires) 892 { 893 expires = apply_slack(timer, expires); 894 895 /* 896 * This is a common optimization triggered by the 897 * networking code - if the timer is re-modified 898 * to be the same thing then just return: 899 */ 900 if (timer_pending(timer) && timer->expires == expires) 901 return 1; 902 903 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); 904 } 905 EXPORT_SYMBOL(mod_timer); 906 907 /** 908 * mod_timer_pinned - modify a timer's timeout 909 * @timer: the timer to be modified 910 * @expires: new timeout in jiffies 911 * 912 * mod_timer_pinned() is a way to update the expire field of an 913 * active timer (if the timer is inactive it will be activated) 914 * and to ensure that the timer is scheduled on the current CPU. 915 * 916 * Note that this does not prevent the timer from being migrated 917 * when the current CPU goes offline. If this is a problem for 918 * you, use CPU-hotplug notifiers to handle it correctly, for 919 * example, cancelling the timer when the corresponding CPU goes 920 * offline. 921 * 922 * mod_timer_pinned(timer, expires) is equivalent to: 923 * 924 * del_timer(timer); timer->expires = expires; add_timer(timer); 925 */ 926 int mod_timer_pinned(struct timer_list *timer, unsigned long expires) 927 { 928 if (timer->expires == expires && timer_pending(timer)) 929 return 1; 930 931 return __mod_timer(timer, expires, false, TIMER_PINNED); 932 } 933 EXPORT_SYMBOL(mod_timer_pinned); 934 935 /** 936 * add_timer - start a timer 937 * @timer: the timer to be added 938 * 939 * The kernel will do a ->function(->data) callback from the 940 * timer interrupt at the ->expires point in the future. The 941 * current time is 'jiffies'. 942 * 943 * The timer's ->expires, ->function (and if the handler uses it, ->data) 944 * fields must be set prior calling this function. 945 * 946 * Timers with an ->expires field in the past will be executed in the next 947 * timer tick. 948 */ 949 void add_timer(struct timer_list *timer) 950 { 951 BUG_ON(timer_pending(timer)); 952 mod_timer(timer, timer->expires); 953 } 954 EXPORT_SYMBOL(add_timer); 955 956 /** 957 * add_timer_on - start a timer on a particular CPU 958 * @timer: the timer to be added 959 * @cpu: the CPU to start it on 960 * 961 * This is not very scalable on SMP. Double adds are not possible. 962 */ 963 void add_timer_on(struct timer_list *timer, int cpu) 964 { 965 struct tvec_base *new_base = per_cpu_ptr(&tvec_bases, cpu); 966 struct tvec_base *base; 967 unsigned long flags; 968 969 timer_stats_timer_set_start_info(timer); 970 BUG_ON(timer_pending(timer) || !timer->function); 971 972 /* 973 * If @timer was on a different CPU, it should be migrated with the 974 * old base locked to prevent other operations proceeding with the 975 * wrong base locked. See lock_timer_base(). 976 */ 977 base = lock_timer_base(timer, &flags); 978 if (base != new_base) { 979 timer->flags |= TIMER_MIGRATING; 980 981 spin_unlock(&base->lock); 982 base = new_base; 983 spin_lock(&base->lock); 984 WRITE_ONCE(timer->flags, 985 (timer->flags & ~TIMER_BASEMASK) | cpu); 986 } 987 988 debug_activate(timer, timer->expires); 989 internal_add_timer(base, timer); 990 spin_unlock_irqrestore(&base->lock, flags); 991 } 992 EXPORT_SYMBOL_GPL(add_timer_on); 993 994 /** 995 * del_timer - deactive a timer. 996 * @timer: the timer to be deactivated 997 * 998 * del_timer() deactivates a timer - this works on both active and inactive 999 * timers. 1000 * 1001 * The function returns whether it has deactivated a pending timer or not. 1002 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1003 * active timer returns 1.) 1004 */ 1005 int del_timer(struct timer_list *timer) 1006 { 1007 struct tvec_base *base; 1008 unsigned long flags; 1009 int ret = 0; 1010 1011 debug_assert_init(timer); 1012 1013 timer_stats_timer_clear_start_info(timer); 1014 if (timer_pending(timer)) { 1015 base = lock_timer_base(timer, &flags); 1016 ret = detach_if_pending(timer, base, true); 1017 spin_unlock_irqrestore(&base->lock, flags); 1018 } 1019 1020 return ret; 1021 } 1022 EXPORT_SYMBOL(del_timer); 1023 1024 /** 1025 * try_to_del_timer_sync - Try to deactivate a timer 1026 * @timer: timer do del 1027 * 1028 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1029 * exit the timer is not queued and the handler is not running on any CPU. 1030 */ 1031 int try_to_del_timer_sync(struct timer_list *timer) 1032 { 1033 struct tvec_base *base; 1034 unsigned long flags; 1035 int ret = -1; 1036 1037 debug_assert_init(timer); 1038 1039 base = lock_timer_base(timer, &flags); 1040 1041 if (base->running_timer != timer) { 1042 timer_stats_timer_clear_start_info(timer); 1043 ret = detach_if_pending(timer, base, true); 1044 } 1045 spin_unlock_irqrestore(&base->lock, flags); 1046 1047 return ret; 1048 } 1049 EXPORT_SYMBOL(try_to_del_timer_sync); 1050 1051 #ifdef CONFIG_SMP 1052 /** 1053 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1054 * @timer: the timer to be deactivated 1055 * 1056 * This function only differs from del_timer() on SMP: besides deactivating 1057 * the timer it also makes sure the handler has finished executing on other 1058 * CPUs. 1059 * 1060 * Synchronization rules: Callers must prevent restarting of the timer, 1061 * otherwise this function is meaningless. It must not be called from 1062 * interrupt contexts unless the timer is an irqsafe one. The caller must 1063 * not hold locks which would prevent completion of the timer's 1064 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1065 * timer is not queued and the handler is not running on any CPU. 1066 * 1067 * Note: For !irqsafe timers, you must not hold locks that are held in 1068 * interrupt context while calling this function. Even if the lock has 1069 * nothing to do with the timer in question. Here's why: 1070 * 1071 * CPU0 CPU1 1072 * ---- ---- 1073 * <SOFTIRQ> 1074 * call_timer_fn(); 1075 * base->running_timer = mytimer; 1076 * spin_lock_irq(somelock); 1077 * <IRQ> 1078 * spin_lock(somelock); 1079 * del_timer_sync(mytimer); 1080 * while (base->running_timer == mytimer); 1081 * 1082 * Now del_timer_sync() will never return and never release somelock. 1083 * The interrupt on the other CPU is waiting to grab somelock but 1084 * it has interrupted the softirq that CPU0 is waiting to finish. 1085 * 1086 * The function returns whether it has deactivated a pending timer or not. 1087 */ 1088 int del_timer_sync(struct timer_list *timer) 1089 { 1090 #ifdef CONFIG_LOCKDEP 1091 unsigned long flags; 1092 1093 /* 1094 * If lockdep gives a backtrace here, please reference 1095 * the synchronization rules above. 1096 */ 1097 local_irq_save(flags); 1098 lock_map_acquire(&timer->lockdep_map); 1099 lock_map_release(&timer->lockdep_map); 1100 local_irq_restore(flags); 1101 #endif 1102 /* 1103 * don't use it in hardirq context, because it 1104 * could lead to deadlock. 1105 */ 1106 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1107 for (;;) { 1108 int ret = try_to_del_timer_sync(timer); 1109 if (ret >= 0) 1110 return ret; 1111 cpu_relax(); 1112 } 1113 } 1114 EXPORT_SYMBOL(del_timer_sync); 1115 #endif 1116 1117 static int cascade(struct tvec_base *base, struct tvec *tv, int index) 1118 { 1119 /* cascade all the timers from tv up one level */ 1120 struct timer_list *timer; 1121 struct hlist_node *tmp; 1122 struct hlist_head tv_list; 1123 1124 hlist_move_list(tv->vec + index, &tv_list); 1125 1126 /* 1127 * We are removing _all_ timers from the list, so we 1128 * don't have to detach them individually. 1129 */ 1130 hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) { 1131 /* No accounting, while moving them */ 1132 __internal_add_timer(base, timer); 1133 } 1134 1135 return index; 1136 } 1137 1138 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), 1139 unsigned long data) 1140 { 1141 int count = preempt_count(); 1142 1143 #ifdef CONFIG_LOCKDEP 1144 /* 1145 * It is permissible to free the timer from inside the 1146 * function that is called from it, this we need to take into 1147 * account for lockdep too. To avoid bogus "held lock freed" 1148 * warnings as well as problems when looking into 1149 * timer->lockdep_map, make a copy and use that here. 1150 */ 1151 struct lockdep_map lockdep_map; 1152 1153 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1154 #endif 1155 /* 1156 * Couple the lock chain with the lock chain at 1157 * del_timer_sync() by acquiring the lock_map around the fn() 1158 * call here and in del_timer_sync(). 1159 */ 1160 lock_map_acquire(&lockdep_map); 1161 1162 trace_timer_expire_entry(timer); 1163 fn(data); 1164 trace_timer_expire_exit(timer); 1165 1166 lock_map_release(&lockdep_map); 1167 1168 if (count != preempt_count()) { 1169 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1170 fn, count, preempt_count()); 1171 /* 1172 * Restore the preempt count. That gives us a decent 1173 * chance to survive and extract information. If the 1174 * callback kept a lock held, bad luck, but not worse 1175 * than the BUG() we had. 1176 */ 1177 preempt_count_set(count); 1178 } 1179 } 1180 1181 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) 1182 1183 /** 1184 * __run_timers - run all expired timers (if any) on this CPU. 1185 * @base: the timer vector to be processed. 1186 * 1187 * This function cascades all vectors and executes all expired timer 1188 * vectors. 1189 */ 1190 static inline void __run_timers(struct tvec_base *base) 1191 { 1192 struct timer_list *timer; 1193 1194 spin_lock_irq(&base->lock); 1195 1196 while (time_after_eq(jiffies, base->timer_jiffies)) { 1197 struct hlist_head work_list; 1198 struct hlist_head *head = &work_list; 1199 int index; 1200 1201 if (!base->all_timers) { 1202 base->timer_jiffies = jiffies; 1203 break; 1204 } 1205 1206 index = base->timer_jiffies & TVR_MASK; 1207 1208 /* 1209 * Cascade timers: 1210 */ 1211 if (!index && 1212 (!cascade(base, &base->tv2, INDEX(0))) && 1213 (!cascade(base, &base->tv3, INDEX(1))) && 1214 !cascade(base, &base->tv4, INDEX(2))) 1215 cascade(base, &base->tv5, INDEX(3)); 1216 ++base->timer_jiffies; 1217 hlist_move_list(base->tv1.vec + index, head); 1218 while (!hlist_empty(head)) { 1219 void (*fn)(unsigned long); 1220 unsigned long data; 1221 bool irqsafe; 1222 1223 timer = hlist_entry(head->first, struct timer_list, entry); 1224 fn = timer->function; 1225 data = timer->data; 1226 irqsafe = timer->flags & TIMER_IRQSAFE; 1227 1228 timer_stats_account_timer(timer); 1229 1230 base->running_timer = timer; 1231 detach_expired_timer(timer, base); 1232 1233 if (irqsafe) { 1234 spin_unlock(&base->lock); 1235 call_timer_fn(timer, fn, data); 1236 spin_lock(&base->lock); 1237 } else { 1238 spin_unlock_irq(&base->lock); 1239 call_timer_fn(timer, fn, data); 1240 spin_lock_irq(&base->lock); 1241 } 1242 } 1243 } 1244 base->running_timer = NULL; 1245 spin_unlock_irq(&base->lock); 1246 } 1247 1248 #ifdef CONFIG_NO_HZ_COMMON 1249 /* 1250 * Find out when the next timer event is due to happen. This 1251 * is used on S/390 to stop all activity when a CPU is idle. 1252 * This function needs to be called with interrupts disabled. 1253 */ 1254 static unsigned long __next_timer_interrupt(struct tvec_base *base) 1255 { 1256 unsigned long timer_jiffies = base->timer_jiffies; 1257 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; 1258 int index, slot, array, found = 0; 1259 struct timer_list *nte; 1260 struct tvec *varray[4]; 1261 1262 /* Look for timer events in tv1. */ 1263 index = slot = timer_jiffies & TVR_MASK; 1264 do { 1265 hlist_for_each_entry(nte, base->tv1.vec + slot, entry) { 1266 if (nte->flags & TIMER_DEFERRABLE) 1267 continue; 1268 1269 found = 1; 1270 expires = nte->expires; 1271 /* Look at the cascade bucket(s)? */ 1272 if (!index || slot < index) 1273 goto cascade; 1274 return expires; 1275 } 1276 slot = (slot + 1) & TVR_MASK; 1277 } while (slot != index); 1278 1279 cascade: 1280 /* Calculate the next cascade event */ 1281 if (index) 1282 timer_jiffies += TVR_SIZE - index; 1283 timer_jiffies >>= TVR_BITS; 1284 1285 /* Check tv2-tv5. */ 1286 varray[0] = &base->tv2; 1287 varray[1] = &base->tv3; 1288 varray[2] = &base->tv4; 1289 varray[3] = &base->tv5; 1290 1291 for (array = 0; array < 4; array++) { 1292 struct tvec *varp = varray[array]; 1293 1294 index = slot = timer_jiffies & TVN_MASK; 1295 do { 1296 hlist_for_each_entry(nte, varp->vec + slot, entry) { 1297 if (nte->flags & TIMER_DEFERRABLE) 1298 continue; 1299 1300 found = 1; 1301 if (time_before(nte->expires, expires)) 1302 expires = nte->expires; 1303 } 1304 /* 1305 * Do we still search for the first timer or are 1306 * we looking up the cascade buckets ? 1307 */ 1308 if (found) { 1309 /* Look at the cascade bucket(s)? */ 1310 if (!index || slot < index) 1311 break; 1312 return expires; 1313 } 1314 slot = (slot + 1) & TVN_MASK; 1315 } while (slot != index); 1316 1317 if (index) 1318 timer_jiffies += TVN_SIZE - index; 1319 timer_jiffies >>= TVN_BITS; 1320 } 1321 return expires; 1322 } 1323 1324 /* 1325 * Check, if the next hrtimer event is before the next timer wheel 1326 * event: 1327 */ 1328 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1329 { 1330 u64 nextevt = hrtimer_get_next_event(); 1331 1332 /* 1333 * If high resolution timers are enabled 1334 * hrtimer_get_next_event() returns KTIME_MAX. 1335 */ 1336 if (expires <= nextevt) 1337 return expires; 1338 1339 /* 1340 * If the next timer is already expired, return the tick base 1341 * time so the tick is fired immediately. 1342 */ 1343 if (nextevt <= basem) 1344 return basem; 1345 1346 /* 1347 * Round up to the next jiffie. High resolution timers are 1348 * off, so the hrtimers are expired in the tick and we need to 1349 * make sure that this tick really expires the timer to avoid 1350 * a ping pong of the nohz stop code. 1351 * 1352 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1353 */ 1354 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1355 } 1356 1357 /** 1358 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1359 * @basej: base time jiffies 1360 * @basem: base time clock monotonic 1361 * 1362 * Returns the tick aligned clock monotonic time of the next pending 1363 * timer or KTIME_MAX if no timer is pending. 1364 */ 1365 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1366 { 1367 struct tvec_base *base = this_cpu_ptr(&tvec_bases); 1368 u64 expires = KTIME_MAX; 1369 unsigned long nextevt; 1370 1371 /* 1372 * Pretend that there is no timer pending if the cpu is offline. 1373 * Possible pending timers will be migrated later to an active cpu. 1374 */ 1375 if (cpu_is_offline(smp_processor_id())) 1376 return expires; 1377 1378 spin_lock(&base->lock); 1379 if (base->active_timers) { 1380 if (time_before_eq(base->next_timer, base->timer_jiffies)) 1381 base->next_timer = __next_timer_interrupt(base); 1382 nextevt = base->next_timer; 1383 if (time_before_eq(nextevt, basej)) 1384 expires = basem; 1385 else 1386 expires = basem + (nextevt - basej) * TICK_NSEC; 1387 } 1388 spin_unlock(&base->lock); 1389 1390 return cmp_next_hrtimer_event(basem, expires); 1391 } 1392 #endif 1393 1394 /* 1395 * Called from the timer interrupt handler to charge one tick to the current 1396 * process. user_tick is 1 if the tick is user time, 0 for system. 1397 */ 1398 void update_process_times(int user_tick) 1399 { 1400 struct task_struct *p = current; 1401 1402 /* Note: this timer irq context must be accounted for as well. */ 1403 account_process_tick(p, user_tick); 1404 run_local_timers(); 1405 rcu_check_callbacks(user_tick); 1406 #ifdef CONFIG_IRQ_WORK 1407 if (in_irq()) 1408 irq_work_tick(); 1409 #endif 1410 scheduler_tick(); 1411 run_posix_cpu_timers(p); 1412 } 1413 1414 /* 1415 * This function runs timers and the timer-tq in bottom half context. 1416 */ 1417 static void run_timer_softirq(struct softirq_action *h) 1418 { 1419 struct tvec_base *base = this_cpu_ptr(&tvec_bases); 1420 1421 if (time_after_eq(jiffies, base->timer_jiffies)) 1422 __run_timers(base); 1423 } 1424 1425 /* 1426 * Called by the local, per-CPU timer interrupt on SMP. 1427 */ 1428 void run_local_timers(void) 1429 { 1430 hrtimer_run_queues(); 1431 raise_softirq(TIMER_SOFTIRQ); 1432 } 1433 1434 #ifdef __ARCH_WANT_SYS_ALARM 1435 1436 /* 1437 * For backwards compatibility? This can be done in libc so Alpha 1438 * and all newer ports shouldn't need it. 1439 */ 1440 SYSCALL_DEFINE1(alarm, unsigned int, seconds) 1441 { 1442 return alarm_setitimer(seconds); 1443 } 1444 1445 #endif 1446 1447 static void process_timeout(unsigned long __data) 1448 { 1449 wake_up_process((struct task_struct *)__data); 1450 } 1451 1452 /** 1453 * schedule_timeout - sleep until timeout 1454 * @timeout: timeout value in jiffies 1455 * 1456 * Make the current task sleep until @timeout jiffies have 1457 * elapsed. The routine will return immediately unless 1458 * the current task state has been set (see set_current_state()). 1459 * 1460 * You can set the task state as follows - 1461 * 1462 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1463 * pass before the routine returns. The routine will return 0 1464 * 1465 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1466 * delivered to the current task. In this case the remaining time 1467 * in jiffies will be returned, or 0 if the timer expired in time 1468 * 1469 * The current task state is guaranteed to be TASK_RUNNING when this 1470 * routine returns. 1471 * 1472 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1473 * the CPU away without a bound on the timeout. In this case the return 1474 * value will be %MAX_SCHEDULE_TIMEOUT. 1475 * 1476 * In all cases the return value is guaranteed to be non-negative. 1477 */ 1478 signed long __sched schedule_timeout(signed long timeout) 1479 { 1480 struct timer_list timer; 1481 unsigned long expire; 1482 1483 switch (timeout) 1484 { 1485 case MAX_SCHEDULE_TIMEOUT: 1486 /* 1487 * These two special cases are useful to be comfortable 1488 * in the caller. Nothing more. We could take 1489 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1490 * but I' d like to return a valid offset (>=0) to allow 1491 * the caller to do everything it want with the retval. 1492 */ 1493 schedule(); 1494 goto out; 1495 default: 1496 /* 1497 * Another bit of PARANOID. Note that the retval will be 1498 * 0 since no piece of kernel is supposed to do a check 1499 * for a negative retval of schedule_timeout() (since it 1500 * should never happens anyway). You just have the printk() 1501 * that will tell you if something is gone wrong and where. 1502 */ 1503 if (timeout < 0) { 1504 printk(KERN_ERR "schedule_timeout: wrong timeout " 1505 "value %lx\n", timeout); 1506 dump_stack(); 1507 current->state = TASK_RUNNING; 1508 goto out; 1509 } 1510 } 1511 1512 expire = timeout + jiffies; 1513 1514 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); 1515 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED); 1516 schedule(); 1517 del_singleshot_timer_sync(&timer); 1518 1519 /* Remove the timer from the object tracker */ 1520 destroy_timer_on_stack(&timer); 1521 1522 timeout = expire - jiffies; 1523 1524 out: 1525 return timeout < 0 ? 0 : timeout; 1526 } 1527 EXPORT_SYMBOL(schedule_timeout); 1528 1529 /* 1530 * We can use __set_current_state() here because schedule_timeout() calls 1531 * schedule() unconditionally. 1532 */ 1533 signed long __sched schedule_timeout_interruptible(signed long timeout) 1534 { 1535 __set_current_state(TASK_INTERRUPTIBLE); 1536 return schedule_timeout(timeout); 1537 } 1538 EXPORT_SYMBOL(schedule_timeout_interruptible); 1539 1540 signed long __sched schedule_timeout_killable(signed long timeout) 1541 { 1542 __set_current_state(TASK_KILLABLE); 1543 return schedule_timeout(timeout); 1544 } 1545 EXPORT_SYMBOL(schedule_timeout_killable); 1546 1547 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1548 { 1549 __set_current_state(TASK_UNINTERRUPTIBLE); 1550 return schedule_timeout(timeout); 1551 } 1552 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1553 1554 /* 1555 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1556 * to load average. 1557 */ 1558 signed long __sched schedule_timeout_idle(signed long timeout) 1559 { 1560 __set_current_state(TASK_IDLE); 1561 return schedule_timeout(timeout); 1562 } 1563 EXPORT_SYMBOL(schedule_timeout_idle); 1564 1565 #ifdef CONFIG_HOTPLUG_CPU 1566 static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head) 1567 { 1568 struct timer_list *timer; 1569 int cpu = new_base->cpu; 1570 1571 while (!hlist_empty(head)) { 1572 timer = hlist_entry(head->first, struct timer_list, entry); 1573 /* We ignore the accounting on the dying cpu */ 1574 detach_timer(timer, false); 1575 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1576 internal_add_timer(new_base, timer); 1577 } 1578 } 1579 1580 static void migrate_timers(int cpu) 1581 { 1582 struct tvec_base *old_base; 1583 struct tvec_base *new_base; 1584 int i; 1585 1586 BUG_ON(cpu_online(cpu)); 1587 old_base = per_cpu_ptr(&tvec_bases, cpu); 1588 new_base = get_cpu_ptr(&tvec_bases); 1589 /* 1590 * The caller is globally serialized and nobody else 1591 * takes two locks at once, deadlock is not possible. 1592 */ 1593 spin_lock_irq(&new_base->lock); 1594 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1595 1596 BUG_ON(old_base->running_timer); 1597 1598 for (i = 0; i < TVR_SIZE; i++) 1599 migrate_timer_list(new_base, old_base->tv1.vec + i); 1600 for (i = 0; i < TVN_SIZE; i++) { 1601 migrate_timer_list(new_base, old_base->tv2.vec + i); 1602 migrate_timer_list(new_base, old_base->tv3.vec + i); 1603 migrate_timer_list(new_base, old_base->tv4.vec + i); 1604 migrate_timer_list(new_base, old_base->tv5.vec + i); 1605 } 1606 1607 old_base->active_timers = 0; 1608 old_base->all_timers = 0; 1609 1610 spin_unlock(&old_base->lock); 1611 spin_unlock_irq(&new_base->lock); 1612 put_cpu_ptr(&tvec_bases); 1613 } 1614 1615 static int timer_cpu_notify(struct notifier_block *self, 1616 unsigned long action, void *hcpu) 1617 { 1618 switch (action) { 1619 case CPU_DEAD: 1620 case CPU_DEAD_FROZEN: 1621 migrate_timers((long)hcpu); 1622 break; 1623 default: 1624 break; 1625 } 1626 1627 return NOTIFY_OK; 1628 } 1629 1630 static inline void timer_register_cpu_notifier(void) 1631 { 1632 cpu_notifier(timer_cpu_notify, 0); 1633 } 1634 #else 1635 static inline void timer_register_cpu_notifier(void) { } 1636 #endif /* CONFIG_HOTPLUG_CPU */ 1637 1638 static void __init init_timer_cpu(int cpu) 1639 { 1640 struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu); 1641 1642 base->cpu = cpu; 1643 spin_lock_init(&base->lock); 1644 1645 base->timer_jiffies = jiffies; 1646 base->next_timer = base->timer_jiffies; 1647 } 1648 1649 static void __init init_timer_cpus(void) 1650 { 1651 int cpu; 1652 1653 for_each_possible_cpu(cpu) 1654 init_timer_cpu(cpu); 1655 } 1656 1657 void __init init_timers(void) 1658 { 1659 init_timer_cpus(); 1660 init_timer_stats(); 1661 timer_register_cpu_notifier(); 1662 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1663 } 1664 1665 /** 1666 * msleep - sleep safely even with waitqueue interruptions 1667 * @msecs: Time in milliseconds to sleep for 1668 */ 1669 void msleep(unsigned int msecs) 1670 { 1671 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1672 1673 while (timeout) 1674 timeout = schedule_timeout_uninterruptible(timeout); 1675 } 1676 1677 EXPORT_SYMBOL(msleep); 1678 1679 /** 1680 * msleep_interruptible - sleep waiting for signals 1681 * @msecs: Time in milliseconds to sleep for 1682 */ 1683 unsigned long msleep_interruptible(unsigned int msecs) 1684 { 1685 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1686 1687 while (timeout && !signal_pending(current)) 1688 timeout = schedule_timeout_interruptible(timeout); 1689 return jiffies_to_msecs(timeout); 1690 } 1691 1692 EXPORT_SYMBOL(msleep_interruptible); 1693 1694 static void __sched do_usleep_range(unsigned long min, unsigned long max) 1695 { 1696 ktime_t kmin; 1697 u64 delta; 1698 1699 kmin = ktime_set(0, min * NSEC_PER_USEC); 1700 delta = (u64)(max - min) * NSEC_PER_USEC; 1701 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL); 1702 } 1703 1704 /** 1705 * usleep_range - Drop in replacement for udelay where wakeup is flexible 1706 * @min: Minimum time in usecs to sleep 1707 * @max: Maximum time in usecs to sleep 1708 */ 1709 void __sched usleep_range(unsigned long min, unsigned long max) 1710 { 1711 __set_current_state(TASK_UNINTERRUPTIBLE); 1712 do_usleep_range(min, max); 1713 } 1714 EXPORT_SYMBOL(usleep_range); 1715