xref: /openbmc/linux/kernel/time/timer.c (revision 179dd8c0)
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51 
52 #include "tick-internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56 
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58 
59 EXPORT_SYMBOL(jiffies_64);
60 
61 /*
62  * per-CPU timer vector definitions:
63  */
64 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66 #define TVN_SIZE (1 << TVN_BITS)
67 #define TVR_SIZE (1 << TVR_BITS)
68 #define TVN_MASK (TVN_SIZE - 1)
69 #define TVR_MASK (TVR_SIZE - 1)
70 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
71 
72 struct tvec {
73 	struct hlist_head vec[TVN_SIZE];
74 };
75 
76 struct tvec_root {
77 	struct hlist_head vec[TVR_SIZE];
78 };
79 
80 struct tvec_base {
81 	spinlock_t lock;
82 	struct timer_list *running_timer;
83 	unsigned long timer_jiffies;
84 	unsigned long next_timer;
85 	unsigned long active_timers;
86 	unsigned long all_timers;
87 	int cpu;
88 	bool migration_enabled;
89 	bool nohz_active;
90 	struct tvec_root tv1;
91 	struct tvec tv2;
92 	struct tvec tv3;
93 	struct tvec tv4;
94 	struct tvec tv5;
95 } ____cacheline_aligned;
96 
97 
98 static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
99 
100 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
101 unsigned int sysctl_timer_migration = 1;
102 
103 void timers_update_migration(bool update_nohz)
104 {
105 	bool on = sysctl_timer_migration && tick_nohz_active;
106 	unsigned int cpu;
107 
108 	/* Avoid the loop, if nothing to update */
109 	if (this_cpu_read(tvec_bases.migration_enabled) == on)
110 		return;
111 
112 	for_each_possible_cpu(cpu) {
113 		per_cpu(tvec_bases.migration_enabled, cpu) = on;
114 		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
115 		if (!update_nohz)
116 			continue;
117 		per_cpu(tvec_bases.nohz_active, cpu) = true;
118 		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
119 	}
120 }
121 
122 int timer_migration_handler(struct ctl_table *table, int write,
123 			    void __user *buffer, size_t *lenp,
124 			    loff_t *ppos)
125 {
126 	static DEFINE_MUTEX(mutex);
127 	int ret;
128 
129 	mutex_lock(&mutex);
130 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
131 	if (!ret && write)
132 		timers_update_migration(false);
133 	mutex_unlock(&mutex);
134 	return ret;
135 }
136 
137 static inline struct tvec_base *get_target_base(struct tvec_base *base,
138 						int pinned)
139 {
140 	if (pinned || !base->migration_enabled)
141 		return this_cpu_ptr(&tvec_bases);
142 	return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
143 }
144 #else
145 static inline struct tvec_base *get_target_base(struct tvec_base *base,
146 						int pinned)
147 {
148 	return this_cpu_ptr(&tvec_bases);
149 }
150 #endif
151 
152 static unsigned long round_jiffies_common(unsigned long j, int cpu,
153 		bool force_up)
154 {
155 	int rem;
156 	unsigned long original = j;
157 
158 	/*
159 	 * We don't want all cpus firing their timers at once hitting the
160 	 * same lock or cachelines, so we skew each extra cpu with an extra
161 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
162 	 * already did this.
163 	 * The skew is done by adding 3*cpunr, then round, then subtract this
164 	 * extra offset again.
165 	 */
166 	j += cpu * 3;
167 
168 	rem = j % HZ;
169 
170 	/*
171 	 * If the target jiffie is just after a whole second (which can happen
172 	 * due to delays of the timer irq, long irq off times etc etc) then
173 	 * we should round down to the whole second, not up. Use 1/4th second
174 	 * as cutoff for this rounding as an extreme upper bound for this.
175 	 * But never round down if @force_up is set.
176 	 */
177 	if (rem < HZ/4 && !force_up) /* round down */
178 		j = j - rem;
179 	else /* round up */
180 		j = j - rem + HZ;
181 
182 	/* now that we have rounded, subtract the extra skew again */
183 	j -= cpu * 3;
184 
185 	/*
186 	 * Make sure j is still in the future. Otherwise return the
187 	 * unmodified value.
188 	 */
189 	return time_is_after_jiffies(j) ? j : original;
190 }
191 
192 /**
193  * __round_jiffies - function to round jiffies to a full second
194  * @j: the time in (absolute) jiffies that should be rounded
195  * @cpu: the processor number on which the timeout will happen
196  *
197  * __round_jiffies() rounds an absolute time in the future (in jiffies)
198  * up or down to (approximately) full seconds. This is useful for timers
199  * for which the exact time they fire does not matter too much, as long as
200  * they fire approximately every X seconds.
201  *
202  * By rounding these timers to whole seconds, all such timers will fire
203  * at the same time, rather than at various times spread out. The goal
204  * of this is to have the CPU wake up less, which saves power.
205  *
206  * The exact rounding is skewed for each processor to avoid all
207  * processors firing at the exact same time, which could lead
208  * to lock contention or spurious cache line bouncing.
209  *
210  * The return value is the rounded version of the @j parameter.
211  */
212 unsigned long __round_jiffies(unsigned long j, int cpu)
213 {
214 	return round_jiffies_common(j, cpu, false);
215 }
216 EXPORT_SYMBOL_GPL(__round_jiffies);
217 
218 /**
219  * __round_jiffies_relative - function to round jiffies to a full second
220  * @j: the time in (relative) jiffies that should be rounded
221  * @cpu: the processor number on which the timeout will happen
222  *
223  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
224  * up or down to (approximately) full seconds. This is useful for timers
225  * for which the exact time they fire does not matter too much, as long as
226  * they fire approximately every X seconds.
227  *
228  * By rounding these timers to whole seconds, all such timers will fire
229  * at the same time, rather than at various times spread out. The goal
230  * of this is to have the CPU wake up less, which saves power.
231  *
232  * The exact rounding is skewed for each processor to avoid all
233  * processors firing at the exact same time, which could lead
234  * to lock contention or spurious cache line bouncing.
235  *
236  * The return value is the rounded version of the @j parameter.
237  */
238 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
239 {
240 	unsigned long j0 = jiffies;
241 
242 	/* Use j0 because jiffies might change while we run */
243 	return round_jiffies_common(j + j0, cpu, false) - j0;
244 }
245 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
246 
247 /**
248  * round_jiffies - function to round jiffies to a full second
249  * @j: the time in (absolute) jiffies that should be rounded
250  *
251  * round_jiffies() rounds an absolute time in the future (in jiffies)
252  * up or down to (approximately) full seconds. This is useful for timers
253  * for which the exact time they fire does not matter too much, as long as
254  * they fire approximately every X seconds.
255  *
256  * By rounding these timers to whole seconds, all such timers will fire
257  * at the same time, rather than at various times spread out. The goal
258  * of this is to have the CPU wake up less, which saves power.
259  *
260  * The return value is the rounded version of the @j parameter.
261  */
262 unsigned long round_jiffies(unsigned long j)
263 {
264 	return round_jiffies_common(j, raw_smp_processor_id(), false);
265 }
266 EXPORT_SYMBOL_GPL(round_jiffies);
267 
268 /**
269  * round_jiffies_relative - function to round jiffies to a full second
270  * @j: the time in (relative) jiffies that should be rounded
271  *
272  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
273  * up or down to (approximately) full seconds. This is useful for timers
274  * for which the exact time they fire does not matter too much, as long as
275  * they fire approximately every X seconds.
276  *
277  * By rounding these timers to whole seconds, all such timers will fire
278  * at the same time, rather than at various times spread out. The goal
279  * of this is to have the CPU wake up less, which saves power.
280  *
281  * The return value is the rounded version of the @j parameter.
282  */
283 unsigned long round_jiffies_relative(unsigned long j)
284 {
285 	return __round_jiffies_relative(j, raw_smp_processor_id());
286 }
287 EXPORT_SYMBOL_GPL(round_jiffies_relative);
288 
289 /**
290  * __round_jiffies_up - function to round jiffies up to a full second
291  * @j: the time in (absolute) jiffies that should be rounded
292  * @cpu: the processor number on which the timeout will happen
293  *
294  * This is the same as __round_jiffies() except that it will never
295  * round down.  This is useful for timeouts for which the exact time
296  * of firing does not matter too much, as long as they don't fire too
297  * early.
298  */
299 unsigned long __round_jiffies_up(unsigned long j, int cpu)
300 {
301 	return round_jiffies_common(j, cpu, true);
302 }
303 EXPORT_SYMBOL_GPL(__round_jiffies_up);
304 
305 /**
306  * __round_jiffies_up_relative - function to round jiffies up to a full second
307  * @j: the time in (relative) jiffies that should be rounded
308  * @cpu: the processor number on which the timeout will happen
309  *
310  * This is the same as __round_jiffies_relative() except that it will never
311  * round down.  This is useful for timeouts for which the exact time
312  * of firing does not matter too much, as long as they don't fire too
313  * early.
314  */
315 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
316 {
317 	unsigned long j0 = jiffies;
318 
319 	/* Use j0 because jiffies might change while we run */
320 	return round_jiffies_common(j + j0, cpu, true) - j0;
321 }
322 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
323 
324 /**
325  * round_jiffies_up - function to round jiffies up to a full second
326  * @j: the time in (absolute) jiffies that should be rounded
327  *
328  * This is the same as round_jiffies() except that it will never
329  * round down.  This is useful for timeouts for which the exact time
330  * of firing does not matter too much, as long as they don't fire too
331  * early.
332  */
333 unsigned long round_jiffies_up(unsigned long j)
334 {
335 	return round_jiffies_common(j, raw_smp_processor_id(), true);
336 }
337 EXPORT_SYMBOL_GPL(round_jiffies_up);
338 
339 /**
340  * round_jiffies_up_relative - function to round jiffies up to a full second
341  * @j: the time in (relative) jiffies that should be rounded
342  *
343  * This is the same as round_jiffies_relative() except that it will never
344  * round down.  This is useful for timeouts for which the exact time
345  * of firing does not matter too much, as long as they don't fire too
346  * early.
347  */
348 unsigned long round_jiffies_up_relative(unsigned long j)
349 {
350 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
351 }
352 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
353 
354 /**
355  * set_timer_slack - set the allowed slack for a timer
356  * @timer: the timer to be modified
357  * @slack_hz: the amount of time (in jiffies) allowed for rounding
358  *
359  * Set the amount of time, in jiffies, that a certain timer has
360  * in terms of slack. By setting this value, the timer subsystem
361  * will schedule the actual timer somewhere between
362  * the time mod_timer() asks for, and that time plus the slack.
363  *
364  * By setting the slack to -1, a percentage of the delay is used
365  * instead.
366  */
367 void set_timer_slack(struct timer_list *timer, int slack_hz)
368 {
369 	timer->slack = slack_hz;
370 }
371 EXPORT_SYMBOL_GPL(set_timer_slack);
372 
373 static void
374 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
375 {
376 	unsigned long expires = timer->expires;
377 	unsigned long idx = expires - base->timer_jiffies;
378 	struct hlist_head *vec;
379 
380 	if (idx < TVR_SIZE) {
381 		int i = expires & TVR_MASK;
382 		vec = base->tv1.vec + i;
383 	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
384 		int i = (expires >> TVR_BITS) & TVN_MASK;
385 		vec = base->tv2.vec + i;
386 	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
387 		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
388 		vec = base->tv3.vec + i;
389 	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
390 		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
391 		vec = base->tv4.vec + i;
392 	} else if ((signed long) idx < 0) {
393 		/*
394 		 * Can happen if you add a timer with expires == jiffies,
395 		 * or you set a timer to go off in the past
396 		 */
397 		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
398 	} else {
399 		int i;
400 		/* If the timeout is larger than MAX_TVAL (on 64-bit
401 		 * architectures or with CONFIG_BASE_SMALL=1) then we
402 		 * use the maximum timeout.
403 		 */
404 		if (idx > MAX_TVAL) {
405 			idx = MAX_TVAL;
406 			expires = idx + base->timer_jiffies;
407 		}
408 		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
409 		vec = base->tv5.vec + i;
410 	}
411 
412 	hlist_add_head(&timer->entry, vec);
413 }
414 
415 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
416 {
417 	/* Advance base->jiffies, if the base is empty */
418 	if (!base->all_timers++)
419 		base->timer_jiffies = jiffies;
420 
421 	__internal_add_timer(base, timer);
422 	/*
423 	 * Update base->active_timers and base->next_timer
424 	 */
425 	if (!(timer->flags & TIMER_DEFERRABLE)) {
426 		if (!base->active_timers++ ||
427 		    time_before(timer->expires, base->next_timer))
428 			base->next_timer = timer->expires;
429 	}
430 
431 	/*
432 	 * Check whether the other CPU is in dynticks mode and needs
433 	 * to be triggered to reevaluate the timer wheel.
434 	 * We are protected against the other CPU fiddling
435 	 * with the timer by holding the timer base lock. This also
436 	 * makes sure that a CPU on the way to stop its tick can not
437 	 * evaluate the timer wheel.
438 	 *
439 	 * Spare the IPI for deferrable timers on idle targets though.
440 	 * The next busy ticks will take care of it. Except full dynticks
441 	 * require special care against races with idle_cpu(), lets deal
442 	 * with that later.
443 	 */
444 	if (base->nohz_active) {
445 		if (!(timer->flags & TIMER_DEFERRABLE) ||
446 		    tick_nohz_full_cpu(base->cpu))
447 			wake_up_nohz_cpu(base->cpu);
448 	}
449 }
450 
451 #ifdef CONFIG_TIMER_STATS
452 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
453 {
454 	if (timer->start_site)
455 		return;
456 
457 	timer->start_site = addr;
458 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
459 	timer->start_pid = current->pid;
460 }
461 
462 static void timer_stats_account_timer(struct timer_list *timer)
463 {
464 	if (likely(!timer->start_site))
465 		return;
466 
467 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
468 				 timer->function, timer->start_comm,
469 				 timer->flags);
470 }
471 
472 #else
473 static void timer_stats_account_timer(struct timer_list *timer) {}
474 #endif
475 
476 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
477 
478 static struct debug_obj_descr timer_debug_descr;
479 
480 static void *timer_debug_hint(void *addr)
481 {
482 	return ((struct timer_list *) addr)->function;
483 }
484 
485 /*
486  * fixup_init is called when:
487  * - an active object is initialized
488  */
489 static int timer_fixup_init(void *addr, enum debug_obj_state state)
490 {
491 	struct timer_list *timer = addr;
492 
493 	switch (state) {
494 	case ODEBUG_STATE_ACTIVE:
495 		del_timer_sync(timer);
496 		debug_object_init(timer, &timer_debug_descr);
497 		return 1;
498 	default:
499 		return 0;
500 	}
501 }
502 
503 /* Stub timer callback for improperly used timers. */
504 static void stub_timer(unsigned long data)
505 {
506 	WARN_ON(1);
507 }
508 
509 /*
510  * fixup_activate is called when:
511  * - an active object is activated
512  * - an unknown object is activated (might be a statically initialized object)
513  */
514 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
515 {
516 	struct timer_list *timer = addr;
517 
518 	switch (state) {
519 
520 	case ODEBUG_STATE_NOTAVAILABLE:
521 		/*
522 		 * This is not really a fixup. The timer was
523 		 * statically initialized. We just make sure that it
524 		 * is tracked in the object tracker.
525 		 */
526 		if (timer->entry.pprev == NULL &&
527 		    timer->entry.next == TIMER_ENTRY_STATIC) {
528 			debug_object_init(timer, &timer_debug_descr);
529 			debug_object_activate(timer, &timer_debug_descr);
530 			return 0;
531 		} else {
532 			setup_timer(timer, stub_timer, 0);
533 			return 1;
534 		}
535 		return 0;
536 
537 	case ODEBUG_STATE_ACTIVE:
538 		WARN_ON(1);
539 
540 	default:
541 		return 0;
542 	}
543 }
544 
545 /*
546  * fixup_free is called when:
547  * - an active object is freed
548  */
549 static int timer_fixup_free(void *addr, enum debug_obj_state state)
550 {
551 	struct timer_list *timer = addr;
552 
553 	switch (state) {
554 	case ODEBUG_STATE_ACTIVE:
555 		del_timer_sync(timer);
556 		debug_object_free(timer, &timer_debug_descr);
557 		return 1;
558 	default:
559 		return 0;
560 	}
561 }
562 
563 /*
564  * fixup_assert_init is called when:
565  * - an untracked/uninit-ed object is found
566  */
567 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
568 {
569 	struct timer_list *timer = addr;
570 
571 	switch (state) {
572 	case ODEBUG_STATE_NOTAVAILABLE:
573 		if (timer->entry.next == TIMER_ENTRY_STATIC) {
574 			/*
575 			 * This is not really a fixup. The timer was
576 			 * statically initialized. We just make sure that it
577 			 * is tracked in the object tracker.
578 			 */
579 			debug_object_init(timer, &timer_debug_descr);
580 			return 0;
581 		} else {
582 			setup_timer(timer, stub_timer, 0);
583 			return 1;
584 		}
585 	default:
586 		return 0;
587 	}
588 }
589 
590 static struct debug_obj_descr timer_debug_descr = {
591 	.name			= "timer_list",
592 	.debug_hint		= timer_debug_hint,
593 	.fixup_init		= timer_fixup_init,
594 	.fixup_activate		= timer_fixup_activate,
595 	.fixup_free		= timer_fixup_free,
596 	.fixup_assert_init	= timer_fixup_assert_init,
597 };
598 
599 static inline void debug_timer_init(struct timer_list *timer)
600 {
601 	debug_object_init(timer, &timer_debug_descr);
602 }
603 
604 static inline void debug_timer_activate(struct timer_list *timer)
605 {
606 	debug_object_activate(timer, &timer_debug_descr);
607 }
608 
609 static inline void debug_timer_deactivate(struct timer_list *timer)
610 {
611 	debug_object_deactivate(timer, &timer_debug_descr);
612 }
613 
614 static inline void debug_timer_free(struct timer_list *timer)
615 {
616 	debug_object_free(timer, &timer_debug_descr);
617 }
618 
619 static inline void debug_timer_assert_init(struct timer_list *timer)
620 {
621 	debug_object_assert_init(timer, &timer_debug_descr);
622 }
623 
624 static void do_init_timer(struct timer_list *timer, unsigned int flags,
625 			  const char *name, struct lock_class_key *key);
626 
627 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
628 			     const char *name, struct lock_class_key *key)
629 {
630 	debug_object_init_on_stack(timer, &timer_debug_descr);
631 	do_init_timer(timer, flags, name, key);
632 }
633 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
634 
635 void destroy_timer_on_stack(struct timer_list *timer)
636 {
637 	debug_object_free(timer, &timer_debug_descr);
638 }
639 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
640 
641 #else
642 static inline void debug_timer_init(struct timer_list *timer) { }
643 static inline void debug_timer_activate(struct timer_list *timer) { }
644 static inline void debug_timer_deactivate(struct timer_list *timer) { }
645 static inline void debug_timer_assert_init(struct timer_list *timer) { }
646 #endif
647 
648 static inline void debug_init(struct timer_list *timer)
649 {
650 	debug_timer_init(timer);
651 	trace_timer_init(timer);
652 }
653 
654 static inline void
655 debug_activate(struct timer_list *timer, unsigned long expires)
656 {
657 	debug_timer_activate(timer);
658 	trace_timer_start(timer, expires, timer->flags);
659 }
660 
661 static inline void debug_deactivate(struct timer_list *timer)
662 {
663 	debug_timer_deactivate(timer);
664 	trace_timer_cancel(timer);
665 }
666 
667 static inline void debug_assert_init(struct timer_list *timer)
668 {
669 	debug_timer_assert_init(timer);
670 }
671 
672 static void do_init_timer(struct timer_list *timer, unsigned int flags,
673 			  const char *name, struct lock_class_key *key)
674 {
675 	timer->entry.pprev = NULL;
676 	timer->flags = flags | raw_smp_processor_id();
677 	timer->slack = -1;
678 #ifdef CONFIG_TIMER_STATS
679 	timer->start_site = NULL;
680 	timer->start_pid = -1;
681 	memset(timer->start_comm, 0, TASK_COMM_LEN);
682 #endif
683 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
684 }
685 
686 /**
687  * init_timer_key - initialize a timer
688  * @timer: the timer to be initialized
689  * @flags: timer flags
690  * @name: name of the timer
691  * @key: lockdep class key of the fake lock used for tracking timer
692  *       sync lock dependencies
693  *
694  * init_timer_key() must be done to a timer prior calling *any* of the
695  * other timer functions.
696  */
697 void init_timer_key(struct timer_list *timer, unsigned int flags,
698 		    const char *name, struct lock_class_key *key)
699 {
700 	debug_init(timer);
701 	do_init_timer(timer, flags, name, key);
702 }
703 EXPORT_SYMBOL(init_timer_key);
704 
705 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
706 {
707 	struct hlist_node *entry = &timer->entry;
708 
709 	debug_deactivate(timer);
710 
711 	__hlist_del(entry);
712 	if (clear_pending)
713 		entry->pprev = NULL;
714 	entry->next = LIST_POISON2;
715 }
716 
717 static inline void
718 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
719 {
720 	detach_timer(timer, true);
721 	if (!(timer->flags & TIMER_DEFERRABLE))
722 		base->active_timers--;
723 	base->all_timers--;
724 }
725 
726 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
727 			     bool clear_pending)
728 {
729 	if (!timer_pending(timer))
730 		return 0;
731 
732 	detach_timer(timer, clear_pending);
733 	if (!(timer->flags & TIMER_DEFERRABLE)) {
734 		base->active_timers--;
735 		if (timer->expires == base->next_timer)
736 			base->next_timer = base->timer_jiffies;
737 	}
738 	/* If this was the last timer, advance base->jiffies */
739 	if (!--base->all_timers)
740 		base->timer_jiffies = jiffies;
741 	return 1;
742 }
743 
744 /*
745  * We are using hashed locking: holding per_cpu(tvec_bases).lock
746  * means that all timers which are tied to this base via timer->base are
747  * locked, and the base itself is locked too.
748  *
749  * So __run_timers/migrate_timers can safely modify all timers which could
750  * be found on ->tvX lists.
751  *
752  * When the timer's base is locked and removed from the list, the
753  * TIMER_MIGRATING flag is set, FIXME
754  */
755 static struct tvec_base *lock_timer_base(struct timer_list *timer,
756 					unsigned long *flags)
757 	__acquires(timer->base->lock)
758 {
759 	for (;;) {
760 		u32 tf = timer->flags;
761 		struct tvec_base *base;
762 
763 		if (!(tf & TIMER_MIGRATING)) {
764 			base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
765 			spin_lock_irqsave(&base->lock, *flags);
766 			if (timer->flags == tf)
767 				return base;
768 			spin_unlock_irqrestore(&base->lock, *flags);
769 		}
770 		cpu_relax();
771 	}
772 }
773 
774 static inline int
775 __mod_timer(struct timer_list *timer, unsigned long expires,
776 	    bool pending_only, int pinned)
777 {
778 	struct tvec_base *base, *new_base;
779 	unsigned long flags;
780 	int ret = 0;
781 
782 	timer_stats_timer_set_start_info(timer);
783 	BUG_ON(!timer->function);
784 
785 	base = lock_timer_base(timer, &flags);
786 
787 	ret = detach_if_pending(timer, base, false);
788 	if (!ret && pending_only)
789 		goto out_unlock;
790 
791 	debug_activate(timer, expires);
792 
793 	new_base = get_target_base(base, pinned);
794 
795 	if (base != new_base) {
796 		/*
797 		 * We are trying to schedule the timer on the local CPU.
798 		 * However we can't change timer's base while it is running,
799 		 * otherwise del_timer_sync() can't detect that the timer's
800 		 * handler yet has not finished. This also guarantees that
801 		 * the timer is serialized wrt itself.
802 		 */
803 		if (likely(base->running_timer != timer)) {
804 			/* See the comment in lock_timer_base() */
805 			timer->flags |= TIMER_MIGRATING;
806 
807 			spin_unlock(&base->lock);
808 			base = new_base;
809 			spin_lock(&base->lock);
810 			timer->flags &= ~TIMER_BASEMASK;
811 			timer->flags |= base->cpu;
812 		}
813 	}
814 
815 	timer->expires = expires;
816 	internal_add_timer(base, timer);
817 
818 out_unlock:
819 	spin_unlock_irqrestore(&base->lock, flags);
820 
821 	return ret;
822 }
823 
824 /**
825  * mod_timer_pending - modify a pending timer's timeout
826  * @timer: the pending timer to be modified
827  * @expires: new timeout in jiffies
828  *
829  * mod_timer_pending() is the same for pending timers as mod_timer(),
830  * but will not re-activate and modify already deleted timers.
831  *
832  * It is useful for unserialized use of timers.
833  */
834 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
835 {
836 	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
837 }
838 EXPORT_SYMBOL(mod_timer_pending);
839 
840 /*
841  * Decide where to put the timer while taking the slack into account
842  *
843  * Algorithm:
844  *   1) calculate the maximum (absolute) time
845  *   2) calculate the highest bit where the expires and new max are different
846  *   3) use this bit to make a mask
847  *   4) use the bitmask to round down the maximum time, so that all last
848  *      bits are zeros
849  */
850 static inline
851 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
852 {
853 	unsigned long expires_limit, mask;
854 	int bit;
855 
856 	if (timer->slack >= 0) {
857 		expires_limit = expires + timer->slack;
858 	} else {
859 		long delta = expires - jiffies;
860 
861 		if (delta < 256)
862 			return expires;
863 
864 		expires_limit = expires + delta / 256;
865 	}
866 	mask = expires ^ expires_limit;
867 	if (mask == 0)
868 		return expires;
869 
870 	bit = find_last_bit(&mask, BITS_PER_LONG);
871 
872 	mask = (1UL << bit) - 1;
873 
874 	expires_limit = expires_limit & ~(mask);
875 
876 	return expires_limit;
877 }
878 
879 /**
880  * mod_timer - modify a timer's timeout
881  * @timer: the timer to be modified
882  * @expires: new timeout in jiffies
883  *
884  * mod_timer() is a more efficient way to update the expire field of an
885  * active timer (if the timer is inactive it will be activated)
886  *
887  * mod_timer(timer, expires) is equivalent to:
888  *
889  *     del_timer(timer); timer->expires = expires; add_timer(timer);
890  *
891  * Note that if there are multiple unserialized concurrent users of the
892  * same timer, then mod_timer() is the only safe way to modify the timeout,
893  * since add_timer() cannot modify an already running timer.
894  *
895  * The function returns whether it has modified a pending timer or not.
896  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
897  * active timer returns 1.)
898  */
899 int mod_timer(struct timer_list *timer, unsigned long expires)
900 {
901 	expires = apply_slack(timer, expires);
902 
903 	/*
904 	 * This is a common optimization triggered by the
905 	 * networking code - if the timer is re-modified
906 	 * to be the same thing then just return:
907 	 */
908 	if (timer_pending(timer) && timer->expires == expires)
909 		return 1;
910 
911 	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
912 }
913 EXPORT_SYMBOL(mod_timer);
914 
915 /**
916  * mod_timer_pinned - modify a timer's timeout
917  * @timer: the timer to be modified
918  * @expires: new timeout in jiffies
919  *
920  * mod_timer_pinned() is a way to update the expire field of an
921  * active timer (if the timer is inactive it will be activated)
922  * and to ensure that the timer is scheduled on the current CPU.
923  *
924  * Note that this does not prevent the timer from being migrated
925  * when the current CPU goes offline.  If this is a problem for
926  * you, use CPU-hotplug notifiers to handle it correctly, for
927  * example, cancelling the timer when the corresponding CPU goes
928  * offline.
929  *
930  * mod_timer_pinned(timer, expires) is equivalent to:
931  *
932  *     del_timer(timer); timer->expires = expires; add_timer(timer);
933  */
934 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
935 {
936 	if (timer->expires == expires && timer_pending(timer))
937 		return 1;
938 
939 	return __mod_timer(timer, expires, false, TIMER_PINNED);
940 }
941 EXPORT_SYMBOL(mod_timer_pinned);
942 
943 /**
944  * add_timer - start a timer
945  * @timer: the timer to be added
946  *
947  * The kernel will do a ->function(->data) callback from the
948  * timer interrupt at the ->expires point in the future. The
949  * current time is 'jiffies'.
950  *
951  * The timer's ->expires, ->function (and if the handler uses it, ->data)
952  * fields must be set prior calling this function.
953  *
954  * Timers with an ->expires field in the past will be executed in the next
955  * timer tick.
956  */
957 void add_timer(struct timer_list *timer)
958 {
959 	BUG_ON(timer_pending(timer));
960 	mod_timer(timer, timer->expires);
961 }
962 EXPORT_SYMBOL(add_timer);
963 
964 /**
965  * add_timer_on - start a timer on a particular CPU
966  * @timer: the timer to be added
967  * @cpu: the CPU to start it on
968  *
969  * This is not very scalable on SMP. Double adds are not possible.
970  */
971 void add_timer_on(struct timer_list *timer, int cpu)
972 {
973 	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
974 	unsigned long flags;
975 
976 	timer_stats_timer_set_start_info(timer);
977 	BUG_ON(timer_pending(timer) || !timer->function);
978 	spin_lock_irqsave(&base->lock, flags);
979 	timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
980 	debug_activate(timer, timer->expires);
981 	internal_add_timer(base, timer);
982 	spin_unlock_irqrestore(&base->lock, flags);
983 }
984 EXPORT_SYMBOL_GPL(add_timer_on);
985 
986 /**
987  * del_timer - deactive a timer.
988  * @timer: the timer to be deactivated
989  *
990  * del_timer() deactivates a timer - this works on both active and inactive
991  * timers.
992  *
993  * The function returns whether it has deactivated a pending timer or not.
994  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
995  * active timer returns 1.)
996  */
997 int del_timer(struct timer_list *timer)
998 {
999 	struct tvec_base *base;
1000 	unsigned long flags;
1001 	int ret = 0;
1002 
1003 	debug_assert_init(timer);
1004 
1005 	timer_stats_timer_clear_start_info(timer);
1006 	if (timer_pending(timer)) {
1007 		base = lock_timer_base(timer, &flags);
1008 		ret = detach_if_pending(timer, base, true);
1009 		spin_unlock_irqrestore(&base->lock, flags);
1010 	}
1011 
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(del_timer);
1015 
1016 /**
1017  * try_to_del_timer_sync - Try to deactivate a timer
1018  * @timer: timer do del
1019  *
1020  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1021  * exit the timer is not queued and the handler is not running on any CPU.
1022  */
1023 int try_to_del_timer_sync(struct timer_list *timer)
1024 {
1025 	struct tvec_base *base;
1026 	unsigned long flags;
1027 	int ret = -1;
1028 
1029 	debug_assert_init(timer);
1030 
1031 	base = lock_timer_base(timer, &flags);
1032 
1033 	if (base->running_timer != timer) {
1034 		timer_stats_timer_clear_start_info(timer);
1035 		ret = detach_if_pending(timer, base, true);
1036 	}
1037 	spin_unlock_irqrestore(&base->lock, flags);
1038 
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(try_to_del_timer_sync);
1042 
1043 #ifdef CONFIG_SMP
1044 /**
1045  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1046  * @timer: the timer to be deactivated
1047  *
1048  * This function only differs from del_timer() on SMP: besides deactivating
1049  * the timer it also makes sure the handler has finished executing on other
1050  * CPUs.
1051  *
1052  * Synchronization rules: Callers must prevent restarting of the timer,
1053  * otherwise this function is meaningless. It must not be called from
1054  * interrupt contexts unless the timer is an irqsafe one. The caller must
1055  * not hold locks which would prevent completion of the timer's
1056  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1057  * timer is not queued and the handler is not running on any CPU.
1058  *
1059  * Note: For !irqsafe timers, you must not hold locks that are held in
1060  *   interrupt context while calling this function. Even if the lock has
1061  *   nothing to do with the timer in question.  Here's why:
1062  *
1063  *    CPU0                             CPU1
1064  *    ----                             ----
1065  *                                   <SOFTIRQ>
1066  *                                   call_timer_fn();
1067  *                                     base->running_timer = mytimer;
1068  *  spin_lock_irq(somelock);
1069  *                                     <IRQ>
1070  *                                        spin_lock(somelock);
1071  *  del_timer_sync(mytimer);
1072  *   while (base->running_timer == mytimer);
1073  *
1074  * Now del_timer_sync() will never return and never release somelock.
1075  * The interrupt on the other CPU is waiting to grab somelock but
1076  * it has interrupted the softirq that CPU0 is waiting to finish.
1077  *
1078  * The function returns whether it has deactivated a pending timer or not.
1079  */
1080 int del_timer_sync(struct timer_list *timer)
1081 {
1082 #ifdef CONFIG_LOCKDEP
1083 	unsigned long flags;
1084 
1085 	/*
1086 	 * If lockdep gives a backtrace here, please reference
1087 	 * the synchronization rules above.
1088 	 */
1089 	local_irq_save(flags);
1090 	lock_map_acquire(&timer->lockdep_map);
1091 	lock_map_release(&timer->lockdep_map);
1092 	local_irq_restore(flags);
1093 #endif
1094 	/*
1095 	 * don't use it in hardirq context, because it
1096 	 * could lead to deadlock.
1097 	 */
1098 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1099 	for (;;) {
1100 		int ret = try_to_del_timer_sync(timer);
1101 		if (ret >= 0)
1102 			return ret;
1103 		cpu_relax();
1104 	}
1105 }
1106 EXPORT_SYMBOL(del_timer_sync);
1107 #endif
1108 
1109 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1110 {
1111 	/* cascade all the timers from tv up one level */
1112 	struct timer_list *timer;
1113 	struct hlist_node *tmp;
1114 	struct hlist_head tv_list;
1115 
1116 	hlist_move_list(tv->vec + index, &tv_list);
1117 
1118 	/*
1119 	 * We are removing _all_ timers from the list, so we
1120 	 * don't have to detach them individually.
1121 	 */
1122 	hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1123 		/* No accounting, while moving them */
1124 		__internal_add_timer(base, timer);
1125 	}
1126 
1127 	return index;
1128 }
1129 
1130 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1131 			  unsigned long data)
1132 {
1133 	int count = preempt_count();
1134 
1135 #ifdef CONFIG_LOCKDEP
1136 	/*
1137 	 * It is permissible to free the timer from inside the
1138 	 * function that is called from it, this we need to take into
1139 	 * account for lockdep too. To avoid bogus "held lock freed"
1140 	 * warnings as well as problems when looking into
1141 	 * timer->lockdep_map, make a copy and use that here.
1142 	 */
1143 	struct lockdep_map lockdep_map;
1144 
1145 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1146 #endif
1147 	/*
1148 	 * Couple the lock chain with the lock chain at
1149 	 * del_timer_sync() by acquiring the lock_map around the fn()
1150 	 * call here and in del_timer_sync().
1151 	 */
1152 	lock_map_acquire(&lockdep_map);
1153 
1154 	trace_timer_expire_entry(timer);
1155 	fn(data);
1156 	trace_timer_expire_exit(timer);
1157 
1158 	lock_map_release(&lockdep_map);
1159 
1160 	if (count != preempt_count()) {
1161 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1162 			  fn, count, preempt_count());
1163 		/*
1164 		 * Restore the preempt count. That gives us a decent
1165 		 * chance to survive and extract information. If the
1166 		 * callback kept a lock held, bad luck, but not worse
1167 		 * than the BUG() we had.
1168 		 */
1169 		preempt_count_set(count);
1170 	}
1171 }
1172 
1173 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1174 
1175 /**
1176  * __run_timers - run all expired timers (if any) on this CPU.
1177  * @base: the timer vector to be processed.
1178  *
1179  * This function cascades all vectors and executes all expired timer
1180  * vectors.
1181  */
1182 static inline void __run_timers(struct tvec_base *base)
1183 {
1184 	struct timer_list *timer;
1185 
1186 	spin_lock_irq(&base->lock);
1187 
1188 	while (time_after_eq(jiffies, base->timer_jiffies)) {
1189 		struct hlist_head work_list;
1190 		struct hlist_head *head = &work_list;
1191 		int index;
1192 
1193 		if (!base->all_timers) {
1194 			base->timer_jiffies = jiffies;
1195 			break;
1196 		}
1197 
1198 		index = base->timer_jiffies & TVR_MASK;
1199 
1200 		/*
1201 		 * Cascade timers:
1202 		 */
1203 		if (!index &&
1204 			(!cascade(base, &base->tv2, INDEX(0))) &&
1205 				(!cascade(base, &base->tv3, INDEX(1))) &&
1206 					!cascade(base, &base->tv4, INDEX(2)))
1207 			cascade(base, &base->tv5, INDEX(3));
1208 		++base->timer_jiffies;
1209 		hlist_move_list(base->tv1.vec + index, head);
1210 		while (!hlist_empty(head)) {
1211 			void (*fn)(unsigned long);
1212 			unsigned long data;
1213 			bool irqsafe;
1214 
1215 			timer = hlist_entry(head->first, struct timer_list, entry);
1216 			fn = timer->function;
1217 			data = timer->data;
1218 			irqsafe = timer->flags & TIMER_IRQSAFE;
1219 
1220 			timer_stats_account_timer(timer);
1221 
1222 			base->running_timer = timer;
1223 			detach_expired_timer(timer, base);
1224 
1225 			if (irqsafe) {
1226 				spin_unlock(&base->lock);
1227 				call_timer_fn(timer, fn, data);
1228 				spin_lock(&base->lock);
1229 			} else {
1230 				spin_unlock_irq(&base->lock);
1231 				call_timer_fn(timer, fn, data);
1232 				spin_lock_irq(&base->lock);
1233 			}
1234 		}
1235 	}
1236 	base->running_timer = NULL;
1237 	spin_unlock_irq(&base->lock);
1238 }
1239 
1240 #ifdef CONFIG_NO_HZ_COMMON
1241 /*
1242  * Find out when the next timer event is due to happen. This
1243  * is used on S/390 to stop all activity when a CPU is idle.
1244  * This function needs to be called with interrupts disabled.
1245  */
1246 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1247 {
1248 	unsigned long timer_jiffies = base->timer_jiffies;
1249 	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1250 	int index, slot, array, found = 0;
1251 	struct timer_list *nte;
1252 	struct tvec *varray[4];
1253 
1254 	/* Look for timer events in tv1. */
1255 	index = slot = timer_jiffies & TVR_MASK;
1256 	do {
1257 		hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1258 			if (nte->flags & TIMER_DEFERRABLE)
1259 				continue;
1260 
1261 			found = 1;
1262 			expires = nte->expires;
1263 			/* Look at the cascade bucket(s)? */
1264 			if (!index || slot < index)
1265 				goto cascade;
1266 			return expires;
1267 		}
1268 		slot = (slot + 1) & TVR_MASK;
1269 	} while (slot != index);
1270 
1271 cascade:
1272 	/* Calculate the next cascade event */
1273 	if (index)
1274 		timer_jiffies += TVR_SIZE - index;
1275 	timer_jiffies >>= TVR_BITS;
1276 
1277 	/* Check tv2-tv5. */
1278 	varray[0] = &base->tv2;
1279 	varray[1] = &base->tv3;
1280 	varray[2] = &base->tv4;
1281 	varray[3] = &base->tv5;
1282 
1283 	for (array = 0; array < 4; array++) {
1284 		struct tvec *varp = varray[array];
1285 
1286 		index = slot = timer_jiffies & TVN_MASK;
1287 		do {
1288 			hlist_for_each_entry(nte, varp->vec + slot, entry) {
1289 				if (nte->flags & TIMER_DEFERRABLE)
1290 					continue;
1291 
1292 				found = 1;
1293 				if (time_before(nte->expires, expires))
1294 					expires = nte->expires;
1295 			}
1296 			/*
1297 			 * Do we still search for the first timer or are
1298 			 * we looking up the cascade buckets ?
1299 			 */
1300 			if (found) {
1301 				/* Look at the cascade bucket(s)? */
1302 				if (!index || slot < index)
1303 					break;
1304 				return expires;
1305 			}
1306 			slot = (slot + 1) & TVN_MASK;
1307 		} while (slot != index);
1308 
1309 		if (index)
1310 			timer_jiffies += TVN_SIZE - index;
1311 		timer_jiffies >>= TVN_BITS;
1312 	}
1313 	return expires;
1314 }
1315 
1316 /*
1317  * Check, if the next hrtimer event is before the next timer wheel
1318  * event:
1319  */
1320 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1321 {
1322 	u64 nextevt = hrtimer_get_next_event();
1323 
1324 	/*
1325 	 * If high resolution timers are enabled
1326 	 * hrtimer_get_next_event() returns KTIME_MAX.
1327 	 */
1328 	if (expires <= nextevt)
1329 		return expires;
1330 
1331 	/*
1332 	 * If the next timer is already expired, return the tick base
1333 	 * time so the tick is fired immediately.
1334 	 */
1335 	if (nextevt <= basem)
1336 		return basem;
1337 
1338 	/*
1339 	 * Round up to the next jiffie. High resolution timers are
1340 	 * off, so the hrtimers are expired in the tick and we need to
1341 	 * make sure that this tick really expires the timer to avoid
1342 	 * a ping pong of the nohz stop code.
1343 	 *
1344 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1345 	 */
1346 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1347 }
1348 
1349 /**
1350  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1351  * @basej:	base time jiffies
1352  * @basem:	base time clock monotonic
1353  *
1354  * Returns the tick aligned clock monotonic time of the next pending
1355  * timer or KTIME_MAX if no timer is pending.
1356  */
1357 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1358 {
1359 	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1360 	u64 expires = KTIME_MAX;
1361 	unsigned long nextevt;
1362 
1363 	/*
1364 	 * Pretend that there is no timer pending if the cpu is offline.
1365 	 * Possible pending timers will be migrated later to an active cpu.
1366 	 */
1367 	if (cpu_is_offline(smp_processor_id()))
1368 		return expires;
1369 
1370 	spin_lock(&base->lock);
1371 	if (base->active_timers) {
1372 		if (time_before_eq(base->next_timer, base->timer_jiffies))
1373 			base->next_timer = __next_timer_interrupt(base);
1374 		nextevt = base->next_timer;
1375 		if (time_before_eq(nextevt, basej))
1376 			expires = basem;
1377 		else
1378 			expires = basem + (nextevt - basej) * TICK_NSEC;
1379 	}
1380 	spin_unlock(&base->lock);
1381 
1382 	return cmp_next_hrtimer_event(basem, expires);
1383 }
1384 #endif
1385 
1386 /*
1387  * Called from the timer interrupt handler to charge one tick to the current
1388  * process.  user_tick is 1 if the tick is user time, 0 for system.
1389  */
1390 void update_process_times(int user_tick)
1391 {
1392 	struct task_struct *p = current;
1393 
1394 	/* Note: this timer irq context must be accounted for as well. */
1395 	account_process_tick(p, user_tick);
1396 	run_local_timers();
1397 	rcu_check_callbacks(user_tick);
1398 #ifdef CONFIG_IRQ_WORK
1399 	if (in_irq())
1400 		irq_work_tick();
1401 #endif
1402 	scheduler_tick();
1403 	run_posix_cpu_timers(p);
1404 }
1405 
1406 /*
1407  * This function runs timers and the timer-tq in bottom half context.
1408  */
1409 static void run_timer_softirq(struct softirq_action *h)
1410 {
1411 	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1412 
1413 	if (time_after_eq(jiffies, base->timer_jiffies))
1414 		__run_timers(base);
1415 }
1416 
1417 /*
1418  * Called by the local, per-CPU timer interrupt on SMP.
1419  */
1420 void run_local_timers(void)
1421 {
1422 	hrtimer_run_queues();
1423 	raise_softirq(TIMER_SOFTIRQ);
1424 }
1425 
1426 #ifdef __ARCH_WANT_SYS_ALARM
1427 
1428 /*
1429  * For backwards compatibility?  This can be done in libc so Alpha
1430  * and all newer ports shouldn't need it.
1431  */
1432 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1433 {
1434 	return alarm_setitimer(seconds);
1435 }
1436 
1437 #endif
1438 
1439 static void process_timeout(unsigned long __data)
1440 {
1441 	wake_up_process((struct task_struct *)__data);
1442 }
1443 
1444 /**
1445  * schedule_timeout - sleep until timeout
1446  * @timeout: timeout value in jiffies
1447  *
1448  * Make the current task sleep until @timeout jiffies have
1449  * elapsed. The routine will return immediately unless
1450  * the current task state has been set (see set_current_state()).
1451  *
1452  * You can set the task state as follows -
1453  *
1454  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1455  * pass before the routine returns. The routine will return 0
1456  *
1457  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1458  * delivered to the current task. In this case the remaining time
1459  * in jiffies will be returned, or 0 if the timer expired in time
1460  *
1461  * The current task state is guaranteed to be TASK_RUNNING when this
1462  * routine returns.
1463  *
1464  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1465  * the CPU away without a bound on the timeout. In this case the return
1466  * value will be %MAX_SCHEDULE_TIMEOUT.
1467  *
1468  * In all cases the return value is guaranteed to be non-negative.
1469  */
1470 signed long __sched schedule_timeout(signed long timeout)
1471 {
1472 	struct timer_list timer;
1473 	unsigned long expire;
1474 
1475 	switch (timeout)
1476 	{
1477 	case MAX_SCHEDULE_TIMEOUT:
1478 		/*
1479 		 * These two special cases are useful to be comfortable
1480 		 * in the caller. Nothing more. We could take
1481 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1482 		 * but I' d like to return a valid offset (>=0) to allow
1483 		 * the caller to do everything it want with the retval.
1484 		 */
1485 		schedule();
1486 		goto out;
1487 	default:
1488 		/*
1489 		 * Another bit of PARANOID. Note that the retval will be
1490 		 * 0 since no piece of kernel is supposed to do a check
1491 		 * for a negative retval of schedule_timeout() (since it
1492 		 * should never happens anyway). You just have the printk()
1493 		 * that will tell you if something is gone wrong and where.
1494 		 */
1495 		if (timeout < 0) {
1496 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1497 				"value %lx\n", timeout);
1498 			dump_stack();
1499 			current->state = TASK_RUNNING;
1500 			goto out;
1501 		}
1502 	}
1503 
1504 	expire = timeout + jiffies;
1505 
1506 	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1507 	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1508 	schedule();
1509 	del_singleshot_timer_sync(&timer);
1510 
1511 	/* Remove the timer from the object tracker */
1512 	destroy_timer_on_stack(&timer);
1513 
1514 	timeout = expire - jiffies;
1515 
1516  out:
1517 	return timeout < 0 ? 0 : timeout;
1518 }
1519 EXPORT_SYMBOL(schedule_timeout);
1520 
1521 /*
1522  * We can use __set_current_state() here because schedule_timeout() calls
1523  * schedule() unconditionally.
1524  */
1525 signed long __sched schedule_timeout_interruptible(signed long timeout)
1526 {
1527 	__set_current_state(TASK_INTERRUPTIBLE);
1528 	return schedule_timeout(timeout);
1529 }
1530 EXPORT_SYMBOL(schedule_timeout_interruptible);
1531 
1532 signed long __sched schedule_timeout_killable(signed long timeout)
1533 {
1534 	__set_current_state(TASK_KILLABLE);
1535 	return schedule_timeout(timeout);
1536 }
1537 EXPORT_SYMBOL(schedule_timeout_killable);
1538 
1539 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1540 {
1541 	__set_current_state(TASK_UNINTERRUPTIBLE);
1542 	return schedule_timeout(timeout);
1543 }
1544 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1545 
1546 #ifdef CONFIG_HOTPLUG_CPU
1547 static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
1548 {
1549 	struct timer_list *timer;
1550 	int cpu = new_base->cpu;
1551 
1552 	while (!hlist_empty(head)) {
1553 		timer = hlist_entry(head->first, struct timer_list, entry);
1554 		/* We ignore the accounting on the dying cpu */
1555 		detach_timer(timer, false);
1556 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1557 		internal_add_timer(new_base, timer);
1558 	}
1559 }
1560 
1561 static void migrate_timers(int cpu)
1562 {
1563 	struct tvec_base *old_base;
1564 	struct tvec_base *new_base;
1565 	int i;
1566 
1567 	BUG_ON(cpu_online(cpu));
1568 	old_base = per_cpu_ptr(&tvec_bases, cpu);
1569 	new_base = get_cpu_ptr(&tvec_bases);
1570 	/*
1571 	 * The caller is globally serialized and nobody else
1572 	 * takes two locks at once, deadlock is not possible.
1573 	 */
1574 	spin_lock_irq(&new_base->lock);
1575 	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1576 
1577 	BUG_ON(old_base->running_timer);
1578 
1579 	for (i = 0; i < TVR_SIZE; i++)
1580 		migrate_timer_list(new_base, old_base->tv1.vec + i);
1581 	for (i = 0; i < TVN_SIZE; i++) {
1582 		migrate_timer_list(new_base, old_base->tv2.vec + i);
1583 		migrate_timer_list(new_base, old_base->tv3.vec + i);
1584 		migrate_timer_list(new_base, old_base->tv4.vec + i);
1585 		migrate_timer_list(new_base, old_base->tv5.vec + i);
1586 	}
1587 
1588 	old_base->active_timers = 0;
1589 	old_base->all_timers = 0;
1590 
1591 	spin_unlock(&old_base->lock);
1592 	spin_unlock_irq(&new_base->lock);
1593 	put_cpu_ptr(&tvec_bases);
1594 }
1595 
1596 static int timer_cpu_notify(struct notifier_block *self,
1597 				unsigned long action, void *hcpu)
1598 {
1599 	switch (action) {
1600 	case CPU_DEAD:
1601 	case CPU_DEAD_FROZEN:
1602 		migrate_timers((long)hcpu);
1603 		break;
1604 	default:
1605 		break;
1606 	}
1607 
1608 	return NOTIFY_OK;
1609 }
1610 
1611 static inline void timer_register_cpu_notifier(void)
1612 {
1613 	cpu_notifier(timer_cpu_notify, 0);
1614 }
1615 #else
1616 static inline void timer_register_cpu_notifier(void) { }
1617 #endif /* CONFIG_HOTPLUG_CPU */
1618 
1619 static void __init init_timer_cpu(int cpu)
1620 {
1621 	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1622 
1623 	base->cpu = cpu;
1624 	spin_lock_init(&base->lock);
1625 
1626 	base->timer_jiffies = jiffies;
1627 	base->next_timer = base->timer_jiffies;
1628 }
1629 
1630 static void __init init_timer_cpus(void)
1631 {
1632 	int cpu;
1633 
1634 	for_each_possible_cpu(cpu)
1635 		init_timer_cpu(cpu);
1636 }
1637 
1638 void __init init_timers(void)
1639 {
1640 	init_timer_cpus();
1641 	init_timer_stats();
1642 	timer_register_cpu_notifier();
1643 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1644 }
1645 
1646 /**
1647  * msleep - sleep safely even with waitqueue interruptions
1648  * @msecs: Time in milliseconds to sleep for
1649  */
1650 void msleep(unsigned int msecs)
1651 {
1652 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1653 
1654 	while (timeout)
1655 		timeout = schedule_timeout_uninterruptible(timeout);
1656 }
1657 
1658 EXPORT_SYMBOL(msleep);
1659 
1660 /**
1661  * msleep_interruptible - sleep waiting for signals
1662  * @msecs: Time in milliseconds to sleep for
1663  */
1664 unsigned long msleep_interruptible(unsigned int msecs)
1665 {
1666 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1667 
1668 	while (timeout && !signal_pending(current))
1669 		timeout = schedule_timeout_interruptible(timeout);
1670 	return jiffies_to_msecs(timeout);
1671 }
1672 
1673 EXPORT_SYMBOL(msleep_interruptible);
1674 
1675 static void __sched do_usleep_range(unsigned long min, unsigned long max)
1676 {
1677 	ktime_t kmin;
1678 	unsigned long delta;
1679 
1680 	kmin = ktime_set(0, min * NSEC_PER_USEC);
1681 	delta = (max - min) * NSEC_PER_USEC;
1682 	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1683 }
1684 
1685 /**
1686  * usleep_range - Drop in replacement for udelay where wakeup is flexible
1687  * @min: Minimum time in usecs to sleep
1688  * @max: Maximum time in usecs to sleep
1689  */
1690 void __sched usleep_range(unsigned long min, unsigned long max)
1691 {
1692 	__set_current_state(TASK_UNINTERRUPTIBLE);
1693 	do_usleep_range(min, max);
1694 }
1695 EXPORT_SYMBOL(usleep_range);
1696