xref: /openbmc/linux/kernel/time/timer.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/sched/nohz.h>
44 #include <linux/sched/debug.h>
45 #include <linux/slab.h>
46 #include <linux/compat.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53 
54 #include "tick-internal.h"
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58 
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60 
61 EXPORT_SYMBOL(jiffies_64);
62 
63 /*
64  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66  * level has a different granularity.
67  *
68  * The level granularity is:		LVL_CLK_DIV ^ lvl
69  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
70  *
71  * The array level of a newly armed timer depends on the relative expiry
72  * time. The farther the expiry time is away the higher the array level and
73  * therefor the granularity becomes.
74  *
75  * Contrary to the original timer wheel implementation, which aims for 'exact'
76  * expiry of the timers, this implementation removes the need for recascading
77  * the timers into the lower array levels. The previous 'classic' timer wheel
78  * implementation of the kernel already violated the 'exact' expiry by adding
79  * slack to the expiry time to provide batched expiration. The granularity
80  * levels provide implicit batching.
81  *
82  * This is an optimization of the original timer wheel implementation for the
83  * majority of the timer wheel use cases: timeouts. The vast majority of
84  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85  * the timeout expires it indicates that normal operation is disturbed, so it
86  * does not matter much whether the timeout comes with a slight delay.
87  *
88  * The only exception to this are networking timers with a small expiry
89  * time. They rely on the granularity. Those fit into the first wheel level,
90  * which has HZ granularity.
91  *
92  * We don't have cascading anymore. timers with a expiry time above the
93  * capacity of the last wheel level are force expired at the maximum timeout
94  * value of the last wheel level. From data sampling we know that the maximum
95  * value observed is 5 days (network connection tracking), so this should not
96  * be an issue.
97  *
98  * The currently chosen array constants values are a good compromise between
99  * array size and granularity.
100  *
101  * This results in the following granularity and range levels:
102  *
103  * HZ 1000 steps
104  * Level Offset  Granularity            Range
105  *  0      0         1 ms                0 ms -         63 ms
106  *  1     64         8 ms               64 ms -        511 ms
107  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
108  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
109  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
110  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
111  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
112  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
113  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
114  *
115  * HZ  300
116  * Level Offset  Granularity            Range
117  *  0	   0         3 ms                0 ms -        210 ms
118  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
119  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
120  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
121  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
122  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
123  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
124  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
125  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126  *
127  * HZ  250
128  * Level Offset  Granularity            Range
129  *  0	   0         4 ms                0 ms -        255 ms
130  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
131  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
132  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
133  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
134  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
135  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
136  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
137  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138  *
139  * HZ  100
140  * Level Offset  Granularity            Range
141  *  0	   0         10 ms               0 ms -        630 ms
142  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
143  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
144  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
145  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
146  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
147  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
148  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149  */
150 
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT	3
153 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
157 
158 /*
159  * The time start value for each level to select the bucket at enqueue
160  * time.
161  */
162 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163 
164 /* Size of each clock level */
165 #define LVL_BITS	6
166 #define LVL_SIZE	(1UL << LVL_BITS)
167 #define LVL_MASK	(LVL_SIZE - 1)
168 #define LVL_OFFS(n)	((n) * LVL_SIZE)
169 
170 /* Level depth */
171 #if HZ > 100
172 # define LVL_DEPTH	9
173 # else
174 # define LVL_DEPTH	8
175 #endif
176 
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180 
181 /*
182  * The resulting wheel size. If NOHZ is configured we allocate two
183  * wheels so we have a separate storage for the deferrable timers.
184  */
185 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
186 
187 #ifdef CONFIG_NO_HZ_COMMON
188 # define NR_BASES	2
189 # define BASE_STD	0
190 # define BASE_DEF	1
191 #else
192 # define NR_BASES	1
193 # define BASE_STD	0
194 # define BASE_DEF	0
195 #endif
196 
197 struct timer_base {
198 	raw_spinlock_t		lock;
199 	struct timer_list	*running_timer;
200 	unsigned long		clk;
201 	unsigned long		next_expiry;
202 	unsigned int		cpu;
203 	bool			is_idle;
204 	bool			must_forward_clk;
205 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
206 	struct hlist_head	vectors[WHEEL_SIZE];
207 } ____cacheline_aligned;
208 
209 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
210 
211 #ifdef CONFIG_NO_HZ_COMMON
212 
213 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
214 static DEFINE_MUTEX(timer_keys_mutex);
215 
216 static void timer_update_keys(struct work_struct *work);
217 static DECLARE_WORK(timer_update_work, timer_update_keys);
218 
219 #ifdef CONFIG_SMP
220 unsigned int sysctl_timer_migration = 1;
221 
222 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
223 
224 static void timers_update_migration(void)
225 {
226 	if (sysctl_timer_migration && tick_nohz_active)
227 		static_branch_enable(&timers_migration_enabled);
228 	else
229 		static_branch_disable(&timers_migration_enabled);
230 }
231 #else
232 static inline void timers_update_migration(void) { }
233 #endif /* !CONFIG_SMP */
234 
235 static void timer_update_keys(struct work_struct *work)
236 {
237 	mutex_lock(&timer_keys_mutex);
238 	timers_update_migration();
239 	static_branch_enable(&timers_nohz_active);
240 	mutex_unlock(&timer_keys_mutex);
241 }
242 
243 void timers_update_nohz(void)
244 {
245 	schedule_work(&timer_update_work);
246 }
247 
248 int timer_migration_handler(struct ctl_table *table, int write,
249 			    void __user *buffer, size_t *lenp,
250 			    loff_t *ppos)
251 {
252 	int ret;
253 
254 	mutex_lock(&timer_keys_mutex);
255 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
256 	if (!ret && write)
257 		timers_update_migration();
258 	mutex_unlock(&timer_keys_mutex);
259 	return ret;
260 }
261 
262 static inline bool is_timers_nohz_active(void)
263 {
264 	return static_branch_unlikely(&timers_nohz_active);
265 }
266 #else
267 static inline bool is_timers_nohz_active(void) { return false; }
268 #endif /* NO_HZ_COMMON */
269 
270 static unsigned long round_jiffies_common(unsigned long j, int cpu,
271 		bool force_up)
272 {
273 	int rem;
274 	unsigned long original = j;
275 
276 	/*
277 	 * We don't want all cpus firing their timers at once hitting the
278 	 * same lock or cachelines, so we skew each extra cpu with an extra
279 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
280 	 * already did this.
281 	 * The skew is done by adding 3*cpunr, then round, then subtract this
282 	 * extra offset again.
283 	 */
284 	j += cpu * 3;
285 
286 	rem = j % HZ;
287 
288 	/*
289 	 * If the target jiffie is just after a whole second (which can happen
290 	 * due to delays of the timer irq, long irq off times etc etc) then
291 	 * we should round down to the whole second, not up. Use 1/4th second
292 	 * as cutoff for this rounding as an extreme upper bound for this.
293 	 * But never round down if @force_up is set.
294 	 */
295 	if (rem < HZ/4 && !force_up) /* round down */
296 		j = j - rem;
297 	else /* round up */
298 		j = j - rem + HZ;
299 
300 	/* now that we have rounded, subtract the extra skew again */
301 	j -= cpu * 3;
302 
303 	/*
304 	 * Make sure j is still in the future. Otherwise return the
305 	 * unmodified value.
306 	 */
307 	return time_is_after_jiffies(j) ? j : original;
308 }
309 
310 /**
311  * __round_jiffies - function to round jiffies to a full second
312  * @j: the time in (absolute) jiffies that should be rounded
313  * @cpu: the processor number on which the timeout will happen
314  *
315  * __round_jiffies() rounds an absolute time in the future (in jiffies)
316  * up or down to (approximately) full seconds. This is useful for timers
317  * for which the exact time they fire does not matter too much, as long as
318  * they fire approximately every X seconds.
319  *
320  * By rounding these timers to whole seconds, all such timers will fire
321  * at the same time, rather than at various times spread out. The goal
322  * of this is to have the CPU wake up less, which saves power.
323  *
324  * The exact rounding is skewed for each processor to avoid all
325  * processors firing at the exact same time, which could lead
326  * to lock contention or spurious cache line bouncing.
327  *
328  * The return value is the rounded version of the @j parameter.
329  */
330 unsigned long __round_jiffies(unsigned long j, int cpu)
331 {
332 	return round_jiffies_common(j, cpu, false);
333 }
334 EXPORT_SYMBOL_GPL(__round_jiffies);
335 
336 /**
337  * __round_jiffies_relative - function to round jiffies to a full second
338  * @j: the time in (relative) jiffies that should be rounded
339  * @cpu: the processor number on which the timeout will happen
340  *
341  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
342  * up or down to (approximately) full seconds. This is useful for timers
343  * for which the exact time they fire does not matter too much, as long as
344  * they fire approximately every X seconds.
345  *
346  * By rounding these timers to whole seconds, all such timers will fire
347  * at the same time, rather than at various times spread out. The goal
348  * of this is to have the CPU wake up less, which saves power.
349  *
350  * The exact rounding is skewed for each processor to avoid all
351  * processors firing at the exact same time, which could lead
352  * to lock contention or spurious cache line bouncing.
353  *
354  * The return value is the rounded version of the @j parameter.
355  */
356 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
357 {
358 	unsigned long j0 = jiffies;
359 
360 	/* Use j0 because jiffies might change while we run */
361 	return round_jiffies_common(j + j0, cpu, false) - j0;
362 }
363 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
364 
365 /**
366  * round_jiffies - function to round jiffies to a full second
367  * @j: the time in (absolute) jiffies that should be rounded
368  *
369  * round_jiffies() rounds an absolute time in the future (in jiffies)
370  * up or down to (approximately) full seconds. This is useful for timers
371  * for which the exact time they fire does not matter too much, as long as
372  * they fire approximately every X seconds.
373  *
374  * By rounding these timers to whole seconds, all such timers will fire
375  * at the same time, rather than at various times spread out. The goal
376  * of this is to have the CPU wake up less, which saves power.
377  *
378  * The return value is the rounded version of the @j parameter.
379  */
380 unsigned long round_jiffies(unsigned long j)
381 {
382 	return round_jiffies_common(j, raw_smp_processor_id(), false);
383 }
384 EXPORT_SYMBOL_GPL(round_jiffies);
385 
386 /**
387  * round_jiffies_relative - function to round jiffies to a full second
388  * @j: the time in (relative) jiffies that should be rounded
389  *
390  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
391  * up or down to (approximately) full seconds. This is useful for timers
392  * for which the exact time they fire does not matter too much, as long as
393  * they fire approximately every X seconds.
394  *
395  * By rounding these timers to whole seconds, all such timers will fire
396  * at the same time, rather than at various times spread out. The goal
397  * of this is to have the CPU wake up less, which saves power.
398  *
399  * The return value is the rounded version of the @j parameter.
400  */
401 unsigned long round_jiffies_relative(unsigned long j)
402 {
403 	return __round_jiffies_relative(j, raw_smp_processor_id());
404 }
405 EXPORT_SYMBOL_GPL(round_jiffies_relative);
406 
407 /**
408  * __round_jiffies_up - function to round jiffies up to a full second
409  * @j: the time in (absolute) jiffies that should be rounded
410  * @cpu: the processor number on which the timeout will happen
411  *
412  * This is the same as __round_jiffies() except that it will never
413  * round down.  This is useful for timeouts for which the exact time
414  * of firing does not matter too much, as long as they don't fire too
415  * early.
416  */
417 unsigned long __round_jiffies_up(unsigned long j, int cpu)
418 {
419 	return round_jiffies_common(j, cpu, true);
420 }
421 EXPORT_SYMBOL_GPL(__round_jiffies_up);
422 
423 /**
424  * __round_jiffies_up_relative - function to round jiffies up to a full second
425  * @j: the time in (relative) jiffies that should be rounded
426  * @cpu: the processor number on which the timeout will happen
427  *
428  * This is the same as __round_jiffies_relative() except that it will never
429  * round down.  This is useful for timeouts for which the exact time
430  * of firing does not matter too much, as long as they don't fire too
431  * early.
432  */
433 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
434 {
435 	unsigned long j0 = jiffies;
436 
437 	/* Use j0 because jiffies might change while we run */
438 	return round_jiffies_common(j + j0, cpu, true) - j0;
439 }
440 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
441 
442 /**
443  * round_jiffies_up - function to round jiffies up to a full second
444  * @j: the time in (absolute) jiffies that should be rounded
445  *
446  * This is the same as round_jiffies() except that it will never
447  * round down.  This is useful for timeouts for which the exact time
448  * of firing does not matter too much, as long as they don't fire too
449  * early.
450  */
451 unsigned long round_jiffies_up(unsigned long j)
452 {
453 	return round_jiffies_common(j, raw_smp_processor_id(), true);
454 }
455 EXPORT_SYMBOL_GPL(round_jiffies_up);
456 
457 /**
458  * round_jiffies_up_relative - function to round jiffies up to a full second
459  * @j: the time in (relative) jiffies that should be rounded
460  *
461  * This is the same as round_jiffies_relative() except that it will never
462  * round down.  This is useful for timeouts for which the exact time
463  * of firing does not matter too much, as long as they don't fire too
464  * early.
465  */
466 unsigned long round_jiffies_up_relative(unsigned long j)
467 {
468 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
469 }
470 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
471 
472 
473 static inline unsigned int timer_get_idx(struct timer_list *timer)
474 {
475 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
476 }
477 
478 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
479 {
480 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
481 			idx << TIMER_ARRAYSHIFT;
482 }
483 
484 /*
485  * Helper function to calculate the array index for a given expiry
486  * time.
487  */
488 static inline unsigned calc_index(unsigned expires, unsigned lvl)
489 {
490 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
491 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
492 }
493 
494 static int calc_wheel_index(unsigned long expires, unsigned long clk)
495 {
496 	unsigned long delta = expires - clk;
497 	unsigned int idx;
498 
499 	if (delta < LVL_START(1)) {
500 		idx = calc_index(expires, 0);
501 	} else if (delta < LVL_START(2)) {
502 		idx = calc_index(expires, 1);
503 	} else if (delta < LVL_START(3)) {
504 		idx = calc_index(expires, 2);
505 	} else if (delta < LVL_START(4)) {
506 		idx = calc_index(expires, 3);
507 	} else if (delta < LVL_START(5)) {
508 		idx = calc_index(expires, 4);
509 	} else if (delta < LVL_START(6)) {
510 		idx = calc_index(expires, 5);
511 	} else if (delta < LVL_START(7)) {
512 		idx = calc_index(expires, 6);
513 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
514 		idx = calc_index(expires, 7);
515 	} else if ((long) delta < 0) {
516 		idx = clk & LVL_MASK;
517 	} else {
518 		/*
519 		 * Force expire obscene large timeouts to expire at the
520 		 * capacity limit of the wheel.
521 		 */
522 		if (expires >= WHEEL_TIMEOUT_CUTOFF)
523 			expires = WHEEL_TIMEOUT_MAX;
524 
525 		idx = calc_index(expires, LVL_DEPTH - 1);
526 	}
527 	return idx;
528 }
529 
530 /*
531  * Enqueue the timer into the hash bucket, mark it pending in
532  * the bitmap and store the index in the timer flags.
533  */
534 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
535 			  unsigned int idx)
536 {
537 	hlist_add_head(&timer->entry, base->vectors + idx);
538 	__set_bit(idx, base->pending_map);
539 	timer_set_idx(timer, idx);
540 }
541 
542 static void
543 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
544 {
545 	unsigned int idx;
546 
547 	idx = calc_wheel_index(timer->expires, base->clk);
548 	enqueue_timer(base, timer, idx);
549 }
550 
551 static void
552 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
553 {
554 	if (!is_timers_nohz_active())
555 		return;
556 
557 	/*
558 	 * TODO: This wants some optimizing similar to the code below, but we
559 	 * will do that when we switch from push to pull for deferrable timers.
560 	 */
561 	if (timer->flags & TIMER_DEFERRABLE) {
562 		if (tick_nohz_full_cpu(base->cpu))
563 			wake_up_nohz_cpu(base->cpu);
564 		return;
565 	}
566 
567 	/*
568 	 * We might have to IPI the remote CPU if the base is idle and the
569 	 * timer is not deferrable. If the other CPU is on the way to idle
570 	 * then it can't set base->is_idle as we hold the base lock:
571 	 */
572 	if (!base->is_idle)
573 		return;
574 
575 	/* Check whether this is the new first expiring timer: */
576 	if (time_after_eq(timer->expires, base->next_expiry))
577 		return;
578 
579 	/*
580 	 * Set the next expiry time and kick the CPU so it can reevaluate the
581 	 * wheel:
582 	 */
583 	base->next_expiry = timer->expires;
584 	wake_up_nohz_cpu(base->cpu);
585 }
586 
587 static void
588 internal_add_timer(struct timer_base *base, struct timer_list *timer)
589 {
590 	__internal_add_timer(base, timer);
591 	trigger_dyntick_cpu(base, timer);
592 }
593 
594 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
595 
596 static struct debug_obj_descr timer_debug_descr;
597 
598 static void *timer_debug_hint(void *addr)
599 {
600 	return ((struct timer_list *) addr)->function;
601 }
602 
603 static bool timer_is_static_object(void *addr)
604 {
605 	struct timer_list *timer = addr;
606 
607 	return (timer->entry.pprev == NULL &&
608 		timer->entry.next == TIMER_ENTRY_STATIC);
609 }
610 
611 /*
612  * fixup_init is called when:
613  * - an active object is initialized
614  */
615 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
616 {
617 	struct timer_list *timer = addr;
618 
619 	switch (state) {
620 	case ODEBUG_STATE_ACTIVE:
621 		del_timer_sync(timer);
622 		debug_object_init(timer, &timer_debug_descr);
623 		return true;
624 	default:
625 		return false;
626 	}
627 }
628 
629 /* Stub timer callback for improperly used timers. */
630 static void stub_timer(struct timer_list *unused)
631 {
632 	WARN_ON(1);
633 }
634 
635 /*
636  * fixup_activate is called when:
637  * - an active object is activated
638  * - an unknown non-static object is activated
639  */
640 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
641 {
642 	struct timer_list *timer = addr;
643 
644 	switch (state) {
645 	case ODEBUG_STATE_NOTAVAILABLE:
646 		timer_setup(timer, stub_timer, 0);
647 		return true;
648 
649 	case ODEBUG_STATE_ACTIVE:
650 		WARN_ON(1);
651 
652 	default:
653 		return false;
654 	}
655 }
656 
657 /*
658  * fixup_free is called when:
659  * - an active object is freed
660  */
661 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
662 {
663 	struct timer_list *timer = addr;
664 
665 	switch (state) {
666 	case ODEBUG_STATE_ACTIVE:
667 		del_timer_sync(timer);
668 		debug_object_free(timer, &timer_debug_descr);
669 		return true;
670 	default:
671 		return false;
672 	}
673 }
674 
675 /*
676  * fixup_assert_init is called when:
677  * - an untracked/uninit-ed object is found
678  */
679 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
680 {
681 	struct timer_list *timer = addr;
682 
683 	switch (state) {
684 	case ODEBUG_STATE_NOTAVAILABLE:
685 		timer_setup(timer, stub_timer, 0);
686 		return true;
687 	default:
688 		return false;
689 	}
690 }
691 
692 static struct debug_obj_descr timer_debug_descr = {
693 	.name			= "timer_list",
694 	.debug_hint		= timer_debug_hint,
695 	.is_static_object	= timer_is_static_object,
696 	.fixup_init		= timer_fixup_init,
697 	.fixup_activate		= timer_fixup_activate,
698 	.fixup_free		= timer_fixup_free,
699 	.fixup_assert_init	= timer_fixup_assert_init,
700 };
701 
702 static inline void debug_timer_init(struct timer_list *timer)
703 {
704 	debug_object_init(timer, &timer_debug_descr);
705 }
706 
707 static inline void debug_timer_activate(struct timer_list *timer)
708 {
709 	debug_object_activate(timer, &timer_debug_descr);
710 }
711 
712 static inline void debug_timer_deactivate(struct timer_list *timer)
713 {
714 	debug_object_deactivate(timer, &timer_debug_descr);
715 }
716 
717 static inline void debug_timer_free(struct timer_list *timer)
718 {
719 	debug_object_free(timer, &timer_debug_descr);
720 }
721 
722 static inline void debug_timer_assert_init(struct timer_list *timer)
723 {
724 	debug_object_assert_init(timer, &timer_debug_descr);
725 }
726 
727 static void do_init_timer(struct timer_list *timer,
728 			  void (*func)(struct timer_list *),
729 			  unsigned int flags,
730 			  const char *name, struct lock_class_key *key);
731 
732 void init_timer_on_stack_key(struct timer_list *timer,
733 			     void (*func)(struct timer_list *),
734 			     unsigned int flags,
735 			     const char *name, struct lock_class_key *key)
736 {
737 	debug_object_init_on_stack(timer, &timer_debug_descr);
738 	do_init_timer(timer, func, flags, name, key);
739 }
740 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
741 
742 void destroy_timer_on_stack(struct timer_list *timer)
743 {
744 	debug_object_free(timer, &timer_debug_descr);
745 }
746 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
747 
748 #else
749 static inline void debug_timer_init(struct timer_list *timer) { }
750 static inline void debug_timer_activate(struct timer_list *timer) { }
751 static inline void debug_timer_deactivate(struct timer_list *timer) { }
752 static inline void debug_timer_assert_init(struct timer_list *timer) { }
753 #endif
754 
755 static inline void debug_init(struct timer_list *timer)
756 {
757 	debug_timer_init(timer);
758 	trace_timer_init(timer);
759 }
760 
761 static inline void
762 debug_activate(struct timer_list *timer, unsigned long expires)
763 {
764 	debug_timer_activate(timer);
765 	trace_timer_start(timer, expires, timer->flags);
766 }
767 
768 static inline void debug_deactivate(struct timer_list *timer)
769 {
770 	debug_timer_deactivate(timer);
771 	trace_timer_cancel(timer);
772 }
773 
774 static inline void debug_assert_init(struct timer_list *timer)
775 {
776 	debug_timer_assert_init(timer);
777 }
778 
779 static void do_init_timer(struct timer_list *timer,
780 			  void (*func)(struct timer_list *),
781 			  unsigned int flags,
782 			  const char *name, struct lock_class_key *key)
783 {
784 	timer->entry.pprev = NULL;
785 	timer->function = func;
786 	timer->flags = flags | raw_smp_processor_id();
787 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
788 }
789 
790 /**
791  * init_timer_key - initialize a timer
792  * @timer: the timer to be initialized
793  * @func: timer callback function
794  * @flags: timer flags
795  * @name: name of the timer
796  * @key: lockdep class key of the fake lock used for tracking timer
797  *       sync lock dependencies
798  *
799  * init_timer_key() must be done to a timer prior calling *any* of the
800  * other timer functions.
801  */
802 void init_timer_key(struct timer_list *timer,
803 		    void (*func)(struct timer_list *), unsigned int flags,
804 		    const char *name, struct lock_class_key *key)
805 {
806 	debug_init(timer);
807 	do_init_timer(timer, func, flags, name, key);
808 }
809 EXPORT_SYMBOL(init_timer_key);
810 
811 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
812 {
813 	struct hlist_node *entry = &timer->entry;
814 
815 	debug_deactivate(timer);
816 
817 	__hlist_del(entry);
818 	if (clear_pending)
819 		entry->pprev = NULL;
820 	entry->next = LIST_POISON2;
821 }
822 
823 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
824 			     bool clear_pending)
825 {
826 	unsigned idx = timer_get_idx(timer);
827 
828 	if (!timer_pending(timer))
829 		return 0;
830 
831 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
832 		__clear_bit(idx, base->pending_map);
833 
834 	detach_timer(timer, clear_pending);
835 	return 1;
836 }
837 
838 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
839 {
840 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
841 
842 	/*
843 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
844 	 * to use the deferrable base.
845 	 */
846 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
847 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
848 	return base;
849 }
850 
851 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
852 {
853 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
854 
855 	/*
856 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
857 	 * to use the deferrable base.
858 	 */
859 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
860 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
861 	return base;
862 }
863 
864 static inline struct timer_base *get_timer_base(u32 tflags)
865 {
866 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
867 }
868 
869 static inline struct timer_base *
870 get_target_base(struct timer_base *base, unsigned tflags)
871 {
872 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
873 	if (static_branch_likely(&timers_migration_enabled) &&
874 	    !(tflags & TIMER_PINNED))
875 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
876 #endif
877 	return get_timer_this_cpu_base(tflags);
878 }
879 
880 static inline void forward_timer_base(struct timer_base *base)
881 {
882 #ifdef CONFIG_NO_HZ_COMMON
883 	unsigned long jnow;
884 
885 	/*
886 	 * We only forward the base when we are idle or have just come out of
887 	 * idle (must_forward_clk logic), and have a delta between base clock
888 	 * and jiffies. In the common case, run_timers will take care of it.
889 	 */
890 	if (likely(!base->must_forward_clk))
891 		return;
892 
893 	jnow = READ_ONCE(jiffies);
894 	base->must_forward_clk = base->is_idle;
895 	if ((long)(jnow - base->clk) < 2)
896 		return;
897 
898 	/*
899 	 * If the next expiry value is > jiffies, then we fast forward to
900 	 * jiffies otherwise we forward to the next expiry value.
901 	 */
902 	if (time_after(base->next_expiry, jnow))
903 		base->clk = jnow;
904 	else
905 		base->clk = base->next_expiry;
906 #endif
907 }
908 
909 
910 /*
911  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
912  * that all timers which are tied to this base are locked, and the base itself
913  * is locked too.
914  *
915  * So __run_timers/migrate_timers can safely modify all timers which could
916  * be found in the base->vectors array.
917  *
918  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
919  * to wait until the migration is done.
920  */
921 static struct timer_base *lock_timer_base(struct timer_list *timer,
922 					  unsigned long *flags)
923 	__acquires(timer->base->lock)
924 {
925 	for (;;) {
926 		struct timer_base *base;
927 		u32 tf;
928 
929 		/*
930 		 * We need to use READ_ONCE() here, otherwise the compiler
931 		 * might re-read @tf between the check for TIMER_MIGRATING
932 		 * and spin_lock().
933 		 */
934 		tf = READ_ONCE(timer->flags);
935 
936 		if (!(tf & TIMER_MIGRATING)) {
937 			base = get_timer_base(tf);
938 			raw_spin_lock_irqsave(&base->lock, *flags);
939 			if (timer->flags == tf)
940 				return base;
941 			raw_spin_unlock_irqrestore(&base->lock, *flags);
942 		}
943 		cpu_relax();
944 	}
945 }
946 
947 #define MOD_TIMER_PENDING_ONLY		0x01
948 #define MOD_TIMER_REDUCE		0x02
949 
950 static inline int
951 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
952 {
953 	struct timer_base *base, *new_base;
954 	unsigned int idx = UINT_MAX;
955 	unsigned long clk = 0, flags;
956 	int ret = 0;
957 
958 	BUG_ON(!timer->function);
959 
960 	/*
961 	 * This is a common optimization triggered by the networking code - if
962 	 * the timer is re-modified to have the same timeout or ends up in the
963 	 * same array bucket then just return:
964 	 */
965 	if (timer_pending(timer)) {
966 		/*
967 		 * The downside of this optimization is that it can result in
968 		 * larger granularity than you would get from adding a new
969 		 * timer with this expiry.
970 		 */
971 		long diff = timer->expires - expires;
972 
973 		if (!diff)
974 			return 1;
975 		if (options & MOD_TIMER_REDUCE && diff <= 0)
976 			return 1;
977 
978 		/*
979 		 * We lock timer base and calculate the bucket index right
980 		 * here. If the timer ends up in the same bucket, then we
981 		 * just update the expiry time and avoid the whole
982 		 * dequeue/enqueue dance.
983 		 */
984 		base = lock_timer_base(timer, &flags);
985 		forward_timer_base(base);
986 
987 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
988 		    time_before_eq(timer->expires, expires)) {
989 			ret = 1;
990 			goto out_unlock;
991 		}
992 
993 		clk = base->clk;
994 		idx = calc_wheel_index(expires, clk);
995 
996 		/*
997 		 * Retrieve and compare the array index of the pending
998 		 * timer. If it matches set the expiry to the new value so a
999 		 * subsequent call will exit in the expires check above.
1000 		 */
1001 		if (idx == timer_get_idx(timer)) {
1002 			if (!(options & MOD_TIMER_REDUCE))
1003 				timer->expires = expires;
1004 			else if (time_after(timer->expires, expires))
1005 				timer->expires = expires;
1006 			ret = 1;
1007 			goto out_unlock;
1008 		}
1009 	} else {
1010 		base = lock_timer_base(timer, &flags);
1011 		forward_timer_base(base);
1012 	}
1013 
1014 	ret = detach_if_pending(timer, base, false);
1015 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1016 		goto out_unlock;
1017 
1018 	new_base = get_target_base(base, timer->flags);
1019 
1020 	if (base != new_base) {
1021 		/*
1022 		 * We are trying to schedule the timer on the new base.
1023 		 * However we can't change timer's base while it is running,
1024 		 * otherwise del_timer_sync() can't detect that the timer's
1025 		 * handler yet has not finished. This also guarantees that the
1026 		 * timer is serialized wrt itself.
1027 		 */
1028 		if (likely(base->running_timer != timer)) {
1029 			/* See the comment in lock_timer_base() */
1030 			timer->flags |= TIMER_MIGRATING;
1031 
1032 			raw_spin_unlock(&base->lock);
1033 			base = new_base;
1034 			raw_spin_lock(&base->lock);
1035 			WRITE_ONCE(timer->flags,
1036 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1037 			forward_timer_base(base);
1038 		}
1039 	}
1040 
1041 	debug_activate(timer, expires);
1042 
1043 	timer->expires = expires;
1044 	/*
1045 	 * If 'idx' was calculated above and the base time did not advance
1046 	 * between calculating 'idx' and possibly switching the base, only
1047 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1048 	 * we need to (re)calculate the wheel index via
1049 	 * internal_add_timer().
1050 	 */
1051 	if (idx != UINT_MAX && clk == base->clk) {
1052 		enqueue_timer(base, timer, idx);
1053 		trigger_dyntick_cpu(base, timer);
1054 	} else {
1055 		internal_add_timer(base, timer);
1056 	}
1057 
1058 out_unlock:
1059 	raw_spin_unlock_irqrestore(&base->lock, flags);
1060 
1061 	return ret;
1062 }
1063 
1064 /**
1065  * mod_timer_pending - modify a pending timer's timeout
1066  * @timer: the pending timer to be modified
1067  * @expires: new timeout in jiffies
1068  *
1069  * mod_timer_pending() is the same for pending timers as mod_timer(),
1070  * but will not re-activate and modify already deleted timers.
1071  *
1072  * It is useful for unserialized use of timers.
1073  */
1074 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1075 {
1076 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1077 }
1078 EXPORT_SYMBOL(mod_timer_pending);
1079 
1080 /**
1081  * mod_timer - modify a timer's timeout
1082  * @timer: the timer to be modified
1083  * @expires: new timeout in jiffies
1084  *
1085  * mod_timer() is a more efficient way to update the expire field of an
1086  * active timer (if the timer is inactive it will be activated)
1087  *
1088  * mod_timer(timer, expires) is equivalent to:
1089  *
1090  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1091  *
1092  * Note that if there are multiple unserialized concurrent users of the
1093  * same timer, then mod_timer() is the only safe way to modify the timeout,
1094  * since add_timer() cannot modify an already running timer.
1095  *
1096  * The function returns whether it has modified a pending timer or not.
1097  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1098  * active timer returns 1.)
1099  */
1100 int mod_timer(struct timer_list *timer, unsigned long expires)
1101 {
1102 	return __mod_timer(timer, expires, 0);
1103 }
1104 EXPORT_SYMBOL(mod_timer);
1105 
1106 /**
1107  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1108  * @timer:	The timer to be modified
1109  * @expires:	New timeout in jiffies
1110  *
1111  * timer_reduce() is very similar to mod_timer(), except that it will only
1112  * modify a running timer if that would reduce the expiration time (it will
1113  * start a timer that isn't running).
1114  */
1115 int timer_reduce(struct timer_list *timer, unsigned long expires)
1116 {
1117 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1118 }
1119 EXPORT_SYMBOL(timer_reduce);
1120 
1121 /**
1122  * add_timer - start a timer
1123  * @timer: the timer to be added
1124  *
1125  * The kernel will do a ->function(@timer) callback from the
1126  * timer interrupt at the ->expires point in the future. The
1127  * current time is 'jiffies'.
1128  *
1129  * The timer's ->expires, ->function fields must be set prior calling this
1130  * function.
1131  *
1132  * Timers with an ->expires field in the past will be executed in the next
1133  * timer tick.
1134  */
1135 void add_timer(struct timer_list *timer)
1136 {
1137 	BUG_ON(timer_pending(timer));
1138 	mod_timer(timer, timer->expires);
1139 }
1140 EXPORT_SYMBOL(add_timer);
1141 
1142 /**
1143  * add_timer_on - start a timer on a particular CPU
1144  * @timer: the timer to be added
1145  * @cpu: the CPU to start it on
1146  *
1147  * This is not very scalable on SMP. Double adds are not possible.
1148  */
1149 void add_timer_on(struct timer_list *timer, int cpu)
1150 {
1151 	struct timer_base *new_base, *base;
1152 	unsigned long flags;
1153 
1154 	BUG_ON(timer_pending(timer) || !timer->function);
1155 
1156 	new_base = get_timer_cpu_base(timer->flags, cpu);
1157 
1158 	/*
1159 	 * If @timer was on a different CPU, it should be migrated with the
1160 	 * old base locked to prevent other operations proceeding with the
1161 	 * wrong base locked.  See lock_timer_base().
1162 	 */
1163 	base = lock_timer_base(timer, &flags);
1164 	if (base != new_base) {
1165 		timer->flags |= TIMER_MIGRATING;
1166 
1167 		raw_spin_unlock(&base->lock);
1168 		base = new_base;
1169 		raw_spin_lock(&base->lock);
1170 		WRITE_ONCE(timer->flags,
1171 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1172 	}
1173 	forward_timer_base(base);
1174 
1175 	debug_activate(timer, timer->expires);
1176 	internal_add_timer(base, timer);
1177 	raw_spin_unlock_irqrestore(&base->lock, flags);
1178 }
1179 EXPORT_SYMBOL_GPL(add_timer_on);
1180 
1181 /**
1182  * del_timer - deactivate a timer.
1183  * @timer: the timer to be deactivated
1184  *
1185  * del_timer() deactivates a timer - this works on both active and inactive
1186  * timers.
1187  *
1188  * The function returns whether it has deactivated a pending timer or not.
1189  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1190  * active timer returns 1.)
1191  */
1192 int del_timer(struct timer_list *timer)
1193 {
1194 	struct timer_base *base;
1195 	unsigned long flags;
1196 	int ret = 0;
1197 
1198 	debug_assert_init(timer);
1199 
1200 	if (timer_pending(timer)) {
1201 		base = lock_timer_base(timer, &flags);
1202 		ret = detach_if_pending(timer, base, true);
1203 		raw_spin_unlock_irqrestore(&base->lock, flags);
1204 	}
1205 
1206 	return ret;
1207 }
1208 EXPORT_SYMBOL(del_timer);
1209 
1210 /**
1211  * try_to_del_timer_sync - Try to deactivate a timer
1212  * @timer: timer to delete
1213  *
1214  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1215  * exit the timer is not queued and the handler is not running on any CPU.
1216  */
1217 int try_to_del_timer_sync(struct timer_list *timer)
1218 {
1219 	struct timer_base *base;
1220 	unsigned long flags;
1221 	int ret = -1;
1222 
1223 	debug_assert_init(timer);
1224 
1225 	base = lock_timer_base(timer, &flags);
1226 
1227 	if (base->running_timer != timer)
1228 		ret = detach_if_pending(timer, base, true);
1229 
1230 	raw_spin_unlock_irqrestore(&base->lock, flags);
1231 
1232 	return ret;
1233 }
1234 EXPORT_SYMBOL(try_to_del_timer_sync);
1235 
1236 #ifdef CONFIG_SMP
1237 /**
1238  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1239  * @timer: the timer to be deactivated
1240  *
1241  * This function only differs from del_timer() on SMP: besides deactivating
1242  * the timer it also makes sure the handler has finished executing on other
1243  * CPUs.
1244  *
1245  * Synchronization rules: Callers must prevent restarting of the timer,
1246  * otherwise this function is meaningless. It must not be called from
1247  * interrupt contexts unless the timer is an irqsafe one. The caller must
1248  * not hold locks which would prevent completion of the timer's
1249  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1250  * timer is not queued and the handler is not running on any CPU.
1251  *
1252  * Note: For !irqsafe timers, you must not hold locks that are held in
1253  *   interrupt context while calling this function. Even if the lock has
1254  *   nothing to do with the timer in question.  Here's why::
1255  *
1256  *    CPU0                             CPU1
1257  *    ----                             ----
1258  *                                     <SOFTIRQ>
1259  *                                       call_timer_fn();
1260  *                                       base->running_timer = mytimer;
1261  *    spin_lock_irq(somelock);
1262  *                                     <IRQ>
1263  *                                        spin_lock(somelock);
1264  *    del_timer_sync(mytimer);
1265  *    while (base->running_timer == mytimer);
1266  *
1267  * Now del_timer_sync() will never return and never release somelock.
1268  * The interrupt on the other CPU is waiting to grab somelock but
1269  * it has interrupted the softirq that CPU0 is waiting to finish.
1270  *
1271  * The function returns whether it has deactivated a pending timer or not.
1272  */
1273 int del_timer_sync(struct timer_list *timer)
1274 {
1275 #ifdef CONFIG_LOCKDEP
1276 	unsigned long flags;
1277 
1278 	/*
1279 	 * If lockdep gives a backtrace here, please reference
1280 	 * the synchronization rules above.
1281 	 */
1282 	local_irq_save(flags);
1283 	lock_map_acquire(&timer->lockdep_map);
1284 	lock_map_release(&timer->lockdep_map);
1285 	local_irq_restore(flags);
1286 #endif
1287 	/*
1288 	 * don't use it in hardirq context, because it
1289 	 * could lead to deadlock.
1290 	 */
1291 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1292 	for (;;) {
1293 		int ret = try_to_del_timer_sync(timer);
1294 		if (ret >= 0)
1295 			return ret;
1296 		cpu_relax();
1297 	}
1298 }
1299 EXPORT_SYMBOL(del_timer_sync);
1300 #endif
1301 
1302 static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *))
1303 {
1304 	int count = preempt_count();
1305 
1306 #ifdef CONFIG_LOCKDEP
1307 	/*
1308 	 * It is permissible to free the timer from inside the
1309 	 * function that is called from it, this we need to take into
1310 	 * account for lockdep too. To avoid bogus "held lock freed"
1311 	 * warnings as well as problems when looking into
1312 	 * timer->lockdep_map, make a copy and use that here.
1313 	 */
1314 	struct lockdep_map lockdep_map;
1315 
1316 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1317 #endif
1318 	/*
1319 	 * Couple the lock chain with the lock chain at
1320 	 * del_timer_sync() by acquiring the lock_map around the fn()
1321 	 * call here and in del_timer_sync().
1322 	 */
1323 	lock_map_acquire(&lockdep_map);
1324 
1325 	trace_timer_expire_entry(timer);
1326 	fn(timer);
1327 	trace_timer_expire_exit(timer);
1328 
1329 	lock_map_release(&lockdep_map);
1330 
1331 	if (count != preempt_count()) {
1332 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1333 			  fn, count, preempt_count());
1334 		/*
1335 		 * Restore the preempt count. That gives us a decent
1336 		 * chance to survive and extract information. If the
1337 		 * callback kept a lock held, bad luck, but not worse
1338 		 * than the BUG() we had.
1339 		 */
1340 		preempt_count_set(count);
1341 	}
1342 }
1343 
1344 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1345 {
1346 	while (!hlist_empty(head)) {
1347 		struct timer_list *timer;
1348 		void (*fn)(struct timer_list *);
1349 
1350 		timer = hlist_entry(head->first, struct timer_list, entry);
1351 
1352 		base->running_timer = timer;
1353 		detach_timer(timer, true);
1354 
1355 		fn = timer->function;
1356 
1357 		if (timer->flags & TIMER_IRQSAFE) {
1358 			raw_spin_unlock(&base->lock);
1359 			call_timer_fn(timer, fn);
1360 			raw_spin_lock(&base->lock);
1361 		} else {
1362 			raw_spin_unlock_irq(&base->lock);
1363 			call_timer_fn(timer, fn);
1364 			raw_spin_lock_irq(&base->lock);
1365 		}
1366 	}
1367 }
1368 
1369 static int __collect_expired_timers(struct timer_base *base,
1370 				    struct hlist_head *heads)
1371 {
1372 	unsigned long clk = base->clk;
1373 	struct hlist_head *vec;
1374 	int i, levels = 0;
1375 	unsigned int idx;
1376 
1377 	for (i = 0; i < LVL_DEPTH; i++) {
1378 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1379 
1380 		if (__test_and_clear_bit(idx, base->pending_map)) {
1381 			vec = base->vectors + idx;
1382 			hlist_move_list(vec, heads++);
1383 			levels++;
1384 		}
1385 		/* Is it time to look at the next level? */
1386 		if (clk & LVL_CLK_MASK)
1387 			break;
1388 		/* Shift clock for the next level granularity */
1389 		clk >>= LVL_CLK_SHIFT;
1390 	}
1391 	return levels;
1392 }
1393 
1394 #ifdef CONFIG_NO_HZ_COMMON
1395 /*
1396  * Find the next pending bucket of a level. Search from level start (@offset)
1397  * + @clk upwards and if nothing there, search from start of the level
1398  * (@offset) up to @offset + clk.
1399  */
1400 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1401 			       unsigned clk)
1402 {
1403 	unsigned pos, start = offset + clk;
1404 	unsigned end = offset + LVL_SIZE;
1405 
1406 	pos = find_next_bit(base->pending_map, end, start);
1407 	if (pos < end)
1408 		return pos - start;
1409 
1410 	pos = find_next_bit(base->pending_map, start, offset);
1411 	return pos < start ? pos + LVL_SIZE - start : -1;
1412 }
1413 
1414 /*
1415  * Search the first expiring timer in the various clock levels. Caller must
1416  * hold base->lock.
1417  */
1418 static unsigned long __next_timer_interrupt(struct timer_base *base)
1419 {
1420 	unsigned long clk, next, adj;
1421 	unsigned lvl, offset = 0;
1422 
1423 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1424 	clk = base->clk;
1425 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1426 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1427 
1428 		if (pos >= 0) {
1429 			unsigned long tmp = clk + (unsigned long) pos;
1430 
1431 			tmp <<= LVL_SHIFT(lvl);
1432 			if (time_before(tmp, next))
1433 				next = tmp;
1434 		}
1435 		/*
1436 		 * Clock for the next level. If the current level clock lower
1437 		 * bits are zero, we look at the next level as is. If not we
1438 		 * need to advance it by one because that's going to be the
1439 		 * next expiring bucket in that level. base->clk is the next
1440 		 * expiring jiffie. So in case of:
1441 		 *
1442 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1443 		 *  0    0    0    0    0    0
1444 		 *
1445 		 * we have to look at all levels @index 0. With
1446 		 *
1447 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1448 		 *  0    0    0    0    0    2
1449 		 *
1450 		 * LVL0 has the next expiring bucket @index 2. The upper
1451 		 * levels have the next expiring bucket @index 1.
1452 		 *
1453 		 * In case that the propagation wraps the next level the same
1454 		 * rules apply:
1455 		 *
1456 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1457 		 *  0    0    0    0    F    2
1458 		 *
1459 		 * So after looking at LVL0 we get:
1460 		 *
1461 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1462 		 *  0    0    0    1    0
1463 		 *
1464 		 * So no propagation from LVL1 to LVL2 because that happened
1465 		 * with the add already, but then we need to propagate further
1466 		 * from LVL2 to LVL3.
1467 		 *
1468 		 * So the simple check whether the lower bits of the current
1469 		 * level are 0 or not is sufficient for all cases.
1470 		 */
1471 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1472 		clk >>= LVL_CLK_SHIFT;
1473 		clk += adj;
1474 	}
1475 	return next;
1476 }
1477 
1478 /*
1479  * Check, if the next hrtimer event is before the next timer wheel
1480  * event:
1481  */
1482 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1483 {
1484 	u64 nextevt = hrtimer_get_next_event();
1485 
1486 	/*
1487 	 * If high resolution timers are enabled
1488 	 * hrtimer_get_next_event() returns KTIME_MAX.
1489 	 */
1490 	if (expires <= nextevt)
1491 		return expires;
1492 
1493 	/*
1494 	 * If the next timer is already expired, return the tick base
1495 	 * time so the tick is fired immediately.
1496 	 */
1497 	if (nextevt <= basem)
1498 		return basem;
1499 
1500 	/*
1501 	 * Round up to the next jiffie. High resolution timers are
1502 	 * off, so the hrtimers are expired in the tick and we need to
1503 	 * make sure that this tick really expires the timer to avoid
1504 	 * a ping pong of the nohz stop code.
1505 	 *
1506 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1507 	 */
1508 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1509 }
1510 
1511 /**
1512  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1513  * @basej:	base time jiffies
1514  * @basem:	base time clock monotonic
1515  *
1516  * Returns the tick aligned clock monotonic time of the next pending
1517  * timer or KTIME_MAX if no timer is pending.
1518  */
1519 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1520 {
1521 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1522 	u64 expires = KTIME_MAX;
1523 	unsigned long nextevt;
1524 	bool is_max_delta;
1525 
1526 	/*
1527 	 * Pretend that there is no timer pending if the cpu is offline.
1528 	 * Possible pending timers will be migrated later to an active cpu.
1529 	 */
1530 	if (cpu_is_offline(smp_processor_id()))
1531 		return expires;
1532 
1533 	raw_spin_lock(&base->lock);
1534 	nextevt = __next_timer_interrupt(base);
1535 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1536 	base->next_expiry = nextevt;
1537 	/*
1538 	 * We have a fresh next event. Check whether we can forward the
1539 	 * base. We can only do that when @basej is past base->clk
1540 	 * otherwise we might rewind base->clk.
1541 	 */
1542 	if (time_after(basej, base->clk)) {
1543 		if (time_after(nextevt, basej))
1544 			base->clk = basej;
1545 		else if (time_after(nextevt, base->clk))
1546 			base->clk = nextevt;
1547 	}
1548 
1549 	if (time_before_eq(nextevt, basej)) {
1550 		expires = basem;
1551 		base->is_idle = false;
1552 	} else {
1553 		if (!is_max_delta)
1554 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1555 		/*
1556 		 * If we expect to sleep more than a tick, mark the base idle.
1557 		 * Also the tick is stopped so any added timer must forward
1558 		 * the base clk itself to keep granularity small. This idle
1559 		 * logic is only maintained for the BASE_STD base, deferrable
1560 		 * timers may still see large granularity skew (by design).
1561 		 */
1562 		if ((expires - basem) > TICK_NSEC) {
1563 			base->must_forward_clk = true;
1564 			base->is_idle = true;
1565 		}
1566 	}
1567 	raw_spin_unlock(&base->lock);
1568 
1569 	return cmp_next_hrtimer_event(basem, expires);
1570 }
1571 
1572 /**
1573  * timer_clear_idle - Clear the idle state of the timer base
1574  *
1575  * Called with interrupts disabled
1576  */
1577 void timer_clear_idle(void)
1578 {
1579 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1580 
1581 	/*
1582 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1583 	 * a pointless IPI, but taking the lock would just make the window for
1584 	 * sending the IPI a few instructions smaller for the cost of taking
1585 	 * the lock in the exit from idle path.
1586 	 */
1587 	base->is_idle = false;
1588 }
1589 
1590 static int collect_expired_timers(struct timer_base *base,
1591 				  struct hlist_head *heads)
1592 {
1593 	/*
1594 	 * NOHZ optimization. After a long idle sleep we need to forward the
1595 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1596 	 * the next expiring timer.
1597 	 */
1598 	if ((long)(jiffies - base->clk) > 2) {
1599 		unsigned long next = __next_timer_interrupt(base);
1600 
1601 		/*
1602 		 * If the next timer is ahead of time forward to current
1603 		 * jiffies, otherwise forward to the next expiry time:
1604 		 */
1605 		if (time_after(next, jiffies)) {
1606 			/*
1607 			 * The call site will increment base->clk and then
1608 			 * terminate the expiry loop immediately.
1609 			 */
1610 			base->clk = jiffies;
1611 			return 0;
1612 		}
1613 		base->clk = next;
1614 	}
1615 	return __collect_expired_timers(base, heads);
1616 }
1617 #else
1618 static inline int collect_expired_timers(struct timer_base *base,
1619 					 struct hlist_head *heads)
1620 {
1621 	return __collect_expired_timers(base, heads);
1622 }
1623 #endif
1624 
1625 /*
1626  * Called from the timer interrupt handler to charge one tick to the current
1627  * process.  user_tick is 1 if the tick is user time, 0 for system.
1628  */
1629 void update_process_times(int user_tick)
1630 {
1631 	struct task_struct *p = current;
1632 
1633 	/* Note: this timer irq context must be accounted for as well. */
1634 	account_process_tick(p, user_tick);
1635 	run_local_timers();
1636 	rcu_check_callbacks(user_tick);
1637 #ifdef CONFIG_IRQ_WORK
1638 	if (in_irq())
1639 		irq_work_tick();
1640 #endif
1641 	scheduler_tick();
1642 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1643 		run_posix_cpu_timers(p);
1644 }
1645 
1646 /**
1647  * __run_timers - run all expired timers (if any) on this CPU.
1648  * @base: the timer vector to be processed.
1649  */
1650 static inline void __run_timers(struct timer_base *base)
1651 {
1652 	struct hlist_head heads[LVL_DEPTH];
1653 	int levels;
1654 
1655 	if (!time_after_eq(jiffies, base->clk))
1656 		return;
1657 
1658 	raw_spin_lock_irq(&base->lock);
1659 
1660 	/*
1661 	 * timer_base::must_forward_clk must be cleared before running
1662 	 * timers so that any timer functions that call mod_timer() will
1663 	 * not try to forward the base. Idle tracking / clock forwarding
1664 	 * logic is only used with BASE_STD timers.
1665 	 *
1666 	 * The must_forward_clk flag is cleared unconditionally also for
1667 	 * the deferrable base. The deferrable base is not affected by idle
1668 	 * tracking and never forwarded, so clearing the flag is a NOOP.
1669 	 *
1670 	 * The fact that the deferrable base is never forwarded can cause
1671 	 * large variations in granularity for deferrable timers, but they
1672 	 * can be deferred for long periods due to idle anyway.
1673 	 */
1674 	base->must_forward_clk = false;
1675 
1676 	while (time_after_eq(jiffies, base->clk)) {
1677 
1678 		levels = collect_expired_timers(base, heads);
1679 		base->clk++;
1680 
1681 		while (levels--)
1682 			expire_timers(base, heads + levels);
1683 	}
1684 	base->running_timer = NULL;
1685 	raw_spin_unlock_irq(&base->lock);
1686 }
1687 
1688 /*
1689  * This function runs timers and the timer-tq in bottom half context.
1690  */
1691 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1692 {
1693 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1694 
1695 	__run_timers(base);
1696 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1697 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1698 }
1699 
1700 /*
1701  * Called by the local, per-CPU timer interrupt on SMP.
1702  */
1703 void run_local_timers(void)
1704 {
1705 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1706 
1707 	hrtimer_run_queues();
1708 	/* Raise the softirq only if required. */
1709 	if (time_before(jiffies, base->clk)) {
1710 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1711 			return;
1712 		/* CPU is awake, so check the deferrable base. */
1713 		base++;
1714 		if (time_before(jiffies, base->clk))
1715 			return;
1716 	}
1717 	raise_softirq(TIMER_SOFTIRQ);
1718 }
1719 
1720 /*
1721  * Since schedule_timeout()'s timer is defined on the stack, it must store
1722  * the target task on the stack as well.
1723  */
1724 struct process_timer {
1725 	struct timer_list timer;
1726 	struct task_struct *task;
1727 };
1728 
1729 static void process_timeout(struct timer_list *t)
1730 {
1731 	struct process_timer *timeout = from_timer(timeout, t, timer);
1732 
1733 	wake_up_process(timeout->task);
1734 }
1735 
1736 /**
1737  * schedule_timeout - sleep until timeout
1738  * @timeout: timeout value in jiffies
1739  *
1740  * Make the current task sleep until @timeout jiffies have
1741  * elapsed. The routine will return immediately unless
1742  * the current task state has been set (see set_current_state()).
1743  *
1744  * You can set the task state as follows -
1745  *
1746  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1747  * pass before the routine returns unless the current task is explicitly
1748  * woken up, (e.g. by wake_up_process())".
1749  *
1750  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1751  * delivered to the current task or the current task is explicitly woken
1752  * up.
1753  *
1754  * The current task state is guaranteed to be TASK_RUNNING when this
1755  * routine returns.
1756  *
1757  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1758  * the CPU away without a bound on the timeout. In this case the return
1759  * value will be %MAX_SCHEDULE_TIMEOUT.
1760  *
1761  * Returns 0 when the timer has expired otherwise the remaining time in
1762  * jiffies will be returned.  In all cases the return value is guaranteed
1763  * to be non-negative.
1764  */
1765 signed long __sched schedule_timeout(signed long timeout)
1766 {
1767 	struct process_timer timer;
1768 	unsigned long expire;
1769 
1770 	switch (timeout)
1771 	{
1772 	case MAX_SCHEDULE_TIMEOUT:
1773 		/*
1774 		 * These two special cases are useful to be comfortable
1775 		 * in the caller. Nothing more. We could take
1776 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1777 		 * but I' d like to return a valid offset (>=0) to allow
1778 		 * the caller to do everything it want with the retval.
1779 		 */
1780 		schedule();
1781 		goto out;
1782 	default:
1783 		/*
1784 		 * Another bit of PARANOID. Note that the retval will be
1785 		 * 0 since no piece of kernel is supposed to do a check
1786 		 * for a negative retval of schedule_timeout() (since it
1787 		 * should never happens anyway). You just have the printk()
1788 		 * that will tell you if something is gone wrong and where.
1789 		 */
1790 		if (timeout < 0) {
1791 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1792 				"value %lx\n", timeout);
1793 			dump_stack();
1794 			current->state = TASK_RUNNING;
1795 			goto out;
1796 		}
1797 	}
1798 
1799 	expire = timeout + jiffies;
1800 
1801 	timer.task = current;
1802 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1803 	__mod_timer(&timer.timer, expire, 0);
1804 	schedule();
1805 	del_singleshot_timer_sync(&timer.timer);
1806 
1807 	/* Remove the timer from the object tracker */
1808 	destroy_timer_on_stack(&timer.timer);
1809 
1810 	timeout = expire - jiffies;
1811 
1812  out:
1813 	return timeout < 0 ? 0 : timeout;
1814 }
1815 EXPORT_SYMBOL(schedule_timeout);
1816 
1817 /*
1818  * We can use __set_current_state() here because schedule_timeout() calls
1819  * schedule() unconditionally.
1820  */
1821 signed long __sched schedule_timeout_interruptible(signed long timeout)
1822 {
1823 	__set_current_state(TASK_INTERRUPTIBLE);
1824 	return schedule_timeout(timeout);
1825 }
1826 EXPORT_SYMBOL(schedule_timeout_interruptible);
1827 
1828 signed long __sched schedule_timeout_killable(signed long timeout)
1829 {
1830 	__set_current_state(TASK_KILLABLE);
1831 	return schedule_timeout(timeout);
1832 }
1833 EXPORT_SYMBOL(schedule_timeout_killable);
1834 
1835 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1836 {
1837 	__set_current_state(TASK_UNINTERRUPTIBLE);
1838 	return schedule_timeout(timeout);
1839 }
1840 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1841 
1842 /*
1843  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1844  * to load average.
1845  */
1846 signed long __sched schedule_timeout_idle(signed long timeout)
1847 {
1848 	__set_current_state(TASK_IDLE);
1849 	return schedule_timeout(timeout);
1850 }
1851 EXPORT_SYMBOL(schedule_timeout_idle);
1852 
1853 #ifdef CONFIG_HOTPLUG_CPU
1854 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1855 {
1856 	struct timer_list *timer;
1857 	int cpu = new_base->cpu;
1858 
1859 	while (!hlist_empty(head)) {
1860 		timer = hlist_entry(head->first, struct timer_list, entry);
1861 		detach_timer(timer, false);
1862 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1863 		internal_add_timer(new_base, timer);
1864 	}
1865 }
1866 
1867 int timers_prepare_cpu(unsigned int cpu)
1868 {
1869 	struct timer_base *base;
1870 	int b;
1871 
1872 	for (b = 0; b < NR_BASES; b++) {
1873 		base = per_cpu_ptr(&timer_bases[b], cpu);
1874 		base->clk = jiffies;
1875 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1876 		base->is_idle = false;
1877 		base->must_forward_clk = true;
1878 	}
1879 	return 0;
1880 }
1881 
1882 int timers_dead_cpu(unsigned int cpu)
1883 {
1884 	struct timer_base *old_base;
1885 	struct timer_base *new_base;
1886 	int b, i;
1887 
1888 	BUG_ON(cpu_online(cpu));
1889 
1890 	for (b = 0; b < NR_BASES; b++) {
1891 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1892 		new_base = get_cpu_ptr(&timer_bases[b]);
1893 		/*
1894 		 * The caller is globally serialized and nobody else
1895 		 * takes two locks at once, deadlock is not possible.
1896 		 */
1897 		raw_spin_lock_irq(&new_base->lock);
1898 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1899 
1900 		/*
1901 		 * The current CPUs base clock might be stale. Update it
1902 		 * before moving the timers over.
1903 		 */
1904 		forward_timer_base(new_base);
1905 
1906 		BUG_ON(old_base->running_timer);
1907 
1908 		for (i = 0; i < WHEEL_SIZE; i++)
1909 			migrate_timer_list(new_base, old_base->vectors + i);
1910 
1911 		raw_spin_unlock(&old_base->lock);
1912 		raw_spin_unlock_irq(&new_base->lock);
1913 		put_cpu_ptr(&timer_bases);
1914 	}
1915 	return 0;
1916 }
1917 
1918 #endif /* CONFIG_HOTPLUG_CPU */
1919 
1920 static void __init init_timer_cpu(int cpu)
1921 {
1922 	struct timer_base *base;
1923 	int i;
1924 
1925 	for (i = 0; i < NR_BASES; i++) {
1926 		base = per_cpu_ptr(&timer_bases[i], cpu);
1927 		base->cpu = cpu;
1928 		raw_spin_lock_init(&base->lock);
1929 		base->clk = jiffies;
1930 	}
1931 }
1932 
1933 static void __init init_timer_cpus(void)
1934 {
1935 	int cpu;
1936 
1937 	for_each_possible_cpu(cpu)
1938 		init_timer_cpu(cpu);
1939 }
1940 
1941 void __init init_timers(void)
1942 {
1943 	init_timer_cpus();
1944 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1945 }
1946 
1947 /**
1948  * msleep - sleep safely even with waitqueue interruptions
1949  * @msecs: Time in milliseconds to sleep for
1950  */
1951 void msleep(unsigned int msecs)
1952 {
1953 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1954 
1955 	while (timeout)
1956 		timeout = schedule_timeout_uninterruptible(timeout);
1957 }
1958 
1959 EXPORT_SYMBOL(msleep);
1960 
1961 /**
1962  * msleep_interruptible - sleep waiting for signals
1963  * @msecs: Time in milliseconds to sleep for
1964  */
1965 unsigned long msleep_interruptible(unsigned int msecs)
1966 {
1967 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1968 
1969 	while (timeout && !signal_pending(current))
1970 		timeout = schedule_timeout_interruptible(timeout);
1971 	return jiffies_to_msecs(timeout);
1972 }
1973 
1974 EXPORT_SYMBOL(msleep_interruptible);
1975 
1976 /**
1977  * usleep_range - Sleep for an approximate time
1978  * @min: Minimum time in usecs to sleep
1979  * @max: Maximum time in usecs to sleep
1980  *
1981  * In non-atomic context where the exact wakeup time is flexible, use
1982  * usleep_range() instead of udelay().  The sleep improves responsiveness
1983  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1984  * power usage by allowing hrtimers to take advantage of an already-
1985  * scheduled interrupt instead of scheduling a new one just for this sleep.
1986  */
1987 void __sched usleep_range(unsigned long min, unsigned long max)
1988 {
1989 	ktime_t exp = ktime_add_us(ktime_get(), min);
1990 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1991 
1992 	for (;;) {
1993 		__set_current_state(TASK_UNINTERRUPTIBLE);
1994 		/* Do not return before the requested sleep time has elapsed */
1995 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1996 			break;
1997 	}
1998 }
1999 EXPORT_SYMBOL(usleep_range);
2000