1 /* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22 #include <linux/kernel_stat.h> 23 #include <linux/export.h> 24 #include <linux/interrupt.h> 25 #include <linux/percpu.h> 26 #include <linux/init.h> 27 #include <linux/mm.h> 28 #include <linux/swap.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/notifier.h> 31 #include <linux/thread_info.h> 32 #include <linux/time.h> 33 #include <linux/jiffies.h> 34 #include <linux/posix-timers.h> 35 #include <linux/cpu.h> 36 #include <linux/syscalls.h> 37 #include <linux/delay.h> 38 #include <linux/tick.h> 39 #include <linux/kallsyms.h> 40 #include <linux/irq_work.h> 41 #include <linux/sched/signal.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/sched/nohz.h> 44 #include <linux/sched/debug.h> 45 #include <linux/slab.h> 46 #include <linux/compat.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/div64.h> 51 #include <asm/timex.h> 52 #include <asm/io.h> 53 54 #include "tick-internal.h" 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/timer.h> 58 59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 60 61 EXPORT_SYMBOL(jiffies_64); 62 63 /* 64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 66 * level has a different granularity. 67 * 68 * The level granularity is: LVL_CLK_DIV ^ lvl 69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 70 * 71 * The array level of a newly armed timer depends on the relative expiry 72 * time. The farther the expiry time is away the higher the array level and 73 * therefor the granularity becomes. 74 * 75 * Contrary to the original timer wheel implementation, which aims for 'exact' 76 * expiry of the timers, this implementation removes the need for recascading 77 * the timers into the lower array levels. The previous 'classic' timer wheel 78 * implementation of the kernel already violated the 'exact' expiry by adding 79 * slack to the expiry time to provide batched expiration. The granularity 80 * levels provide implicit batching. 81 * 82 * This is an optimization of the original timer wheel implementation for the 83 * majority of the timer wheel use cases: timeouts. The vast majority of 84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 85 * the timeout expires it indicates that normal operation is disturbed, so it 86 * does not matter much whether the timeout comes with a slight delay. 87 * 88 * The only exception to this are networking timers with a small expiry 89 * time. They rely on the granularity. Those fit into the first wheel level, 90 * which has HZ granularity. 91 * 92 * We don't have cascading anymore. timers with a expiry time above the 93 * capacity of the last wheel level are force expired at the maximum timeout 94 * value of the last wheel level. From data sampling we know that the maximum 95 * value observed is 5 days (network connection tracking), so this should not 96 * be an issue. 97 * 98 * The currently chosen array constants values are a good compromise between 99 * array size and granularity. 100 * 101 * This results in the following granularity and range levels: 102 * 103 * HZ 1000 steps 104 * Level Offset Granularity Range 105 * 0 0 1 ms 0 ms - 63 ms 106 * 1 64 8 ms 64 ms - 511 ms 107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 114 * 115 * HZ 300 116 * Level Offset Granularity Range 117 * 0 0 3 ms 0 ms - 210 ms 118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 126 * 127 * HZ 250 128 * Level Offset Granularity Range 129 * 0 0 4 ms 0 ms - 255 ms 130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 138 * 139 * HZ 100 140 * Level Offset Granularity Range 141 * 0 0 10 ms 0 ms - 630 ms 142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 149 */ 150 151 /* Clock divisor for the next level */ 152 #define LVL_CLK_SHIFT 3 153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 157 158 /* 159 * The time start value for each level to select the bucket at enqueue 160 * time. 161 */ 162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 163 164 /* Size of each clock level */ 165 #define LVL_BITS 6 166 #define LVL_SIZE (1UL << LVL_BITS) 167 #define LVL_MASK (LVL_SIZE - 1) 168 #define LVL_OFFS(n) ((n) * LVL_SIZE) 169 170 /* Level depth */ 171 #if HZ > 100 172 # define LVL_DEPTH 9 173 # else 174 # define LVL_DEPTH 8 175 #endif 176 177 /* The cutoff (max. capacity of the wheel) */ 178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 180 181 /* 182 * The resulting wheel size. If NOHZ is configured we allocate two 183 * wheels so we have a separate storage for the deferrable timers. 184 */ 185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 186 187 #ifdef CONFIG_NO_HZ_COMMON 188 # define NR_BASES 2 189 # define BASE_STD 0 190 # define BASE_DEF 1 191 #else 192 # define NR_BASES 1 193 # define BASE_STD 0 194 # define BASE_DEF 0 195 #endif 196 197 struct timer_base { 198 raw_spinlock_t lock; 199 struct timer_list *running_timer; 200 unsigned long clk; 201 unsigned long next_expiry; 202 unsigned int cpu; 203 bool migration_enabled; 204 bool nohz_active; 205 bool is_idle; 206 bool must_forward_clk; 207 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 208 struct hlist_head vectors[WHEEL_SIZE]; 209 } ____cacheline_aligned; 210 211 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 212 213 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 214 unsigned int sysctl_timer_migration = 1; 215 216 void timers_update_migration(bool update_nohz) 217 { 218 bool on = sysctl_timer_migration && tick_nohz_active; 219 unsigned int cpu; 220 221 /* Avoid the loop, if nothing to update */ 222 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on) 223 return; 224 225 for_each_possible_cpu(cpu) { 226 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on; 227 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on; 228 per_cpu(hrtimer_bases.migration_enabled, cpu) = on; 229 if (!update_nohz) 230 continue; 231 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true; 232 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true; 233 per_cpu(hrtimer_bases.nohz_active, cpu) = true; 234 } 235 } 236 237 int timer_migration_handler(struct ctl_table *table, int write, 238 void __user *buffer, size_t *lenp, 239 loff_t *ppos) 240 { 241 static DEFINE_MUTEX(mutex); 242 int ret; 243 244 mutex_lock(&mutex); 245 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 246 if (!ret && write) 247 timers_update_migration(false); 248 mutex_unlock(&mutex); 249 return ret; 250 } 251 #endif 252 253 static unsigned long round_jiffies_common(unsigned long j, int cpu, 254 bool force_up) 255 { 256 int rem; 257 unsigned long original = j; 258 259 /* 260 * We don't want all cpus firing their timers at once hitting the 261 * same lock or cachelines, so we skew each extra cpu with an extra 262 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 263 * already did this. 264 * The skew is done by adding 3*cpunr, then round, then subtract this 265 * extra offset again. 266 */ 267 j += cpu * 3; 268 269 rem = j % HZ; 270 271 /* 272 * If the target jiffie is just after a whole second (which can happen 273 * due to delays of the timer irq, long irq off times etc etc) then 274 * we should round down to the whole second, not up. Use 1/4th second 275 * as cutoff for this rounding as an extreme upper bound for this. 276 * But never round down if @force_up is set. 277 */ 278 if (rem < HZ/4 && !force_up) /* round down */ 279 j = j - rem; 280 else /* round up */ 281 j = j - rem + HZ; 282 283 /* now that we have rounded, subtract the extra skew again */ 284 j -= cpu * 3; 285 286 /* 287 * Make sure j is still in the future. Otherwise return the 288 * unmodified value. 289 */ 290 return time_is_after_jiffies(j) ? j : original; 291 } 292 293 /** 294 * __round_jiffies - function to round jiffies to a full second 295 * @j: the time in (absolute) jiffies that should be rounded 296 * @cpu: the processor number on which the timeout will happen 297 * 298 * __round_jiffies() rounds an absolute time in the future (in jiffies) 299 * up or down to (approximately) full seconds. This is useful for timers 300 * for which the exact time they fire does not matter too much, as long as 301 * they fire approximately every X seconds. 302 * 303 * By rounding these timers to whole seconds, all such timers will fire 304 * at the same time, rather than at various times spread out. The goal 305 * of this is to have the CPU wake up less, which saves power. 306 * 307 * The exact rounding is skewed for each processor to avoid all 308 * processors firing at the exact same time, which could lead 309 * to lock contention or spurious cache line bouncing. 310 * 311 * The return value is the rounded version of the @j parameter. 312 */ 313 unsigned long __round_jiffies(unsigned long j, int cpu) 314 { 315 return round_jiffies_common(j, cpu, false); 316 } 317 EXPORT_SYMBOL_GPL(__round_jiffies); 318 319 /** 320 * __round_jiffies_relative - function to round jiffies to a full second 321 * @j: the time in (relative) jiffies that should be rounded 322 * @cpu: the processor number on which the timeout will happen 323 * 324 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 325 * up or down to (approximately) full seconds. This is useful for timers 326 * for which the exact time they fire does not matter too much, as long as 327 * they fire approximately every X seconds. 328 * 329 * By rounding these timers to whole seconds, all such timers will fire 330 * at the same time, rather than at various times spread out. The goal 331 * of this is to have the CPU wake up less, which saves power. 332 * 333 * The exact rounding is skewed for each processor to avoid all 334 * processors firing at the exact same time, which could lead 335 * to lock contention or spurious cache line bouncing. 336 * 337 * The return value is the rounded version of the @j parameter. 338 */ 339 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 340 { 341 unsigned long j0 = jiffies; 342 343 /* Use j0 because jiffies might change while we run */ 344 return round_jiffies_common(j + j0, cpu, false) - j0; 345 } 346 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 347 348 /** 349 * round_jiffies - function to round jiffies to a full second 350 * @j: the time in (absolute) jiffies that should be rounded 351 * 352 * round_jiffies() rounds an absolute time in the future (in jiffies) 353 * up or down to (approximately) full seconds. This is useful for timers 354 * for which the exact time they fire does not matter too much, as long as 355 * they fire approximately every X seconds. 356 * 357 * By rounding these timers to whole seconds, all such timers will fire 358 * at the same time, rather than at various times spread out. The goal 359 * of this is to have the CPU wake up less, which saves power. 360 * 361 * The return value is the rounded version of the @j parameter. 362 */ 363 unsigned long round_jiffies(unsigned long j) 364 { 365 return round_jiffies_common(j, raw_smp_processor_id(), false); 366 } 367 EXPORT_SYMBOL_GPL(round_jiffies); 368 369 /** 370 * round_jiffies_relative - function to round jiffies to a full second 371 * @j: the time in (relative) jiffies that should be rounded 372 * 373 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 374 * up or down to (approximately) full seconds. This is useful for timers 375 * for which the exact time they fire does not matter too much, as long as 376 * they fire approximately every X seconds. 377 * 378 * By rounding these timers to whole seconds, all such timers will fire 379 * at the same time, rather than at various times spread out. The goal 380 * of this is to have the CPU wake up less, which saves power. 381 * 382 * The return value is the rounded version of the @j parameter. 383 */ 384 unsigned long round_jiffies_relative(unsigned long j) 385 { 386 return __round_jiffies_relative(j, raw_smp_processor_id()); 387 } 388 EXPORT_SYMBOL_GPL(round_jiffies_relative); 389 390 /** 391 * __round_jiffies_up - function to round jiffies up to a full second 392 * @j: the time in (absolute) jiffies that should be rounded 393 * @cpu: the processor number on which the timeout will happen 394 * 395 * This is the same as __round_jiffies() except that it will never 396 * round down. This is useful for timeouts for which the exact time 397 * of firing does not matter too much, as long as they don't fire too 398 * early. 399 */ 400 unsigned long __round_jiffies_up(unsigned long j, int cpu) 401 { 402 return round_jiffies_common(j, cpu, true); 403 } 404 EXPORT_SYMBOL_GPL(__round_jiffies_up); 405 406 /** 407 * __round_jiffies_up_relative - function to round jiffies up to a full second 408 * @j: the time in (relative) jiffies that should be rounded 409 * @cpu: the processor number on which the timeout will happen 410 * 411 * This is the same as __round_jiffies_relative() except that it will never 412 * round down. This is useful for timeouts for which the exact time 413 * of firing does not matter too much, as long as they don't fire too 414 * early. 415 */ 416 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 417 { 418 unsigned long j0 = jiffies; 419 420 /* Use j0 because jiffies might change while we run */ 421 return round_jiffies_common(j + j0, cpu, true) - j0; 422 } 423 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 424 425 /** 426 * round_jiffies_up - function to round jiffies up to a full second 427 * @j: the time in (absolute) jiffies that should be rounded 428 * 429 * This is the same as round_jiffies() except that it will never 430 * round down. This is useful for timeouts for which the exact time 431 * of firing does not matter too much, as long as they don't fire too 432 * early. 433 */ 434 unsigned long round_jiffies_up(unsigned long j) 435 { 436 return round_jiffies_common(j, raw_smp_processor_id(), true); 437 } 438 EXPORT_SYMBOL_GPL(round_jiffies_up); 439 440 /** 441 * round_jiffies_up_relative - function to round jiffies up to a full second 442 * @j: the time in (relative) jiffies that should be rounded 443 * 444 * This is the same as round_jiffies_relative() except that it will never 445 * round down. This is useful for timeouts for which the exact time 446 * of firing does not matter too much, as long as they don't fire too 447 * early. 448 */ 449 unsigned long round_jiffies_up_relative(unsigned long j) 450 { 451 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 452 } 453 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 454 455 456 static inline unsigned int timer_get_idx(struct timer_list *timer) 457 { 458 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 459 } 460 461 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 462 { 463 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 464 idx << TIMER_ARRAYSHIFT; 465 } 466 467 /* 468 * Helper function to calculate the array index for a given expiry 469 * time. 470 */ 471 static inline unsigned calc_index(unsigned expires, unsigned lvl) 472 { 473 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 474 return LVL_OFFS(lvl) + (expires & LVL_MASK); 475 } 476 477 static int calc_wheel_index(unsigned long expires, unsigned long clk) 478 { 479 unsigned long delta = expires - clk; 480 unsigned int idx; 481 482 if (delta < LVL_START(1)) { 483 idx = calc_index(expires, 0); 484 } else if (delta < LVL_START(2)) { 485 idx = calc_index(expires, 1); 486 } else if (delta < LVL_START(3)) { 487 idx = calc_index(expires, 2); 488 } else if (delta < LVL_START(4)) { 489 idx = calc_index(expires, 3); 490 } else if (delta < LVL_START(5)) { 491 idx = calc_index(expires, 4); 492 } else if (delta < LVL_START(6)) { 493 idx = calc_index(expires, 5); 494 } else if (delta < LVL_START(7)) { 495 idx = calc_index(expires, 6); 496 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 497 idx = calc_index(expires, 7); 498 } else if ((long) delta < 0) { 499 idx = clk & LVL_MASK; 500 } else { 501 /* 502 * Force expire obscene large timeouts to expire at the 503 * capacity limit of the wheel. 504 */ 505 if (expires >= WHEEL_TIMEOUT_CUTOFF) 506 expires = WHEEL_TIMEOUT_MAX; 507 508 idx = calc_index(expires, LVL_DEPTH - 1); 509 } 510 return idx; 511 } 512 513 /* 514 * Enqueue the timer into the hash bucket, mark it pending in 515 * the bitmap and store the index in the timer flags. 516 */ 517 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 518 unsigned int idx) 519 { 520 hlist_add_head(&timer->entry, base->vectors + idx); 521 __set_bit(idx, base->pending_map); 522 timer_set_idx(timer, idx); 523 } 524 525 static void 526 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 527 { 528 unsigned int idx; 529 530 idx = calc_wheel_index(timer->expires, base->clk); 531 enqueue_timer(base, timer, idx); 532 } 533 534 static void 535 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 536 { 537 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 538 return; 539 540 /* 541 * TODO: This wants some optimizing similar to the code below, but we 542 * will do that when we switch from push to pull for deferrable timers. 543 */ 544 if (timer->flags & TIMER_DEFERRABLE) { 545 if (tick_nohz_full_cpu(base->cpu)) 546 wake_up_nohz_cpu(base->cpu); 547 return; 548 } 549 550 /* 551 * We might have to IPI the remote CPU if the base is idle and the 552 * timer is not deferrable. If the other CPU is on the way to idle 553 * then it can't set base->is_idle as we hold the base lock: 554 */ 555 if (!base->is_idle) 556 return; 557 558 /* Check whether this is the new first expiring timer: */ 559 if (time_after_eq(timer->expires, base->next_expiry)) 560 return; 561 562 /* 563 * Set the next expiry time and kick the CPU so it can reevaluate the 564 * wheel: 565 */ 566 base->next_expiry = timer->expires; 567 wake_up_nohz_cpu(base->cpu); 568 } 569 570 static void 571 internal_add_timer(struct timer_base *base, struct timer_list *timer) 572 { 573 __internal_add_timer(base, timer); 574 trigger_dyntick_cpu(base, timer); 575 } 576 577 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 578 579 static struct debug_obj_descr timer_debug_descr; 580 581 static void *timer_debug_hint(void *addr) 582 { 583 return ((struct timer_list *) addr)->function; 584 } 585 586 static bool timer_is_static_object(void *addr) 587 { 588 struct timer_list *timer = addr; 589 590 return (timer->entry.pprev == NULL && 591 timer->entry.next == TIMER_ENTRY_STATIC); 592 } 593 594 /* 595 * fixup_init is called when: 596 * - an active object is initialized 597 */ 598 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 599 { 600 struct timer_list *timer = addr; 601 602 switch (state) { 603 case ODEBUG_STATE_ACTIVE: 604 del_timer_sync(timer); 605 debug_object_init(timer, &timer_debug_descr); 606 return true; 607 default: 608 return false; 609 } 610 } 611 612 /* Stub timer callback for improperly used timers. */ 613 static void stub_timer(struct timer_list *unused) 614 { 615 WARN_ON(1); 616 } 617 618 /* 619 * fixup_activate is called when: 620 * - an active object is activated 621 * - an unknown non-static object is activated 622 */ 623 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 624 { 625 struct timer_list *timer = addr; 626 627 switch (state) { 628 case ODEBUG_STATE_NOTAVAILABLE: 629 timer_setup(timer, stub_timer, 0); 630 return true; 631 632 case ODEBUG_STATE_ACTIVE: 633 WARN_ON(1); 634 635 default: 636 return false; 637 } 638 } 639 640 /* 641 * fixup_free is called when: 642 * - an active object is freed 643 */ 644 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 645 { 646 struct timer_list *timer = addr; 647 648 switch (state) { 649 case ODEBUG_STATE_ACTIVE: 650 del_timer_sync(timer); 651 debug_object_free(timer, &timer_debug_descr); 652 return true; 653 default: 654 return false; 655 } 656 } 657 658 /* 659 * fixup_assert_init is called when: 660 * - an untracked/uninit-ed object is found 661 */ 662 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 663 { 664 struct timer_list *timer = addr; 665 666 switch (state) { 667 case ODEBUG_STATE_NOTAVAILABLE: 668 timer_setup(timer, stub_timer, 0); 669 return true; 670 default: 671 return false; 672 } 673 } 674 675 static struct debug_obj_descr timer_debug_descr = { 676 .name = "timer_list", 677 .debug_hint = timer_debug_hint, 678 .is_static_object = timer_is_static_object, 679 .fixup_init = timer_fixup_init, 680 .fixup_activate = timer_fixup_activate, 681 .fixup_free = timer_fixup_free, 682 .fixup_assert_init = timer_fixup_assert_init, 683 }; 684 685 static inline void debug_timer_init(struct timer_list *timer) 686 { 687 debug_object_init(timer, &timer_debug_descr); 688 } 689 690 static inline void debug_timer_activate(struct timer_list *timer) 691 { 692 debug_object_activate(timer, &timer_debug_descr); 693 } 694 695 static inline void debug_timer_deactivate(struct timer_list *timer) 696 { 697 debug_object_deactivate(timer, &timer_debug_descr); 698 } 699 700 static inline void debug_timer_free(struct timer_list *timer) 701 { 702 debug_object_free(timer, &timer_debug_descr); 703 } 704 705 static inline void debug_timer_assert_init(struct timer_list *timer) 706 { 707 debug_object_assert_init(timer, &timer_debug_descr); 708 } 709 710 static void do_init_timer(struct timer_list *timer, unsigned int flags, 711 const char *name, struct lock_class_key *key); 712 713 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags, 714 const char *name, struct lock_class_key *key) 715 { 716 debug_object_init_on_stack(timer, &timer_debug_descr); 717 do_init_timer(timer, flags, name, key); 718 } 719 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 720 721 void destroy_timer_on_stack(struct timer_list *timer) 722 { 723 debug_object_free(timer, &timer_debug_descr); 724 } 725 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 726 727 #else 728 static inline void debug_timer_init(struct timer_list *timer) { } 729 static inline void debug_timer_activate(struct timer_list *timer) { } 730 static inline void debug_timer_deactivate(struct timer_list *timer) { } 731 static inline void debug_timer_assert_init(struct timer_list *timer) { } 732 #endif 733 734 static inline void debug_init(struct timer_list *timer) 735 { 736 debug_timer_init(timer); 737 trace_timer_init(timer); 738 } 739 740 static inline void 741 debug_activate(struct timer_list *timer, unsigned long expires) 742 { 743 debug_timer_activate(timer); 744 trace_timer_start(timer, expires, timer->flags); 745 } 746 747 static inline void debug_deactivate(struct timer_list *timer) 748 { 749 debug_timer_deactivate(timer); 750 trace_timer_cancel(timer); 751 } 752 753 static inline void debug_assert_init(struct timer_list *timer) 754 { 755 debug_timer_assert_init(timer); 756 } 757 758 static void do_init_timer(struct timer_list *timer, unsigned int flags, 759 const char *name, struct lock_class_key *key) 760 { 761 timer->entry.pprev = NULL; 762 timer->flags = flags | raw_smp_processor_id(); 763 lockdep_init_map(&timer->lockdep_map, name, key, 0); 764 } 765 766 /** 767 * init_timer_key - initialize a timer 768 * @timer: the timer to be initialized 769 * @flags: timer flags 770 * @name: name of the timer 771 * @key: lockdep class key of the fake lock used for tracking timer 772 * sync lock dependencies 773 * 774 * init_timer_key() must be done to a timer prior calling *any* of the 775 * other timer functions. 776 */ 777 void init_timer_key(struct timer_list *timer, unsigned int flags, 778 const char *name, struct lock_class_key *key) 779 { 780 debug_init(timer); 781 do_init_timer(timer, flags, name, key); 782 } 783 EXPORT_SYMBOL(init_timer_key); 784 785 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 786 { 787 struct hlist_node *entry = &timer->entry; 788 789 debug_deactivate(timer); 790 791 __hlist_del(entry); 792 if (clear_pending) 793 entry->pprev = NULL; 794 entry->next = LIST_POISON2; 795 } 796 797 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 798 bool clear_pending) 799 { 800 unsigned idx = timer_get_idx(timer); 801 802 if (!timer_pending(timer)) 803 return 0; 804 805 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 806 __clear_bit(idx, base->pending_map); 807 808 detach_timer(timer, clear_pending); 809 return 1; 810 } 811 812 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 813 { 814 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 815 816 /* 817 * If the timer is deferrable and nohz is active then we need to use 818 * the deferrable base. 819 */ 820 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active && 821 (tflags & TIMER_DEFERRABLE)) 822 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 823 return base; 824 } 825 826 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 827 { 828 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 829 830 /* 831 * If the timer is deferrable and nohz is active then we need to use 832 * the deferrable base. 833 */ 834 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active && 835 (tflags & TIMER_DEFERRABLE)) 836 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 837 return base; 838 } 839 840 static inline struct timer_base *get_timer_base(u32 tflags) 841 { 842 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 843 } 844 845 #ifdef CONFIG_NO_HZ_COMMON 846 static inline struct timer_base * 847 get_target_base(struct timer_base *base, unsigned tflags) 848 { 849 #ifdef CONFIG_SMP 850 if ((tflags & TIMER_PINNED) || !base->migration_enabled) 851 return get_timer_this_cpu_base(tflags); 852 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 853 #else 854 return get_timer_this_cpu_base(tflags); 855 #endif 856 } 857 858 static inline void forward_timer_base(struct timer_base *base) 859 { 860 unsigned long jnow; 861 862 /* 863 * We only forward the base when we are idle or have just come out of 864 * idle (must_forward_clk logic), and have a delta between base clock 865 * and jiffies. In the common case, run_timers will take care of it. 866 */ 867 if (likely(!base->must_forward_clk)) 868 return; 869 870 jnow = READ_ONCE(jiffies); 871 base->must_forward_clk = base->is_idle; 872 if ((long)(jnow - base->clk) < 2) 873 return; 874 875 /* 876 * If the next expiry value is > jiffies, then we fast forward to 877 * jiffies otherwise we forward to the next expiry value. 878 */ 879 if (time_after(base->next_expiry, jnow)) 880 base->clk = jnow; 881 else 882 base->clk = base->next_expiry; 883 } 884 #else 885 static inline struct timer_base * 886 get_target_base(struct timer_base *base, unsigned tflags) 887 { 888 return get_timer_this_cpu_base(tflags); 889 } 890 891 static inline void forward_timer_base(struct timer_base *base) { } 892 #endif 893 894 895 /* 896 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 897 * that all timers which are tied to this base are locked, and the base itself 898 * is locked too. 899 * 900 * So __run_timers/migrate_timers can safely modify all timers which could 901 * be found in the base->vectors array. 902 * 903 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 904 * to wait until the migration is done. 905 */ 906 static struct timer_base *lock_timer_base(struct timer_list *timer, 907 unsigned long *flags) 908 __acquires(timer->base->lock) 909 { 910 for (;;) { 911 struct timer_base *base; 912 u32 tf; 913 914 /* 915 * We need to use READ_ONCE() here, otherwise the compiler 916 * might re-read @tf between the check for TIMER_MIGRATING 917 * and spin_lock(). 918 */ 919 tf = READ_ONCE(timer->flags); 920 921 if (!(tf & TIMER_MIGRATING)) { 922 base = get_timer_base(tf); 923 raw_spin_lock_irqsave(&base->lock, *flags); 924 if (timer->flags == tf) 925 return base; 926 raw_spin_unlock_irqrestore(&base->lock, *flags); 927 } 928 cpu_relax(); 929 } 930 } 931 932 #define MOD_TIMER_PENDING_ONLY 0x01 933 #define MOD_TIMER_REDUCE 0x02 934 935 static inline int 936 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 937 { 938 struct timer_base *base, *new_base; 939 unsigned int idx = UINT_MAX; 940 unsigned long clk = 0, flags; 941 int ret = 0; 942 943 BUG_ON(!timer->function); 944 945 /* 946 * This is a common optimization triggered by the networking code - if 947 * the timer is re-modified to have the same timeout or ends up in the 948 * same array bucket then just return: 949 */ 950 if (timer_pending(timer)) { 951 /* 952 * The downside of this optimization is that it can result in 953 * larger granularity than you would get from adding a new 954 * timer with this expiry. 955 */ 956 long diff = timer->expires - expires; 957 958 if (!diff) 959 return 1; 960 if (options & MOD_TIMER_REDUCE && diff <= 0) 961 return 1; 962 963 /* 964 * We lock timer base and calculate the bucket index right 965 * here. If the timer ends up in the same bucket, then we 966 * just update the expiry time and avoid the whole 967 * dequeue/enqueue dance. 968 */ 969 base = lock_timer_base(timer, &flags); 970 forward_timer_base(base); 971 972 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 973 time_before_eq(timer->expires, expires)) { 974 ret = 1; 975 goto out_unlock; 976 } 977 978 clk = base->clk; 979 idx = calc_wheel_index(expires, clk); 980 981 /* 982 * Retrieve and compare the array index of the pending 983 * timer. If it matches set the expiry to the new value so a 984 * subsequent call will exit in the expires check above. 985 */ 986 if (idx == timer_get_idx(timer)) { 987 if (!(options & MOD_TIMER_REDUCE)) 988 timer->expires = expires; 989 else if (time_after(timer->expires, expires)) 990 timer->expires = expires; 991 ret = 1; 992 goto out_unlock; 993 } 994 } else { 995 base = lock_timer_base(timer, &flags); 996 forward_timer_base(base); 997 } 998 999 ret = detach_if_pending(timer, base, false); 1000 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1001 goto out_unlock; 1002 1003 debug_activate(timer, expires); 1004 1005 new_base = get_target_base(base, timer->flags); 1006 1007 if (base != new_base) { 1008 /* 1009 * We are trying to schedule the timer on the new base. 1010 * However we can't change timer's base while it is running, 1011 * otherwise del_timer_sync() can't detect that the timer's 1012 * handler yet has not finished. This also guarantees that the 1013 * timer is serialized wrt itself. 1014 */ 1015 if (likely(base->running_timer != timer)) { 1016 /* See the comment in lock_timer_base() */ 1017 timer->flags |= TIMER_MIGRATING; 1018 1019 raw_spin_unlock(&base->lock); 1020 base = new_base; 1021 raw_spin_lock(&base->lock); 1022 WRITE_ONCE(timer->flags, 1023 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1024 forward_timer_base(base); 1025 } 1026 } 1027 1028 timer->expires = expires; 1029 /* 1030 * If 'idx' was calculated above and the base time did not advance 1031 * between calculating 'idx' and possibly switching the base, only 1032 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1033 * we need to (re)calculate the wheel index via 1034 * internal_add_timer(). 1035 */ 1036 if (idx != UINT_MAX && clk == base->clk) { 1037 enqueue_timer(base, timer, idx); 1038 trigger_dyntick_cpu(base, timer); 1039 } else { 1040 internal_add_timer(base, timer); 1041 } 1042 1043 out_unlock: 1044 raw_spin_unlock_irqrestore(&base->lock, flags); 1045 1046 return ret; 1047 } 1048 1049 /** 1050 * mod_timer_pending - modify a pending timer's timeout 1051 * @timer: the pending timer to be modified 1052 * @expires: new timeout in jiffies 1053 * 1054 * mod_timer_pending() is the same for pending timers as mod_timer(), 1055 * but will not re-activate and modify already deleted timers. 1056 * 1057 * It is useful for unserialized use of timers. 1058 */ 1059 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1060 { 1061 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1062 } 1063 EXPORT_SYMBOL(mod_timer_pending); 1064 1065 /** 1066 * mod_timer - modify a timer's timeout 1067 * @timer: the timer to be modified 1068 * @expires: new timeout in jiffies 1069 * 1070 * mod_timer() is a more efficient way to update the expire field of an 1071 * active timer (if the timer is inactive it will be activated) 1072 * 1073 * mod_timer(timer, expires) is equivalent to: 1074 * 1075 * del_timer(timer); timer->expires = expires; add_timer(timer); 1076 * 1077 * Note that if there are multiple unserialized concurrent users of the 1078 * same timer, then mod_timer() is the only safe way to modify the timeout, 1079 * since add_timer() cannot modify an already running timer. 1080 * 1081 * The function returns whether it has modified a pending timer or not. 1082 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1083 * active timer returns 1.) 1084 */ 1085 int mod_timer(struct timer_list *timer, unsigned long expires) 1086 { 1087 return __mod_timer(timer, expires, 0); 1088 } 1089 EXPORT_SYMBOL(mod_timer); 1090 1091 /** 1092 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1093 * @timer: The timer to be modified 1094 * @expires: New timeout in jiffies 1095 * 1096 * timer_reduce() is very similar to mod_timer(), except that it will only 1097 * modify a running timer if that would reduce the expiration time (it will 1098 * start a timer that isn't running). 1099 */ 1100 int timer_reduce(struct timer_list *timer, unsigned long expires) 1101 { 1102 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1103 } 1104 EXPORT_SYMBOL(timer_reduce); 1105 1106 /** 1107 * add_timer - start a timer 1108 * @timer: the timer to be added 1109 * 1110 * The kernel will do a ->function(->data) callback from the 1111 * timer interrupt at the ->expires point in the future. The 1112 * current time is 'jiffies'. 1113 * 1114 * The timer's ->expires, ->function (and if the handler uses it, ->data) 1115 * fields must be set prior calling this function. 1116 * 1117 * Timers with an ->expires field in the past will be executed in the next 1118 * timer tick. 1119 */ 1120 void add_timer(struct timer_list *timer) 1121 { 1122 BUG_ON(timer_pending(timer)); 1123 mod_timer(timer, timer->expires); 1124 } 1125 EXPORT_SYMBOL(add_timer); 1126 1127 /** 1128 * add_timer_on - start a timer on a particular CPU 1129 * @timer: the timer to be added 1130 * @cpu: the CPU to start it on 1131 * 1132 * This is not very scalable on SMP. Double adds are not possible. 1133 */ 1134 void add_timer_on(struct timer_list *timer, int cpu) 1135 { 1136 struct timer_base *new_base, *base; 1137 unsigned long flags; 1138 1139 BUG_ON(timer_pending(timer) || !timer->function); 1140 1141 new_base = get_timer_cpu_base(timer->flags, cpu); 1142 1143 /* 1144 * If @timer was on a different CPU, it should be migrated with the 1145 * old base locked to prevent other operations proceeding with the 1146 * wrong base locked. See lock_timer_base(). 1147 */ 1148 base = lock_timer_base(timer, &flags); 1149 if (base != new_base) { 1150 timer->flags |= TIMER_MIGRATING; 1151 1152 raw_spin_unlock(&base->lock); 1153 base = new_base; 1154 raw_spin_lock(&base->lock); 1155 WRITE_ONCE(timer->flags, 1156 (timer->flags & ~TIMER_BASEMASK) | cpu); 1157 } 1158 forward_timer_base(base); 1159 1160 debug_activate(timer, timer->expires); 1161 internal_add_timer(base, timer); 1162 raw_spin_unlock_irqrestore(&base->lock, flags); 1163 } 1164 EXPORT_SYMBOL_GPL(add_timer_on); 1165 1166 /** 1167 * del_timer - deactivate a timer. 1168 * @timer: the timer to be deactivated 1169 * 1170 * del_timer() deactivates a timer - this works on both active and inactive 1171 * timers. 1172 * 1173 * The function returns whether it has deactivated a pending timer or not. 1174 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1175 * active timer returns 1.) 1176 */ 1177 int del_timer(struct timer_list *timer) 1178 { 1179 struct timer_base *base; 1180 unsigned long flags; 1181 int ret = 0; 1182 1183 debug_assert_init(timer); 1184 1185 if (timer_pending(timer)) { 1186 base = lock_timer_base(timer, &flags); 1187 ret = detach_if_pending(timer, base, true); 1188 raw_spin_unlock_irqrestore(&base->lock, flags); 1189 } 1190 1191 return ret; 1192 } 1193 EXPORT_SYMBOL(del_timer); 1194 1195 /** 1196 * try_to_del_timer_sync - Try to deactivate a timer 1197 * @timer: timer to delete 1198 * 1199 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1200 * exit the timer is not queued and the handler is not running on any CPU. 1201 */ 1202 int try_to_del_timer_sync(struct timer_list *timer) 1203 { 1204 struct timer_base *base; 1205 unsigned long flags; 1206 int ret = -1; 1207 1208 debug_assert_init(timer); 1209 1210 base = lock_timer_base(timer, &flags); 1211 1212 if (base->running_timer != timer) 1213 ret = detach_if_pending(timer, base, true); 1214 1215 raw_spin_unlock_irqrestore(&base->lock, flags); 1216 1217 return ret; 1218 } 1219 EXPORT_SYMBOL(try_to_del_timer_sync); 1220 1221 #ifdef CONFIG_SMP 1222 /** 1223 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1224 * @timer: the timer to be deactivated 1225 * 1226 * This function only differs from del_timer() on SMP: besides deactivating 1227 * the timer it also makes sure the handler has finished executing on other 1228 * CPUs. 1229 * 1230 * Synchronization rules: Callers must prevent restarting of the timer, 1231 * otherwise this function is meaningless. It must not be called from 1232 * interrupt contexts unless the timer is an irqsafe one. The caller must 1233 * not hold locks which would prevent completion of the timer's 1234 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1235 * timer is not queued and the handler is not running on any CPU. 1236 * 1237 * Note: For !irqsafe timers, you must not hold locks that are held in 1238 * interrupt context while calling this function. Even if the lock has 1239 * nothing to do with the timer in question. Here's why: 1240 * 1241 * CPU0 CPU1 1242 * ---- ---- 1243 * <SOFTIRQ> 1244 * call_timer_fn(); 1245 * base->running_timer = mytimer; 1246 * spin_lock_irq(somelock); 1247 * <IRQ> 1248 * spin_lock(somelock); 1249 * del_timer_sync(mytimer); 1250 * while (base->running_timer == mytimer); 1251 * 1252 * Now del_timer_sync() will never return and never release somelock. 1253 * The interrupt on the other CPU is waiting to grab somelock but 1254 * it has interrupted the softirq that CPU0 is waiting to finish. 1255 * 1256 * The function returns whether it has deactivated a pending timer or not. 1257 */ 1258 int del_timer_sync(struct timer_list *timer) 1259 { 1260 #ifdef CONFIG_LOCKDEP 1261 unsigned long flags; 1262 1263 /* 1264 * If lockdep gives a backtrace here, please reference 1265 * the synchronization rules above. 1266 */ 1267 local_irq_save(flags); 1268 lock_map_acquire(&timer->lockdep_map); 1269 lock_map_release(&timer->lockdep_map); 1270 local_irq_restore(flags); 1271 #endif 1272 /* 1273 * don't use it in hardirq context, because it 1274 * could lead to deadlock. 1275 */ 1276 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1277 for (;;) { 1278 int ret = try_to_del_timer_sync(timer); 1279 if (ret >= 0) 1280 return ret; 1281 cpu_relax(); 1282 } 1283 } 1284 EXPORT_SYMBOL(del_timer_sync); 1285 #endif 1286 1287 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), 1288 unsigned long data) 1289 { 1290 int count = preempt_count(); 1291 1292 #ifdef CONFIG_LOCKDEP 1293 /* 1294 * It is permissible to free the timer from inside the 1295 * function that is called from it, this we need to take into 1296 * account for lockdep too. To avoid bogus "held lock freed" 1297 * warnings as well as problems when looking into 1298 * timer->lockdep_map, make a copy and use that here. 1299 */ 1300 struct lockdep_map lockdep_map; 1301 1302 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1303 #endif 1304 /* 1305 * Couple the lock chain with the lock chain at 1306 * del_timer_sync() by acquiring the lock_map around the fn() 1307 * call here and in del_timer_sync(). 1308 */ 1309 lock_map_acquire(&lockdep_map); 1310 1311 trace_timer_expire_entry(timer); 1312 fn(data); 1313 trace_timer_expire_exit(timer); 1314 1315 lock_map_release(&lockdep_map); 1316 1317 if (count != preempt_count()) { 1318 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1319 fn, count, preempt_count()); 1320 /* 1321 * Restore the preempt count. That gives us a decent 1322 * chance to survive and extract information. If the 1323 * callback kept a lock held, bad luck, but not worse 1324 * than the BUG() we had. 1325 */ 1326 preempt_count_set(count); 1327 } 1328 } 1329 1330 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1331 { 1332 while (!hlist_empty(head)) { 1333 struct timer_list *timer; 1334 void (*fn)(unsigned long); 1335 unsigned long data; 1336 1337 timer = hlist_entry(head->first, struct timer_list, entry); 1338 1339 base->running_timer = timer; 1340 detach_timer(timer, true); 1341 1342 fn = timer->function; 1343 data = timer->data; 1344 1345 if (timer->flags & TIMER_IRQSAFE) { 1346 raw_spin_unlock(&base->lock); 1347 call_timer_fn(timer, fn, data); 1348 raw_spin_lock(&base->lock); 1349 } else { 1350 raw_spin_unlock_irq(&base->lock); 1351 call_timer_fn(timer, fn, data); 1352 raw_spin_lock_irq(&base->lock); 1353 } 1354 } 1355 } 1356 1357 static int __collect_expired_timers(struct timer_base *base, 1358 struct hlist_head *heads) 1359 { 1360 unsigned long clk = base->clk; 1361 struct hlist_head *vec; 1362 int i, levels = 0; 1363 unsigned int idx; 1364 1365 for (i = 0; i < LVL_DEPTH; i++) { 1366 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1367 1368 if (__test_and_clear_bit(idx, base->pending_map)) { 1369 vec = base->vectors + idx; 1370 hlist_move_list(vec, heads++); 1371 levels++; 1372 } 1373 /* Is it time to look at the next level? */ 1374 if (clk & LVL_CLK_MASK) 1375 break; 1376 /* Shift clock for the next level granularity */ 1377 clk >>= LVL_CLK_SHIFT; 1378 } 1379 return levels; 1380 } 1381 1382 #ifdef CONFIG_NO_HZ_COMMON 1383 /* 1384 * Find the next pending bucket of a level. Search from level start (@offset) 1385 * + @clk upwards and if nothing there, search from start of the level 1386 * (@offset) up to @offset + clk. 1387 */ 1388 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1389 unsigned clk) 1390 { 1391 unsigned pos, start = offset + clk; 1392 unsigned end = offset + LVL_SIZE; 1393 1394 pos = find_next_bit(base->pending_map, end, start); 1395 if (pos < end) 1396 return pos - start; 1397 1398 pos = find_next_bit(base->pending_map, start, offset); 1399 return pos < start ? pos + LVL_SIZE - start : -1; 1400 } 1401 1402 /* 1403 * Search the first expiring timer in the various clock levels. Caller must 1404 * hold base->lock. 1405 */ 1406 static unsigned long __next_timer_interrupt(struct timer_base *base) 1407 { 1408 unsigned long clk, next, adj; 1409 unsigned lvl, offset = 0; 1410 1411 next = base->clk + NEXT_TIMER_MAX_DELTA; 1412 clk = base->clk; 1413 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1414 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1415 1416 if (pos >= 0) { 1417 unsigned long tmp = clk + (unsigned long) pos; 1418 1419 tmp <<= LVL_SHIFT(lvl); 1420 if (time_before(tmp, next)) 1421 next = tmp; 1422 } 1423 /* 1424 * Clock for the next level. If the current level clock lower 1425 * bits are zero, we look at the next level as is. If not we 1426 * need to advance it by one because that's going to be the 1427 * next expiring bucket in that level. base->clk is the next 1428 * expiring jiffie. So in case of: 1429 * 1430 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1431 * 0 0 0 0 0 0 1432 * 1433 * we have to look at all levels @index 0. With 1434 * 1435 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1436 * 0 0 0 0 0 2 1437 * 1438 * LVL0 has the next expiring bucket @index 2. The upper 1439 * levels have the next expiring bucket @index 1. 1440 * 1441 * In case that the propagation wraps the next level the same 1442 * rules apply: 1443 * 1444 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1445 * 0 0 0 0 F 2 1446 * 1447 * So after looking at LVL0 we get: 1448 * 1449 * LVL5 LVL4 LVL3 LVL2 LVL1 1450 * 0 0 0 1 0 1451 * 1452 * So no propagation from LVL1 to LVL2 because that happened 1453 * with the add already, but then we need to propagate further 1454 * from LVL2 to LVL3. 1455 * 1456 * So the simple check whether the lower bits of the current 1457 * level are 0 or not is sufficient for all cases. 1458 */ 1459 adj = clk & LVL_CLK_MASK ? 1 : 0; 1460 clk >>= LVL_CLK_SHIFT; 1461 clk += adj; 1462 } 1463 return next; 1464 } 1465 1466 /* 1467 * Check, if the next hrtimer event is before the next timer wheel 1468 * event: 1469 */ 1470 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1471 { 1472 u64 nextevt = hrtimer_get_next_event(); 1473 1474 /* 1475 * If high resolution timers are enabled 1476 * hrtimer_get_next_event() returns KTIME_MAX. 1477 */ 1478 if (expires <= nextevt) 1479 return expires; 1480 1481 /* 1482 * If the next timer is already expired, return the tick base 1483 * time so the tick is fired immediately. 1484 */ 1485 if (nextevt <= basem) 1486 return basem; 1487 1488 /* 1489 * Round up to the next jiffie. High resolution timers are 1490 * off, so the hrtimers are expired in the tick and we need to 1491 * make sure that this tick really expires the timer to avoid 1492 * a ping pong of the nohz stop code. 1493 * 1494 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1495 */ 1496 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1497 } 1498 1499 /** 1500 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1501 * @basej: base time jiffies 1502 * @basem: base time clock monotonic 1503 * 1504 * Returns the tick aligned clock monotonic time of the next pending 1505 * timer or KTIME_MAX if no timer is pending. 1506 */ 1507 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1508 { 1509 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1510 u64 expires = KTIME_MAX; 1511 unsigned long nextevt; 1512 bool is_max_delta; 1513 1514 /* 1515 * Pretend that there is no timer pending if the cpu is offline. 1516 * Possible pending timers will be migrated later to an active cpu. 1517 */ 1518 if (cpu_is_offline(smp_processor_id())) 1519 return expires; 1520 1521 raw_spin_lock(&base->lock); 1522 nextevt = __next_timer_interrupt(base); 1523 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1524 base->next_expiry = nextevt; 1525 /* 1526 * We have a fresh next event. Check whether we can forward the 1527 * base. We can only do that when @basej is past base->clk 1528 * otherwise we might rewind base->clk. 1529 */ 1530 if (time_after(basej, base->clk)) { 1531 if (time_after(nextevt, basej)) 1532 base->clk = basej; 1533 else if (time_after(nextevt, base->clk)) 1534 base->clk = nextevt; 1535 } 1536 1537 if (time_before_eq(nextevt, basej)) { 1538 expires = basem; 1539 base->is_idle = false; 1540 } else { 1541 if (!is_max_delta) 1542 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1543 /* 1544 * If we expect to sleep more than a tick, mark the base idle. 1545 * Also the tick is stopped so any added timer must forward 1546 * the base clk itself to keep granularity small. This idle 1547 * logic is only maintained for the BASE_STD base, deferrable 1548 * timers may still see large granularity skew (by design). 1549 */ 1550 if ((expires - basem) > TICK_NSEC) { 1551 base->must_forward_clk = true; 1552 base->is_idle = true; 1553 } 1554 } 1555 raw_spin_unlock(&base->lock); 1556 1557 return cmp_next_hrtimer_event(basem, expires); 1558 } 1559 1560 /** 1561 * timer_clear_idle - Clear the idle state of the timer base 1562 * 1563 * Called with interrupts disabled 1564 */ 1565 void timer_clear_idle(void) 1566 { 1567 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1568 1569 /* 1570 * We do this unlocked. The worst outcome is a remote enqueue sending 1571 * a pointless IPI, but taking the lock would just make the window for 1572 * sending the IPI a few instructions smaller for the cost of taking 1573 * the lock in the exit from idle path. 1574 */ 1575 base->is_idle = false; 1576 } 1577 1578 static int collect_expired_timers(struct timer_base *base, 1579 struct hlist_head *heads) 1580 { 1581 /* 1582 * NOHZ optimization. After a long idle sleep we need to forward the 1583 * base to current jiffies. Avoid a loop by searching the bitfield for 1584 * the next expiring timer. 1585 */ 1586 if ((long)(jiffies - base->clk) > 2) { 1587 unsigned long next = __next_timer_interrupt(base); 1588 1589 /* 1590 * If the next timer is ahead of time forward to current 1591 * jiffies, otherwise forward to the next expiry time: 1592 */ 1593 if (time_after(next, jiffies)) { 1594 /* 1595 * The call site will increment base->clk and then 1596 * terminate the expiry loop immediately. 1597 */ 1598 base->clk = jiffies; 1599 return 0; 1600 } 1601 base->clk = next; 1602 } 1603 return __collect_expired_timers(base, heads); 1604 } 1605 #else 1606 static inline int collect_expired_timers(struct timer_base *base, 1607 struct hlist_head *heads) 1608 { 1609 return __collect_expired_timers(base, heads); 1610 } 1611 #endif 1612 1613 /* 1614 * Called from the timer interrupt handler to charge one tick to the current 1615 * process. user_tick is 1 if the tick is user time, 0 for system. 1616 */ 1617 void update_process_times(int user_tick) 1618 { 1619 struct task_struct *p = current; 1620 1621 /* Note: this timer irq context must be accounted for as well. */ 1622 account_process_tick(p, user_tick); 1623 run_local_timers(); 1624 rcu_check_callbacks(user_tick); 1625 #ifdef CONFIG_IRQ_WORK 1626 if (in_irq()) 1627 irq_work_tick(); 1628 #endif 1629 scheduler_tick(); 1630 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1631 run_posix_cpu_timers(p); 1632 } 1633 1634 /** 1635 * __run_timers - run all expired timers (if any) on this CPU. 1636 * @base: the timer vector to be processed. 1637 */ 1638 static inline void __run_timers(struct timer_base *base) 1639 { 1640 struct hlist_head heads[LVL_DEPTH]; 1641 int levels; 1642 1643 if (!time_after_eq(jiffies, base->clk)) 1644 return; 1645 1646 raw_spin_lock_irq(&base->lock); 1647 1648 while (time_after_eq(jiffies, base->clk)) { 1649 1650 levels = collect_expired_timers(base, heads); 1651 base->clk++; 1652 1653 while (levels--) 1654 expire_timers(base, heads + levels); 1655 } 1656 base->running_timer = NULL; 1657 raw_spin_unlock_irq(&base->lock); 1658 } 1659 1660 /* 1661 * This function runs timers and the timer-tq in bottom half context. 1662 */ 1663 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1664 { 1665 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1666 1667 /* 1668 * must_forward_clk must be cleared before running timers so that any 1669 * timer functions that call mod_timer will not try to forward the 1670 * base. idle trcking / clock forwarding logic is only used with 1671 * BASE_STD timers. 1672 * 1673 * The deferrable base does not do idle tracking at all, so we do 1674 * not forward it. This can result in very large variations in 1675 * granularity for deferrable timers, but they can be deferred for 1676 * long periods due to idle. 1677 */ 1678 base->must_forward_clk = false; 1679 1680 __run_timers(base); 1681 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active) 1682 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1683 } 1684 1685 /* 1686 * Called by the local, per-CPU timer interrupt on SMP. 1687 */ 1688 void run_local_timers(void) 1689 { 1690 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1691 1692 hrtimer_run_queues(); 1693 /* Raise the softirq only if required. */ 1694 if (time_before(jiffies, base->clk)) { 1695 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 1696 return; 1697 /* CPU is awake, so check the deferrable base. */ 1698 base++; 1699 if (time_before(jiffies, base->clk)) 1700 return; 1701 } 1702 raise_softirq(TIMER_SOFTIRQ); 1703 } 1704 1705 /* 1706 * Since schedule_timeout()'s timer is defined on the stack, it must store 1707 * the target task on the stack as well. 1708 */ 1709 struct process_timer { 1710 struct timer_list timer; 1711 struct task_struct *task; 1712 }; 1713 1714 static void process_timeout(struct timer_list *t) 1715 { 1716 struct process_timer *timeout = from_timer(timeout, t, timer); 1717 1718 wake_up_process(timeout->task); 1719 } 1720 1721 /** 1722 * schedule_timeout - sleep until timeout 1723 * @timeout: timeout value in jiffies 1724 * 1725 * Make the current task sleep until @timeout jiffies have 1726 * elapsed. The routine will return immediately unless 1727 * the current task state has been set (see set_current_state()). 1728 * 1729 * You can set the task state as follows - 1730 * 1731 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1732 * pass before the routine returns unless the current task is explicitly 1733 * woken up, (e.g. by wake_up_process())". 1734 * 1735 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1736 * delivered to the current task or the current task is explicitly woken 1737 * up. 1738 * 1739 * The current task state is guaranteed to be TASK_RUNNING when this 1740 * routine returns. 1741 * 1742 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1743 * the CPU away without a bound on the timeout. In this case the return 1744 * value will be %MAX_SCHEDULE_TIMEOUT. 1745 * 1746 * Returns 0 when the timer has expired otherwise the remaining time in 1747 * jiffies will be returned. In all cases the return value is guaranteed 1748 * to be non-negative. 1749 */ 1750 signed long __sched schedule_timeout(signed long timeout) 1751 { 1752 struct process_timer timer; 1753 unsigned long expire; 1754 1755 switch (timeout) 1756 { 1757 case MAX_SCHEDULE_TIMEOUT: 1758 /* 1759 * These two special cases are useful to be comfortable 1760 * in the caller. Nothing more. We could take 1761 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1762 * but I' d like to return a valid offset (>=0) to allow 1763 * the caller to do everything it want with the retval. 1764 */ 1765 schedule(); 1766 goto out; 1767 default: 1768 /* 1769 * Another bit of PARANOID. Note that the retval will be 1770 * 0 since no piece of kernel is supposed to do a check 1771 * for a negative retval of schedule_timeout() (since it 1772 * should never happens anyway). You just have the printk() 1773 * that will tell you if something is gone wrong and where. 1774 */ 1775 if (timeout < 0) { 1776 printk(KERN_ERR "schedule_timeout: wrong timeout " 1777 "value %lx\n", timeout); 1778 dump_stack(); 1779 current->state = TASK_RUNNING; 1780 goto out; 1781 } 1782 } 1783 1784 expire = timeout + jiffies; 1785 1786 timer.task = current; 1787 timer_setup_on_stack(&timer.timer, process_timeout, 0); 1788 __mod_timer(&timer.timer, expire, 0); 1789 schedule(); 1790 del_singleshot_timer_sync(&timer.timer); 1791 1792 /* Remove the timer from the object tracker */ 1793 destroy_timer_on_stack(&timer.timer); 1794 1795 timeout = expire - jiffies; 1796 1797 out: 1798 return timeout < 0 ? 0 : timeout; 1799 } 1800 EXPORT_SYMBOL(schedule_timeout); 1801 1802 /* 1803 * We can use __set_current_state() here because schedule_timeout() calls 1804 * schedule() unconditionally. 1805 */ 1806 signed long __sched schedule_timeout_interruptible(signed long timeout) 1807 { 1808 __set_current_state(TASK_INTERRUPTIBLE); 1809 return schedule_timeout(timeout); 1810 } 1811 EXPORT_SYMBOL(schedule_timeout_interruptible); 1812 1813 signed long __sched schedule_timeout_killable(signed long timeout) 1814 { 1815 __set_current_state(TASK_KILLABLE); 1816 return schedule_timeout(timeout); 1817 } 1818 EXPORT_SYMBOL(schedule_timeout_killable); 1819 1820 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1821 { 1822 __set_current_state(TASK_UNINTERRUPTIBLE); 1823 return schedule_timeout(timeout); 1824 } 1825 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1826 1827 /* 1828 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1829 * to load average. 1830 */ 1831 signed long __sched schedule_timeout_idle(signed long timeout) 1832 { 1833 __set_current_state(TASK_IDLE); 1834 return schedule_timeout(timeout); 1835 } 1836 EXPORT_SYMBOL(schedule_timeout_idle); 1837 1838 #ifdef CONFIG_HOTPLUG_CPU 1839 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1840 { 1841 struct timer_list *timer; 1842 int cpu = new_base->cpu; 1843 1844 while (!hlist_empty(head)) { 1845 timer = hlist_entry(head->first, struct timer_list, entry); 1846 detach_timer(timer, false); 1847 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1848 internal_add_timer(new_base, timer); 1849 } 1850 } 1851 1852 int timers_dead_cpu(unsigned int cpu) 1853 { 1854 struct timer_base *old_base; 1855 struct timer_base *new_base; 1856 int b, i; 1857 1858 BUG_ON(cpu_online(cpu)); 1859 1860 for (b = 0; b < NR_BASES; b++) { 1861 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1862 new_base = get_cpu_ptr(&timer_bases[b]); 1863 /* 1864 * The caller is globally serialized and nobody else 1865 * takes two locks at once, deadlock is not possible. 1866 */ 1867 raw_spin_lock_irq(&new_base->lock); 1868 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1869 1870 BUG_ON(old_base->running_timer); 1871 1872 for (i = 0; i < WHEEL_SIZE; i++) 1873 migrate_timer_list(new_base, old_base->vectors + i); 1874 1875 raw_spin_unlock(&old_base->lock); 1876 raw_spin_unlock_irq(&new_base->lock); 1877 put_cpu_ptr(&timer_bases); 1878 } 1879 return 0; 1880 } 1881 1882 #endif /* CONFIG_HOTPLUG_CPU */ 1883 1884 static void __init init_timer_cpu(int cpu) 1885 { 1886 struct timer_base *base; 1887 int i; 1888 1889 for (i = 0; i < NR_BASES; i++) { 1890 base = per_cpu_ptr(&timer_bases[i], cpu); 1891 base->cpu = cpu; 1892 raw_spin_lock_init(&base->lock); 1893 base->clk = jiffies; 1894 } 1895 } 1896 1897 static void __init init_timer_cpus(void) 1898 { 1899 int cpu; 1900 1901 for_each_possible_cpu(cpu) 1902 init_timer_cpu(cpu); 1903 } 1904 1905 void __init init_timers(void) 1906 { 1907 init_timer_cpus(); 1908 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1909 } 1910 1911 /** 1912 * msleep - sleep safely even with waitqueue interruptions 1913 * @msecs: Time in milliseconds to sleep for 1914 */ 1915 void msleep(unsigned int msecs) 1916 { 1917 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1918 1919 while (timeout) 1920 timeout = schedule_timeout_uninterruptible(timeout); 1921 } 1922 1923 EXPORT_SYMBOL(msleep); 1924 1925 /** 1926 * msleep_interruptible - sleep waiting for signals 1927 * @msecs: Time in milliseconds to sleep for 1928 */ 1929 unsigned long msleep_interruptible(unsigned int msecs) 1930 { 1931 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1932 1933 while (timeout && !signal_pending(current)) 1934 timeout = schedule_timeout_interruptible(timeout); 1935 return jiffies_to_msecs(timeout); 1936 } 1937 1938 EXPORT_SYMBOL(msleep_interruptible); 1939 1940 /** 1941 * usleep_range - Sleep for an approximate time 1942 * @min: Minimum time in usecs to sleep 1943 * @max: Maximum time in usecs to sleep 1944 * 1945 * In non-atomic context where the exact wakeup time is flexible, use 1946 * usleep_range() instead of udelay(). The sleep improves responsiveness 1947 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 1948 * power usage by allowing hrtimers to take advantage of an already- 1949 * scheduled interrupt instead of scheduling a new one just for this sleep. 1950 */ 1951 void __sched usleep_range(unsigned long min, unsigned long max) 1952 { 1953 ktime_t exp = ktime_add_us(ktime_get(), min); 1954 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 1955 1956 for (;;) { 1957 __set_current_state(TASK_UNINTERRUPTIBLE); 1958 /* Do not return before the requested sleep time has elapsed */ 1959 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 1960 break; 1961 } 1962 } 1963 EXPORT_SYMBOL(usleep_range); 1964