xref: /openbmc/linux/kernel/time/timer.c (revision 527d1470744d338c912f94bc1f4dba08ffdff349)
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/sched/nohz.h>
44 #include <linux/sched/debug.h>
45 #include <linux/slab.h>
46 #include <linux/compat.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53 
54 #include "tick-internal.h"
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58 
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60 
61 EXPORT_SYMBOL(jiffies_64);
62 
63 /*
64  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66  * level has a different granularity.
67  *
68  * The level granularity is:		LVL_CLK_DIV ^ lvl
69  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
70  *
71  * The array level of a newly armed timer depends on the relative expiry
72  * time. The farther the expiry time is away the higher the array level and
73  * therefor the granularity becomes.
74  *
75  * Contrary to the original timer wheel implementation, which aims for 'exact'
76  * expiry of the timers, this implementation removes the need for recascading
77  * the timers into the lower array levels. The previous 'classic' timer wheel
78  * implementation of the kernel already violated the 'exact' expiry by adding
79  * slack to the expiry time to provide batched expiration. The granularity
80  * levels provide implicit batching.
81  *
82  * This is an optimization of the original timer wheel implementation for the
83  * majority of the timer wheel use cases: timeouts. The vast majority of
84  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85  * the timeout expires it indicates that normal operation is disturbed, so it
86  * does not matter much whether the timeout comes with a slight delay.
87  *
88  * The only exception to this are networking timers with a small expiry
89  * time. They rely on the granularity. Those fit into the first wheel level,
90  * which has HZ granularity.
91  *
92  * We don't have cascading anymore. timers with a expiry time above the
93  * capacity of the last wheel level are force expired at the maximum timeout
94  * value of the last wheel level. From data sampling we know that the maximum
95  * value observed is 5 days (network connection tracking), so this should not
96  * be an issue.
97  *
98  * The currently chosen array constants values are a good compromise between
99  * array size and granularity.
100  *
101  * This results in the following granularity and range levels:
102  *
103  * HZ 1000 steps
104  * Level Offset  Granularity            Range
105  *  0      0         1 ms                0 ms -         63 ms
106  *  1     64         8 ms               64 ms -        511 ms
107  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
108  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
109  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
110  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
111  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
112  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
113  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
114  *
115  * HZ  300
116  * Level Offset  Granularity            Range
117  *  0	   0         3 ms                0 ms -        210 ms
118  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
119  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
120  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
121  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
122  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
123  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
124  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
125  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126  *
127  * HZ  250
128  * Level Offset  Granularity            Range
129  *  0	   0         4 ms                0 ms -        255 ms
130  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
131  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
132  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
133  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
134  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
135  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
136  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
137  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138  *
139  * HZ  100
140  * Level Offset  Granularity            Range
141  *  0	   0         10 ms               0 ms -        630 ms
142  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
143  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
144  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
145  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
146  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
147  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
148  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149  */
150 
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT	3
153 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
157 
158 /*
159  * The time start value for each level to select the bucket at enqueue
160  * time.
161  */
162 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163 
164 /* Size of each clock level */
165 #define LVL_BITS	6
166 #define LVL_SIZE	(1UL << LVL_BITS)
167 #define LVL_MASK	(LVL_SIZE - 1)
168 #define LVL_OFFS(n)	((n) * LVL_SIZE)
169 
170 /* Level depth */
171 #if HZ > 100
172 # define LVL_DEPTH	9
173 # else
174 # define LVL_DEPTH	8
175 #endif
176 
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180 
181 /*
182  * The resulting wheel size. If NOHZ is configured we allocate two
183  * wheels so we have a separate storage for the deferrable timers.
184  */
185 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
186 
187 #ifdef CONFIG_NO_HZ_COMMON
188 # define NR_BASES	2
189 # define BASE_STD	0
190 # define BASE_DEF	1
191 #else
192 # define NR_BASES	1
193 # define BASE_STD	0
194 # define BASE_DEF	0
195 #endif
196 
197 struct timer_base {
198 	raw_spinlock_t		lock;
199 	struct timer_list	*running_timer;
200 	unsigned long		clk;
201 	unsigned long		next_expiry;
202 	unsigned int		cpu;
203 	bool			migration_enabled;
204 	bool			nohz_active;
205 	bool			is_idle;
206 	bool			must_forward_clk;
207 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
208 	struct hlist_head	vectors[WHEEL_SIZE];
209 } ____cacheline_aligned;
210 
211 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
212 
213 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
214 unsigned int sysctl_timer_migration = 1;
215 
216 void timers_update_migration(bool update_nohz)
217 {
218 	bool on = sysctl_timer_migration && tick_nohz_active;
219 	unsigned int cpu;
220 
221 	/* Avoid the loop, if nothing to update */
222 	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
223 		return;
224 
225 	for_each_possible_cpu(cpu) {
226 		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
227 		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
228 		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
229 		if (!update_nohz)
230 			continue;
231 		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
232 		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
233 		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
234 	}
235 }
236 
237 int timer_migration_handler(struct ctl_table *table, int write,
238 			    void __user *buffer, size_t *lenp,
239 			    loff_t *ppos)
240 {
241 	static DEFINE_MUTEX(mutex);
242 	int ret;
243 
244 	mutex_lock(&mutex);
245 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246 	if (!ret && write)
247 		timers_update_migration(false);
248 	mutex_unlock(&mutex);
249 	return ret;
250 }
251 #endif
252 
253 static unsigned long round_jiffies_common(unsigned long j, int cpu,
254 		bool force_up)
255 {
256 	int rem;
257 	unsigned long original = j;
258 
259 	/*
260 	 * We don't want all cpus firing their timers at once hitting the
261 	 * same lock or cachelines, so we skew each extra cpu with an extra
262 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
263 	 * already did this.
264 	 * The skew is done by adding 3*cpunr, then round, then subtract this
265 	 * extra offset again.
266 	 */
267 	j += cpu * 3;
268 
269 	rem = j % HZ;
270 
271 	/*
272 	 * If the target jiffie is just after a whole second (which can happen
273 	 * due to delays of the timer irq, long irq off times etc etc) then
274 	 * we should round down to the whole second, not up. Use 1/4th second
275 	 * as cutoff for this rounding as an extreme upper bound for this.
276 	 * But never round down if @force_up is set.
277 	 */
278 	if (rem < HZ/4 && !force_up) /* round down */
279 		j = j - rem;
280 	else /* round up */
281 		j = j - rem + HZ;
282 
283 	/* now that we have rounded, subtract the extra skew again */
284 	j -= cpu * 3;
285 
286 	/*
287 	 * Make sure j is still in the future. Otherwise return the
288 	 * unmodified value.
289 	 */
290 	return time_is_after_jiffies(j) ? j : original;
291 }
292 
293 /**
294  * __round_jiffies - function to round jiffies to a full second
295  * @j: the time in (absolute) jiffies that should be rounded
296  * @cpu: the processor number on which the timeout will happen
297  *
298  * __round_jiffies() rounds an absolute time in the future (in jiffies)
299  * up or down to (approximately) full seconds. This is useful for timers
300  * for which the exact time they fire does not matter too much, as long as
301  * they fire approximately every X seconds.
302  *
303  * By rounding these timers to whole seconds, all such timers will fire
304  * at the same time, rather than at various times spread out. The goal
305  * of this is to have the CPU wake up less, which saves power.
306  *
307  * The exact rounding is skewed for each processor to avoid all
308  * processors firing at the exact same time, which could lead
309  * to lock contention or spurious cache line bouncing.
310  *
311  * The return value is the rounded version of the @j parameter.
312  */
313 unsigned long __round_jiffies(unsigned long j, int cpu)
314 {
315 	return round_jiffies_common(j, cpu, false);
316 }
317 EXPORT_SYMBOL_GPL(__round_jiffies);
318 
319 /**
320  * __round_jiffies_relative - function to round jiffies to a full second
321  * @j: the time in (relative) jiffies that should be rounded
322  * @cpu: the processor number on which the timeout will happen
323  *
324  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
325  * up or down to (approximately) full seconds. This is useful for timers
326  * for which the exact time they fire does not matter too much, as long as
327  * they fire approximately every X seconds.
328  *
329  * By rounding these timers to whole seconds, all such timers will fire
330  * at the same time, rather than at various times spread out. The goal
331  * of this is to have the CPU wake up less, which saves power.
332  *
333  * The exact rounding is skewed for each processor to avoid all
334  * processors firing at the exact same time, which could lead
335  * to lock contention or spurious cache line bouncing.
336  *
337  * The return value is the rounded version of the @j parameter.
338  */
339 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
340 {
341 	unsigned long j0 = jiffies;
342 
343 	/* Use j0 because jiffies might change while we run */
344 	return round_jiffies_common(j + j0, cpu, false) - j0;
345 }
346 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
347 
348 /**
349  * round_jiffies - function to round jiffies to a full second
350  * @j: the time in (absolute) jiffies that should be rounded
351  *
352  * round_jiffies() rounds an absolute time in the future (in jiffies)
353  * up or down to (approximately) full seconds. This is useful for timers
354  * for which the exact time they fire does not matter too much, as long as
355  * they fire approximately every X seconds.
356  *
357  * By rounding these timers to whole seconds, all such timers will fire
358  * at the same time, rather than at various times spread out. The goal
359  * of this is to have the CPU wake up less, which saves power.
360  *
361  * The return value is the rounded version of the @j parameter.
362  */
363 unsigned long round_jiffies(unsigned long j)
364 {
365 	return round_jiffies_common(j, raw_smp_processor_id(), false);
366 }
367 EXPORT_SYMBOL_GPL(round_jiffies);
368 
369 /**
370  * round_jiffies_relative - function to round jiffies to a full second
371  * @j: the time in (relative) jiffies that should be rounded
372  *
373  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
374  * up or down to (approximately) full seconds. This is useful for timers
375  * for which the exact time they fire does not matter too much, as long as
376  * they fire approximately every X seconds.
377  *
378  * By rounding these timers to whole seconds, all such timers will fire
379  * at the same time, rather than at various times spread out. The goal
380  * of this is to have the CPU wake up less, which saves power.
381  *
382  * The return value is the rounded version of the @j parameter.
383  */
384 unsigned long round_jiffies_relative(unsigned long j)
385 {
386 	return __round_jiffies_relative(j, raw_smp_processor_id());
387 }
388 EXPORT_SYMBOL_GPL(round_jiffies_relative);
389 
390 /**
391  * __round_jiffies_up - function to round jiffies up to a full second
392  * @j: the time in (absolute) jiffies that should be rounded
393  * @cpu: the processor number on which the timeout will happen
394  *
395  * This is the same as __round_jiffies() except that it will never
396  * round down.  This is useful for timeouts for which the exact time
397  * of firing does not matter too much, as long as they don't fire too
398  * early.
399  */
400 unsigned long __round_jiffies_up(unsigned long j, int cpu)
401 {
402 	return round_jiffies_common(j, cpu, true);
403 }
404 EXPORT_SYMBOL_GPL(__round_jiffies_up);
405 
406 /**
407  * __round_jiffies_up_relative - function to round jiffies up to a full second
408  * @j: the time in (relative) jiffies that should be rounded
409  * @cpu: the processor number on which the timeout will happen
410  *
411  * This is the same as __round_jiffies_relative() except that it will never
412  * round down.  This is useful for timeouts for which the exact time
413  * of firing does not matter too much, as long as they don't fire too
414  * early.
415  */
416 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
417 {
418 	unsigned long j0 = jiffies;
419 
420 	/* Use j0 because jiffies might change while we run */
421 	return round_jiffies_common(j + j0, cpu, true) - j0;
422 }
423 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
424 
425 /**
426  * round_jiffies_up - function to round jiffies up to a full second
427  * @j: the time in (absolute) jiffies that should be rounded
428  *
429  * This is the same as round_jiffies() except that it will never
430  * round down.  This is useful for timeouts for which the exact time
431  * of firing does not matter too much, as long as they don't fire too
432  * early.
433  */
434 unsigned long round_jiffies_up(unsigned long j)
435 {
436 	return round_jiffies_common(j, raw_smp_processor_id(), true);
437 }
438 EXPORT_SYMBOL_GPL(round_jiffies_up);
439 
440 /**
441  * round_jiffies_up_relative - function to round jiffies up to a full second
442  * @j: the time in (relative) jiffies that should be rounded
443  *
444  * This is the same as round_jiffies_relative() except that it will never
445  * round down.  This is useful for timeouts for which the exact time
446  * of firing does not matter too much, as long as they don't fire too
447  * early.
448  */
449 unsigned long round_jiffies_up_relative(unsigned long j)
450 {
451 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
452 }
453 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
454 
455 
456 static inline unsigned int timer_get_idx(struct timer_list *timer)
457 {
458 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
459 }
460 
461 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
462 {
463 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
464 			idx << TIMER_ARRAYSHIFT;
465 }
466 
467 /*
468  * Helper function to calculate the array index for a given expiry
469  * time.
470  */
471 static inline unsigned calc_index(unsigned expires, unsigned lvl)
472 {
473 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
474 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
475 }
476 
477 static int calc_wheel_index(unsigned long expires, unsigned long clk)
478 {
479 	unsigned long delta = expires - clk;
480 	unsigned int idx;
481 
482 	if (delta < LVL_START(1)) {
483 		idx = calc_index(expires, 0);
484 	} else if (delta < LVL_START(2)) {
485 		idx = calc_index(expires, 1);
486 	} else if (delta < LVL_START(3)) {
487 		idx = calc_index(expires, 2);
488 	} else if (delta < LVL_START(4)) {
489 		idx = calc_index(expires, 3);
490 	} else if (delta < LVL_START(5)) {
491 		idx = calc_index(expires, 4);
492 	} else if (delta < LVL_START(6)) {
493 		idx = calc_index(expires, 5);
494 	} else if (delta < LVL_START(7)) {
495 		idx = calc_index(expires, 6);
496 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
497 		idx = calc_index(expires, 7);
498 	} else if ((long) delta < 0) {
499 		idx = clk & LVL_MASK;
500 	} else {
501 		/*
502 		 * Force expire obscene large timeouts to expire at the
503 		 * capacity limit of the wheel.
504 		 */
505 		if (expires >= WHEEL_TIMEOUT_CUTOFF)
506 			expires = WHEEL_TIMEOUT_MAX;
507 
508 		idx = calc_index(expires, LVL_DEPTH - 1);
509 	}
510 	return idx;
511 }
512 
513 /*
514  * Enqueue the timer into the hash bucket, mark it pending in
515  * the bitmap and store the index in the timer flags.
516  */
517 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
518 			  unsigned int idx)
519 {
520 	hlist_add_head(&timer->entry, base->vectors + idx);
521 	__set_bit(idx, base->pending_map);
522 	timer_set_idx(timer, idx);
523 }
524 
525 static void
526 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
527 {
528 	unsigned int idx;
529 
530 	idx = calc_wheel_index(timer->expires, base->clk);
531 	enqueue_timer(base, timer, idx);
532 }
533 
534 static void
535 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
536 {
537 	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
538 		return;
539 
540 	/*
541 	 * TODO: This wants some optimizing similar to the code below, but we
542 	 * will do that when we switch from push to pull for deferrable timers.
543 	 */
544 	if (timer->flags & TIMER_DEFERRABLE) {
545 		if (tick_nohz_full_cpu(base->cpu))
546 			wake_up_nohz_cpu(base->cpu);
547 		return;
548 	}
549 
550 	/*
551 	 * We might have to IPI the remote CPU if the base is idle and the
552 	 * timer is not deferrable. If the other CPU is on the way to idle
553 	 * then it can't set base->is_idle as we hold the base lock:
554 	 */
555 	if (!base->is_idle)
556 		return;
557 
558 	/* Check whether this is the new first expiring timer: */
559 	if (time_after_eq(timer->expires, base->next_expiry))
560 		return;
561 
562 	/*
563 	 * Set the next expiry time and kick the CPU so it can reevaluate the
564 	 * wheel:
565 	 */
566 	base->next_expiry = timer->expires;
567 		wake_up_nohz_cpu(base->cpu);
568 }
569 
570 static void
571 internal_add_timer(struct timer_base *base, struct timer_list *timer)
572 {
573 	__internal_add_timer(base, timer);
574 	trigger_dyntick_cpu(base, timer);
575 }
576 
577 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
578 
579 static struct debug_obj_descr timer_debug_descr;
580 
581 static void *timer_debug_hint(void *addr)
582 {
583 	return ((struct timer_list *) addr)->function;
584 }
585 
586 static bool timer_is_static_object(void *addr)
587 {
588 	struct timer_list *timer = addr;
589 
590 	return (timer->entry.pprev == NULL &&
591 		timer->entry.next == TIMER_ENTRY_STATIC);
592 }
593 
594 /*
595  * fixup_init is called when:
596  * - an active object is initialized
597  */
598 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
599 {
600 	struct timer_list *timer = addr;
601 
602 	switch (state) {
603 	case ODEBUG_STATE_ACTIVE:
604 		del_timer_sync(timer);
605 		debug_object_init(timer, &timer_debug_descr);
606 		return true;
607 	default:
608 		return false;
609 	}
610 }
611 
612 /* Stub timer callback for improperly used timers. */
613 static void stub_timer(struct timer_list *unused)
614 {
615 	WARN_ON(1);
616 }
617 
618 /*
619  * fixup_activate is called when:
620  * - an active object is activated
621  * - an unknown non-static object is activated
622  */
623 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
624 {
625 	struct timer_list *timer = addr;
626 
627 	switch (state) {
628 	case ODEBUG_STATE_NOTAVAILABLE:
629 		timer_setup(timer, stub_timer, 0);
630 		return true;
631 
632 	case ODEBUG_STATE_ACTIVE:
633 		WARN_ON(1);
634 
635 	default:
636 		return false;
637 	}
638 }
639 
640 /*
641  * fixup_free is called when:
642  * - an active object is freed
643  */
644 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
645 {
646 	struct timer_list *timer = addr;
647 
648 	switch (state) {
649 	case ODEBUG_STATE_ACTIVE:
650 		del_timer_sync(timer);
651 		debug_object_free(timer, &timer_debug_descr);
652 		return true;
653 	default:
654 		return false;
655 	}
656 }
657 
658 /*
659  * fixup_assert_init is called when:
660  * - an untracked/uninit-ed object is found
661  */
662 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
663 {
664 	struct timer_list *timer = addr;
665 
666 	switch (state) {
667 	case ODEBUG_STATE_NOTAVAILABLE:
668 		timer_setup(timer, stub_timer, 0);
669 		return true;
670 	default:
671 		return false;
672 	}
673 }
674 
675 static struct debug_obj_descr timer_debug_descr = {
676 	.name			= "timer_list",
677 	.debug_hint		= timer_debug_hint,
678 	.is_static_object	= timer_is_static_object,
679 	.fixup_init		= timer_fixup_init,
680 	.fixup_activate		= timer_fixup_activate,
681 	.fixup_free		= timer_fixup_free,
682 	.fixup_assert_init	= timer_fixup_assert_init,
683 };
684 
685 static inline void debug_timer_init(struct timer_list *timer)
686 {
687 	debug_object_init(timer, &timer_debug_descr);
688 }
689 
690 static inline void debug_timer_activate(struct timer_list *timer)
691 {
692 	debug_object_activate(timer, &timer_debug_descr);
693 }
694 
695 static inline void debug_timer_deactivate(struct timer_list *timer)
696 {
697 	debug_object_deactivate(timer, &timer_debug_descr);
698 }
699 
700 static inline void debug_timer_free(struct timer_list *timer)
701 {
702 	debug_object_free(timer, &timer_debug_descr);
703 }
704 
705 static inline void debug_timer_assert_init(struct timer_list *timer)
706 {
707 	debug_object_assert_init(timer, &timer_debug_descr);
708 }
709 
710 static void do_init_timer(struct timer_list *timer, unsigned int flags,
711 			  const char *name, struct lock_class_key *key);
712 
713 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
714 			     const char *name, struct lock_class_key *key)
715 {
716 	debug_object_init_on_stack(timer, &timer_debug_descr);
717 	do_init_timer(timer, flags, name, key);
718 }
719 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
720 
721 void destroy_timer_on_stack(struct timer_list *timer)
722 {
723 	debug_object_free(timer, &timer_debug_descr);
724 }
725 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
726 
727 #else
728 static inline void debug_timer_init(struct timer_list *timer) { }
729 static inline void debug_timer_activate(struct timer_list *timer) { }
730 static inline void debug_timer_deactivate(struct timer_list *timer) { }
731 static inline void debug_timer_assert_init(struct timer_list *timer) { }
732 #endif
733 
734 static inline void debug_init(struct timer_list *timer)
735 {
736 	debug_timer_init(timer);
737 	trace_timer_init(timer);
738 }
739 
740 static inline void
741 debug_activate(struct timer_list *timer, unsigned long expires)
742 {
743 	debug_timer_activate(timer);
744 	trace_timer_start(timer, expires, timer->flags);
745 }
746 
747 static inline void debug_deactivate(struct timer_list *timer)
748 {
749 	debug_timer_deactivate(timer);
750 	trace_timer_cancel(timer);
751 }
752 
753 static inline void debug_assert_init(struct timer_list *timer)
754 {
755 	debug_timer_assert_init(timer);
756 }
757 
758 static void do_init_timer(struct timer_list *timer, unsigned int flags,
759 			  const char *name, struct lock_class_key *key)
760 {
761 	timer->entry.pprev = NULL;
762 	timer->flags = flags | raw_smp_processor_id();
763 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
764 }
765 
766 /**
767  * init_timer_key - initialize a timer
768  * @timer: the timer to be initialized
769  * @flags: timer flags
770  * @name: name of the timer
771  * @key: lockdep class key of the fake lock used for tracking timer
772  *       sync lock dependencies
773  *
774  * init_timer_key() must be done to a timer prior calling *any* of the
775  * other timer functions.
776  */
777 void init_timer_key(struct timer_list *timer, unsigned int flags,
778 		    const char *name, struct lock_class_key *key)
779 {
780 	debug_init(timer);
781 	do_init_timer(timer, flags, name, key);
782 }
783 EXPORT_SYMBOL(init_timer_key);
784 
785 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
786 {
787 	struct hlist_node *entry = &timer->entry;
788 
789 	debug_deactivate(timer);
790 
791 	__hlist_del(entry);
792 	if (clear_pending)
793 		entry->pprev = NULL;
794 	entry->next = LIST_POISON2;
795 }
796 
797 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
798 			     bool clear_pending)
799 {
800 	unsigned idx = timer_get_idx(timer);
801 
802 	if (!timer_pending(timer))
803 		return 0;
804 
805 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
806 		__clear_bit(idx, base->pending_map);
807 
808 	detach_timer(timer, clear_pending);
809 	return 1;
810 }
811 
812 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
813 {
814 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
815 
816 	/*
817 	 * If the timer is deferrable and nohz is active then we need to use
818 	 * the deferrable base.
819 	 */
820 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
821 	    (tflags & TIMER_DEFERRABLE))
822 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
823 	return base;
824 }
825 
826 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
827 {
828 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
829 
830 	/*
831 	 * If the timer is deferrable and nohz is active then we need to use
832 	 * the deferrable base.
833 	 */
834 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
835 	    (tflags & TIMER_DEFERRABLE))
836 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
837 	return base;
838 }
839 
840 static inline struct timer_base *get_timer_base(u32 tflags)
841 {
842 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
843 }
844 
845 #ifdef CONFIG_NO_HZ_COMMON
846 static inline struct timer_base *
847 get_target_base(struct timer_base *base, unsigned tflags)
848 {
849 #ifdef CONFIG_SMP
850 	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
851 		return get_timer_this_cpu_base(tflags);
852 	return get_timer_cpu_base(tflags, get_nohz_timer_target());
853 #else
854 	return get_timer_this_cpu_base(tflags);
855 #endif
856 }
857 
858 static inline void forward_timer_base(struct timer_base *base)
859 {
860 	unsigned long jnow;
861 
862 	/*
863 	 * We only forward the base when we are idle or have just come out of
864 	 * idle (must_forward_clk logic), and have a delta between base clock
865 	 * and jiffies. In the common case, run_timers will take care of it.
866 	 */
867 	if (likely(!base->must_forward_clk))
868 		return;
869 
870 	jnow = READ_ONCE(jiffies);
871 	base->must_forward_clk = base->is_idle;
872 	if ((long)(jnow - base->clk) < 2)
873 		return;
874 
875 	/*
876 	 * If the next expiry value is > jiffies, then we fast forward to
877 	 * jiffies otherwise we forward to the next expiry value.
878 	 */
879 	if (time_after(base->next_expiry, jnow))
880 		base->clk = jnow;
881 	else
882 		base->clk = base->next_expiry;
883 }
884 #else
885 static inline struct timer_base *
886 get_target_base(struct timer_base *base, unsigned tflags)
887 {
888 	return get_timer_this_cpu_base(tflags);
889 }
890 
891 static inline void forward_timer_base(struct timer_base *base) { }
892 #endif
893 
894 
895 /*
896  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
897  * that all timers which are tied to this base are locked, and the base itself
898  * is locked too.
899  *
900  * So __run_timers/migrate_timers can safely modify all timers which could
901  * be found in the base->vectors array.
902  *
903  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
904  * to wait until the migration is done.
905  */
906 static struct timer_base *lock_timer_base(struct timer_list *timer,
907 					  unsigned long *flags)
908 	__acquires(timer->base->lock)
909 {
910 	for (;;) {
911 		struct timer_base *base;
912 		u32 tf;
913 
914 		/*
915 		 * We need to use READ_ONCE() here, otherwise the compiler
916 		 * might re-read @tf between the check for TIMER_MIGRATING
917 		 * and spin_lock().
918 		 */
919 		tf = READ_ONCE(timer->flags);
920 
921 		if (!(tf & TIMER_MIGRATING)) {
922 			base = get_timer_base(tf);
923 			raw_spin_lock_irqsave(&base->lock, *flags);
924 			if (timer->flags == tf)
925 				return base;
926 			raw_spin_unlock_irqrestore(&base->lock, *flags);
927 		}
928 		cpu_relax();
929 	}
930 }
931 
932 #define MOD_TIMER_PENDING_ONLY		0x01
933 #define MOD_TIMER_REDUCE		0x02
934 
935 static inline int
936 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
937 {
938 	struct timer_base *base, *new_base;
939 	unsigned int idx = UINT_MAX;
940 	unsigned long clk = 0, flags;
941 	int ret = 0;
942 
943 	BUG_ON(!timer->function);
944 
945 	/*
946 	 * This is a common optimization triggered by the networking code - if
947 	 * the timer is re-modified to have the same timeout or ends up in the
948 	 * same array bucket then just return:
949 	 */
950 	if (timer_pending(timer)) {
951 		/*
952 		 * The downside of this optimization is that it can result in
953 		 * larger granularity than you would get from adding a new
954 		 * timer with this expiry.
955 		 */
956 		long diff = timer->expires - expires;
957 
958 		if (!diff)
959 			return 1;
960 		if (options & MOD_TIMER_REDUCE && diff <= 0)
961 			return 1;
962 
963 		/*
964 		 * We lock timer base and calculate the bucket index right
965 		 * here. If the timer ends up in the same bucket, then we
966 		 * just update the expiry time and avoid the whole
967 		 * dequeue/enqueue dance.
968 		 */
969 		base = lock_timer_base(timer, &flags);
970 		forward_timer_base(base);
971 
972 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
973 		    time_before_eq(timer->expires, expires)) {
974 			ret = 1;
975 			goto out_unlock;
976 		}
977 
978 		clk = base->clk;
979 		idx = calc_wheel_index(expires, clk);
980 
981 		/*
982 		 * Retrieve and compare the array index of the pending
983 		 * timer. If it matches set the expiry to the new value so a
984 		 * subsequent call will exit in the expires check above.
985 		 */
986 		if (idx == timer_get_idx(timer)) {
987 			if (!(options & MOD_TIMER_REDUCE))
988 				timer->expires = expires;
989 			else if (time_after(timer->expires, expires))
990 				timer->expires = expires;
991 			ret = 1;
992 			goto out_unlock;
993 		}
994 	} else {
995 		base = lock_timer_base(timer, &flags);
996 		forward_timer_base(base);
997 	}
998 
999 	ret = detach_if_pending(timer, base, false);
1000 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1001 		goto out_unlock;
1002 
1003 	debug_activate(timer, expires);
1004 
1005 	new_base = get_target_base(base, timer->flags);
1006 
1007 	if (base != new_base) {
1008 		/*
1009 		 * We are trying to schedule the timer on the new base.
1010 		 * However we can't change timer's base while it is running,
1011 		 * otherwise del_timer_sync() can't detect that the timer's
1012 		 * handler yet has not finished. This also guarantees that the
1013 		 * timer is serialized wrt itself.
1014 		 */
1015 		if (likely(base->running_timer != timer)) {
1016 			/* See the comment in lock_timer_base() */
1017 			timer->flags |= TIMER_MIGRATING;
1018 
1019 			raw_spin_unlock(&base->lock);
1020 			base = new_base;
1021 			raw_spin_lock(&base->lock);
1022 			WRITE_ONCE(timer->flags,
1023 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1024 			forward_timer_base(base);
1025 		}
1026 	}
1027 
1028 	timer->expires = expires;
1029 	/*
1030 	 * If 'idx' was calculated above and the base time did not advance
1031 	 * between calculating 'idx' and possibly switching the base, only
1032 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1033 	 * we need to (re)calculate the wheel index via
1034 	 * internal_add_timer().
1035 	 */
1036 	if (idx != UINT_MAX && clk == base->clk) {
1037 		enqueue_timer(base, timer, idx);
1038 		trigger_dyntick_cpu(base, timer);
1039 	} else {
1040 		internal_add_timer(base, timer);
1041 	}
1042 
1043 out_unlock:
1044 	raw_spin_unlock_irqrestore(&base->lock, flags);
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  * mod_timer_pending - modify a pending timer's timeout
1051  * @timer: the pending timer to be modified
1052  * @expires: new timeout in jiffies
1053  *
1054  * mod_timer_pending() is the same for pending timers as mod_timer(),
1055  * but will not re-activate and modify already deleted timers.
1056  *
1057  * It is useful for unserialized use of timers.
1058  */
1059 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1060 {
1061 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1062 }
1063 EXPORT_SYMBOL(mod_timer_pending);
1064 
1065 /**
1066  * mod_timer - modify a timer's timeout
1067  * @timer: the timer to be modified
1068  * @expires: new timeout in jiffies
1069  *
1070  * mod_timer() is a more efficient way to update the expire field of an
1071  * active timer (if the timer is inactive it will be activated)
1072  *
1073  * mod_timer(timer, expires) is equivalent to:
1074  *
1075  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1076  *
1077  * Note that if there are multiple unserialized concurrent users of the
1078  * same timer, then mod_timer() is the only safe way to modify the timeout,
1079  * since add_timer() cannot modify an already running timer.
1080  *
1081  * The function returns whether it has modified a pending timer or not.
1082  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1083  * active timer returns 1.)
1084  */
1085 int mod_timer(struct timer_list *timer, unsigned long expires)
1086 {
1087 	return __mod_timer(timer, expires, 0);
1088 }
1089 EXPORT_SYMBOL(mod_timer);
1090 
1091 /**
1092  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1093  * @timer:	The timer to be modified
1094  * @expires:	New timeout in jiffies
1095  *
1096  * timer_reduce() is very similar to mod_timer(), except that it will only
1097  * modify a running timer if that would reduce the expiration time (it will
1098  * start a timer that isn't running).
1099  */
1100 int timer_reduce(struct timer_list *timer, unsigned long expires)
1101 {
1102 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1103 }
1104 EXPORT_SYMBOL(timer_reduce);
1105 
1106 /**
1107  * add_timer - start a timer
1108  * @timer: the timer to be added
1109  *
1110  * The kernel will do a ->function(->data) callback from the
1111  * timer interrupt at the ->expires point in the future. The
1112  * current time is 'jiffies'.
1113  *
1114  * The timer's ->expires, ->function (and if the handler uses it, ->data)
1115  * fields must be set prior calling this function.
1116  *
1117  * Timers with an ->expires field in the past will be executed in the next
1118  * timer tick.
1119  */
1120 void add_timer(struct timer_list *timer)
1121 {
1122 	BUG_ON(timer_pending(timer));
1123 	mod_timer(timer, timer->expires);
1124 }
1125 EXPORT_SYMBOL(add_timer);
1126 
1127 /**
1128  * add_timer_on - start a timer on a particular CPU
1129  * @timer: the timer to be added
1130  * @cpu: the CPU to start it on
1131  *
1132  * This is not very scalable on SMP. Double adds are not possible.
1133  */
1134 void add_timer_on(struct timer_list *timer, int cpu)
1135 {
1136 	struct timer_base *new_base, *base;
1137 	unsigned long flags;
1138 
1139 	BUG_ON(timer_pending(timer) || !timer->function);
1140 
1141 	new_base = get_timer_cpu_base(timer->flags, cpu);
1142 
1143 	/*
1144 	 * If @timer was on a different CPU, it should be migrated with the
1145 	 * old base locked to prevent other operations proceeding with the
1146 	 * wrong base locked.  See lock_timer_base().
1147 	 */
1148 	base = lock_timer_base(timer, &flags);
1149 	if (base != new_base) {
1150 		timer->flags |= TIMER_MIGRATING;
1151 
1152 		raw_spin_unlock(&base->lock);
1153 		base = new_base;
1154 		raw_spin_lock(&base->lock);
1155 		WRITE_ONCE(timer->flags,
1156 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1157 	}
1158 	forward_timer_base(base);
1159 
1160 	debug_activate(timer, timer->expires);
1161 	internal_add_timer(base, timer);
1162 	raw_spin_unlock_irqrestore(&base->lock, flags);
1163 }
1164 EXPORT_SYMBOL_GPL(add_timer_on);
1165 
1166 /**
1167  * del_timer - deactivate a timer.
1168  * @timer: the timer to be deactivated
1169  *
1170  * del_timer() deactivates a timer - this works on both active and inactive
1171  * timers.
1172  *
1173  * The function returns whether it has deactivated a pending timer or not.
1174  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1175  * active timer returns 1.)
1176  */
1177 int del_timer(struct timer_list *timer)
1178 {
1179 	struct timer_base *base;
1180 	unsigned long flags;
1181 	int ret = 0;
1182 
1183 	debug_assert_init(timer);
1184 
1185 	if (timer_pending(timer)) {
1186 		base = lock_timer_base(timer, &flags);
1187 		ret = detach_if_pending(timer, base, true);
1188 		raw_spin_unlock_irqrestore(&base->lock, flags);
1189 	}
1190 
1191 	return ret;
1192 }
1193 EXPORT_SYMBOL(del_timer);
1194 
1195 /**
1196  * try_to_del_timer_sync - Try to deactivate a timer
1197  * @timer: timer to delete
1198  *
1199  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1200  * exit the timer is not queued and the handler is not running on any CPU.
1201  */
1202 int try_to_del_timer_sync(struct timer_list *timer)
1203 {
1204 	struct timer_base *base;
1205 	unsigned long flags;
1206 	int ret = -1;
1207 
1208 	debug_assert_init(timer);
1209 
1210 	base = lock_timer_base(timer, &flags);
1211 
1212 	if (base->running_timer != timer)
1213 		ret = detach_if_pending(timer, base, true);
1214 
1215 	raw_spin_unlock_irqrestore(&base->lock, flags);
1216 
1217 	return ret;
1218 }
1219 EXPORT_SYMBOL(try_to_del_timer_sync);
1220 
1221 #ifdef CONFIG_SMP
1222 /**
1223  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1224  * @timer: the timer to be deactivated
1225  *
1226  * This function only differs from del_timer() on SMP: besides deactivating
1227  * the timer it also makes sure the handler has finished executing on other
1228  * CPUs.
1229  *
1230  * Synchronization rules: Callers must prevent restarting of the timer,
1231  * otherwise this function is meaningless. It must not be called from
1232  * interrupt contexts unless the timer is an irqsafe one. The caller must
1233  * not hold locks which would prevent completion of the timer's
1234  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1235  * timer is not queued and the handler is not running on any CPU.
1236  *
1237  * Note: For !irqsafe timers, you must not hold locks that are held in
1238  *   interrupt context while calling this function. Even if the lock has
1239  *   nothing to do with the timer in question.  Here's why:
1240  *
1241  *    CPU0                             CPU1
1242  *    ----                             ----
1243  *                                   <SOFTIRQ>
1244  *                                   call_timer_fn();
1245  *                                     base->running_timer = mytimer;
1246  *  spin_lock_irq(somelock);
1247  *                                     <IRQ>
1248  *                                        spin_lock(somelock);
1249  *  del_timer_sync(mytimer);
1250  *   while (base->running_timer == mytimer);
1251  *
1252  * Now del_timer_sync() will never return and never release somelock.
1253  * The interrupt on the other CPU is waiting to grab somelock but
1254  * it has interrupted the softirq that CPU0 is waiting to finish.
1255  *
1256  * The function returns whether it has deactivated a pending timer or not.
1257  */
1258 int del_timer_sync(struct timer_list *timer)
1259 {
1260 #ifdef CONFIG_LOCKDEP
1261 	unsigned long flags;
1262 
1263 	/*
1264 	 * If lockdep gives a backtrace here, please reference
1265 	 * the synchronization rules above.
1266 	 */
1267 	local_irq_save(flags);
1268 	lock_map_acquire(&timer->lockdep_map);
1269 	lock_map_release(&timer->lockdep_map);
1270 	local_irq_restore(flags);
1271 #endif
1272 	/*
1273 	 * don't use it in hardirq context, because it
1274 	 * could lead to deadlock.
1275 	 */
1276 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1277 	for (;;) {
1278 		int ret = try_to_del_timer_sync(timer);
1279 		if (ret >= 0)
1280 			return ret;
1281 		cpu_relax();
1282 	}
1283 }
1284 EXPORT_SYMBOL(del_timer_sync);
1285 #endif
1286 
1287 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1288 			  unsigned long data)
1289 {
1290 	int count = preempt_count();
1291 
1292 #ifdef CONFIG_LOCKDEP
1293 	/*
1294 	 * It is permissible to free the timer from inside the
1295 	 * function that is called from it, this we need to take into
1296 	 * account for lockdep too. To avoid bogus "held lock freed"
1297 	 * warnings as well as problems when looking into
1298 	 * timer->lockdep_map, make a copy and use that here.
1299 	 */
1300 	struct lockdep_map lockdep_map;
1301 
1302 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1303 #endif
1304 	/*
1305 	 * Couple the lock chain with the lock chain at
1306 	 * del_timer_sync() by acquiring the lock_map around the fn()
1307 	 * call here and in del_timer_sync().
1308 	 */
1309 	lock_map_acquire(&lockdep_map);
1310 
1311 	trace_timer_expire_entry(timer);
1312 	fn(data);
1313 	trace_timer_expire_exit(timer);
1314 
1315 	lock_map_release(&lockdep_map);
1316 
1317 	if (count != preempt_count()) {
1318 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1319 			  fn, count, preempt_count());
1320 		/*
1321 		 * Restore the preempt count. That gives us a decent
1322 		 * chance to survive and extract information. If the
1323 		 * callback kept a lock held, bad luck, but not worse
1324 		 * than the BUG() we had.
1325 		 */
1326 		preempt_count_set(count);
1327 	}
1328 }
1329 
1330 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1331 {
1332 	while (!hlist_empty(head)) {
1333 		struct timer_list *timer;
1334 		void (*fn)(unsigned long);
1335 		unsigned long data;
1336 
1337 		timer = hlist_entry(head->first, struct timer_list, entry);
1338 
1339 		base->running_timer = timer;
1340 		detach_timer(timer, true);
1341 
1342 		fn = timer->function;
1343 		data = timer->data;
1344 
1345 		if (timer->flags & TIMER_IRQSAFE) {
1346 			raw_spin_unlock(&base->lock);
1347 			call_timer_fn(timer, fn, data);
1348 			raw_spin_lock(&base->lock);
1349 		} else {
1350 			raw_spin_unlock_irq(&base->lock);
1351 			call_timer_fn(timer, fn, data);
1352 			raw_spin_lock_irq(&base->lock);
1353 		}
1354 	}
1355 }
1356 
1357 static int __collect_expired_timers(struct timer_base *base,
1358 				    struct hlist_head *heads)
1359 {
1360 	unsigned long clk = base->clk;
1361 	struct hlist_head *vec;
1362 	int i, levels = 0;
1363 	unsigned int idx;
1364 
1365 	for (i = 0; i < LVL_DEPTH; i++) {
1366 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1367 
1368 		if (__test_and_clear_bit(idx, base->pending_map)) {
1369 			vec = base->vectors + idx;
1370 			hlist_move_list(vec, heads++);
1371 			levels++;
1372 		}
1373 		/* Is it time to look at the next level? */
1374 		if (clk & LVL_CLK_MASK)
1375 			break;
1376 		/* Shift clock for the next level granularity */
1377 		clk >>= LVL_CLK_SHIFT;
1378 	}
1379 	return levels;
1380 }
1381 
1382 #ifdef CONFIG_NO_HZ_COMMON
1383 /*
1384  * Find the next pending bucket of a level. Search from level start (@offset)
1385  * + @clk upwards and if nothing there, search from start of the level
1386  * (@offset) up to @offset + clk.
1387  */
1388 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1389 			       unsigned clk)
1390 {
1391 	unsigned pos, start = offset + clk;
1392 	unsigned end = offset + LVL_SIZE;
1393 
1394 	pos = find_next_bit(base->pending_map, end, start);
1395 	if (pos < end)
1396 		return pos - start;
1397 
1398 	pos = find_next_bit(base->pending_map, start, offset);
1399 	return pos < start ? pos + LVL_SIZE - start : -1;
1400 }
1401 
1402 /*
1403  * Search the first expiring timer in the various clock levels. Caller must
1404  * hold base->lock.
1405  */
1406 static unsigned long __next_timer_interrupt(struct timer_base *base)
1407 {
1408 	unsigned long clk, next, adj;
1409 	unsigned lvl, offset = 0;
1410 
1411 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1412 	clk = base->clk;
1413 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1414 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1415 
1416 		if (pos >= 0) {
1417 			unsigned long tmp = clk + (unsigned long) pos;
1418 
1419 			tmp <<= LVL_SHIFT(lvl);
1420 			if (time_before(tmp, next))
1421 				next = tmp;
1422 		}
1423 		/*
1424 		 * Clock for the next level. If the current level clock lower
1425 		 * bits are zero, we look at the next level as is. If not we
1426 		 * need to advance it by one because that's going to be the
1427 		 * next expiring bucket in that level. base->clk is the next
1428 		 * expiring jiffie. So in case of:
1429 		 *
1430 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1431 		 *  0    0    0    0    0    0
1432 		 *
1433 		 * we have to look at all levels @index 0. With
1434 		 *
1435 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1436 		 *  0    0    0    0    0    2
1437 		 *
1438 		 * LVL0 has the next expiring bucket @index 2. The upper
1439 		 * levels have the next expiring bucket @index 1.
1440 		 *
1441 		 * In case that the propagation wraps the next level the same
1442 		 * rules apply:
1443 		 *
1444 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1445 		 *  0    0    0    0    F    2
1446 		 *
1447 		 * So after looking at LVL0 we get:
1448 		 *
1449 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1450 		 *  0    0    0    1    0
1451 		 *
1452 		 * So no propagation from LVL1 to LVL2 because that happened
1453 		 * with the add already, but then we need to propagate further
1454 		 * from LVL2 to LVL3.
1455 		 *
1456 		 * So the simple check whether the lower bits of the current
1457 		 * level are 0 or not is sufficient for all cases.
1458 		 */
1459 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1460 		clk >>= LVL_CLK_SHIFT;
1461 		clk += adj;
1462 	}
1463 	return next;
1464 }
1465 
1466 /*
1467  * Check, if the next hrtimer event is before the next timer wheel
1468  * event:
1469  */
1470 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1471 {
1472 	u64 nextevt = hrtimer_get_next_event();
1473 
1474 	/*
1475 	 * If high resolution timers are enabled
1476 	 * hrtimer_get_next_event() returns KTIME_MAX.
1477 	 */
1478 	if (expires <= nextevt)
1479 		return expires;
1480 
1481 	/*
1482 	 * If the next timer is already expired, return the tick base
1483 	 * time so the tick is fired immediately.
1484 	 */
1485 	if (nextevt <= basem)
1486 		return basem;
1487 
1488 	/*
1489 	 * Round up to the next jiffie. High resolution timers are
1490 	 * off, so the hrtimers are expired in the tick and we need to
1491 	 * make sure that this tick really expires the timer to avoid
1492 	 * a ping pong of the nohz stop code.
1493 	 *
1494 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1495 	 */
1496 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1497 }
1498 
1499 /**
1500  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1501  * @basej:	base time jiffies
1502  * @basem:	base time clock monotonic
1503  *
1504  * Returns the tick aligned clock monotonic time of the next pending
1505  * timer or KTIME_MAX if no timer is pending.
1506  */
1507 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1508 {
1509 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1510 	u64 expires = KTIME_MAX;
1511 	unsigned long nextevt;
1512 	bool is_max_delta;
1513 
1514 	/*
1515 	 * Pretend that there is no timer pending if the cpu is offline.
1516 	 * Possible pending timers will be migrated later to an active cpu.
1517 	 */
1518 	if (cpu_is_offline(smp_processor_id()))
1519 		return expires;
1520 
1521 	raw_spin_lock(&base->lock);
1522 	nextevt = __next_timer_interrupt(base);
1523 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1524 	base->next_expiry = nextevt;
1525 	/*
1526 	 * We have a fresh next event. Check whether we can forward the
1527 	 * base. We can only do that when @basej is past base->clk
1528 	 * otherwise we might rewind base->clk.
1529 	 */
1530 	if (time_after(basej, base->clk)) {
1531 		if (time_after(nextevt, basej))
1532 			base->clk = basej;
1533 		else if (time_after(nextevt, base->clk))
1534 			base->clk = nextevt;
1535 	}
1536 
1537 	if (time_before_eq(nextevt, basej)) {
1538 		expires = basem;
1539 		base->is_idle = false;
1540 	} else {
1541 		if (!is_max_delta)
1542 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1543 		/*
1544 		 * If we expect to sleep more than a tick, mark the base idle.
1545 		 * Also the tick is stopped so any added timer must forward
1546 		 * the base clk itself to keep granularity small. This idle
1547 		 * logic is only maintained for the BASE_STD base, deferrable
1548 		 * timers may still see large granularity skew (by design).
1549 		 */
1550 		if ((expires - basem) > TICK_NSEC) {
1551 			base->must_forward_clk = true;
1552 			base->is_idle = true;
1553 		}
1554 	}
1555 	raw_spin_unlock(&base->lock);
1556 
1557 	return cmp_next_hrtimer_event(basem, expires);
1558 }
1559 
1560 /**
1561  * timer_clear_idle - Clear the idle state of the timer base
1562  *
1563  * Called with interrupts disabled
1564  */
1565 void timer_clear_idle(void)
1566 {
1567 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1568 
1569 	/*
1570 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1571 	 * a pointless IPI, but taking the lock would just make the window for
1572 	 * sending the IPI a few instructions smaller for the cost of taking
1573 	 * the lock in the exit from idle path.
1574 	 */
1575 	base->is_idle = false;
1576 }
1577 
1578 static int collect_expired_timers(struct timer_base *base,
1579 				  struct hlist_head *heads)
1580 {
1581 	/*
1582 	 * NOHZ optimization. After a long idle sleep we need to forward the
1583 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1584 	 * the next expiring timer.
1585 	 */
1586 	if ((long)(jiffies - base->clk) > 2) {
1587 		unsigned long next = __next_timer_interrupt(base);
1588 
1589 		/*
1590 		 * If the next timer is ahead of time forward to current
1591 		 * jiffies, otherwise forward to the next expiry time:
1592 		 */
1593 		if (time_after(next, jiffies)) {
1594 			/*
1595 			 * The call site will increment base->clk and then
1596 			 * terminate the expiry loop immediately.
1597 			 */
1598 			base->clk = jiffies;
1599 			return 0;
1600 		}
1601 		base->clk = next;
1602 	}
1603 	return __collect_expired_timers(base, heads);
1604 }
1605 #else
1606 static inline int collect_expired_timers(struct timer_base *base,
1607 					 struct hlist_head *heads)
1608 {
1609 	return __collect_expired_timers(base, heads);
1610 }
1611 #endif
1612 
1613 /*
1614  * Called from the timer interrupt handler to charge one tick to the current
1615  * process.  user_tick is 1 if the tick is user time, 0 for system.
1616  */
1617 void update_process_times(int user_tick)
1618 {
1619 	struct task_struct *p = current;
1620 
1621 	/* Note: this timer irq context must be accounted for as well. */
1622 	account_process_tick(p, user_tick);
1623 	run_local_timers();
1624 	rcu_check_callbacks(user_tick);
1625 #ifdef CONFIG_IRQ_WORK
1626 	if (in_irq())
1627 		irq_work_tick();
1628 #endif
1629 	scheduler_tick();
1630 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1631 		run_posix_cpu_timers(p);
1632 }
1633 
1634 /**
1635  * __run_timers - run all expired timers (if any) on this CPU.
1636  * @base: the timer vector to be processed.
1637  */
1638 static inline void __run_timers(struct timer_base *base)
1639 {
1640 	struct hlist_head heads[LVL_DEPTH];
1641 	int levels;
1642 
1643 	if (!time_after_eq(jiffies, base->clk))
1644 		return;
1645 
1646 	raw_spin_lock_irq(&base->lock);
1647 
1648 	while (time_after_eq(jiffies, base->clk)) {
1649 
1650 		levels = collect_expired_timers(base, heads);
1651 		base->clk++;
1652 
1653 		while (levels--)
1654 			expire_timers(base, heads + levels);
1655 	}
1656 	base->running_timer = NULL;
1657 	raw_spin_unlock_irq(&base->lock);
1658 }
1659 
1660 /*
1661  * This function runs timers and the timer-tq in bottom half context.
1662  */
1663 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1664 {
1665 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1666 
1667 	/*
1668 	 * must_forward_clk must be cleared before running timers so that any
1669 	 * timer functions that call mod_timer will not try to forward the
1670 	 * base. idle trcking / clock forwarding logic is only used with
1671 	 * BASE_STD timers.
1672 	 *
1673 	 * The deferrable base does not do idle tracking at all, so we do
1674 	 * not forward it. This can result in very large variations in
1675 	 * granularity for deferrable timers, but they can be deferred for
1676 	 * long periods due to idle.
1677 	 */
1678 	base->must_forward_clk = false;
1679 
1680 	__run_timers(base);
1681 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1682 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1683 }
1684 
1685 /*
1686  * Called by the local, per-CPU timer interrupt on SMP.
1687  */
1688 void run_local_timers(void)
1689 {
1690 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1691 
1692 	hrtimer_run_queues();
1693 	/* Raise the softirq only if required. */
1694 	if (time_before(jiffies, base->clk)) {
1695 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1696 			return;
1697 		/* CPU is awake, so check the deferrable base. */
1698 		base++;
1699 		if (time_before(jiffies, base->clk))
1700 			return;
1701 	}
1702 	raise_softirq(TIMER_SOFTIRQ);
1703 }
1704 
1705 /*
1706  * Since schedule_timeout()'s timer is defined on the stack, it must store
1707  * the target task on the stack as well.
1708  */
1709 struct process_timer {
1710 	struct timer_list timer;
1711 	struct task_struct *task;
1712 };
1713 
1714 static void process_timeout(struct timer_list *t)
1715 {
1716 	struct process_timer *timeout = from_timer(timeout, t, timer);
1717 
1718 	wake_up_process(timeout->task);
1719 }
1720 
1721 /**
1722  * schedule_timeout - sleep until timeout
1723  * @timeout: timeout value in jiffies
1724  *
1725  * Make the current task sleep until @timeout jiffies have
1726  * elapsed. The routine will return immediately unless
1727  * the current task state has been set (see set_current_state()).
1728  *
1729  * You can set the task state as follows -
1730  *
1731  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1732  * pass before the routine returns unless the current task is explicitly
1733  * woken up, (e.g. by wake_up_process())".
1734  *
1735  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1736  * delivered to the current task or the current task is explicitly woken
1737  * up.
1738  *
1739  * The current task state is guaranteed to be TASK_RUNNING when this
1740  * routine returns.
1741  *
1742  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1743  * the CPU away without a bound on the timeout. In this case the return
1744  * value will be %MAX_SCHEDULE_TIMEOUT.
1745  *
1746  * Returns 0 when the timer has expired otherwise the remaining time in
1747  * jiffies will be returned.  In all cases the return value is guaranteed
1748  * to be non-negative.
1749  */
1750 signed long __sched schedule_timeout(signed long timeout)
1751 {
1752 	struct process_timer timer;
1753 	unsigned long expire;
1754 
1755 	switch (timeout)
1756 	{
1757 	case MAX_SCHEDULE_TIMEOUT:
1758 		/*
1759 		 * These two special cases are useful to be comfortable
1760 		 * in the caller. Nothing more. We could take
1761 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1762 		 * but I' d like to return a valid offset (>=0) to allow
1763 		 * the caller to do everything it want with the retval.
1764 		 */
1765 		schedule();
1766 		goto out;
1767 	default:
1768 		/*
1769 		 * Another bit of PARANOID. Note that the retval will be
1770 		 * 0 since no piece of kernel is supposed to do a check
1771 		 * for a negative retval of schedule_timeout() (since it
1772 		 * should never happens anyway). You just have the printk()
1773 		 * that will tell you if something is gone wrong and where.
1774 		 */
1775 		if (timeout < 0) {
1776 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1777 				"value %lx\n", timeout);
1778 			dump_stack();
1779 			current->state = TASK_RUNNING;
1780 			goto out;
1781 		}
1782 	}
1783 
1784 	expire = timeout + jiffies;
1785 
1786 	timer.task = current;
1787 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1788 	__mod_timer(&timer.timer, expire, 0);
1789 	schedule();
1790 	del_singleshot_timer_sync(&timer.timer);
1791 
1792 	/* Remove the timer from the object tracker */
1793 	destroy_timer_on_stack(&timer.timer);
1794 
1795 	timeout = expire - jiffies;
1796 
1797  out:
1798 	return timeout < 0 ? 0 : timeout;
1799 }
1800 EXPORT_SYMBOL(schedule_timeout);
1801 
1802 /*
1803  * We can use __set_current_state() here because schedule_timeout() calls
1804  * schedule() unconditionally.
1805  */
1806 signed long __sched schedule_timeout_interruptible(signed long timeout)
1807 {
1808 	__set_current_state(TASK_INTERRUPTIBLE);
1809 	return schedule_timeout(timeout);
1810 }
1811 EXPORT_SYMBOL(schedule_timeout_interruptible);
1812 
1813 signed long __sched schedule_timeout_killable(signed long timeout)
1814 {
1815 	__set_current_state(TASK_KILLABLE);
1816 	return schedule_timeout(timeout);
1817 }
1818 EXPORT_SYMBOL(schedule_timeout_killable);
1819 
1820 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1821 {
1822 	__set_current_state(TASK_UNINTERRUPTIBLE);
1823 	return schedule_timeout(timeout);
1824 }
1825 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1826 
1827 /*
1828  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1829  * to load average.
1830  */
1831 signed long __sched schedule_timeout_idle(signed long timeout)
1832 {
1833 	__set_current_state(TASK_IDLE);
1834 	return schedule_timeout(timeout);
1835 }
1836 EXPORT_SYMBOL(schedule_timeout_idle);
1837 
1838 #ifdef CONFIG_HOTPLUG_CPU
1839 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1840 {
1841 	struct timer_list *timer;
1842 	int cpu = new_base->cpu;
1843 
1844 	while (!hlist_empty(head)) {
1845 		timer = hlist_entry(head->first, struct timer_list, entry);
1846 		detach_timer(timer, false);
1847 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1848 		internal_add_timer(new_base, timer);
1849 	}
1850 }
1851 
1852 int timers_dead_cpu(unsigned int cpu)
1853 {
1854 	struct timer_base *old_base;
1855 	struct timer_base *new_base;
1856 	int b, i;
1857 
1858 	BUG_ON(cpu_online(cpu));
1859 
1860 	for (b = 0; b < NR_BASES; b++) {
1861 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1862 		new_base = get_cpu_ptr(&timer_bases[b]);
1863 		/*
1864 		 * The caller is globally serialized and nobody else
1865 		 * takes two locks at once, deadlock is not possible.
1866 		 */
1867 		raw_spin_lock_irq(&new_base->lock);
1868 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1869 
1870 		BUG_ON(old_base->running_timer);
1871 
1872 		for (i = 0; i < WHEEL_SIZE; i++)
1873 			migrate_timer_list(new_base, old_base->vectors + i);
1874 
1875 		raw_spin_unlock(&old_base->lock);
1876 		raw_spin_unlock_irq(&new_base->lock);
1877 		put_cpu_ptr(&timer_bases);
1878 	}
1879 	return 0;
1880 }
1881 
1882 #endif /* CONFIG_HOTPLUG_CPU */
1883 
1884 static void __init init_timer_cpu(int cpu)
1885 {
1886 	struct timer_base *base;
1887 	int i;
1888 
1889 	for (i = 0; i < NR_BASES; i++) {
1890 		base = per_cpu_ptr(&timer_bases[i], cpu);
1891 		base->cpu = cpu;
1892 		raw_spin_lock_init(&base->lock);
1893 		base->clk = jiffies;
1894 	}
1895 }
1896 
1897 static void __init init_timer_cpus(void)
1898 {
1899 	int cpu;
1900 
1901 	for_each_possible_cpu(cpu)
1902 		init_timer_cpu(cpu);
1903 }
1904 
1905 void __init init_timers(void)
1906 {
1907 	init_timer_cpus();
1908 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1909 }
1910 
1911 /**
1912  * msleep - sleep safely even with waitqueue interruptions
1913  * @msecs: Time in milliseconds to sleep for
1914  */
1915 void msleep(unsigned int msecs)
1916 {
1917 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1918 
1919 	while (timeout)
1920 		timeout = schedule_timeout_uninterruptible(timeout);
1921 }
1922 
1923 EXPORT_SYMBOL(msleep);
1924 
1925 /**
1926  * msleep_interruptible - sleep waiting for signals
1927  * @msecs: Time in milliseconds to sleep for
1928  */
1929 unsigned long msleep_interruptible(unsigned int msecs)
1930 {
1931 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1932 
1933 	while (timeout && !signal_pending(current))
1934 		timeout = schedule_timeout_interruptible(timeout);
1935 	return jiffies_to_msecs(timeout);
1936 }
1937 
1938 EXPORT_SYMBOL(msleep_interruptible);
1939 
1940 /**
1941  * usleep_range - Sleep for an approximate time
1942  * @min: Minimum time in usecs to sleep
1943  * @max: Maximum time in usecs to sleep
1944  *
1945  * In non-atomic context where the exact wakeup time is flexible, use
1946  * usleep_range() instead of udelay().  The sleep improves responsiveness
1947  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1948  * power usage by allowing hrtimers to take advantage of an already-
1949  * scheduled interrupt instead of scheduling a new one just for this sleep.
1950  */
1951 void __sched usleep_range(unsigned long min, unsigned long max)
1952 {
1953 	ktime_t exp = ktime_add_us(ktime_get(), min);
1954 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1955 
1956 	for (;;) {
1957 		__set_current_state(TASK_UNINTERRUPTIBLE);
1958 		/* Do not return before the requested sleep time has elapsed */
1959 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1960 			break;
1961 	}
1962 }
1963 EXPORT_SYMBOL(usleep_range);
1964