xref: /openbmc/linux/kernel/time/timer.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53 
54 #include "tick-internal.h"
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58 
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60 
61 EXPORT_SYMBOL(jiffies_64);
62 
63 /*
64  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66  * level has a different granularity.
67  *
68  * The level granularity is:		LVL_CLK_DIV ^ lvl
69  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
70  *
71  * The array level of a newly armed timer depends on the relative expiry
72  * time. The farther the expiry time is away the higher the array level and
73  * therefor the granularity becomes.
74  *
75  * Contrary to the original timer wheel implementation, which aims for 'exact'
76  * expiry of the timers, this implementation removes the need for recascading
77  * the timers into the lower array levels. The previous 'classic' timer wheel
78  * implementation of the kernel already violated the 'exact' expiry by adding
79  * slack to the expiry time to provide batched expiration. The granularity
80  * levels provide implicit batching.
81  *
82  * This is an optimization of the original timer wheel implementation for the
83  * majority of the timer wheel use cases: timeouts. The vast majority of
84  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85  * the timeout expires it indicates that normal operation is disturbed, so it
86  * does not matter much whether the timeout comes with a slight delay.
87  *
88  * The only exception to this are networking timers with a small expiry
89  * time. They rely on the granularity. Those fit into the first wheel level,
90  * which has HZ granularity.
91  *
92  * We don't have cascading anymore. timers with a expiry time above the
93  * capacity of the last wheel level are force expired at the maximum timeout
94  * value of the last wheel level. From data sampling we know that the maximum
95  * value observed is 5 days (network connection tracking), so this should not
96  * be an issue.
97  *
98  * The currently chosen array constants values are a good compromise between
99  * array size and granularity.
100  *
101  * This results in the following granularity and range levels:
102  *
103  * HZ 1000 steps
104  * Level Offset  Granularity            Range
105  *  0      0         1 ms                0 ms -         63 ms
106  *  1     64         8 ms               64 ms -        511 ms
107  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
108  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
109  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
110  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
111  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
112  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
113  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
114  *
115  * HZ  300
116  * Level Offset  Granularity            Range
117  *  0	   0         3 ms                0 ms -        210 ms
118  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
119  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
120  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
121  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
122  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
123  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
124  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
125  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126  *
127  * HZ  250
128  * Level Offset  Granularity            Range
129  *  0	   0         4 ms                0 ms -        255 ms
130  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
131  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
132  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
133  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
134  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
135  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
136  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
137  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138  *
139  * HZ  100
140  * Level Offset  Granularity            Range
141  *  0	   0         10 ms               0 ms -        630 ms
142  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
143  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
144  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
145  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
146  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
147  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
148  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149  */
150 
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT	3
153 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
157 
158 /*
159  * The time start value for each level to select the bucket at enqueue
160  * time. We start from the last possible delta of the previous level
161  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
162  */
163 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
164 
165 /* Size of each clock level */
166 #define LVL_BITS	6
167 #define LVL_SIZE	(1UL << LVL_BITS)
168 #define LVL_MASK	(LVL_SIZE - 1)
169 #define LVL_OFFS(n)	((n) * LVL_SIZE)
170 
171 /* Level depth */
172 #if HZ > 100
173 # define LVL_DEPTH	9
174 # else
175 # define LVL_DEPTH	8
176 #endif
177 
178 /* The cutoff (max. capacity of the wheel) */
179 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
180 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
181 
182 /*
183  * The resulting wheel size. If NOHZ is configured we allocate two
184  * wheels so we have a separate storage for the deferrable timers.
185  */
186 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
187 
188 #ifdef CONFIG_NO_HZ_COMMON
189 # define NR_BASES	2
190 # define BASE_STD	0
191 # define BASE_DEF	1
192 #else
193 # define NR_BASES	1
194 # define BASE_STD	0
195 # define BASE_DEF	0
196 #endif
197 
198 struct timer_base {
199 	raw_spinlock_t		lock;
200 	struct timer_list	*running_timer;
201 #ifdef CONFIG_PREEMPT_RT
202 	spinlock_t		expiry_lock;
203 	atomic_t		timer_waiters;
204 #endif
205 	unsigned long		clk;
206 	unsigned long		next_expiry;
207 	unsigned int		cpu;
208 	bool			next_expiry_recalc;
209 	bool			is_idle;
210 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
211 	struct hlist_head	vectors[WHEEL_SIZE];
212 } ____cacheline_aligned;
213 
214 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
215 
216 #ifdef CONFIG_NO_HZ_COMMON
217 
218 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
219 static DEFINE_MUTEX(timer_keys_mutex);
220 
221 static void timer_update_keys(struct work_struct *work);
222 static DECLARE_WORK(timer_update_work, timer_update_keys);
223 
224 #ifdef CONFIG_SMP
225 unsigned int sysctl_timer_migration = 1;
226 
227 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
228 
229 static void timers_update_migration(void)
230 {
231 	if (sysctl_timer_migration && tick_nohz_active)
232 		static_branch_enable(&timers_migration_enabled);
233 	else
234 		static_branch_disable(&timers_migration_enabled);
235 }
236 #else
237 static inline void timers_update_migration(void) { }
238 #endif /* !CONFIG_SMP */
239 
240 static void timer_update_keys(struct work_struct *work)
241 {
242 	mutex_lock(&timer_keys_mutex);
243 	timers_update_migration();
244 	static_branch_enable(&timers_nohz_active);
245 	mutex_unlock(&timer_keys_mutex);
246 }
247 
248 void timers_update_nohz(void)
249 {
250 	schedule_work(&timer_update_work);
251 }
252 
253 int timer_migration_handler(struct ctl_table *table, int write,
254 			    void *buffer, size_t *lenp, loff_t *ppos)
255 {
256 	int ret;
257 
258 	mutex_lock(&timer_keys_mutex);
259 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
260 	if (!ret && write)
261 		timers_update_migration();
262 	mutex_unlock(&timer_keys_mutex);
263 	return ret;
264 }
265 
266 static inline bool is_timers_nohz_active(void)
267 {
268 	return static_branch_unlikely(&timers_nohz_active);
269 }
270 #else
271 static inline bool is_timers_nohz_active(void) { return false; }
272 #endif /* NO_HZ_COMMON */
273 
274 static unsigned long round_jiffies_common(unsigned long j, int cpu,
275 		bool force_up)
276 {
277 	int rem;
278 	unsigned long original = j;
279 
280 	/*
281 	 * We don't want all cpus firing their timers at once hitting the
282 	 * same lock or cachelines, so we skew each extra cpu with an extra
283 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
284 	 * already did this.
285 	 * The skew is done by adding 3*cpunr, then round, then subtract this
286 	 * extra offset again.
287 	 */
288 	j += cpu * 3;
289 
290 	rem = j % HZ;
291 
292 	/*
293 	 * If the target jiffie is just after a whole second (which can happen
294 	 * due to delays of the timer irq, long irq off times etc etc) then
295 	 * we should round down to the whole second, not up. Use 1/4th second
296 	 * as cutoff for this rounding as an extreme upper bound for this.
297 	 * But never round down if @force_up is set.
298 	 */
299 	if (rem < HZ/4 && !force_up) /* round down */
300 		j = j - rem;
301 	else /* round up */
302 		j = j - rem + HZ;
303 
304 	/* now that we have rounded, subtract the extra skew again */
305 	j -= cpu * 3;
306 
307 	/*
308 	 * Make sure j is still in the future. Otherwise return the
309 	 * unmodified value.
310 	 */
311 	return time_is_after_jiffies(j) ? j : original;
312 }
313 
314 /**
315  * __round_jiffies - function to round jiffies to a full second
316  * @j: the time in (absolute) jiffies that should be rounded
317  * @cpu: the processor number on which the timeout will happen
318  *
319  * __round_jiffies() rounds an absolute time in the future (in jiffies)
320  * up or down to (approximately) full seconds. This is useful for timers
321  * for which the exact time they fire does not matter too much, as long as
322  * they fire approximately every X seconds.
323  *
324  * By rounding these timers to whole seconds, all such timers will fire
325  * at the same time, rather than at various times spread out. The goal
326  * of this is to have the CPU wake up less, which saves power.
327  *
328  * The exact rounding is skewed for each processor to avoid all
329  * processors firing at the exact same time, which could lead
330  * to lock contention or spurious cache line bouncing.
331  *
332  * The return value is the rounded version of the @j parameter.
333  */
334 unsigned long __round_jiffies(unsigned long j, int cpu)
335 {
336 	return round_jiffies_common(j, cpu, false);
337 }
338 EXPORT_SYMBOL_GPL(__round_jiffies);
339 
340 /**
341  * __round_jiffies_relative - function to round jiffies to a full second
342  * @j: the time in (relative) jiffies that should be rounded
343  * @cpu: the processor number on which the timeout will happen
344  *
345  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
346  * up or down to (approximately) full seconds. This is useful for timers
347  * for which the exact time they fire does not matter too much, as long as
348  * they fire approximately every X seconds.
349  *
350  * By rounding these timers to whole seconds, all such timers will fire
351  * at the same time, rather than at various times spread out. The goal
352  * of this is to have the CPU wake up less, which saves power.
353  *
354  * The exact rounding is skewed for each processor to avoid all
355  * processors firing at the exact same time, which could lead
356  * to lock contention or spurious cache line bouncing.
357  *
358  * The return value is the rounded version of the @j parameter.
359  */
360 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
361 {
362 	unsigned long j0 = jiffies;
363 
364 	/* Use j0 because jiffies might change while we run */
365 	return round_jiffies_common(j + j0, cpu, false) - j0;
366 }
367 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
368 
369 /**
370  * round_jiffies - function to round jiffies to a full second
371  * @j: the time in (absolute) jiffies that should be rounded
372  *
373  * round_jiffies() rounds an absolute time in the future (in jiffies)
374  * up or down to (approximately) full seconds. This is useful for timers
375  * for which the exact time they fire does not matter too much, as long as
376  * they fire approximately every X seconds.
377  *
378  * By rounding these timers to whole seconds, all such timers will fire
379  * at the same time, rather than at various times spread out. The goal
380  * of this is to have the CPU wake up less, which saves power.
381  *
382  * The return value is the rounded version of the @j parameter.
383  */
384 unsigned long round_jiffies(unsigned long j)
385 {
386 	return round_jiffies_common(j, raw_smp_processor_id(), false);
387 }
388 EXPORT_SYMBOL_GPL(round_jiffies);
389 
390 /**
391  * round_jiffies_relative - function to round jiffies to a full second
392  * @j: the time in (relative) jiffies that should be rounded
393  *
394  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
395  * up or down to (approximately) full seconds. This is useful for timers
396  * for which the exact time they fire does not matter too much, as long as
397  * they fire approximately every X seconds.
398  *
399  * By rounding these timers to whole seconds, all such timers will fire
400  * at the same time, rather than at various times spread out. The goal
401  * of this is to have the CPU wake up less, which saves power.
402  *
403  * The return value is the rounded version of the @j parameter.
404  */
405 unsigned long round_jiffies_relative(unsigned long j)
406 {
407 	return __round_jiffies_relative(j, raw_smp_processor_id());
408 }
409 EXPORT_SYMBOL_GPL(round_jiffies_relative);
410 
411 /**
412  * __round_jiffies_up - function to round jiffies up to a full second
413  * @j: the time in (absolute) jiffies that should be rounded
414  * @cpu: the processor number on which the timeout will happen
415  *
416  * This is the same as __round_jiffies() except that it will never
417  * round down.  This is useful for timeouts for which the exact time
418  * of firing does not matter too much, as long as they don't fire too
419  * early.
420  */
421 unsigned long __round_jiffies_up(unsigned long j, int cpu)
422 {
423 	return round_jiffies_common(j, cpu, true);
424 }
425 EXPORT_SYMBOL_GPL(__round_jiffies_up);
426 
427 /**
428  * __round_jiffies_up_relative - function to round jiffies up to a full second
429  * @j: the time in (relative) jiffies that should be rounded
430  * @cpu: the processor number on which the timeout will happen
431  *
432  * This is the same as __round_jiffies_relative() except that it will never
433  * round down.  This is useful for timeouts for which the exact time
434  * of firing does not matter too much, as long as they don't fire too
435  * early.
436  */
437 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
438 {
439 	unsigned long j0 = jiffies;
440 
441 	/* Use j0 because jiffies might change while we run */
442 	return round_jiffies_common(j + j0, cpu, true) - j0;
443 }
444 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
445 
446 /**
447  * round_jiffies_up - function to round jiffies up to a full second
448  * @j: the time in (absolute) jiffies that should be rounded
449  *
450  * This is the same as round_jiffies() except that it will never
451  * round down.  This is useful for timeouts for which the exact time
452  * of firing does not matter too much, as long as they don't fire too
453  * early.
454  */
455 unsigned long round_jiffies_up(unsigned long j)
456 {
457 	return round_jiffies_common(j, raw_smp_processor_id(), true);
458 }
459 EXPORT_SYMBOL_GPL(round_jiffies_up);
460 
461 /**
462  * round_jiffies_up_relative - function to round jiffies up to a full second
463  * @j: the time in (relative) jiffies that should be rounded
464  *
465  * This is the same as round_jiffies_relative() except that it will never
466  * round down.  This is useful for timeouts for which the exact time
467  * of firing does not matter too much, as long as they don't fire too
468  * early.
469  */
470 unsigned long round_jiffies_up_relative(unsigned long j)
471 {
472 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
473 }
474 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
475 
476 
477 static inline unsigned int timer_get_idx(struct timer_list *timer)
478 {
479 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
480 }
481 
482 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
483 {
484 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
485 			idx << TIMER_ARRAYSHIFT;
486 }
487 
488 /*
489  * Helper function to calculate the array index for a given expiry
490  * time.
491  */
492 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
493 				  unsigned long *bucket_expiry)
494 {
495 
496 	/*
497 	 * The timer wheel has to guarantee that a timer does not fire
498 	 * early. Early expiry can happen due to:
499 	 * - Timer is armed at the edge of a tick
500 	 * - Truncation of the expiry time in the outer wheel levels
501 	 *
502 	 * Round up with level granularity to prevent this.
503 	 */
504 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
505 	*bucket_expiry = expires << LVL_SHIFT(lvl);
506 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
507 }
508 
509 static int calc_wheel_index(unsigned long expires, unsigned long clk,
510 			    unsigned long *bucket_expiry)
511 {
512 	unsigned long delta = expires - clk;
513 	unsigned int idx;
514 
515 	if (delta < LVL_START(1)) {
516 		idx = calc_index(expires, 0, bucket_expiry);
517 	} else if (delta < LVL_START(2)) {
518 		idx = calc_index(expires, 1, bucket_expiry);
519 	} else if (delta < LVL_START(3)) {
520 		idx = calc_index(expires, 2, bucket_expiry);
521 	} else if (delta < LVL_START(4)) {
522 		idx = calc_index(expires, 3, bucket_expiry);
523 	} else if (delta < LVL_START(5)) {
524 		idx = calc_index(expires, 4, bucket_expiry);
525 	} else if (delta < LVL_START(6)) {
526 		idx = calc_index(expires, 5, bucket_expiry);
527 	} else if (delta < LVL_START(7)) {
528 		idx = calc_index(expires, 6, bucket_expiry);
529 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
530 		idx = calc_index(expires, 7, bucket_expiry);
531 	} else if ((long) delta < 0) {
532 		idx = clk & LVL_MASK;
533 		*bucket_expiry = clk;
534 	} else {
535 		/*
536 		 * Force expire obscene large timeouts to expire at the
537 		 * capacity limit of the wheel.
538 		 */
539 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
540 			expires = clk + WHEEL_TIMEOUT_MAX;
541 
542 		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
543 	}
544 	return idx;
545 }
546 
547 static void
548 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
549 {
550 	if (!is_timers_nohz_active())
551 		return;
552 
553 	/*
554 	 * TODO: This wants some optimizing similar to the code below, but we
555 	 * will do that when we switch from push to pull for deferrable timers.
556 	 */
557 	if (timer->flags & TIMER_DEFERRABLE) {
558 		if (tick_nohz_full_cpu(base->cpu))
559 			wake_up_nohz_cpu(base->cpu);
560 		return;
561 	}
562 
563 	/*
564 	 * We might have to IPI the remote CPU if the base is idle and the
565 	 * timer is not deferrable. If the other CPU is on the way to idle
566 	 * then it can't set base->is_idle as we hold the base lock:
567 	 */
568 	if (base->is_idle)
569 		wake_up_nohz_cpu(base->cpu);
570 }
571 
572 /*
573  * Enqueue the timer into the hash bucket, mark it pending in
574  * the bitmap, store the index in the timer flags then wake up
575  * the target CPU if needed.
576  */
577 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
578 			  unsigned int idx, unsigned long bucket_expiry)
579 {
580 
581 	hlist_add_head(&timer->entry, base->vectors + idx);
582 	__set_bit(idx, base->pending_map);
583 	timer_set_idx(timer, idx);
584 
585 	trace_timer_start(timer, timer->expires, timer->flags);
586 
587 	/*
588 	 * Check whether this is the new first expiring timer. The
589 	 * effective expiry time of the timer is required here
590 	 * (bucket_expiry) instead of timer->expires.
591 	 */
592 	if (time_before(bucket_expiry, base->next_expiry)) {
593 		/*
594 		 * Set the next expiry time and kick the CPU so it
595 		 * can reevaluate the wheel:
596 		 */
597 		base->next_expiry = bucket_expiry;
598 		base->next_expiry_recalc = false;
599 		trigger_dyntick_cpu(base, timer);
600 	}
601 }
602 
603 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
604 {
605 	unsigned long bucket_expiry;
606 	unsigned int idx;
607 
608 	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
609 	enqueue_timer(base, timer, idx, bucket_expiry);
610 }
611 
612 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
613 
614 static struct debug_obj_descr timer_debug_descr;
615 
616 static void *timer_debug_hint(void *addr)
617 {
618 	return ((struct timer_list *) addr)->function;
619 }
620 
621 static bool timer_is_static_object(void *addr)
622 {
623 	struct timer_list *timer = addr;
624 
625 	return (timer->entry.pprev == NULL &&
626 		timer->entry.next == TIMER_ENTRY_STATIC);
627 }
628 
629 /*
630  * fixup_init is called when:
631  * - an active object is initialized
632  */
633 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
634 {
635 	struct timer_list *timer = addr;
636 
637 	switch (state) {
638 	case ODEBUG_STATE_ACTIVE:
639 		del_timer_sync(timer);
640 		debug_object_init(timer, &timer_debug_descr);
641 		return true;
642 	default:
643 		return false;
644 	}
645 }
646 
647 /* Stub timer callback for improperly used timers. */
648 static void stub_timer(struct timer_list *unused)
649 {
650 	WARN_ON(1);
651 }
652 
653 /*
654  * fixup_activate is called when:
655  * - an active object is activated
656  * - an unknown non-static object is activated
657  */
658 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
659 {
660 	struct timer_list *timer = addr;
661 
662 	switch (state) {
663 	case ODEBUG_STATE_NOTAVAILABLE:
664 		timer_setup(timer, stub_timer, 0);
665 		return true;
666 
667 	case ODEBUG_STATE_ACTIVE:
668 		WARN_ON(1);
669 		/* fall through */
670 	default:
671 		return false;
672 	}
673 }
674 
675 /*
676  * fixup_free is called when:
677  * - an active object is freed
678  */
679 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
680 {
681 	struct timer_list *timer = addr;
682 
683 	switch (state) {
684 	case ODEBUG_STATE_ACTIVE:
685 		del_timer_sync(timer);
686 		debug_object_free(timer, &timer_debug_descr);
687 		return true;
688 	default:
689 		return false;
690 	}
691 }
692 
693 /*
694  * fixup_assert_init is called when:
695  * - an untracked/uninit-ed object is found
696  */
697 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
698 {
699 	struct timer_list *timer = addr;
700 
701 	switch (state) {
702 	case ODEBUG_STATE_NOTAVAILABLE:
703 		timer_setup(timer, stub_timer, 0);
704 		return true;
705 	default:
706 		return false;
707 	}
708 }
709 
710 static struct debug_obj_descr timer_debug_descr = {
711 	.name			= "timer_list",
712 	.debug_hint		= timer_debug_hint,
713 	.is_static_object	= timer_is_static_object,
714 	.fixup_init		= timer_fixup_init,
715 	.fixup_activate		= timer_fixup_activate,
716 	.fixup_free		= timer_fixup_free,
717 	.fixup_assert_init	= timer_fixup_assert_init,
718 };
719 
720 static inline void debug_timer_init(struct timer_list *timer)
721 {
722 	debug_object_init(timer, &timer_debug_descr);
723 }
724 
725 static inline void debug_timer_activate(struct timer_list *timer)
726 {
727 	debug_object_activate(timer, &timer_debug_descr);
728 }
729 
730 static inline void debug_timer_deactivate(struct timer_list *timer)
731 {
732 	debug_object_deactivate(timer, &timer_debug_descr);
733 }
734 
735 static inline void debug_timer_free(struct timer_list *timer)
736 {
737 	debug_object_free(timer, &timer_debug_descr);
738 }
739 
740 static inline void debug_timer_assert_init(struct timer_list *timer)
741 {
742 	debug_object_assert_init(timer, &timer_debug_descr);
743 }
744 
745 static void do_init_timer(struct timer_list *timer,
746 			  void (*func)(struct timer_list *),
747 			  unsigned int flags,
748 			  const char *name, struct lock_class_key *key);
749 
750 void init_timer_on_stack_key(struct timer_list *timer,
751 			     void (*func)(struct timer_list *),
752 			     unsigned int flags,
753 			     const char *name, struct lock_class_key *key)
754 {
755 	debug_object_init_on_stack(timer, &timer_debug_descr);
756 	do_init_timer(timer, func, flags, name, key);
757 }
758 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
759 
760 void destroy_timer_on_stack(struct timer_list *timer)
761 {
762 	debug_object_free(timer, &timer_debug_descr);
763 }
764 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
765 
766 #else
767 static inline void debug_timer_init(struct timer_list *timer) { }
768 static inline void debug_timer_activate(struct timer_list *timer) { }
769 static inline void debug_timer_deactivate(struct timer_list *timer) { }
770 static inline void debug_timer_assert_init(struct timer_list *timer) { }
771 #endif
772 
773 static inline void debug_init(struct timer_list *timer)
774 {
775 	debug_timer_init(timer);
776 	trace_timer_init(timer);
777 }
778 
779 static inline void debug_deactivate(struct timer_list *timer)
780 {
781 	debug_timer_deactivate(timer);
782 	trace_timer_cancel(timer);
783 }
784 
785 static inline void debug_assert_init(struct timer_list *timer)
786 {
787 	debug_timer_assert_init(timer);
788 }
789 
790 static void do_init_timer(struct timer_list *timer,
791 			  void (*func)(struct timer_list *),
792 			  unsigned int flags,
793 			  const char *name, struct lock_class_key *key)
794 {
795 	timer->entry.pprev = NULL;
796 	timer->function = func;
797 	timer->flags = flags | raw_smp_processor_id();
798 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
799 }
800 
801 /**
802  * init_timer_key - initialize a timer
803  * @timer: the timer to be initialized
804  * @func: timer callback function
805  * @flags: timer flags
806  * @name: name of the timer
807  * @key: lockdep class key of the fake lock used for tracking timer
808  *       sync lock dependencies
809  *
810  * init_timer_key() must be done to a timer prior calling *any* of the
811  * other timer functions.
812  */
813 void init_timer_key(struct timer_list *timer,
814 		    void (*func)(struct timer_list *), unsigned int flags,
815 		    const char *name, struct lock_class_key *key)
816 {
817 	debug_init(timer);
818 	do_init_timer(timer, func, flags, name, key);
819 }
820 EXPORT_SYMBOL(init_timer_key);
821 
822 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
823 {
824 	struct hlist_node *entry = &timer->entry;
825 
826 	debug_deactivate(timer);
827 
828 	__hlist_del(entry);
829 	if (clear_pending)
830 		entry->pprev = NULL;
831 	entry->next = LIST_POISON2;
832 }
833 
834 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
835 			     bool clear_pending)
836 {
837 	unsigned idx = timer_get_idx(timer);
838 
839 	if (!timer_pending(timer))
840 		return 0;
841 
842 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
843 		__clear_bit(idx, base->pending_map);
844 		base->next_expiry_recalc = true;
845 	}
846 
847 	detach_timer(timer, clear_pending);
848 	return 1;
849 }
850 
851 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
852 {
853 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
854 
855 	/*
856 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
857 	 * to use the deferrable base.
858 	 */
859 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
860 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
861 	return base;
862 }
863 
864 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
865 {
866 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
867 
868 	/*
869 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
870 	 * to use the deferrable base.
871 	 */
872 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
873 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
874 	return base;
875 }
876 
877 static inline struct timer_base *get_timer_base(u32 tflags)
878 {
879 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
880 }
881 
882 static inline struct timer_base *
883 get_target_base(struct timer_base *base, unsigned tflags)
884 {
885 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
886 	if (static_branch_likely(&timers_migration_enabled) &&
887 	    !(tflags & TIMER_PINNED))
888 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
889 #endif
890 	return get_timer_this_cpu_base(tflags);
891 }
892 
893 static inline void forward_timer_base(struct timer_base *base)
894 {
895 	unsigned long jnow = READ_ONCE(jiffies);
896 
897 	/*
898 	 * No need to forward if we are close enough below jiffies.
899 	 * Also while executing timers, base->clk is 1 offset ahead
900 	 * of jiffies to avoid endless requeuing to current jffies.
901 	 */
902 	if ((long)(jnow - base->clk) < 1)
903 		return;
904 
905 	/*
906 	 * If the next expiry value is > jiffies, then we fast forward to
907 	 * jiffies otherwise we forward to the next expiry value.
908 	 */
909 	if (time_after(base->next_expiry, jnow)) {
910 		base->clk = jnow;
911 	} else {
912 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
913 			return;
914 		base->clk = base->next_expiry;
915 	}
916 }
917 
918 
919 /*
920  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
921  * that all timers which are tied to this base are locked, and the base itself
922  * is locked too.
923  *
924  * So __run_timers/migrate_timers can safely modify all timers which could
925  * be found in the base->vectors array.
926  *
927  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
928  * to wait until the migration is done.
929  */
930 static struct timer_base *lock_timer_base(struct timer_list *timer,
931 					  unsigned long *flags)
932 	__acquires(timer->base->lock)
933 {
934 	for (;;) {
935 		struct timer_base *base;
936 		u32 tf;
937 
938 		/*
939 		 * We need to use READ_ONCE() here, otherwise the compiler
940 		 * might re-read @tf between the check for TIMER_MIGRATING
941 		 * and spin_lock().
942 		 */
943 		tf = READ_ONCE(timer->flags);
944 
945 		if (!(tf & TIMER_MIGRATING)) {
946 			base = get_timer_base(tf);
947 			raw_spin_lock_irqsave(&base->lock, *flags);
948 			if (timer->flags == tf)
949 				return base;
950 			raw_spin_unlock_irqrestore(&base->lock, *flags);
951 		}
952 		cpu_relax();
953 	}
954 }
955 
956 #define MOD_TIMER_PENDING_ONLY		0x01
957 #define MOD_TIMER_REDUCE		0x02
958 #define MOD_TIMER_NOTPENDING		0x04
959 
960 static inline int
961 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
962 {
963 	unsigned long clk = 0, flags, bucket_expiry;
964 	struct timer_base *base, *new_base;
965 	unsigned int idx = UINT_MAX;
966 	int ret = 0;
967 
968 	BUG_ON(!timer->function);
969 
970 	/*
971 	 * This is a common optimization triggered by the networking code - if
972 	 * the timer is re-modified to have the same timeout or ends up in the
973 	 * same array bucket then just return:
974 	 */
975 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
976 		/*
977 		 * The downside of this optimization is that it can result in
978 		 * larger granularity than you would get from adding a new
979 		 * timer with this expiry.
980 		 */
981 		long diff = timer->expires - expires;
982 
983 		if (!diff)
984 			return 1;
985 		if (options & MOD_TIMER_REDUCE && diff <= 0)
986 			return 1;
987 
988 		/*
989 		 * We lock timer base and calculate the bucket index right
990 		 * here. If the timer ends up in the same bucket, then we
991 		 * just update the expiry time and avoid the whole
992 		 * dequeue/enqueue dance.
993 		 */
994 		base = lock_timer_base(timer, &flags);
995 		forward_timer_base(base);
996 
997 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
998 		    time_before_eq(timer->expires, expires)) {
999 			ret = 1;
1000 			goto out_unlock;
1001 		}
1002 
1003 		clk = base->clk;
1004 		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1005 
1006 		/*
1007 		 * Retrieve and compare the array index of the pending
1008 		 * timer. If it matches set the expiry to the new value so a
1009 		 * subsequent call will exit in the expires check above.
1010 		 */
1011 		if (idx == timer_get_idx(timer)) {
1012 			if (!(options & MOD_TIMER_REDUCE))
1013 				timer->expires = expires;
1014 			else if (time_after(timer->expires, expires))
1015 				timer->expires = expires;
1016 			ret = 1;
1017 			goto out_unlock;
1018 		}
1019 	} else {
1020 		base = lock_timer_base(timer, &flags);
1021 		forward_timer_base(base);
1022 	}
1023 
1024 	ret = detach_if_pending(timer, base, false);
1025 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1026 		goto out_unlock;
1027 
1028 	new_base = get_target_base(base, timer->flags);
1029 
1030 	if (base != new_base) {
1031 		/*
1032 		 * We are trying to schedule the timer on the new base.
1033 		 * However we can't change timer's base while it is running,
1034 		 * otherwise del_timer_sync() can't detect that the timer's
1035 		 * handler yet has not finished. This also guarantees that the
1036 		 * timer is serialized wrt itself.
1037 		 */
1038 		if (likely(base->running_timer != timer)) {
1039 			/* See the comment in lock_timer_base() */
1040 			timer->flags |= TIMER_MIGRATING;
1041 
1042 			raw_spin_unlock(&base->lock);
1043 			base = new_base;
1044 			raw_spin_lock(&base->lock);
1045 			WRITE_ONCE(timer->flags,
1046 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1047 			forward_timer_base(base);
1048 		}
1049 	}
1050 
1051 	debug_timer_activate(timer);
1052 
1053 	timer->expires = expires;
1054 	/*
1055 	 * If 'idx' was calculated above and the base time did not advance
1056 	 * between calculating 'idx' and possibly switching the base, only
1057 	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1058 	 * the wheel index via internal_add_timer().
1059 	 */
1060 	if (idx != UINT_MAX && clk == base->clk)
1061 		enqueue_timer(base, timer, idx, bucket_expiry);
1062 	else
1063 		internal_add_timer(base, timer);
1064 
1065 out_unlock:
1066 	raw_spin_unlock_irqrestore(&base->lock, flags);
1067 
1068 	return ret;
1069 }
1070 
1071 /**
1072  * mod_timer_pending - modify a pending timer's timeout
1073  * @timer: the pending timer to be modified
1074  * @expires: new timeout in jiffies
1075  *
1076  * mod_timer_pending() is the same for pending timers as mod_timer(),
1077  * but will not re-activate and modify already deleted timers.
1078  *
1079  * It is useful for unserialized use of timers.
1080  */
1081 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1082 {
1083 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1084 }
1085 EXPORT_SYMBOL(mod_timer_pending);
1086 
1087 /**
1088  * mod_timer - modify a timer's timeout
1089  * @timer: the timer to be modified
1090  * @expires: new timeout in jiffies
1091  *
1092  * mod_timer() is a more efficient way to update the expire field of an
1093  * active timer (if the timer is inactive it will be activated)
1094  *
1095  * mod_timer(timer, expires) is equivalent to:
1096  *
1097  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1098  *
1099  * Note that if there are multiple unserialized concurrent users of the
1100  * same timer, then mod_timer() is the only safe way to modify the timeout,
1101  * since add_timer() cannot modify an already running timer.
1102  *
1103  * The function returns whether it has modified a pending timer or not.
1104  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1105  * active timer returns 1.)
1106  */
1107 int mod_timer(struct timer_list *timer, unsigned long expires)
1108 {
1109 	return __mod_timer(timer, expires, 0);
1110 }
1111 EXPORT_SYMBOL(mod_timer);
1112 
1113 /**
1114  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1115  * @timer:	The timer to be modified
1116  * @expires:	New timeout in jiffies
1117  *
1118  * timer_reduce() is very similar to mod_timer(), except that it will only
1119  * modify a running timer if that would reduce the expiration time (it will
1120  * start a timer that isn't running).
1121  */
1122 int timer_reduce(struct timer_list *timer, unsigned long expires)
1123 {
1124 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1125 }
1126 EXPORT_SYMBOL(timer_reduce);
1127 
1128 /**
1129  * add_timer - start a timer
1130  * @timer: the timer to be added
1131  *
1132  * The kernel will do a ->function(@timer) callback from the
1133  * timer interrupt at the ->expires point in the future. The
1134  * current time is 'jiffies'.
1135  *
1136  * The timer's ->expires, ->function fields must be set prior calling this
1137  * function.
1138  *
1139  * Timers with an ->expires field in the past will be executed in the next
1140  * timer tick.
1141  */
1142 void add_timer(struct timer_list *timer)
1143 {
1144 	BUG_ON(timer_pending(timer));
1145 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1146 }
1147 EXPORT_SYMBOL(add_timer);
1148 
1149 /**
1150  * add_timer_on - start a timer on a particular CPU
1151  * @timer: the timer to be added
1152  * @cpu: the CPU to start it on
1153  *
1154  * This is not very scalable on SMP. Double adds are not possible.
1155  */
1156 void add_timer_on(struct timer_list *timer, int cpu)
1157 {
1158 	struct timer_base *new_base, *base;
1159 	unsigned long flags;
1160 
1161 	BUG_ON(timer_pending(timer) || !timer->function);
1162 
1163 	new_base = get_timer_cpu_base(timer->flags, cpu);
1164 
1165 	/*
1166 	 * If @timer was on a different CPU, it should be migrated with the
1167 	 * old base locked to prevent other operations proceeding with the
1168 	 * wrong base locked.  See lock_timer_base().
1169 	 */
1170 	base = lock_timer_base(timer, &flags);
1171 	if (base != new_base) {
1172 		timer->flags |= TIMER_MIGRATING;
1173 
1174 		raw_spin_unlock(&base->lock);
1175 		base = new_base;
1176 		raw_spin_lock(&base->lock);
1177 		WRITE_ONCE(timer->flags,
1178 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1179 	}
1180 	forward_timer_base(base);
1181 
1182 	debug_timer_activate(timer);
1183 	internal_add_timer(base, timer);
1184 	raw_spin_unlock_irqrestore(&base->lock, flags);
1185 }
1186 EXPORT_SYMBOL_GPL(add_timer_on);
1187 
1188 /**
1189  * del_timer - deactivate a timer.
1190  * @timer: the timer to be deactivated
1191  *
1192  * del_timer() deactivates a timer - this works on both active and inactive
1193  * timers.
1194  *
1195  * The function returns whether it has deactivated a pending timer or not.
1196  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1197  * active timer returns 1.)
1198  */
1199 int del_timer(struct timer_list *timer)
1200 {
1201 	struct timer_base *base;
1202 	unsigned long flags;
1203 	int ret = 0;
1204 
1205 	debug_assert_init(timer);
1206 
1207 	if (timer_pending(timer)) {
1208 		base = lock_timer_base(timer, &flags);
1209 		ret = detach_if_pending(timer, base, true);
1210 		raw_spin_unlock_irqrestore(&base->lock, flags);
1211 	}
1212 
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL(del_timer);
1216 
1217 /**
1218  * try_to_del_timer_sync - Try to deactivate a timer
1219  * @timer: timer to delete
1220  *
1221  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1222  * exit the timer is not queued and the handler is not running on any CPU.
1223  */
1224 int try_to_del_timer_sync(struct timer_list *timer)
1225 {
1226 	struct timer_base *base;
1227 	unsigned long flags;
1228 	int ret = -1;
1229 
1230 	debug_assert_init(timer);
1231 
1232 	base = lock_timer_base(timer, &flags);
1233 
1234 	if (base->running_timer != timer)
1235 		ret = detach_if_pending(timer, base, true);
1236 
1237 	raw_spin_unlock_irqrestore(&base->lock, flags);
1238 
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL(try_to_del_timer_sync);
1242 
1243 #ifdef CONFIG_PREEMPT_RT
1244 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1245 {
1246 	spin_lock_init(&base->expiry_lock);
1247 }
1248 
1249 static inline void timer_base_lock_expiry(struct timer_base *base)
1250 {
1251 	spin_lock(&base->expiry_lock);
1252 }
1253 
1254 static inline void timer_base_unlock_expiry(struct timer_base *base)
1255 {
1256 	spin_unlock(&base->expiry_lock);
1257 }
1258 
1259 /*
1260  * The counterpart to del_timer_wait_running().
1261  *
1262  * If there is a waiter for base->expiry_lock, then it was waiting for the
1263  * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1264  * the waiter to acquire the lock and make progress.
1265  */
1266 static void timer_sync_wait_running(struct timer_base *base)
1267 {
1268 	if (atomic_read(&base->timer_waiters)) {
1269 		spin_unlock(&base->expiry_lock);
1270 		spin_lock(&base->expiry_lock);
1271 	}
1272 }
1273 
1274 /*
1275  * This function is called on PREEMPT_RT kernels when the fast path
1276  * deletion of a timer failed because the timer callback function was
1277  * running.
1278  *
1279  * This prevents priority inversion, if the softirq thread on a remote CPU
1280  * got preempted, and it prevents a life lock when the task which tries to
1281  * delete a timer preempted the softirq thread running the timer callback
1282  * function.
1283  */
1284 static void del_timer_wait_running(struct timer_list *timer)
1285 {
1286 	u32 tf;
1287 
1288 	tf = READ_ONCE(timer->flags);
1289 	if (!(tf & TIMER_MIGRATING)) {
1290 		struct timer_base *base = get_timer_base(tf);
1291 
1292 		/*
1293 		 * Mark the base as contended and grab the expiry lock,
1294 		 * which is held by the softirq across the timer
1295 		 * callback. Drop the lock immediately so the softirq can
1296 		 * expire the next timer. In theory the timer could already
1297 		 * be running again, but that's more than unlikely and just
1298 		 * causes another wait loop.
1299 		 */
1300 		atomic_inc(&base->timer_waiters);
1301 		spin_lock_bh(&base->expiry_lock);
1302 		atomic_dec(&base->timer_waiters);
1303 		spin_unlock_bh(&base->expiry_lock);
1304 	}
1305 }
1306 #else
1307 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1308 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1309 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1310 static inline void timer_sync_wait_running(struct timer_base *base) { }
1311 static inline void del_timer_wait_running(struct timer_list *timer) { }
1312 #endif
1313 
1314 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1315 /**
1316  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1317  * @timer: the timer to be deactivated
1318  *
1319  * This function only differs from del_timer() on SMP: besides deactivating
1320  * the timer it also makes sure the handler has finished executing on other
1321  * CPUs.
1322  *
1323  * Synchronization rules: Callers must prevent restarting of the timer,
1324  * otherwise this function is meaningless. It must not be called from
1325  * interrupt contexts unless the timer is an irqsafe one. The caller must
1326  * not hold locks which would prevent completion of the timer's
1327  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1328  * timer is not queued and the handler is not running on any CPU.
1329  *
1330  * Note: For !irqsafe timers, you must not hold locks that are held in
1331  *   interrupt context while calling this function. Even if the lock has
1332  *   nothing to do with the timer in question.  Here's why::
1333  *
1334  *    CPU0                             CPU1
1335  *    ----                             ----
1336  *                                     <SOFTIRQ>
1337  *                                       call_timer_fn();
1338  *                                       base->running_timer = mytimer;
1339  *    spin_lock_irq(somelock);
1340  *                                     <IRQ>
1341  *                                        spin_lock(somelock);
1342  *    del_timer_sync(mytimer);
1343  *    while (base->running_timer == mytimer);
1344  *
1345  * Now del_timer_sync() will never return and never release somelock.
1346  * The interrupt on the other CPU is waiting to grab somelock but
1347  * it has interrupted the softirq that CPU0 is waiting to finish.
1348  *
1349  * The function returns whether it has deactivated a pending timer or not.
1350  */
1351 int del_timer_sync(struct timer_list *timer)
1352 {
1353 	int ret;
1354 
1355 #ifdef CONFIG_LOCKDEP
1356 	unsigned long flags;
1357 
1358 	/*
1359 	 * If lockdep gives a backtrace here, please reference
1360 	 * the synchronization rules above.
1361 	 */
1362 	local_irq_save(flags);
1363 	lock_map_acquire(&timer->lockdep_map);
1364 	lock_map_release(&timer->lockdep_map);
1365 	local_irq_restore(flags);
1366 #endif
1367 	/*
1368 	 * don't use it in hardirq context, because it
1369 	 * could lead to deadlock.
1370 	 */
1371 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1372 
1373 	do {
1374 		ret = try_to_del_timer_sync(timer);
1375 
1376 		if (unlikely(ret < 0)) {
1377 			del_timer_wait_running(timer);
1378 			cpu_relax();
1379 		}
1380 	} while (ret < 0);
1381 
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL(del_timer_sync);
1385 #endif
1386 
1387 static void call_timer_fn(struct timer_list *timer,
1388 			  void (*fn)(struct timer_list *),
1389 			  unsigned long baseclk)
1390 {
1391 	int count = preempt_count();
1392 
1393 #ifdef CONFIG_LOCKDEP
1394 	/*
1395 	 * It is permissible to free the timer from inside the
1396 	 * function that is called from it, this we need to take into
1397 	 * account for lockdep too. To avoid bogus "held lock freed"
1398 	 * warnings as well as problems when looking into
1399 	 * timer->lockdep_map, make a copy and use that here.
1400 	 */
1401 	struct lockdep_map lockdep_map;
1402 
1403 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1404 #endif
1405 	/*
1406 	 * Couple the lock chain with the lock chain at
1407 	 * del_timer_sync() by acquiring the lock_map around the fn()
1408 	 * call here and in del_timer_sync().
1409 	 */
1410 	lock_map_acquire(&lockdep_map);
1411 
1412 	trace_timer_expire_entry(timer, baseclk);
1413 	fn(timer);
1414 	trace_timer_expire_exit(timer);
1415 
1416 	lock_map_release(&lockdep_map);
1417 
1418 	if (count != preempt_count()) {
1419 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1420 			  fn, count, preempt_count());
1421 		/*
1422 		 * Restore the preempt count. That gives us a decent
1423 		 * chance to survive and extract information. If the
1424 		 * callback kept a lock held, bad luck, but not worse
1425 		 * than the BUG() we had.
1426 		 */
1427 		preempt_count_set(count);
1428 	}
1429 }
1430 
1431 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1432 {
1433 	/*
1434 	 * This value is required only for tracing. base->clk was
1435 	 * incremented directly before expire_timers was called. But expiry
1436 	 * is related to the old base->clk value.
1437 	 */
1438 	unsigned long baseclk = base->clk - 1;
1439 
1440 	while (!hlist_empty(head)) {
1441 		struct timer_list *timer;
1442 		void (*fn)(struct timer_list *);
1443 
1444 		timer = hlist_entry(head->first, struct timer_list, entry);
1445 
1446 		base->running_timer = timer;
1447 		detach_timer(timer, true);
1448 
1449 		fn = timer->function;
1450 
1451 		if (timer->flags & TIMER_IRQSAFE) {
1452 			raw_spin_unlock(&base->lock);
1453 			call_timer_fn(timer, fn, baseclk);
1454 			base->running_timer = NULL;
1455 			raw_spin_lock(&base->lock);
1456 		} else {
1457 			raw_spin_unlock_irq(&base->lock);
1458 			call_timer_fn(timer, fn, baseclk);
1459 			base->running_timer = NULL;
1460 			timer_sync_wait_running(base);
1461 			raw_spin_lock_irq(&base->lock);
1462 		}
1463 	}
1464 }
1465 
1466 static int collect_expired_timers(struct timer_base *base,
1467 				  struct hlist_head *heads)
1468 {
1469 	unsigned long clk = base->clk = base->next_expiry;
1470 	struct hlist_head *vec;
1471 	int i, levels = 0;
1472 	unsigned int idx;
1473 
1474 	for (i = 0; i < LVL_DEPTH; i++) {
1475 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1476 
1477 		if (__test_and_clear_bit(idx, base->pending_map)) {
1478 			vec = base->vectors + idx;
1479 			hlist_move_list(vec, heads++);
1480 			levels++;
1481 		}
1482 		/* Is it time to look at the next level? */
1483 		if (clk & LVL_CLK_MASK)
1484 			break;
1485 		/* Shift clock for the next level granularity */
1486 		clk >>= LVL_CLK_SHIFT;
1487 	}
1488 	return levels;
1489 }
1490 
1491 /*
1492  * Find the next pending bucket of a level. Search from level start (@offset)
1493  * + @clk upwards and if nothing there, search from start of the level
1494  * (@offset) up to @offset + clk.
1495  */
1496 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1497 			       unsigned clk)
1498 {
1499 	unsigned pos, start = offset + clk;
1500 	unsigned end = offset + LVL_SIZE;
1501 
1502 	pos = find_next_bit(base->pending_map, end, start);
1503 	if (pos < end)
1504 		return pos - start;
1505 
1506 	pos = find_next_bit(base->pending_map, start, offset);
1507 	return pos < start ? pos + LVL_SIZE - start : -1;
1508 }
1509 
1510 /*
1511  * Search the first expiring timer in the various clock levels. Caller must
1512  * hold base->lock.
1513  */
1514 static unsigned long __next_timer_interrupt(struct timer_base *base)
1515 {
1516 	unsigned long clk, next, adj;
1517 	unsigned lvl, offset = 0;
1518 
1519 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1520 	clk = base->clk;
1521 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1522 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1523 		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1524 
1525 		if (pos >= 0) {
1526 			unsigned long tmp = clk + (unsigned long) pos;
1527 
1528 			tmp <<= LVL_SHIFT(lvl);
1529 			if (time_before(tmp, next))
1530 				next = tmp;
1531 
1532 			/*
1533 			 * If the next expiration happens before we reach
1534 			 * the next level, no need to check further.
1535 			 */
1536 			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1537 				break;
1538 		}
1539 		/*
1540 		 * Clock for the next level. If the current level clock lower
1541 		 * bits are zero, we look at the next level as is. If not we
1542 		 * need to advance it by one because that's going to be the
1543 		 * next expiring bucket in that level. base->clk is the next
1544 		 * expiring jiffie. So in case of:
1545 		 *
1546 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1547 		 *  0    0    0    0    0    0
1548 		 *
1549 		 * we have to look at all levels @index 0. With
1550 		 *
1551 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1552 		 *  0    0    0    0    0    2
1553 		 *
1554 		 * LVL0 has the next expiring bucket @index 2. The upper
1555 		 * levels have the next expiring bucket @index 1.
1556 		 *
1557 		 * In case that the propagation wraps the next level the same
1558 		 * rules apply:
1559 		 *
1560 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1561 		 *  0    0    0    0    F    2
1562 		 *
1563 		 * So after looking at LVL0 we get:
1564 		 *
1565 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1566 		 *  0    0    0    1    0
1567 		 *
1568 		 * So no propagation from LVL1 to LVL2 because that happened
1569 		 * with the add already, but then we need to propagate further
1570 		 * from LVL2 to LVL3.
1571 		 *
1572 		 * So the simple check whether the lower bits of the current
1573 		 * level are 0 or not is sufficient for all cases.
1574 		 */
1575 		adj = lvl_clk ? 1 : 0;
1576 		clk >>= LVL_CLK_SHIFT;
1577 		clk += adj;
1578 	}
1579 
1580 	base->next_expiry_recalc = false;
1581 
1582 	return next;
1583 }
1584 
1585 #ifdef CONFIG_NO_HZ_COMMON
1586 /*
1587  * Check, if the next hrtimer event is before the next timer wheel
1588  * event:
1589  */
1590 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1591 {
1592 	u64 nextevt = hrtimer_get_next_event();
1593 
1594 	/*
1595 	 * If high resolution timers are enabled
1596 	 * hrtimer_get_next_event() returns KTIME_MAX.
1597 	 */
1598 	if (expires <= nextevt)
1599 		return expires;
1600 
1601 	/*
1602 	 * If the next timer is already expired, return the tick base
1603 	 * time so the tick is fired immediately.
1604 	 */
1605 	if (nextevt <= basem)
1606 		return basem;
1607 
1608 	/*
1609 	 * Round up to the next jiffie. High resolution timers are
1610 	 * off, so the hrtimers are expired in the tick and we need to
1611 	 * make sure that this tick really expires the timer to avoid
1612 	 * a ping pong of the nohz stop code.
1613 	 *
1614 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1615 	 */
1616 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1617 }
1618 
1619 /**
1620  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1621  * @basej:	base time jiffies
1622  * @basem:	base time clock monotonic
1623  *
1624  * Returns the tick aligned clock monotonic time of the next pending
1625  * timer or KTIME_MAX if no timer is pending.
1626  */
1627 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1628 {
1629 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1630 	u64 expires = KTIME_MAX;
1631 	unsigned long nextevt;
1632 	bool is_max_delta;
1633 
1634 	/*
1635 	 * Pretend that there is no timer pending if the cpu is offline.
1636 	 * Possible pending timers will be migrated later to an active cpu.
1637 	 */
1638 	if (cpu_is_offline(smp_processor_id()))
1639 		return expires;
1640 
1641 	raw_spin_lock(&base->lock);
1642 	if (base->next_expiry_recalc)
1643 		base->next_expiry = __next_timer_interrupt(base);
1644 	nextevt = base->next_expiry;
1645 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1646 
1647 	/*
1648 	 * We have a fresh next event. Check whether we can forward the
1649 	 * base. We can only do that when @basej is past base->clk
1650 	 * otherwise we might rewind base->clk.
1651 	 */
1652 	if (time_after(basej, base->clk)) {
1653 		if (time_after(nextevt, basej))
1654 			base->clk = basej;
1655 		else if (time_after(nextevt, base->clk))
1656 			base->clk = nextevt;
1657 	}
1658 
1659 	if (time_before_eq(nextevt, basej)) {
1660 		expires = basem;
1661 		base->is_idle = false;
1662 	} else {
1663 		if (!is_max_delta)
1664 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1665 		/*
1666 		 * If we expect to sleep more than a tick, mark the base idle.
1667 		 * Also the tick is stopped so any added timer must forward
1668 		 * the base clk itself to keep granularity small. This idle
1669 		 * logic is only maintained for the BASE_STD base, deferrable
1670 		 * timers may still see large granularity skew (by design).
1671 		 */
1672 		if ((expires - basem) > TICK_NSEC)
1673 			base->is_idle = true;
1674 	}
1675 	raw_spin_unlock(&base->lock);
1676 
1677 	return cmp_next_hrtimer_event(basem, expires);
1678 }
1679 
1680 /**
1681  * timer_clear_idle - Clear the idle state of the timer base
1682  *
1683  * Called with interrupts disabled
1684  */
1685 void timer_clear_idle(void)
1686 {
1687 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1688 
1689 	/*
1690 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1691 	 * a pointless IPI, but taking the lock would just make the window for
1692 	 * sending the IPI a few instructions smaller for the cost of taking
1693 	 * the lock in the exit from idle path.
1694 	 */
1695 	base->is_idle = false;
1696 }
1697 #endif
1698 
1699 /*
1700  * Called from the timer interrupt handler to charge one tick to the current
1701  * process.  user_tick is 1 if the tick is user time, 0 for system.
1702  */
1703 void update_process_times(int user_tick)
1704 {
1705 	struct task_struct *p = current;
1706 
1707 	/* Note: this timer irq context must be accounted for as well. */
1708 	account_process_tick(p, user_tick);
1709 	run_local_timers();
1710 	rcu_sched_clock_irq(user_tick);
1711 #ifdef CONFIG_IRQ_WORK
1712 	if (in_irq())
1713 		irq_work_tick();
1714 #endif
1715 	scheduler_tick();
1716 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1717 		run_posix_cpu_timers();
1718 
1719 	/* The current CPU might make use of net randoms without receiving IRQs
1720 	 * to renew them often enough. Let's update the net_rand_state from a
1721 	 * non-constant value that's not affine to the number of calls to make
1722 	 * sure it's updated when there's some activity (we don't care in idle).
1723 	 */
1724 	this_cpu_add(net_rand_state.s1, rol32(jiffies, 24) + user_tick);
1725 }
1726 
1727 /**
1728  * __run_timers - run all expired timers (if any) on this CPU.
1729  * @base: the timer vector to be processed.
1730  */
1731 static inline void __run_timers(struct timer_base *base)
1732 {
1733 	struct hlist_head heads[LVL_DEPTH];
1734 	int levels;
1735 
1736 	if (time_before(jiffies, base->next_expiry))
1737 		return;
1738 
1739 	timer_base_lock_expiry(base);
1740 	raw_spin_lock_irq(&base->lock);
1741 
1742 	while (time_after_eq(jiffies, base->clk) &&
1743 	       time_after_eq(jiffies, base->next_expiry)) {
1744 		levels = collect_expired_timers(base, heads);
1745 		/*
1746 		 * The only possible reason for not finding any expired
1747 		 * timer at this clk is that all matching timers have been
1748 		 * dequeued.
1749 		 */
1750 		WARN_ON_ONCE(!levels && !base->next_expiry_recalc);
1751 		base->clk++;
1752 		base->next_expiry = __next_timer_interrupt(base);
1753 
1754 		while (levels--)
1755 			expire_timers(base, heads + levels);
1756 	}
1757 	raw_spin_unlock_irq(&base->lock);
1758 	timer_base_unlock_expiry(base);
1759 }
1760 
1761 /*
1762  * This function runs timers and the timer-tq in bottom half context.
1763  */
1764 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1765 {
1766 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1767 
1768 	__run_timers(base);
1769 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1770 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1771 }
1772 
1773 /*
1774  * Called by the local, per-CPU timer interrupt on SMP.
1775  */
1776 void run_local_timers(void)
1777 {
1778 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1779 
1780 	hrtimer_run_queues();
1781 	/* Raise the softirq only if required. */
1782 	if (time_before(jiffies, base->next_expiry)) {
1783 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1784 			return;
1785 		/* CPU is awake, so check the deferrable base. */
1786 		base++;
1787 		if (time_before(jiffies, base->next_expiry))
1788 			return;
1789 	}
1790 	raise_softirq(TIMER_SOFTIRQ);
1791 }
1792 
1793 /*
1794  * Since schedule_timeout()'s timer is defined on the stack, it must store
1795  * the target task on the stack as well.
1796  */
1797 struct process_timer {
1798 	struct timer_list timer;
1799 	struct task_struct *task;
1800 };
1801 
1802 static void process_timeout(struct timer_list *t)
1803 {
1804 	struct process_timer *timeout = from_timer(timeout, t, timer);
1805 
1806 	wake_up_process(timeout->task);
1807 }
1808 
1809 /**
1810  * schedule_timeout - sleep until timeout
1811  * @timeout: timeout value in jiffies
1812  *
1813  * Make the current task sleep until @timeout jiffies have elapsed.
1814  * The function behavior depends on the current task state
1815  * (see also set_current_state() description):
1816  *
1817  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1818  * at all. That happens because sched_submit_work() does nothing for
1819  * tasks in %TASK_RUNNING state.
1820  *
1821  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1822  * pass before the routine returns unless the current task is explicitly
1823  * woken up, (e.g. by wake_up_process()).
1824  *
1825  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1826  * delivered to the current task or the current task is explicitly woken
1827  * up.
1828  *
1829  * The current task state is guaranteed to be %TASK_RUNNING when this
1830  * routine returns.
1831  *
1832  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1833  * the CPU away without a bound on the timeout. In this case the return
1834  * value will be %MAX_SCHEDULE_TIMEOUT.
1835  *
1836  * Returns 0 when the timer has expired otherwise the remaining time in
1837  * jiffies will be returned. In all cases the return value is guaranteed
1838  * to be non-negative.
1839  */
1840 signed long __sched schedule_timeout(signed long timeout)
1841 {
1842 	struct process_timer timer;
1843 	unsigned long expire;
1844 
1845 	switch (timeout)
1846 	{
1847 	case MAX_SCHEDULE_TIMEOUT:
1848 		/*
1849 		 * These two special cases are useful to be comfortable
1850 		 * in the caller. Nothing more. We could take
1851 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1852 		 * but I' d like to return a valid offset (>=0) to allow
1853 		 * the caller to do everything it want with the retval.
1854 		 */
1855 		schedule();
1856 		goto out;
1857 	default:
1858 		/*
1859 		 * Another bit of PARANOID. Note that the retval will be
1860 		 * 0 since no piece of kernel is supposed to do a check
1861 		 * for a negative retval of schedule_timeout() (since it
1862 		 * should never happens anyway). You just have the printk()
1863 		 * that will tell you if something is gone wrong and where.
1864 		 */
1865 		if (timeout < 0) {
1866 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1867 				"value %lx\n", timeout);
1868 			dump_stack();
1869 			current->state = TASK_RUNNING;
1870 			goto out;
1871 		}
1872 	}
1873 
1874 	expire = timeout + jiffies;
1875 
1876 	timer.task = current;
1877 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1878 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1879 	schedule();
1880 	del_singleshot_timer_sync(&timer.timer);
1881 
1882 	/* Remove the timer from the object tracker */
1883 	destroy_timer_on_stack(&timer.timer);
1884 
1885 	timeout = expire - jiffies;
1886 
1887  out:
1888 	return timeout < 0 ? 0 : timeout;
1889 }
1890 EXPORT_SYMBOL(schedule_timeout);
1891 
1892 /*
1893  * We can use __set_current_state() here because schedule_timeout() calls
1894  * schedule() unconditionally.
1895  */
1896 signed long __sched schedule_timeout_interruptible(signed long timeout)
1897 {
1898 	__set_current_state(TASK_INTERRUPTIBLE);
1899 	return schedule_timeout(timeout);
1900 }
1901 EXPORT_SYMBOL(schedule_timeout_interruptible);
1902 
1903 signed long __sched schedule_timeout_killable(signed long timeout)
1904 {
1905 	__set_current_state(TASK_KILLABLE);
1906 	return schedule_timeout(timeout);
1907 }
1908 EXPORT_SYMBOL(schedule_timeout_killable);
1909 
1910 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1911 {
1912 	__set_current_state(TASK_UNINTERRUPTIBLE);
1913 	return schedule_timeout(timeout);
1914 }
1915 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1916 
1917 /*
1918  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1919  * to load average.
1920  */
1921 signed long __sched schedule_timeout_idle(signed long timeout)
1922 {
1923 	__set_current_state(TASK_IDLE);
1924 	return schedule_timeout(timeout);
1925 }
1926 EXPORT_SYMBOL(schedule_timeout_idle);
1927 
1928 #ifdef CONFIG_HOTPLUG_CPU
1929 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1930 {
1931 	struct timer_list *timer;
1932 	int cpu = new_base->cpu;
1933 
1934 	while (!hlist_empty(head)) {
1935 		timer = hlist_entry(head->first, struct timer_list, entry);
1936 		detach_timer(timer, false);
1937 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1938 		internal_add_timer(new_base, timer);
1939 	}
1940 }
1941 
1942 int timers_prepare_cpu(unsigned int cpu)
1943 {
1944 	struct timer_base *base;
1945 	int b;
1946 
1947 	for (b = 0; b < NR_BASES; b++) {
1948 		base = per_cpu_ptr(&timer_bases[b], cpu);
1949 		base->clk = jiffies;
1950 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1951 		base->is_idle = false;
1952 	}
1953 	return 0;
1954 }
1955 
1956 int timers_dead_cpu(unsigned int cpu)
1957 {
1958 	struct timer_base *old_base;
1959 	struct timer_base *new_base;
1960 	int b, i;
1961 
1962 	BUG_ON(cpu_online(cpu));
1963 
1964 	for (b = 0; b < NR_BASES; b++) {
1965 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1966 		new_base = get_cpu_ptr(&timer_bases[b]);
1967 		/*
1968 		 * The caller is globally serialized and nobody else
1969 		 * takes two locks at once, deadlock is not possible.
1970 		 */
1971 		raw_spin_lock_irq(&new_base->lock);
1972 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1973 
1974 		/*
1975 		 * The current CPUs base clock might be stale. Update it
1976 		 * before moving the timers over.
1977 		 */
1978 		forward_timer_base(new_base);
1979 
1980 		BUG_ON(old_base->running_timer);
1981 
1982 		for (i = 0; i < WHEEL_SIZE; i++)
1983 			migrate_timer_list(new_base, old_base->vectors + i);
1984 
1985 		raw_spin_unlock(&old_base->lock);
1986 		raw_spin_unlock_irq(&new_base->lock);
1987 		put_cpu_ptr(&timer_bases);
1988 	}
1989 	return 0;
1990 }
1991 
1992 #endif /* CONFIG_HOTPLUG_CPU */
1993 
1994 static void __init init_timer_cpu(int cpu)
1995 {
1996 	struct timer_base *base;
1997 	int i;
1998 
1999 	for (i = 0; i < NR_BASES; i++) {
2000 		base = per_cpu_ptr(&timer_bases[i], cpu);
2001 		base->cpu = cpu;
2002 		raw_spin_lock_init(&base->lock);
2003 		base->clk = jiffies;
2004 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2005 		timer_base_init_expiry_lock(base);
2006 	}
2007 }
2008 
2009 static void __init init_timer_cpus(void)
2010 {
2011 	int cpu;
2012 
2013 	for_each_possible_cpu(cpu)
2014 		init_timer_cpu(cpu);
2015 }
2016 
2017 void __init init_timers(void)
2018 {
2019 	init_timer_cpus();
2020 	posix_cputimers_init_work();
2021 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2022 }
2023 
2024 /**
2025  * msleep - sleep safely even with waitqueue interruptions
2026  * @msecs: Time in milliseconds to sleep for
2027  */
2028 void msleep(unsigned int msecs)
2029 {
2030 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2031 
2032 	while (timeout)
2033 		timeout = schedule_timeout_uninterruptible(timeout);
2034 }
2035 
2036 EXPORT_SYMBOL(msleep);
2037 
2038 /**
2039  * msleep_interruptible - sleep waiting for signals
2040  * @msecs: Time in milliseconds to sleep for
2041  */
2042 unsigned long msleep_interruptible(unsigned int msecs)
2043 {
2044 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2045 
2046 	while (timeout && !signal_pending(current))
2047 		timeout = schedule_timeout_interruptible(timeout);
2048 	return jiffies_to_msecs(timeout);
2049 }
2050 
2051 EXPORT_SYMBOL(msleep_interruptible);
2052 
2053 /**
2054  * usleep_range - Sleep for an approximate time
2055  * @min: Minimum time in usecs to sleep
2056  * @max: Maximum time in usecs to sleep
2057  *
2058  * In non-atomic context where the exact wakeup time is flexible, use
2059  * usleep_range() instead of udelay().  The sleep improves responsiveness
2060  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2061  * power usage by allowing hrtimers to take advantage of an already-
2062  * scheduled interrupt instead of scheduling a new one just for this sleep.
2063  */
2064 void __sched usleep_range(unsigned long min, unsigned long max)
2065 {
2066 	ktime_t exp = ktime_add_us(ktime_get(), min);
2067 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2068 
2069 	for (;;) {
2070 		__set_current_state(TASK_UNINTERRUPTIBLE);
2071 		/* Do not return before the requested sleep time has elapsed */
2072 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2073 			break;
2074 	}
2075 }
2076 EXPORT_SYMBOL(usleep_range);
2077