1 /* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22 #include <linux/kernel_stat.h> 23 #include <linux/export.h> 24 #include <linux/interrupt.h> 25 #include <linux/percpu.h> 26 #include <linux/init.h> 27 #include <linux/mm.h> 28 #include <linux/swap.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/notifier.h> 31 #include <linux/thread_info.h> 32 #include <linux/time.h> 33 #include <linux/jiffies.h> 34 #include <linux/posix-timers.h> 35 #include <linux/cpu.h> 36 #include <linux/syscalls.h> 37 #include <linux/delay.h> 38 #include <linux/tick.h> 39 #include <linux/kallsyms.h> 40 #include <linux/irq_work.h> 41 #include <linux/sched/signal.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/sched/nohz.h> 44 #include <linux/sched/debug.h> 45 #include <linux/slab.h> 46 #include <linux/compat.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/div64.h> 51 #include <asm/timex.h> 52 #include <asm/io.h> 53 54 #include "tick-internal.h" 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/timer.h> 58 59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 60 61 EXPORT_SYMBOL(jiffies_64); 62 63 /* 64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 66 * level has a different granularity. 67 * 68 * The level granularity is: LVL_CLK_DIV ^ lvl 69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 70 * 71 * The array level of a newly armed timer depends on the relative expiry 72 * time. The farther the expiry time is away the higher the array level and 73 * therefor the granularity becomes. 74 * 75 * Contrary to the original timer wheel implementation, which aims for 'exact' 76 * expiry of the timers, this implementation removes the need for recascading 77 * the timers into the lower array levels. The previous 'classic' timer wheel 78 * implementation of the kernel already violated the 'exact' expiry by adding 79 * slack to the expiry time to provide batched expiration. The granularity 80 * levels provide implicit batching. 81 * 82 * This is an optimization of the original timer wheel implementation for the 83 * majority of the timer wheel use cases: timeouts. The vast majority of 84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 85 * the timeout expires it indicates that normal operation is disturbed, so it 86 * does not matter much whether the timeout comes with a slight delay. 87 * 88 * The only exception to this are networking timers with a small expiry 89 * time. They rely on the granularity. Those fit into the first wheel level, 90 * which has HZ granularity. 91 * 92 * We don't have cascading anymore. timers with a expiry time above the 93 * capacity of the last wheel level are force expired at the maximum timeout 94 * value of the last wheel level. From data sampling we know that the maximum 95 * value observed is 5 days (network connection tracking), so this should not 96 * be an issue. 97 * 98 * The currently chosen array constants values are a good compromise between 99 * array size and granularity. 100 * 101 * This results in the following granularity and range levels: 102 * 103 * HZ 1000 steps 104 * Level Offset Granularity Range 105 * 0 0 1 ms 0 ms - 63 ms 106 * 1 64 8 ms 64 ms - 511 ms 107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 114 * 115 * HZ 300 116 * Level Offset Granularity Range 117 * 0 0 3 ms 0 ms - 210 ms 118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 126 * 127 * HZ 250 128 * Level Offset Granularity Range 129 * 0 0 4 ms 0 ms - 255 ms 130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 138 * 139 * HZ 100 140 * Level Offset Granularity Range 141 * 0 0 10 ms 0 ms - 630 ms 142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 149 */ 150 151 /* Clock divisor for the next level */ 152 #define LVL_CLK_SHIFT 3 153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 157 158 /* 159 * The time start value for each level to select the bucket at enqueue 160 * time. 161 */ 162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 163 164 /* Size of each clock level */ 165 #define LVL_BITS 6 166 #define LVL_SIZE (1UL << LVL_BITS) 167 #define LVL_MASK (LVL_SIZE - 1) 168 #define LVL_OFFS(n) ((n) * LVL_SIZE) 169 170 /* Level depth */ 171 #if HZ > 100 172 # define LVL_DEPTH 9 173 # else 174 # define LVL_DEPTH 8 175 #endif 176 177 /* The cutoff (max. capacity of the wheel) */ 178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 180 181 /* 182 * The resulting wheel size. If NOHZ is configured we allocate two 183 * wheels so we have a separate storage for the deferrable timers. 184 */ 185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 186 187 #ifdef CONFIG_NO_HZ_COMMON 188 # define NR_BASES 2 189 # define BASE_STD 0 190 # define BASE_DEF 1 191 #else 192 # define NR_BASES 1 193 # define BASE_STD 0 194 # define BASE_DEF 0 195 #endif 196 197 struct timer_base { 198 raw_spinlock_t lock; 199 struct timer_list *running_timer; 200 unsigned long clk; 201 unsigned long next_expiry; 202 unsigned int cpu; 203 bool migration_enabled; 204 bool nohz_active; 205 bool is_idle; 206 bool must_forward_clk; 207 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 208 struct hlist_head vectors[WHEEL_SIZE]; 209 } ____cacheline_aligned; 210 211 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 212 213 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 214 unsigned int sysctl_timer_migration = 1; 215 216 void timers_update_migration(bool update_nohz) 217 { 218 bool on = sysctl_timer_migration && tick_nohz_active; 219 unsigned int cpu; 220 221 /* Avoid the loop, if nothing to update */ 222 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on) 223 return; 224 225 for_each_possible_cpu(cpu) { 226 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on; 227 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on; 228 per_cpu(hrtimer_bases.migration_enabled, cpu) = on; 229 if (!update_nohz) 230 continue; 231 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true; 232 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true; 233 per_cpu(hrtimer_bases.nohz_active, cpu) = true; 234 } 235 } 236 237 int timer_migration_handler(struct ctl_table *table, int write, 238 void __user *buffer, size_t *lenp, 239 loff_t *ppos) 240 { 241 static DEFINE_MUTEX(mutex); 242 int ret; 243 244 mutex_lock(&mutex); 245 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 246 if (!ret && write) 247 timers_update_migration(false); 248 mutex_unlock(&mutex); 249 return ret; 250 } 251 #endif 252 253 static unsigned long round_jiffies_common(unsigned long j, int cpu, 254 bool force_up) 255 { 256 int rem; 257 unsigned long original = j; 258 259 /* 260 * We don't want all cpus firing their timers at once hitting the 261 * same lock or cachelines, so we skew each extra cpu with an extra 262 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 263 * already did this. 264 * The skew is done by adding 3*cpunr, then round, then subtract this 265 * extra offset again. 266 */ 267 j += cpu * 3; 268 269 rem = j % HZ; 270 271 /* 272 * If the target jiffie is just after a whole second (which can happen 273 * due to delays of the timer irq, long irq off times etc etc) then 274 * we should round down to the whole second, not up. Use 1/4th second 275 * as cutoff for this rounding as an extreme upper bound for this. 276 * But never round down if @force_up is set. 277 */ 278 if (rem < HZ/4 && !force_up) /* round down */ 279 j = j - rem; 280 else /* round up */ 281 j = j - rem + HZ; 282 283 /* now that we have rounded, subtract the extra skew again */ 284 j -= cpu * 3; 285 286 /* 287 * Make sure j is still in the future. Otherwise return the 288 * unmodified value. 289 */ 290 return time_is_after_jiffies(j) ? j : original; 291 } 292 293 /** 294 * __round_jiffies - function to round jiffies to a full second 295 * @j: the time in (absolute) jiffies that should be rounded 296 * @cpu: the processor number on which the timeout will happen 297 * 298 * __round_jiffies() rounds an absolute time in the future (in jiffies) 299 * up or down to (approximately) full seconds. This is useful for timers 300 * for which the exact time they fire does not matter too much, as long as 301 * they fire approximately every X seconds. 302 * 303 * By rounding these timers to whole seconds, all such timers will fire 304 * at the same time, rather than at various times spread out. The goal 305 * of this is to have the CPU wake up less, which saves power. 306 * 307 * The exact rounding is skewed for each processor to avoid all 308 * processors firing at the exact same time, which could lead 309 * to lock contention or spurious cache line bouncing. 310 * 311 * The return value is the rounded version of the @j parameter. 312 */ 313 unsigned long __round_jiffies(unsigned long j, int cpu) 314 { 315 return round_jiffies_common(j, cpu, false); 316 } 317 EXPORT_SYMBOL_GPL(__round_jiffies); 318 319 /** 320 * __round_jiffies_relative - function to round jiffies to a full second 321 * @j: the time in (relative) jiffies that should be rounded 322 * @cpu: the processor number on which the timeout will happen 323 * 324 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 325 * up or down to (approximately) full seconds. This is useful for timers 326 * for which the exact time they fire does not matter too much, as long as 327 * they fire approximately every X seconds. 328 * 329 * By rounding these timers to whole seconds, all such timers will fire 330 * at the same time, rather than at various times spread out. The goal 331 * of this is to have the CPU wake up less, which saves power. 332 * 333 * The exact rounding is skewed for each processor to avoid all 334 * processors firing at the exact same time, which could lead 335 * to lock contention or spurious cache line bouncing. 336 * 337 * The return value is the rounded version of the @j parameter. 338 */ 339 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 340 { 341 unsigned long j0 = jiffies; 342 343 /* Use j0 because jiffies might change while we run */ 344 return round_jiffies_common(j + j0, cpu, false) - j0; 345 } 346 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 347 348 /** 349 * round_jiffies - function to round jiffies to a full second 350 * @j: the time in (absolute) jiffies that should be rounded 351 * 352 * round_jiffies() rounds an absolute time in the future (in jiffies) 353 * up or down to (approximately) full seconds. This is useful for timers 354 * for which the exact time they fire does not matter too much, as long as 355 * they fire approximately every X seconds. 356 * 357 * By rounding these timers to whole seconds, all such timers will fire 358 * at the same time, rather than at various times spread out. The goal 359 * of this is to have the CPU wake up less, which saves power. 360 * 361 * The return value is the rounded version of the @j parameter. 362 */ 363 unsigned long round_jiffies(unsigned long j) 364 { 365 return round_jiffies_common(j, raw_smp_processor_id(), false); 366 } 367 EXPORT_SYMBOL_GPL(round_jiffies); 368 369 /** 370 * round_jiffies_relative - function to round jiffies to a full second 371 * @j: the time in (relative) jiffies that should be rounded 372 * 373 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 374 * up or down to (approximately) full seconds. This is useful for timers 375 * for which the exact time they fire does not matter too much, as long as 376 * they fire approximately every X seconds. 377 * 378 * By rounding these timers to whole seconds, all such timers will fire 379 * at the same time, rather than at various times spread out. The goal 380 * of this is to have the CPU wake up less, which saves power. 381 * 382 * The return value is the rounded version of the @j parameter. 383 */ 384 unsigned long round_jiffies_relative(unsigned long j) 385 { 386 return __round_jiffies_relative(j, raw_smp_processor_id()); 387 } 388 EXPORT_SYMBOL_GPL(round_jiffies_relative); 389 390 /** 391 * __round_jiffies_up - function to round jiffies up to a full second 392 * @j: the time in (absolute) jiffies that should be rounded 393 * @cpu: the processor number on which the timeout will happen 394 * 395 * This is the same as __round_jiffies() except that it will never 396 * round down. This is useful for timeouts for which the exact time 397 * of firing does not matter too much, as long as they don't fire too 398 * early. 399 */ 400 unsigned long __round_jiffies_up(unsigned long j, int cpu) 401 { 402 return round_jiffies_common(j, cpu, true); 403 } 404 EXPORT_SYMBOL_GPL(__round_jiffies_up); 405 406 /** 407 * __round_jiffies_up_relative - function to round jiffies up to a full second 408 * @j: the time in (relative) jiffies that should be rounded 409 * @cpu: the processor number on which the timeout will happen 410 * 411 * This is the same as __round_jiffies_relative() except that it will never 412 * round down. This is useful for timeouts for which the exact time 413 * of firing does not matter too much, as long as they don't fire too 414 * early. 415 */ 416 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 417 { 418 unsigned long j0 = jiffies; 419 420 /* Use j0 because jiffies might change while we run */ 421 return round_jiffies_common(j + j0, cpu, true) - j0; 422 } 423 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 424 425 /** 426 * round_jiffies_up - function to round jiffies up to a full second 427 * @j: the time in (absolute) jiffies that should be rounded 428 * 429 * This is the same as round_jiffies() except that it will never 430 * round down. This is useful for timeouts for which the exact time 431 * of firing does not matter too much, as long as they don't fire too 432 * early. 433 */ 434 unsigned long round_jiffies_up(unsigned long j) 435 { 436 return round_jiffies_common(j, raw_smp_processor_id(), true); 437 } 438 EXPORT_SYMBOL_GPL(round_jiffies_up); 439 440 /** 441 * round_jiffies_up_relative - function to round jiffies up to a full second 442 * @j: the time in (relative) jiffies that should be rounded 443 * 444 * This is the same as round_jiffies_relative() except that it will never 445 * round down. This is useful for timeouts for which the exact time 446 * of firing does not matter too much, as long as they don't fire too 447 * early. 448 */ 449 unsigned long round_jiffies_up_relative(unsigned long j) 450 { 451 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 452 } 453 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 454 455 456 static inline unsigned int timer_get_idx(struct timer_list *timer) 457 { 458 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 459 } 460 461 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 462 { 463 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 464 idx << TIMER_ARRAYSHIFT; 465 } 466 467 /* 468 * Helper function to calculate the array index for a given expiry 469 * time. 470 */ 471 static inline unsigned calc_index(unsigned expires, unsigned lvl) 472 { 473 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 474 return LVL_OFFS(lvl) + (expires & LVL_MASK); 475 } 476 477 static int calc_wheel_index(unsigned long expires, unsigned long clk) 478 { 479 unsigned long delta = expires - clk; 480 unsigned int idx; 481 482 if (delta < LVL_START(1)) { 483 idx = calc_index(expires, 0); 484 } else if (delta < LVL_START(2)) { 485 idx = calc_index(expires, 1); 486 } else if (delta < LVL_START(3)) { 487 idx = calc_index(expires, 2); 488 } else if (delta < LVL_START(4)) { 489 idx = calc_index(expires, 3); 490 } else if (delta < LVL_START(5)) { 491 idx = calc_index(expires, 4); 492 } else if (delta < LVL_START(6)) { 493 idx = calc_index(expires, 5); 494 } else if (delta < LVL_START(7)) { 495 idx = calc_index(expires, 6); 496 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 497 idx = calc_index(expires, 7); 498 } else if ((long) delta < 0) { 499 idx = clk & LVL_MASK; 500 } else { 501 /* 502 * Force expire obscene large timeouts to expire at the 503 * capacity limit of the wheel. 504 */ 505 if (expires >= WHEEL_TIMEOUT_CUTOFF) 506 expires = WHEEL_TIMEOUT_MAX; 507 508 idx = calc_index(expires, LVL_DEPTH - 1); 509 } 510 return idx; 511 } 512 513 /* 514 * Enqueue the timer into the hash bucket, mark it pending in 515 * the bitmap and store the index in the timer flags. 516 */ 517 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 518 unsigned int idx) 519 { 520 hlist_add_head(&timer->entry, base->vectors + idx); 521 __set_bit(idx, base->pending_map); 522 timer_set_idx(timer, idx); 523 } 524 525 static void 526 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 527 { 528 unsigned int idx; 529 530 idx = calc_wheel_index(timer->expires, base->clk); 531 enqueue_timer(base, timer, idx); 532 } 533 534 static void 535 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 536 { 537 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 538 return; 539 540 /* 541 * TODO: This wants some optimizing similar to the code below, but we 542 * will do that when we switch from push to pull for deferrable timers. 543 */ 544 if (timer->flags & TIMER_DEFERRABLE) { 545 if (tick_nohz_full_cpu(base->cpu)) 546 wake_up_nohz_cpu(base->cpu); 547 return; 548 } 549 550 /* 551 * We might have to IPI the remote CPU if the base is idle and the 552 * timer is not deferrable. If the other CPU is on the way to idle 553 * then it can't set base->is_idle as we hold the base lock: 554 */ 555 if (!base->is_idle) 556 return; 557 558 /* Check whether this is the new first expiring timer: */ 559 if (time_after_eq(timer->expires, base->next_expiry)) 560 return; 561 562 /* 563 * Set the next expiry time and kick the CPU so it can reevaluate the 564 * wheel: 565 */ 566 base->next_expiry = timer->expires; 567 wake_up_nohz_cpu(base->cpu); 568 } 569 570 static void 571 internal_add_timer(struct timer_base *base, struct timer_list *timer) 572 { 573 __internal_add_timer(base, timer); 574 trigger_dyntick_cpu(base, timer); 575 } 576 577 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 578 579 static struct debug_obj_descr timer_debug_descr; 580 581 static void *timer_debug_hint(void *addr) 582 { 583 return ((struct timer_list *) addr)->function; 584 } 585 586 static bool timer_is_static_object(void *addr) 587 { 588 struct timer_list *timer = addr; 589 590 return (timer->entry.pprev == NULL && 591 timer->entry.next == TIMER_ENTRY_STATIC); 592 } 593 594 /* 595 * fixup_init is called when: 596 * - an active object is initialized 597 */ 598 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 599 { 600 struct timer_list *timer = addr; 601 602 switch (state) { 603 case ODEBUG_STATE_ACTIVE: 604 del_timer_sync(timer); 605 debug_object_init(timer, &timer_debug_descr); 606 return true; 607 default: 608 return false; 609 } 610 } 611 612 /* Stub timer callback for improperly used timers. */ 613 static void stub_timer(struct timer_list *unused) 614 { 615 WARN_ON(1); 616 } 617 618 /* 619 * fixup_activate is called when: 620 * - an active object is activated 621 * - an unknown non-static object is activated 622 */ 623 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 624 { 625 struct timer_list *timer = addr; 626 627 switch (state) { 628 case ODEBUG_STATE_NOTAVAILABLE: 629 timer_setup(timer, stub_timer, 0); 630 return true; 631 632 case ODEBUG_STATE_ACTIVE: 633 WARN_ON(1); 634 635 default: 636 return false; 637 } 638 } 639 640 /* 641 * fixup_free is called when: 642 * - an active object is freed 643 */ 644 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 645 { 646 struct timer_list *timer = addr; 647 648 switch (state) { 649 case ODEBUG_STATE_ACTIVE: 650 del_timer_sync(timer); 651 debug_object_free(timer, &timer_debug_descr); 652 return true; 653 default: 654 return false; 655 } 656 } 657 658 /* 659 * fixup_assert_init is called when: 660 * - an untracked/uninit-ed object is found 661 */ 662 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 663 { 664 struct timer_list *timer = addr; 665 666 switch (state) { 667 case ODEBUG_STATE_NOTAVAILABLE: 668 timer_setup(timer, stub_timer, 0); 669 return true; 670 default: 671 return false; 672 } 673 } 674 675 static struct debug_obj_descr timer_debug_descr = { 676 .name = "timer_list", 677 .debug_hint = timer_debug_hint, 678 .is_static_object = timer_is_static_object, 679 .fixup_init = timer_fixup_init, 680 .fixup_activate = timer_fixup_activate, 681 .fixup_free = timer_fixup_free, 682 .fixup_assert_init = timer_fixup_assert_init, 683 }; 684 685 static inline void debug_timer_init(struct timer_list *timer) 686 { 687 debug_object_init(timer, &timer_debug_descr); 688 } 689 690 static inline void debug_timer_activate(struct timer_list *timer) 691 { 692 debug_object_activate(timer, &timer_debug_descr); 693 } 694 695 static inline void debug_timer_deactivate(struct timer_list *timer) 696 { 697 debug_object_deactivate(timer, &timer_debug_descr); 698 } 699 700 static inline void debug_timer_free(struct timer_list *timer) 701 { 702 debug_object_free(timer, &timer_debug_descr); 703 } 704 705 static inline void debug_timer_assert_init(struct timer_list *timer) 706 { 707 debug_object_assert_init(timer, &timer_debug_descr); 708 } 709 710 static void do_init_timer(struct timer_list *timer, 711 void (*func)(struct timer_list *), 712 unsigned int flags, 713 const char *name, struct lock_class_key *key); 714 715 void init_timer_on_stack_key(struct timer_list *timer, 716 void (*func)(struct timer_list *), 717 unsigned int flags, 718 const char *name, struct lock_class_key *key) 719 { 720 debug_object_init_on_stack(timer, &timer_debug_descr); 721 do_init_timer(timer, func, flags, name, key); 722 } 723 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 724 725 void destroy_timer_on_stack(struct timer_list *timer) 726 { 727 debug_object_free(timer, &timer_debug_descr); 728 } 729 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 730 731 #else 732 static inline void debug_timer_init(struct timer_list *timer) { } 733 static inline void debug_timer_activate(struct timer_list *timer) { } 734 static inline void debug_timer_deactivate(struct timer_list *timer) { } 735 static inline void debug_timer_assert_init(struct timer_list *timer) { } 736 #endif 737 738 static inline void debug_init(struct timer_list *timer) 739 { 740 debug_timer_init(timer); 741 trace_timer_init(timer); 742 } 743 744 static inline void 745 debug_activate(struct timer_list *timer, unsigned long expires) 746 { 747 debug_timer_activate(timer); 748 trace_timer_start(timer, expires, timer->flags); 749 } 750 751 static inline void debug_deactivate(struct timer_list *timer) 752 { 753 debug_timer_deactivate(timer); 754 trace_timer_cancel(timer); 755 } 756 757 static inline void debug_assert_init(struct timer_list *timer) 758 { 759 debug_timer_assert_init(timer); 760 } 761 762 static void do_init_timer(struct timer_list *timer, 763 void (*func)(struct timer_list *), 764 unsigned int flags, 765 const char *name, struct lock_class_key *key) 766 { 767 timer->entry.pprev = NULL; 768 timer->function = func; 769 timer->flags = flags | raw_smp_processor_id(); 770 lockdep_init_map(&timer->lockdep_map, name, key, 0); 771 } 772 773 /** 774 * init_timer_key - initialize a timer 775 * @timer: the timer to be initialized 776 * @func: timer callback function 777 * @flags: timer flags 778 * @name: name of the timer 779 * @key: lockdep class key of the fake lock used for tracking timer 780 * sync lock dependencies 781 * 782 * init_timer_key() must be done to a timer prior calling *any* of the 783 * other timer functions. 784 */ 785 void init_timer_key(struct timer_list *timer, 786 void (*func)(struct timer_list *), unsigned int flags, 787 const char *name, struct lock_class_key *key) 788 { 789 debug_init(timer); 790 do_init_timer(timer, func, flags, name, key); 791 } 792 EXPORT_SYMBOL(init_timer_key); 793 794 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 795 { 796 struct hlist_node *entry = &timer->entry; 797 798 debug_deactivate(timer); 799 800 __hlist_del(entry); 801 if (clear_pending) 802 entry->pprev = NULL; 803 entry->next = LIST_POISON2; 804 } 805 806 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 807 bool clear_pending) 808 { 809 unsigned idx = timer_get_idx(timer); 810 811 if (!timer_pending(timer)) 812 return 0; 813 814 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 815 __clear_bit(idx, base->pending_map); 816 817 detach_timer(timer, clear_pending); 818 return 1; 819 } 820 821 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 822 { 823 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 824 825 /* 826 * If the timer is deferrable and NO_HZ_COMMON is set then we need 827 * to use the deferrable base. 828 */ 829 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 830 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 831 return base; 832 } 833 834 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 835 { 836 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 837 838 /* 839 * If the timer is deferrable and NO_HZ_COMMON is set then we need 840 * to use the deferrable base. 841 */ 842 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 843 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 844 return base; 845 } 846 847 static inline struct timer_base *get_timer_base(u32 tflags) 848 { 849 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 850 } 851 852 #ifdef CONFIG_NO_HZ_COMMON 853 static inline struct timer_base * 854 get_target_base(struct timer_base *base, unsigned tflags) 855 { 856 #ifdef CONFIG_SMP 857 if ((tflags & TIMER_PINNED) || !base->migration_enabled) 858 return get_timer_this_cpu_base(tflags); 859 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 860 #else 861 return get_timer_this_cpu_base(tflags); 862 #endif 863 } 864 865 static inline void forward_timer_base(struct timer_base *base) 866 { 867 unsigned long jnow; 868 869 /* 870 * We only forward the base when we are idle or have just come out of 871 * idle (must_forward_clk logic), and have a delta between base clock 872 * and jiffies. In the common case, run_timers will take care of it. 873 */ 874 if (likely(!base->must_forward_clk)) 875 return; 876 877 jnow = READ_ONCE(jiffies); 878 base->must_forward_clk = base->is_idle; 879 if ((long)(jnow - base->clk) < 2) 880 return; 881 882 /* 883 * If the next expiry value is > jiffies, then we fast forward to 884 * jiffies otherwise we forward to the next expiry value. 885 */ 886 if (time_after(base->next_expiry, jnow)) 887 base->clk = jnow; 888 else 889 base->clk = base->next_expiry; 890 } 891 #else 892 static inline struct timer_base * 893 get_target_base(struct timer_base *base, unsigned tflags) 894 { 895 return get_timer_this_cpu_base(tflags); 896 } 897 898 static inline void forward_timer_base(struct timer_base *base) { } 899 #endif 900 901 902 /* 903 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 904 * that all timers which are tied to this base are locked, and the base itself 905 * is locked too. 906 * 907 * So __run_timers/migrate_timers can safely modify all timers which could 908 * be found in the base->vectors array. 909 * 910 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 911 * to wait until the migration is done. 912 */ 913 static struct timer_base *lock_timer_base(struct timer_list *timer, 914 unsigned long *flags) 915 __acquires(timer->base->lock) 916 { 917 for (;;) { 918 struct timer_base *base; 919 u32 tf; 920 921 /* 922 * We need to use READ_ONCE() here, otherwise the compiler 923 * might re-read @tf between the check for TIMER_MIGRATING 924 * and spin_lock(). 925 */ 926 tf = READ_ONCE(timer->flags); 927 928 if (!(tf & TIMER_MIGRATING)) { 929 base = get_timer_base(tf); 930 raw_spin_lock_irqsave(&base->lock, *flags); 931 if (timer->flags == tf) 932 return base; 933 raw_spin_unlock_irqrestore(&base->lock, *flags); 934 } 935 cpu_relax(); 936 } 937 } 938 939 #define MOD_TIMER_PENDING_ONLY 0x01 940 #define MOD_TIMER_REDUCE 0x02 941 942 static inline int 943 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 944 { 945 struct timer_base *base, *new_base; 946 unsigned int idx = UINT_MAX; 947 unsigned long clk = 0, flags; 948 int ret = 0; 949 950 BUG_ON(!timer->function); 951 952 /* 953 * This is a common optimization triggered by the networking code - if 954 * the timer is re-modified to have the same timeout or ends up in the 955 * same array bucket then just return: 956 */ 957 if (timer_pending(timer)) { 958 /* 959 * The downside of this optimization is that it can result in 960 * larger granularity than you would get from adding a new 961 * timer with this expiry. 962 */ 963 long diff = timer->expires - expires; 964 965 if (!diff) 966 return 1; 967 if (options & MOD_TIMER_REDUCE && diff <= 0) 968 return 1; 969 970 /* 971 * We lock timer base and calculate the bucket index right 972 * here. If the timer ends up in the same bucket, then we 973 * just update the expiry time and avoid the whole 974 * dequeue/enqueue dance. 975 */ 976 base = lock_timer_base(timer, &flags); 977 forward_timer_base(base); 978 979 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 980 time_before_eq(timer->expires, expires)) { 981 ret = 1; 982 goto out_unlock; 983 } 984 985 clk = base->clk; 986 idx = calc_wheel_index(expires, clk); 987 988 /* 989 * Retrieve and compare the array index of the pending 990 * timer. If it matches set the expiry to the new value so a 991 * subsequent call will exit in the expires check above. 992 */ 993 if (idx == timer_get_idx(timer)) { 994 if (!(options & MOD_TIMER_REDUCE)) 995 timer->expires = expires; 996 else if (time_after(timer->expires, expires)) 997 timer->expires = expires; 998 ret = 1; 999 goto out_unlock; 1000 } 1001 } else { 1002 base = lock_timer_base(timer, &flags); 1003 forward_timer_base(base); 1004 } 1005 1006 ret = detach_if_pending(timer, base, false); 1007 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1008 goto out_unlock; 1009 1010 new_base = get_target_base(base, timer->flags); 1011 1012 if (base != new_base) { 1013 /* 1014 * We are trying to schedule the timer on the new base. 1015 * However we can't change timer's base while it is running, 1016 * otherwise del_timer_sync() can't detect that the timer's 1017 * handler yet has not finished. This also guarantees that the 1018 * timer is serialized wrt itself. 1019 */ 1020 if (likely(base->running_timer != timer)) { 1021 /* See the comment in lock_timer_base() */ 1022 timer->flags |= TIMER_MIGRATING; 1023 1024 raw_spin_unlock(&base->lock); 1025 base = new_base; 1026 raw_spin_lock(&base->lock); 1027 WRITE_ONCE(timer->flags, 1028 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1029 forward_timer_base(base); 1030 } 1031 } 1032 1033 debug_activate(timer, expires); 1034 1035 timer->expires = expires; 1036 /* 1037 * If 'idx' was calculated above and the base time did not advance 1038 * between calculating 'idx' and possibly switching the base, only 1039 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1040 * we need to (re)calculate the wheel index via 1041 * internal_add_timer(). 1042 */ 1043 if (idx != UINT_MAX && clk == base->clk) { 1044 enqueue_timer(base, timer, idx); 1045 trigger_dyntick_cpu(base, timer); 1046 } else { 1047 internal_add_timer(base, timer); 1048 } 1049 1050 out_unlock: 1051 raw_spin_unlock_irqrestore(&base->lock, flags); 1052 1053 return ret; 1054 } 1055 1056 /** 1057 * mod_timer_pending - modify a pending timer's timeout 1058 * @timer: the pending timer to be modified 1059 * @expires: new timeout in jiffies 1060 * 1061 * mod_timer_pending() is the same for pending timers as mod_timer(), 1062 * but will not re-activate and modify already deleted timers. 1063 * 1064 * It is useful for unserialized use of timers. 1065 */ 1066 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1067 { 1068 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1069 } 1070 EXPORT_SYMBOL(mod_timer_pending); 1071 1072 /** 1073 * mod_timer - modify a timer's timeout 1074 * @timer: the timer to be modified 1075 * @expires: new timeout in jiffies 1076 * 1077 * mod_timer() is a more efficient way to update the expire field of an 1078 * active timer (if the timer is inactive it will be activated) 1079 * 1080 * mod_timer(timer, expires) is equivalent to: 1081 * 1082 * del_timer(timer); timer->expires = expires; add_timer(timer); 1083 * 1084 * Note that if there are multiple unserialized concurrent users of the 1085 * same timer, then mod_timer() is the only safe way to modify the timeout, 1086 * since add_timer() cannot modify an already running timer. 1087 * 1088 * The function returns whether it has modified a pending timer or not. 1089 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1090 * active timer returns 1.) 1091 */ 1092 int mod_timer(struct timer_list *timer, unsigned long expires) 1093 { 1094 return __mod_timer(timer, expires, 0); 1095 } 1096 EXPORT_SYMBOL(mod_timer); 1097 1098 /** 1099 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1100 * @timer: The timer to be modified 1101 * @expires: New timeout in jiffies 1102 * 1103 * timer_reduce() is very similar to mod_timer(), except that it will only 1104 * modify a running timer if that would reduce the expiration time (it will 1105 * start a timer that isn't running). 1106 */ 1107 int timer_reduce(struct timer_list *timer, unsigned long expires) 1108 { 1109 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1110 } 1111 EXPORT_SYMBOL(timer_reduce); 1112 1113 /** 1114 * add_timer - start a timer 1115 * @timer: the timer to be added 1116 * 1117 * The kernel will do a ->function(@timer) callback from the 1118 * timer interrupt at the ->expires point in the future. The 1119 * current time is 'jiffies'. 1120 * 1121 * The timer's ->expires, ->function fields must be set prior calling this 1122 * function. 1123 * 1124 * Timers with an ->expires field in the past will be executed in the next 1125 * timer tick. 1126 */ 1127 void add_timer(struct timer_list *timer) 1128 { 1129 BUG_ON(timer_pending(timer)); 1130 mod_timer(timer, timer->expires); 1131 } 1132 EXPORT_SYMBOL(add_timer); 1133 1134 /** 1135 * add_timer_on - start a timer on a particular CPU 1136 * @timer: the timer to be added 1137 * @cpu: the CPU to start it on 1138 * 1139 * This is not very scalable on SMP. Double adds are not possible. 1140 */ 1141 void add_timer_on(struct timer_list *timer, int cpu) 1142 { 1143 struct timer_base *new_base, *base; 1144 unsigned long flags; 1145 1146 BUG_ON(timer_pending(timer) || !timer->function); 1147 1148 new_base = get_timer_cpu_base(timer->flags, cpu); 1149 1150 /* 1151 * If @timer was on a different CPU, it should be migrated with the 1152 * old base locked to prevent other operations proceeding with the 1153 * wrong base locked. See lock_timer_base(). 1154 */ 1155 base = lock_timer_base(timer, &flags); 1156 if (base != new_base) { 1157 timer->flags |= TIMER_MIGRATING; 1158 1159 raw_spin_unlock(&base->lock); 1160 base = new_base; 1161 raw_spin_lock(&base->lock); 1162 WRITE_ONCE(timer->flags, 1163 (timer->flags & ~TIMER_BASEMASK) | cpu); 1164 } 1165 forward_timer_base(base); 1166 1167 debug_activate(timer, timer->expires); 1168 internal_add_timer(base, timer); 1169 raw_spin_unlock_irqrestore(&base->lock, flags); 1170 } 1171 EXPORT_SYMBOL_GPL(add_timer_on); 1172 1173 /** 1174 * del_timer - deactivate a timer. 1175 * @timer: the timer to be deactivated 1176 * 1177 * del_timer() deactivates a timer - this works on both active and inactive 1178 * timers. 1179 * 1180 * The function returns whether it has deactivated a pending timer or not. 1181 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1182 * active timer returns 1.) 1183 */ 1184 int del_timer(struct timer_list *timer) 1185 { 1186 struct timer_base *base; 1187 unsigned long flags; 1188 int ret = 0; 1189 1190 debug_assert_init(timer); 1191 1192 if (timer_pending(timer)) { 1193 base = lock_timer_base(timer, &flags); 1194 ret = detach_if_pending(timer, base, true); 1195 raw_spin_unlock_irqrestore(&base->lock, flags); 1196 } 1197 1198 return ret; 1199 } 1200 EXPORT_SYMBOL(del_timer); 1201 1202 /** 1203 * try_to_del_timer_sync - Try to deactivate a timer 1204 * @timer: timer to delete 1205 * 1206 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1207 * exit the timer is not queued and the handler is not running on any CPU. 1208 */ 1209 int try_to_del_timer_sync(struct timer_list *timer) 1210 { 1211 struct timer_base *base; 1212 unsigned long flags; 1213 int ret = -1; 1214 1215 debug_assert_init(timer); 1216 1217 base = lock_timer_base(timer, &flags); 1218 1219 if (base->running_timer != timer) 1220 ret = detach_if_pending(timer, base, true); 1221 1222 raw_spin_unlock_irqrestore(&base->lock, flags); 1223 1224 return ret; 1225 } 1226 EXPORT_SYMBOL(try_to_del_timer_sync); 1227 1228 #ifdef CONFIG_SMP 1229 /** 1230 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1231 * @timer: the timer to be deactivated 1232 * 1233 * This function only differs from del_timer() on SMP: besides deactivating 1234 * the timer it also makes sure the handler has finished executing on other 1235 * CPUs. 1236 * 1237 * Synchronization rules: Callers must prevent restarting of the timer, 1238 * otherwise this function is meaningless. It must not be called from 1239 * interrupt contexts unless the timer is an irqsafe one. The caller must 1240 * not hold locks which would prevent completion of the timer's 1241 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1242 * timer is not queued and the handler is not running on any CPU. 1243 * 1244 * Note: For !irqsafe timers, you must not hold locks that are held in 1245 * interrupt context while calling this function. Even if the lock has 1246 * nothing to do with the timer in question. Here's why: 1247 * 1248 * CPU0 CPU1 1249 * ---- ---- 1250 * <SOFTIRQ> 1251 * call_timer_fn(); 1252 * base->running_timer = mytimer; 1253 * spin_lock_irq(somelock); 1254 * <IRQ> 1255 * spin_lock(somelock); 1256 * del_timer_sync(mytimer); 1257 * while (base->running_timer == mytimer); 1258 * 1259 * Now del_timer_sync() will never return and never release somelock. 1260 * The interrupt on the other CPU is waiting to grab somelock but 1261 * it has interrupted the softirq that CPU0 is waiting to finish. 1262 * 1263 * The function returns whether it has deactivated a pending timer or not. 1264 */ 1265 int del_timer_sync(struct timer_list *timer) 1266 { 1267 #ifdef CONFIG_LOCKDEP 1268 unsigned long flags; 1269 1270 /* 1271 * If lockdep gives a backtrace here, please reference 1272 * the synchronization rules above. 1273 */ 1274 local_irq_save(flags); 1275 lock_map_acquire(&timer->lockdep_map); 1276 lock_map_release(&timer->lockdep_map); 1277 local_irq_restore(flags); 1278 #endif 1279 /* 1280 * don't use it in hardirq context, because it 1281 * could lead to deadlock. 1282 */ 1283 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1284 for (;;) { 1285 int ret = try_to_del_timer_sync(timer); 1286 if (ret >= 0) 1287 return ret; 1288 cpu_relax(); 1289 } 1290 } 1291 EXPORT_SYMBOL(del_timer_sync); 1292 #endif 1293 1294 static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *)) 1295 { 1296 int count = preempt_count(); 1297 1298 #ifdef CONFIG_LOCKDEP 1299 /* 1300 * It is permissible to free the timer from inside the 1301 * function that is called from it, this we need to take into 1302 * account for lockdep too. To avoid bogus "held lock freed" 1303 * warnings as well as problems when looking into 1304 * timer->lockdep_map, make a copy and use that here. 1305 */ 1306 struct lockdep_map lockdep_map; 1307 1308 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1309 #endif 1310 /* 1311 * Couple the lock chain with the lock chain at 1312 * del_timer_sync() by acquiring the lock_map around the fn() 1313 * call here and in del_timer_sync(). 1314 */ 1315 lock_map_acquire(&lockdep_map); 1316 1317 trace_timer_expire_entry(timer); 1318 fn(timer); 1319 trace_timer_expire_exit(timer); 1320 1321 lock_map_release(&lockdep_map); 1322 1323 if (count != preempt_count()) { 1324 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1325 fn, count, preempt_count()); 1326 /* 1327 * Restore the preempt count. That gives us a decent 1328 * chance to survive and extract information. If the 1329 * callback kept a lock held, bad luck, but not worse 1330 * than the BUG() we had. 1331 */ 1332 preempt_count_set(count); 1333 } 1334 } 1335 1336 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1337 { 1338 while (!hlist_empty(head)) { 1339 struct timer_list *timer; 1340 void (*fn)(struct timer_list *); 1341 1342 timer = hlist_entry(head->first, struct timer_list, entry); 1343 1344 base->running_timer = timer; 1345 detach_timer(timer, true); 1346 1347 fn = timer->function; 1348 1349 if (timer->flags & TIMER_IRQSAFE) { 1350 raw_spin_unlock(&base->lock); 1351 call_timer_fn(timer, fn); 1352 raw_spin_lock(&base->lock); 1353 } else { 1354 raw_spin_unlock_irq(&base->lock); 1355 call_timer_fn(timer, fn); 1356 raw_spin_lock_irq(&base->lock); 1357 } 1358 } 1359 } 1360 1361 static int __collect_expired_timers(struct timer_base *base, 1362 struct hlist_head *heads) 1363 { 1364 unsigned long clk = base->clk; 1365 struct hlist_head *vec; 1366 int i, levels = 0; 1367 unsigned int idx; 1368 1369 for (i = 0; i < LVL_DEPTH; i++) { 1370 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1371 1372 if (__test_and_clear_bit(idx, base->pending_map)) { 1373 vec = base->vectors + idx; 1374 hlist_move_list(vec, heads++); 1375 levels++; 1376 } 1377 /* Is it time to look at the next level? */ 1378 if (clk & LVL_CLK_MASK) 1379 break; 1380 /* Shift clock for the next level granularity */ 1381 clk >>= LVL_CLK_SHIFT; 1382 } 1383 return levels; 1384 } 1385 1386 #ifdef CONFIG_NO_HZ_COMMON 1387 /* 1388 * Find the next pending bucket of a level. Search from level start (@offset) 1389 * + @clk upwards and if nothing there, search from start of the level 1390 * (@offset) up to @offset + clk. 1391 */ 1392 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1393 unsigned clk) 1394 { 1395 unsigned pos, start = offset + clk; 1396 unsigned end = offset + LVL_SIZE; 1397 1398 pos = find_next_bit(base->pending_map, end, start); 1399 if (pos < end) 1400 return pos - start; 1401 1402 pos = find_next_bit(base->pending_map, start, offset); 1403 return pos < start ? pos + LVL_SIZE - start : -1; 1404 } 1405 1406 /* 1407 * Search the first expiring timer in the various clock levels. Caller must 1408 * hold base->lock. 1409 */ 1410 static unsigned long __next_timer_interrupt(struct timer_base *base) 1411 { 1412 unsigned long clk, next, adj; 1413 unsigned lvl, offset = 0; 1414 1415 next = base->clk + NEXT_TIMER_MAX_DELTA; 1416 clk = base->clk; 1417 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1418 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1419 1420 if (pos >= 0) { 1421 unsigned long tmp = clk + (unsigned long) pos; 1422 1423 tmp <<= LVL_SHIFT(lvl); 1424 if (time_before(tmp, next)) 1425 next = tmp; 1426 } 1427 /* 1428 * Clock for the next level. If the current level clock lower 1429 * bits are zero, we look at the next level as is. If not we 1430 * need to advance it by one because that's going to be the 1431 * next expiring bucket in that level. base->clk is the next 1432 * expiring jiffie. So in case of: 1433 * 1434 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1435 * 0 0 0 0 0 0 1436 * 1437 * we have to look at all levels @index 0. With 1438 * 1439 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1440 * 0 0 0 0 0 2 1441 * 1442 * LVL0 has the next expiring bucket @index 2. The upper 1443 * levels have the next expiring bucket @index 1. 1444 * 1445 * In case that the propagation wraps the next level the same 1446 * rules apply: 1447 * 1448 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1449 * 0 0 0 0 F 2 1450 * 1451 * So after looking at LVL0 we get: 1452 * 1453 * LVL5 LVL4 LVL3 LVL2 LVL1 1454 * 0 0 0 1 0 1455 * 1456 * So no propagation from LVL1 to LVL2 because that happened 1457 * with the add already, but then we need to propagate further 1458 * from LVL2 to LVL3. 1459 * 1460 * So the simple check whether the lower bits of the current 1461 * level are 0 or not is sufficient for all cases. 1462 */ 1463 adj = clk & LVL_CLK_MASK ? 1 : 0; 1464 clk >>= LVL_CLK_SHIFT; 1465 clk += adj; 1466 } 1467 return next; 1468 } 1469 1470 /* 1471 * Check, if the next hrtimer event is before the next timer wheel 1472 * event: 1473 */ 1474 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1475 { 1476 u64 nextevt = hrtimer_get_next_event(); 1477 1478 /* 1479 * If high resolution timers are enabled 1480 * hrtimer_get_next_event() returns KTIME_MAX. 1481 */ 1482 if (expires <= nextevt) 1483 return expires; 1484 1485 /* 1486 * If the next timer is already expired, return the tick base 1487 * time so the tick is fired immediately. 1488 */ 1489 if (nextevt <= basem) 1490 return basem; 1491 1492 /* 1493 * Round up to the next jiffie. High resolution timers are 1494 * off, so the hrtimers are expired in the tick and we need to 1495 * make sure that this tick really expires the timer to avoid 1496 * a ping pong of the nohz stop code. 1497 * 1498 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1499 */ 1500 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1501 } 1502 1503 /** 1504 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1505 * @basej: base time jiffies 1506 * @basem: base time clock monotonic 1507 * 1508 * Returns the tick aligned clock monotonic time of the next pending 1509 * timer or KTIME_MAX if no timer is pending. 1510 */ 1511 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1512 { 1513 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1514 u64 expires = KTIME_MAX; 1515 unsigned long nextevt; 1516 bool is_max_delta; 1517 1518 /* 1519 * Pretend that there is no timer pending if the cpu is offline. 1520 * Possible pending timers will be migrated later to an active cpu. 1521 */ 1522 if (cpu_is_offline(smp_processor_id())) 1523 return expires; 1524 1525 raw_spin_lock(&base->lock); 1526 nextevt = __next_timer_interrupt(base); 1527 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1528 base->next_expiry = nextevt; 1529 /* 1530 * We have a fresh next event. Check whether we can forward the 1531 * base. We can only do that when @basej is past base->clk 1532 * otherwise we might rewind base->clk. 1533 */ 1534 if (time_after(basej, base->clk)) { 1535 if (time_after(nextevt, basej)) 1536 base->clk = basej; 1537 else if (time_after(nextevt, base->clk)) 1538 base->clk = nextevt; 1539 } 1540 1541 if (time_before_eq(nextevt, basej)) { 1542 expires = basem; 1543 base->is_idle = false; 1544 } else { 1545 if (!is_max_delta) 1546 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1547 /* 1548 * If we expect to sleep more than a tick, mark the base idle. 1549 * Also the tick is stopped so any added timer must forward 1550 * the base clk itself to keep granularity small. This idle 1551 * logic is only maintained for the BASE_STD base, deferrable 1552 * timers may still see large granularity skew (by design). 1553 */ 1554 if ((expires - basem) > TICK_NSEC) { 1555 base->must_forward_clk = true; 1556 base->is_idle = true; 1557 } 1558 } 1559 raw_spin_unlock(&base->lock); 1560 1561 return cmp_next_hrtimer_event(basem, expires); 1562 } 1563 1564 /** 1565 * timer_clear_idle - Clear the idle state of the timer base 1566 * 1567 * Called with interrupts disabled 1568 */ 1569 void timer_clear_idle(void) 1570 { 1571 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1572 1573 /* 1574 * We do this unlocked. The worst outcome is a remote enqueue sending 1575 * a pointless IPI, but taking the lock would just make the window for 1576 * sending the IPI a few instructions smaller for the cost of taking 1577 * the lock in the exit from idle path. 1578 */ 1579 base->is_idle = false; 1580 } 1581 1582 static int collect_expired_timers(struct timer_base *base, 1583 struct hlist_head *heads) 1584 { 1585 /* 1586 * NOHZ optimization. After a long idle sleep we need to forward the 1587 * base to current jiffies. Avoid a loop by searching the bitfield for 1588 * the next expiring timer. 1589 */ 1590 if ((long)(jiffies - base->clk) > 2) { 1591 unsigned long next = __next_timer_interrupt(base); 1592 1593 /* 1594 * If the next timer is ahead of time forward to current 1595 * jiffies, otherwise forward to the next expiry time: 1596 */ 1597 if (time_after(next, jiffies)) { 1598 /* 1599 * The call site will increment base->clk and then 1600 * terminate the expiry loop immediately. 1601 */ 1602 base->clk = jiffies; 1603 return 0; 1604 } 1605 base->clk = next; 1606 } 1607 return __collect_expired_timers(base, heads); 1608 } 1609 #else 1610 static inline int collect_expired_timers(struct timer_base *base, 1611 struct hlist_head *heads) 1612 { 1613 return __collect_expired_timers(base, heads); 1614 } 1615 #endif 1616 1617 /* 1618 * Called from the timer interrupt handler to charge one tick to the current 1619 * process. user_tick is 1 if the tick is user time, 0 for system. 1620 */ 1621 void update_process_times(int user_tick) 1622 { 1623 struct task_struct *p = current; 1624 1625 /* Note: this timer irq context must be accounted for as well. */ 1626 account_process_tick(p, user_tick); 1627 run_local_timers(); 1628 rcu_check_callbacks(user_tick); 1629 #ifdef CONFIG_IRQ_WORK 1630 if (in_irq()) 1631 irq_work_tick(); 1632 #endif 1633 scheduler_tick(); 1634 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1635 run_posix_cpu_timers(p); 1636 } 1637 1638 /** 1639 * __run_timers - run all expired timers (if any) on this CPU. 1640 * @base: the timer vector to be processed. 1641 */ 1642 static inline void __run_timers(struct timer_base *base) 1643 { 1644 struct hlist_head heads[LVL_DEPTH]; 1645 int levels; 1646 1647 if (!time_after_eq(jiffies, base->clk)) 1648 return; 1649 1650 raw_spin_lock_irq(&base->lock); 1651 1652 while (time_after_eq(jiffies, base->clk)) { 1653 1654 levels = collect_expired_timers(base, heads); 1655 base->clk++; 1656 1657 while (levels--) 1658 expire_timers(base, heads + levels); 1659 } 1660 base->running_timer = NULL; 1661 raw_spin_unlock_irq(&base->lock); 1662 } 1663 1664 /* 1665 * This function runs timers and the timer-tq in bottom half context. 1666 */ 1667 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1668 { 1669 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1670 1671 /* 1672 * must_forward_clk must be cleared before running timers so that any 1673 * timer functions that call mod_timer will not try to forward the 1674 * base. idle trcking / clock forwarding logic is only used with 1675 * BASE_STD timers. 1676 * 1677 * The deferrable base does not do idle tracking at all, so we do 1678 * not forward it. This can result in very large variations in 1679 * granularity for deferrable timers, but they can be deferred for 1680 * long periods due to idle. 1681 */ 1682 base->must_forward_clk = false; 1683 1684 __run_timers(base); 1685 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1686 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1687 } 1688 1689 /* 1690 * Called by the local, per-CPU timer interrupt on SMP. 1691 */ 1692 void run_local_timers(void) 1693 { 1694 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1695 1696 hrtimer_run_queues(); 1697 /* Raise the softirq only if required. */ 1698 if (time_before(jiffies, base->clk)) { 1699 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 1700 return; 1701 /* CPU is awake, so check the deferrable base. */ 1702 base++; 1703 if (time_before(jiffies, base->clk)) 1704 return; 1705 } 1706 raise_softirq(TIMER_SOFTIRQ); 1707 } 1708 1709 /* 1710 * Since schedule_timeout()'s timer is defined on the stack, it must store 1711 * the target task on the stack as well. 1712 */ 1713 struct process_timer { 1714 struct timer_list timer; 1715 struct task_struct *task; 1716 }; 1717 1718 static void process_timeout(struct timer_list *t) 1719 { 1720 struct process_timer *timeout = from_timer(timeout, t, timer); 1721 1722 wake_up_process(timeout->task); 1723 } 1724 1725 /** 1726 * schedule_timeout - sleep until timeout 1727 * @timeout: timeout value in jiffies 1728 * 1729 * Make the current task sleep until @timeout jiffies have 1730 * elapsed. The routine will return immediately unless 1731 * the current task state has been set (see set_current_state()). 1732 * 1733 * You can set the task state as follows - 1734 * 1735 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1736 * pass before the routine returns unless the current task is explicitly 1737 * woken up, (e.g. by wake_up_process())". 1738 * 1739 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1740 * delivered to the current task or the current task is explicitly woken 1741 * up. 1742 * 1743 * The current task state is guaranteed to be TASK_RUNNING when this 1744 * routine returns. 1745 * 1746 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1747 * the CPU away without a bound on the timeout. In this case the return 1748 * value will be %MAX_SCHEDULE_TIMEOUT. 1749 * 1750 * Returns 0 when the timer has expired otherwise the remaining time in 1751 * jiffies will be returned. In all cases the return value is guaranteed 1752 * to be non-negative. 1753 */ 1754 signed long __sched schedule_timeout(signed long timeout) 1755 { 1756 struct process_timer timer; 1757 unsigned long expire; 1758 1759 switch (timeout) 1760 { 1761 case MAX_SCHEDULE_TIMEOUT: 1762 /* 1763 * These two special cases are useful to be comfortable 1764 * in the caller. Nothing more. We could take 1765 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1766 * but I' d like to return a valid offset (>=0) to allow 1767 * the caller to do everything it want with the retval. 1768 */ 1769 schedule(); 1770 goto out; 1771 default: 1772 /* 1773 * Another bit of PARANOID. Note that the retval will be 1774 * 0 since no piece of kernel is supposed to do a check 1775 * for a negative retval of schedule_timeout() (since it 1776 * should never happens anyway). You just have the printk() 1777 * that will tell you if something is gone wrong and where. 1778 */ 1779 if (timeout < 0) { 1780 printk(KERN_ERR "schedule_timeout: wrong timeout " 1781 "value %lx\n", timeout); 1782 dump_stack(); 1783 current->state = TASK_RUNNING; 1784 goto out; 1785 } 1786 } 1787 1788 expire = timeout + jiffies; 1789 1790 timer.task = current; 1791 timer_setup_on_stack(&timer.timer, process_timeout, 0); 1792 __mod_timer(&timer.timer, expire, 0); 1793 schedule(); 1794 del_singleshot_timer_sync(&timer.timer); 1795 1796 /* Remove the timer from the object tracker */ 1797 destroy_timer_on_stack(&timer.timer); 1798 1799 timeout = expire - jiffies; 1800 1801 out: 1802 return timeout < 0 ? 0 : timeout; 1803 } 1804 EXPORT_SYMBOL(schedule_timeout); 1805 1806 /* 1807 * We can use __set_current_state() here because schedule_timeout() calls 1808 * schedule() unconditionally. 1809 */ 1810 signed long __sched schedule_timeout_interruptible(signed long timeout) 1811 { 1812 __set_current_state(TASK_INTERRUPTIBLE); 1813 return schedule_timeout(timeout); 1814 } 1815 EXPORT_SYMBOL(schedule_timeout_interruptible); 1816 1817 signed long __sched schedule_timeout_killable(signed long timeout) 1818 { 1819 __set_current_state(TASK_KILLABLE); 1820 return schedule_timeout(timeout); 1821 } 1822 EXPORT_SYMBOL(schedule_timeout_killable); 1823 1824 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1825 { 1826 __set_current_state(TASK_UNINTERRUPTIBLE); 1827 return schedule_timeout(timeout); 1828 } 1829 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1830 1831 /* 1832 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1833 * to load average. 1834 */ 1835 signed long __sched schedule_timeout_idle(signed long timeout) 1836 { 1837 __set_current_state(TASK_IDLE); 1838 return schedule_timeout(timeout); 1839 } 1840 EXPORT_SYMBOL(schedule_timeout_idle); 1841 1842 #ifdef CONFIG_HOTPLUG_CPU 1843 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1844 { 1845 struct timer_list *timer; 1846 int cpu = new_base->cpu; 1847 1848 while (!hlist_empty(head)) { 1849 timer = hlist_entry(head->first, struct timer_list, entry); 1850 detach_timer(timer, false); 1851 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1852 internal_add_timer(new_base, timer); 1853 } 1854 } 1855 1856 int timers_prepare_cpu(unsigned int cpu) 1857 { 1858 struct timer_base *base; 1859 int b; 1860 1861 for (b = 0; b < NR_BASES; b++) { 1862 base = per_cpu_ptr(&timer_bases[b], cpu); 1863 base->clk = jiffies; 1864 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 1865 base->is_idle = false; 1866 base->must_forward_clk = true; 1867 } 1868 return 0; 1869 } 1870 1871 int timers_dead_cpu(unsigned int cpu) 1872 { 1873 struct timer_base *old_base; 1874 struct timer_base *new_base; 1875 int b, i; 1876 1877 BUG_ON(cpu_online(cpu)); 1878 1879 for (b = 0; b < NR_BASES; b++) { 1880 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1881 new_base = get_cpu_ptr(&timer_bases[b]); 1882 /* 1883 * The caller is globally serialized and nobody else 1884 * takes two locks at once, deadlock is not possible. 1885 */ 1886 raw_spin_lock_irq(&new_base->lock); 1887 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1888 1889 BUG_ON(old_base->running_timer); 1890 1891 for (i = 0; i < WHEEL_SIZE; i++) 1892 migrate_timer_list(new_base, old_base->vectors + i); 1893 1894 raw_spin_unlock(&old_base->lock); 1895 raw_spin_unlock_irq(&new_base->lock); 1896 put_cpu_ptr(&timer_bases); 1897 } 1898 return 0; 1899 } 1900 1901 #endif /* CONFIG_HOTPLUG_CPU */ 1902 1903 static void __init init_timer_cpu(int cpu) 1904 { 1905 struct timer_base *base; 1906 int i; 1907 1908 for (i = 0; i < NR_BASES; i++) { 1909 base = per_cpu_ptr(&timer_bases[i], cpu); 1910 base->cpu = cpu; 1911 raw_spin_lock_init(&base->lock); 1912 base->clk = jiffies; 1913 } 1914 } 1915 1916 static void __init init_timer_cpus(void) 1917 { 1918 int cpu; 1919 1920 for_each_possible_cpu(cpu) 1921 init_timer_cpu(cpu); 1922 } 1923 1924 void __init init_timers(void) 1925 { 1926 init_timer_cpus(); 1927 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1928 } 1929 1930 /** 1931 * msleep - sleep safely even with waitqueue interruptions 1932 * @msecs: Time in milliseconds to sleep for 1933 */ 1934 void msleep(unsigned int msecs) 1935 { 1936 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1937 1938 while (timeout) 1939 timeout = schedule_timeout_uninterruptible(timeout); 1940 } 1941 1942 EXPORT_SYMBOL(msleep); 1943 1944 /** 1945 * msleep_interruptible - sleep waiting for signals 1946 * @msecs: Time in milliseconds to sleep for 1947 */ 1948 unsigned long msleep_interruptible(unsigned int msecs) 1949 { 1950 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1951 1952 while (timeout && !signal_pending(current)) 1953 timeout = schedule_timeout_interruptible(timeout); 1954 return jiffies_to_msecs(timeout); 1955 } 1956 1957 EXPORT_SYMBOL(msleep_interruptible); 1958 1959 /** 1960 * usleep_range - Sleep for an approximate time 1961 * @min: Minimum time in usecs to sleep 1962 * @max: Maximum time in usecs to sleep 1963 * 1964 * In non-atomic context where the exact wakeup time is flexible, use 1965 * usleep_range() instead of udelay(). The sleep improves responsiveness 1966 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 1967 * power usage by allowing hrtimers to take advantage of an already- 1968 * scheduled interrupt instead of scheduling a new one just for this sleep. 1969 */ 1970 void __sched usleep_range(unsigned long min, unsigned long max) 1971 { 1972 ktime_t exp = ktime_add_us(ktime_get(), min); 1973 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 1974 1975 for (;;) { 1976 __set_current_state(TASK_UNINTERRUPTIBLE); 1977 /* Do not return before the requested sleep time has elapsed */ 1978 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 1979 break; 1980 } 1981 } 1982 EXPORT_SYMBOL(usleep_range); 1983