1 /* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22 #include <linux/kernel_stat.h> 23 #include <linux/export.h> 24 #include <linux/interrupt.h> 25 #include <linux/percpu.h> 26 #include <linux/init.h> 27 #include <linux/mm.h> 28 #include <linux/swap.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/notifier.h> 31 #include <linux/thread_info.h> 32 #include <linux/time.h> 33 #include <linux/jiffies.h> 34 #include <linux/posix-timers.h> 35 #include <linux/cpu.h> 36 #include <linux/syscalls.h> 37 #include <linux/delay.h> 38 #include <linux/tick.h> 39 #include <linux/kallsyms.h> 40 #include <linux/irq_work.h> 41 #include <linux/sched/signal.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/slab.h> 44 #include <linux/compat.h> 45 46 #include <linux/uaccess.h> 47 #include <asm/unistd.h> 48 #include <asm/div64.h> 49 #include <asm/timex.h> 50 #include <asm/io.h> 51 52 #include "tick-internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/timer.h> 56 57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 58 59 EXPORT_SYMBOL(jiffies_64); 60 61 /* 62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 64 * level has a different granularity. 65 * 66 * The level granularity is: LVL_CLK_DIV ^ lvl 67 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 68 * 69 * The array level of a newly armed timer depends on the relative expiry 70 * time. The farther the expiry time is away the higher the array level and 71 * therefor the granularity becomes. 72 * 73 * Contrary to the original timer wheel implementation, which aims for 'exact' 74 * expiry of the timers, this implementation removes the need for recascading 75 * the timers into the lower array levels. The previous 'classic' timer wheel 76 * implementation of the kernel already violated the 'exact' expiry by adding 77 * slack to the expiry time to provide batched expiration. The granularity 78 * levels provide implicit batching. 79 * 80 * This is an optimization of the original timer wheel implementation for the 81 * majority of the timer wheel use cases: timeouts. The vast majority of 82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 83 * the timeout expires it indicates that normal operation is disturbed, so it 84 * does not matter much whether the timeout comes with a slight delay. 85 * 86 * The only exception to this are networking timers with a small expiry 87 * time. They rely on the granularity. Those fit into the first wheel level, 88 * which has HZ granularity. 89 * 90 * We don't have cascading anymore. timers with a expiry time above the 91 * capacity of the last wheel level are force expired at the maximum timeout 92 * value of the last wheel level. From data sampling we know that the maximum 93 * value observed is 5 days (network connection tracking), so this should not 94 * be an issue. 95 * 96 * The currently chosen array constants values are a good compromise between 97 * array size and granularity. 98 * 99 * This results in the following granularity and range levels: 100 * 101 * HZ 1000 steps 102 * Level Offset Granularity Range 103 * 0 0 1 ms 0 ms - 63 ms 104 * 1 64 8 ms 64 ms - 511 ms 105 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 106 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 107 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 108 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 109 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 110 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 111 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 112 * 113 * HZ 300 114 * Level Offset Granularity Range 115 * 0 0 3 ms 0 ms - 210 ms 116 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 117 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 118 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 119 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 120 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 121 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 122 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 123 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 124 * 125 * HZ 250 126 * Level Offset Granularity Range 127 * 0 0 4 ms 0 ms - 255 ms 128 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 129 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 130 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 131 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 132 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 133 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 134 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 135 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 136 * 137 * HZ 100 138 * Level Offset Granularity Range 139 * 0 0 10 ms 0 ms - 630 ms 140 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 141 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 142 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 143 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 144 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 145 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 146 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 147 */ 148 149 /* Clock divisor for the next level */ 150 #define LVL_CLK_SHIFT 3 151 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 152 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 153 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 154 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 155 156 /* 157 * The time start value for each level to select the bucket at enqueue 158 * time. 159 */ 160 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 161 162 /* Size of each clock level */ 163 #define LVL_BITS 6 164 #define LVL_SIZE (1UL << LVL_BITS) 165 #define LVL_MASK (LVL_SIZE - 1) 166 #define LVL_OFFS(n) ((n) * LVL_SIZE) 167 168 /* Level depth */ 169 #if HZ > 100 170 # define LVL_DEPTH 9 171 # else 172 # define LVL_DEPTH 8 173 #endif 174 175 /* The cutoff (max. capacity of the wheel) */ 176 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 177 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 178 179 /* 180 * The resulting wheel size. If NOHZ is configured we allocate two 181 * wheels so we have a separate storage for the deferrable timers. 182 */ 183 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 184 185 #ifdef CONFIG_NO_HZ_COMMON 186 # define NR_BASES 2 187 # define BASE_STD 0 188 # define BASE_DEF 1 189 #else 190 # define NR_BASES 1 191 # define BASE_STD 0 192 # define BASE_DEF 0 193 #endif 194 195 struct timer_base { 196 spinlock_t lock; 197 struct timer_list *running_timer; 198 unsigned long clk; 199 unsigned long next_expiry; 200 unsigned int cpu; 201 bool migration_enabled; 202 bool nohz_active; 203 bool is_idle; 204 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 205 struct hlist_head vectors[WHEEL_SIZE]; 206 } ____cacheline_aligned; 207 208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 209 210 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 211 unsigned int sysctl_timer_migration = 1; 212 213 void timers_update_migration(bool update_nohz) 214 { 215 bool on = sysctl_timer_migration && tick_nohz_active; 216 unsigned int cpu; 217 218 /* Avoid the loop, if nothing to update */ 219 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on) 220 return; 221 222 for_each_possible_cpu(cpu) { 223 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on; 224 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on; 225 per_cpu(hrtimer_bases.migration_enabled, cpu) = on; 226 if (!update_nohz) 227 continue; 228 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true; 229 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true; 230 per_cpu(hrtimer_bases.nohz_active, cpu) = true; 231 } 232 } 233 234 int timer_migration_handler(struct ctl_table *table, int write, 235 void __user *buffer, size_t *lenp, 236 loff_t *ppos) 237 { 238 static DEFINE_MUTEX(mutex); 239 int ret; 240 241 mutex_lock(&mutex); 242 ret = proc_dointvec(table, write, buffer, lenp, ppos); 243 if (!ret && write) 244 timers_update_migration(false); 245 mutex_unlock(&mutex); 246 return ret; 247 } 248 #endif 249 250 static unsigned long round_jiffies_common(unsigned long j, int cpu, 251 bool force_up) 252 { 253 int rem; 254 unsigned long original = j; 255 256 /* 257 * We don't want all cpus firing their timers at once hitting the 258 * same lock or cachelines, so we skew each extra cpu with an extra 259 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 260 * already did this. 261 * The skew is done by adding 3*cpunr, then round, then subtract this 262 * extra offset again. 263 */ 264 j += cpu * 3; 265 266 rem = j % HZ; 267 268 /* 269 * If the target jiffie is just after a whole second (which can happen 270 * due to delays of the timer irq, long irq off times etc etc) then 271 * we should round down to the whole second, not up. Use 1/4th second 272 * as cutoff for this rounding as an extreme upper bound for this. 273 * But never round down if @force_up is set. 274 */ 275 if (rem < HZ/4 && !force_up) /* round down */ 276 j = j - rem; 277 else /* round up */ 278 j = j - rem + HZ; 279 280 /* now that we have rounded, subtract the extra skew again */ 281 j -= cpu * 3; 282 283 /* 284 * Make sure j is still in the future. Otherwise return the 285 * unmodified value. 286 */ 287 return time_is_after_jiffies(j) ? j : original; 288 } 289 290 /** 291 * __round_jiffies - function to round jiffies to a full second 292 * @j: the time in (absolute) jiffies that should be rounded 293 * @cpu: the processor number on which the timeout will happen 294 * 295 * __round_jiffies() rounds an absolute time in the future (in jiffies) 296 * up or down to (approximately) full seconds. This is useful for timers 297 * for which the exact time they fire does not matter too much, as long as 298 * they fire approximately every X seconds. 299 * 300 * By rounding these timers to whole seconds, all such timers will fire 301 * at the same time, rather than at various times spread out. The goal 302 * of this is to have the CPU wake up less, which saves power. 303 * 304 * The exact rounding is skewed for each processor to avoid all 305 * processors firing at the exact same time, which could lead 306 * to lock contention or spurious cache line bouncing. 307 * 308 * The return value is the rounded version of the @j parameter. 309 */ 310 unsigned long __round_jiffies(unsigned long j, int cpu) 311 { 312 return round_jiffies_common(j, cpu, false); 313 } 314 EXPORT_SYMBOL_GPL(__round_jiffies); 315 316 /** 317 * __round_jiffies_relative - function to round jiffies to a full second 318 * @j: the time in (relative) jiffies that should be rounded 319 * @cpu: the processor number on which the timeout will happen 320 * 321 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 322 * up or down to (approximately) full seconds. This is useful for timers 323 * for which the exact time they fire does not matter too much, as long as 324 * they fire approximately every X seconds. 325 * 326 * By rounding these timers to whole seconds, all such timers will fire 327 * at the same time, rather than at various times spread out. The goal 328 * of this is to have the CPU wake up less, which saves power. 329 * 330 * The exact rounding is skewed for each processor to avoid all 331 * processors firing at the exact same time, which could lead 332 * to lock contention or spurious cache line bouncing. 333 * 334 * The return value is the rounded version of the @j parameter. 335 */ 336 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 337 { 338 unsigned long j0 = jiffies; 339 340 /* Use j0 because jiffies might change while we run */ 341 return round_jiffies_common(j + j0, cpu, false) - j0; 342 } 343 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 344 345 /** 346 * round_jiffies - function to round jiffies to a full second 347 * @j: the time in (absolute) jiffies that should be rounded 348 * 349 * round_jiffies() rounds an absolute time in the future (in jiffies) 350 * up or down to (approximately) full seconds. This is useful for timers 351 * for which the exact time they fire does not matter too much, as long as 352 * they fire approximately every X seconds. 353 * 354 * By rounding these timers to whole seconds, all such timers will fire 355 * at the same time, rather than at various times spread out. The goal 356 * of this is to have the CPU wake up less, which saves power. 357 * 358 * The return value is the rounded version of the @j parameter. 359 */ 360 unsigned long round_jiffies(unsigned long j) 361 { 362 return round_jiffies_common(j, raw_smp_processor_id(), false); 363 } 364 EXPORT_SYMBOL_GPL(round_jiffies); 365 366 /** 367 * round_jiffies_relative - function to round jiffies to a full second 368 * @j: the time in (relative) jiffies that should be rounded 369 * 370 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 371 * up or down to (approximately) full seconds. This is useful for timers 372 * for which the exact time they fire does not matter too much, as long as 373 * they fire approximately every X seconds. 374 * 375 * By rounding these timers to whole seconds, all such timers will fire 376 * at the same time, rather than at various times spread out. The goal 377 * of this is to have the CPU wake up less, which saves power. 378 * 379 * The return value is the rounded version of the @j parameter. 380 */ 381 unsigned long round_jiffies_relative(unsigned long j) 382 { 383 return __round_jiffies_relative(j, raw_smp_processor_id()); 384 } 385 EXPORT_SYMBOL_GPL(round_jiffies_relative); 386 387 /** 388 * __round_jiffies_up - function to round jiffies up to a full second 389 * @j: the time in (absolute) jiffies that should be rounded 390 * @cpu: the processor number on which the timeout will happen 391 * 392 * This is the same as __round_jiffies() except that it will never 393 * round down. This is useful for timeouts for which the exact time 394 * of firing does not matter too much, as long as they don't fire too 395 * early. 396 */ 397 unsigned long __round_jiffies_up(unsigned long j, int cpu) 398 { 399 return round_jiffies_common(j, cpu, true); 400 } 401 EXPORT_SYMBOL_GPL(__round_jiffies_up); 402 403 /** 404 * __round_jiffies_up_relative - function to round jiffies up to a full second 405 * @j: the time in (relative) jiffies that should be rounded 406 * @cpu: the processor number on which the timeout will happen 407 * 408 * This is the same as __round_jiffies_relative() except that it will never 409 * round down. This is useful for timeouts for which the exact time 410 * of firing does not matter too much, as long as they don't fire too 411 * early. 412 */ 413 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 414 { 415 unsigned long j0 = jiffies; 416 417 /* Use j0 because jiffies might change while we run */ 418 return round_jiffies_common(j + j0, cpu, true) - j0; 419 } 420 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 421 422 /** 423 * round_jiffies_up - function to round jiffies up to a full second 424 * @j: the time in (absolute) jiffies that should be rounded 425 * 426 * This is the same as round_jiffies() except that it will never 427 * round down. This is useful for timeouts for which the exact time 428 * of firing does not matter too much, as long as they don't fire too 429 * early. 430 */ 431 unsigned long round_jiffies_up(unsigned long j) 432 { 433 return round_jiffies_common(j, raw_smp_processor_id(), true); 434 } 435 EXPORT_SYMBOL_GPL(round_jiffies_up); 436 437 /** 438 * round_jiffies_up_relative - function to round jiffies up to a full second 439 * @j: the time in (relative) jiffies that should be rounded 440 * 441 * This is the same as round_jiffies_relative() except that it will never 442 * round down. This is useful for timeouts for which the exact time 443 * of firing does not matter too much, as long as they don't fire too 444 * early. 445 */ 446 unsigned long round_jiffies_up_relative(unsigned long j) 447 { 448 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 449 } 450 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 451 452 453 static inline unsigned int timer_get_idx(struct timer_list *timer) 454 { 455 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 456 } 457 458 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 459 { 460 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 461 idx << TIMER_ARRAYSHIFT; 462 } 463 464 /* 465 * Helper function to calculate the array index for a given expiry 466 * time. 467 */ 468 static inline unsigned calc_index(unsigned expires, unsigned lvl) 469 { 470 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 471 return LVL_OFFS(lvl) + (expires & LVL_MASK); 472 } 473 474 static int calc_wheel_index(unsigned long expires, unsigned long clk) 475 { 476 unsigned long delta = expires - clk; 477 unsigned int idx; 478 479 if (delta < LVL_START(1)) { 480 idx = calc_index(expires, 0); 481 } else if (delta < LVL_START(2)) { 482 idx = calc_index(expires, 1); 483 } else if (delta < LVL_START(3)) { 484 idx = calc_index(expires, 2); 485 } else if (delta < LVL_START(4)) { 486 idx = calc_index(expires, 3); 487 } else if (delta < LVL_START(5)) { 488 idx = calc_index(expires, 4); 489 } else if (delta < LVL_START(6)) { 490 idx = calc_index(expires, 5); 491 } else if (delta < LVL_START(7)) { 492 idx = calc_index(expires, 6); 493 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 494 idx = calc_index(expires, 7); 495 } else if ((long) delta < 0) { 496 idx = clk & LVL_MASK; 497 } else { 498 /* 499 * Force expire obscene large timeouts to expire at the 500 * capacity limit of the wheel. 501 */ 502 if (expires >= WHEEL_TIMEOUT_CUTOFF) 503 expires = WHEEL_TIMEOUT_MAX; 504 505 idx = calc_index(expires, LVL_DEPTH - 1); 506 } 507 return idx; 508 } 509 510 /* 511 * Enqueue the timer into the hash bucket, mark it pending in 512 * the bitmap and store the index in the timer flags. 513 */ 514 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 515 unsigned int idx) 516 { 517 hlist_add_head(&timer->entry, base->vectors + idx); 518 __set_bit(idx, base->pending_map); 519 timer_set_idx(timer, idx); 520 } 521 522 static void 523 __internal_add_timer(struct timer_base *base, struct timer_list *timer) 524 { 525 unsigned int idx; 526 527 idx = calc_wheel_index(timer->expires, base->clk); 528 enqueue_timer(base, timer, idx); 529 } 530 531 static void 532 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 533 { 534 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 535 return; 536 537 /* 538 * TODO: This wants some optimizing similar to the code below, but we 539 * will do that when we switch from push to pull for deferrable timers. 540 */ 541 if (timer->flags & TIMER_DEFERRABLE) { 542 if (tick_nohz_full_cpu(base->cpu)) 543 wake_up_nohz_cpu(base->cpu); 544 return; 545 } 546 547 /* 548 * We might have to IPI the remote CPU if the base is idle and the 549 * timer is not deferrable. If the other CPU is on the way to idle 550 * then it can't set base->is_idle as we hold the base lock: 551 */ 552 if (!base->is_idle) 553 return; 554 555 /* Check whether this is the new first expiring timer: */ 556 if (time_after_eq(timer->expires, base->next_expiry)) 557 return; 558 559 /* 560 * Set the next expiry time and kick the CPU so it can reevaluate the 561 * wheel: 562 */ 563 base->next_expiry = timer->expires; 564 wake_up_nohz_cpu(base->cpu); 565 } 566 567 static void 568 internal_add_timer(struct timer_base *base, struct timer_list *timer) 569 { 570 __internal_add_timer(base, timer); 571 trigger_dyntick_cpu(base, timer); 572 } 573 574 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 575 576 static struct debug_obj_descr timer_debug_descr; 577 578 static void *timer_debug_hint(void *addr) 579 { 580 return ((struct timer_list *) addr)->function; 581 } 582 583 static bool timer_is_static_object(void *addr) 584 { 585 struct timer_list *timer = addr; 586 587 return (timer->entry.pprev == NULL && 588 timer->entry.next == TIMER_ENTRY_STATIC); 589 } 590 591 /* 592 * fixup_init is called when: 593 * - an active object is initialized 594 */ 595 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 596 { 597 struct timer_list *timer = addr; 598 599 switch (state) { 600 case ODEBUG_STATE_ACTIVE: 601 del_timer_sync(timer); 602 debug_object_init(timer, &timer_debug_descr); 603 return true; 604 default: 605 return false; 606 } 607 } 608 609 /* Stub timer callback for improperly used timers. */ 610 static void stub_timer(unsigned long data) 611 { 612 WARN_ON(1); 613 } 614 615 /* 616 * fixup_activate is called when: 617 * - an active object is activated 618 * - an unknown non-static object is activated 619 */ 620 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 621 { 622 struct timer_list *timer = addr; 623 624 switch (state) { 625 case ODEBUG_STATE_NOTAVAILABLE: 626 setup_timer(timer, stub_timer, 0); 627 return true; 628 629 case ODEBUG_STATE_ACTIVE: 630 WARN_ON(1); 631 632 default: 633 return false; 634 } 635 } 636 637 /* 638 * fixup_free is called when: 639 * - an active object is freed 640 */ 641 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 642 { 643 struct timer_list *timer = addr; 644 645 switch (state) { 646 case ODEBUG_STATE_ACTIVE: 647 del_timer_sync(timer); 648 debug_object_free(timer, &timer_debug_descr); 649 return true; 650 default: 651 return false; 652 } 653 } 654 655 /* 656 * fixup_assert_init is called when: 657 * - an untracked/uninit-ed object is found 658 */ 659 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 660 { 661 struct timer_list *timer = addr; 662 663 switch (state) { 664 case ODEBUG_STATE_NOTAVAILABLE: 665 setup_timer(timer, stub_timer, 0); 666 return true; 667 default: 668 return false; 669 } 670 } 671 672 static struct debug_obj_descr timer_debug_descr = { 673 .name = "timer_list", 674 .debug_hint = timer_debug_hint, 675 .is_static_object = timer_is_static_object, 676 .fixup_init = timer_fixup_init, 677 .fixup_activate = timer_fixup_activate, 678 .fixup_free = timer_fixup_free, 679 .fixup_assert_init = timer_fixup_assert_init, 680 }; 681 682 static inline void debug_timer_init(struct timer_list *timer) 683 { 684 debug_object_init(timer, &timer_debug_descr); 685 } 686 687 static inline void debug_timer_activate(struct timer_list *timer) 688 { 689 debug_object_activate(timer, &timer_debug_descr); 690 } 691 692 static inline void debug_timer_deactivate(struct timer_list *timer) 693 { 694 debug_object_deactivate(timer, &timer_debug_descr); 695 } 696 697 static inline void debug_timer_free(struct timer_list *timer) 698 { 699 debug_object_free(timer, &timer_debug_descr); 700 } 701 702 static inline void debug_timer_assert_init(struct timer_list *timer) 703 { 704 debug_object_assert_init(timer, &timer_debug_descr); 705 } 706 707 static void do_init_timer(struct timer_list *timer, unsigned int flags, 708 const char *name, struct lock_class_key *key); 709 710 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags, 711 const char *name, struct lock_class_key *key) 712 { 713 debug_object_init_on_stack(timer, &timer_debug_descr); 714 do_init_timer(timer, flags, name, key); 715 } 716 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 717 718 void destroy_timer_on_stack(struct timer_list *timer) 719 { 720 debug_object_free(timer, &timer_debug_descr); 721 } 722 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 723 724 #else 725 static inline void debug_timer_init(struct timer_list *timer) { } 726 static inline void debug_timer_activate(struct timer_list *timer) { } 727 static inline void debug_timer_deactivate(struct timer_list *timer) { } 728 static inline void debug_timer_assert_init(struct timer_list *timer) { } 729 #endif 730 731 static inline void debug_init(struct timer_list *timer) 732 { 733 debug_timer_init(timer); 734 trace_timer_init(timer); 735 } 736 737 static inline void 738 debug_activate(struct timer_list *timer, unsigned long expires) 739 { 740 debug_timer_activate(timer); 741 trace_timer_start(timer, expires, timer->flags); 742 } 743 744 static inline void debug_deactivate(struct timer_list *timer) 745 { 746 debug_timer_deactivate(timer); 747 trace_timer_cancel(timer); 748 } 749 750 static inline void debug_assert_init(struct timer_list *timer) 751 { 752 debug_timer_assert_init(timer); 753 } 754 755 static void do_init_timer(struct timer_list *timer, unsigned int flags, 756 const char *name, struct lock_class_key *key) 757 { 758 timer->entry.pprev = NULL; 759 timer->flags = flags | raw_smp_processor_id(); 760 lockdep_init_map(&timer->lockdep_map, name, key, 0); 761 } 762 763 /** 764 * init_timer_key - initialize a timer 765 * @timer: the timer to be initialized 766 * @flags: timer flags 767 * @name: name of the timer 768 * @key: lockdep class key of the fake lock used for tracking timer 769 * sync lock dependencies 770 * 771 * init_timer_key() must be done to a timer prior calling *any* of the 772 * other timer functions. 773 */ 774 void init_timer_key(struct timer_list *timer, unsigned int flags, 775 const char *name, struct lock_class_key *key) 776 { 777 debug_init(timer); 778 do_init_timer(timer, flags, name, key); 779 } 780 EXPORT_SYMBOL(init_timer_key); 781 782 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 783 { 784 struct hlist_node *entry = &timer->entry; 785 786 debug_deactivate(timer); 787 788 __hlist_del(entry); 789 if (clear_pending) 790 entry->pprev = NULL; 791 entry->next = LIST_POISON2; 792 } 793 794 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 795 bool clear_pending) 796 { 797 unsigned idx = timer_get_idx(timer); 798 799 if (!timer_pending(timer)) 800 return 0; 801 802 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) 803 __clear_bit(idx, base->pending_map); 804 805 detach_timer(timer, clear_pending); 806 return 1; 807 } 808 809 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 810 { 811 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 812 813 /* 814 * If the timer is deferrable and nohz is active then we need to use 815 * the deferrable base. 816 */ 817 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active && 818 (tflags & TIMER_DEFERRABLE)) 819 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 820 return base; 821 } 822 823 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 824 { 825 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 826 827 /* 828 * If the timer is deferrable and nohz is active then we need to use 829 * the deferrable base. 830 */ 831 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active && 832 (tflags & TIMER_DEFERRABLE)) 833 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 834 return base; 835 } 836 837 static inline struct timer_base *get_timer_base(u32 tflags) 838 { 839 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 840 } 841 842 #ifdef CONFIG_NO_HZ_COMMON 843 static inline struct timer_base * 844 get_target_base(struct timer_base *base, unsigned tflags) 845 { 846 #ifdef CONFIG_SMP 847 if ((tflags & TIMER_PINNED) || !base->migration_enabled) 848 return get_timer_this_cpu_base(tflags); 849 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 850 #else 851 return get_timer_this_cpu_base(tflags); 852 #endif 853 } 854 855 static inline void forward_timer_base(struct timer_base *base) 856 { 857 unsigned long jnow = READ_ONCE(jiffies); 858 859 /* 860 * We only forward the base when it's idle and we have a delta between 861 * base clock and jiffies. 862 */ 863 if (!base->is_idle || (long) (jnow - base->clk) < 2) 864 return; 865 866 /* 867 * If the next expiry value is > jiffies, then we fast forward to 868 * jiffies otherwise we forward to the next expiry value. 869 */ 870 if (time_after(base->next_expiry, jnow)) 871 base->clk = jnow; 872 else 873 base->clk = base->next_expiry; 874 } 875 #else 876 static inline struct timer_base * 877 get_target_base(struct timer_base *base, unsigned tflags) 878 { 879 return get_timer_this_cpu_base(tflags); 880 } 881 882 static inline void forward_timer_base(struct timer_base *base) { } 883 #endif 884 885 886 /* 887 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 888 * that all timers which are tied to this base are locked, and the base itself 889 * is locked too. 890 * 891 * So __run_timers/migrate_timers can safely modify all timers which could 892 * be found in the base->vectors array. 893 * 894 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 895 * to wait until the migration is done. 896 */ 897 static struct timer_base *lock_timer_base(struct timer_list *timer, 898 unsigned long *flags) 899 __acquires(timer->base->lock) 900 { 901 for (;;) { 902 struct timer_base *base; 903 u32 tf; 904 905 /* 906 * We need to use READ_ONCE() here, otherwise the compiler 907 * might re-read @tf between the check for TIMER_MIGRATING 908 * and spin_lock(). 909 */ 910 tf = READ_ONCE(timer->flags); 911 912 if (!(tf & TIMER_MIGRATING)) { 913 base = get_timer_base(tf); 914 spin_lock_irqsave(&base->lock, *flags); 915 if (timer->flags == tf) 916 return base; 917 spin_unlock_irqrestore(&base->lock, *flags); 918 } 919 cpu_relax(); 920 } 921 } 922 923 static inline int 924 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only) 925 { 926 struct timer_base *base, *new_base; 927 unsigned int idx = UINT_MAX; 928 unsigned long clk = 0, flags; 929 int ret = 0; 930 931 BUG_ON(!timer->function); 932 933 /* 934 * This is a common optimization triggered by the networking code - if 935 * the timer is re-modified to have the same timeout or ends up in the 936 * same array bucket then just return: 937 */ 938 if (timer_pending(timer)) { 939 if (timer->expires == expires) 940 return 1; 941 942 /* 943 * We lock timer base and calculate the bucket index right 944 * here. If the timer ends up in the same bucket, then we 945 * just update the expiry time and avoid the whole 946 * dequeue/enqueue dance. 947 */ 948 base = lock_timer_base(timer, &flags); 949 950 clk = base->clk; 951 idx = calc_wheel_index(expires, clk); 952 953 /* 954 * Retrieve and compare the array index of the pending 955 * timer. If it matches set the expiry to the new value so a 956 * subsequent call will exit in the expires check above. 957 */ 958 if (idx == timer_get_idx(timer)) { 959 timer->expires = expires; 960 ret = 1; 961 goto out_unlock; 962 } 963 } else { 964 base = lock_timer_base(timer, &flags); 965 } 966 967 ret = detach_if_pending(timer, base, false); 968 if (!ret && pending_only) 969 goto out_unlock; 970 971 debug_activate(timer, expires); 972 973 new_base = get_target_base(base, timer->flags); 974 975 if (base != new_base) { 976 /* 977 * We are trying to schedule the timer on the new base. 978 * However we can't change timer's base while it is running, 979 * otherwise del_timer_sync() can't detect that the timer's 980 * handler yet has not finished. This also guarantees that the 981 * timer is serialized wrt itself. 982 */ 983 if (likely(base->running_timer != timer)) { 984 /* See the comment in lock_timer_base() */ 985 timer->flags |= TIMER_MIGRATING; 986 987 spin_unlock(&base->lock); 988 base = new_base; 989 spin_lock(&base->lock); 990 WRITE_ONCE(timer->flags, 991 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 992 } 993 } 994 995 /* Try to forward a stale timer base clock */ 996 forward_timer_base(base); 997 998 timer->expires = expires; 999 /* 1000 * If 'idx' was calculated above and the base time did not advance 1001 * between calculating 'idx' and possibly switching the base, only 1002 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise 1003 * we need to (re)calculate the wheel index via 1004 * internal_add_timer(). 1005 */ 1006 if (idx != UINT_MAX && clk == base->clk) { 1007 enqueue_timer(base, timer, idx); 1008 trigger_dyntick_cpu(base, timer); 1009 } else { 1010 internal_add_timer(base, timer); 1011 } 1012 1013 out_unlock: 1014 spin_unlock_irqrestore(&base->lock, flags); 1015 1016 return ret; 1017 } 1018 1019 /** 1020 * mod_timer_pending - modify a pending timer's timeout 1021 * @timer: the pending timer to be modified 1022 * @expires: new timeout in jiffies 1023 * 1024 * mod_timer_pending() is the same for pending timers as mod_timer(), 1025 * but will not re-activate and modify already deleted timers. 1026 * 1027 * It is useful for unserialized use of timers. 1028 */ 1029 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1030 { 1031 return __mod_timer(timer, expires, true); 1032 } 1033 EXPORT_SYMBOL(mod_timer_pending); 1034 1035 /** 1036 * mod_timer - modify a timer's timeout 1037 * @timer: the timer to be modified 1038 * @expires: new timeout in jiffies 1039 * 1040 * mod_timer() is a more efficient way to update the expire field of an 1041 * active timer (if the timer is inactive it will be activated) 1042 * 1043 * mod_timer(timer, expires) is equivalent to: 1044 * 1045 * del_timer(timer); timer->expires = expires; add_timer(timer); 1046 * 1047 * Note that if there are multiple unserialized concurrent users of the 1048 * same timer, then mod_timer() is the only safe way to modify the timeout, 1049 * since add_timer() cannot modify an already running timer. 1050 * 1051 * The function returns whether it has modified a pending timer or not. 1052 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1053 * active timer returns 1.) 1054 */ 1055 int mod_timer(struct timer_list *timer, unsigned long expires) 1056 { 1057 return __mod_timer(timer, expires, false); 1058 } 1059 EXPORT_SYMBOL(mod_timer); 1060 1061 /** 1062 * add_timer - start a timer 1063 * @timer: the timer to be added 1064 * 1065 * The kernel will do a ->function(->data) callback from the 1066 * timer interrupt at the ->expires point in the future. The 1067 * current time is 'jiffies'. 1068 * 1069 * The timer's ->expires, ->function (and if the handler uses it, ->data) 1070 * fields must be set prior calling this function. 1071 * 1072 * Timers with an ->expires field in the past will be executed in the next 1073 * timer tick. 1074 */ 1075 void add_timer(struct timer_list *timer) 1076 { 1077 BUG_ON(timer_pending(timer)); 1078 mod_timer(timer, timer->expires); 1079 } 1080 EXPORT_SYMBOL(add_timer); 1081 1082 /** 1083 * add_timer_on - start a timer on a particular CPU 1084 * @timer: the timer to be added 1085 * @cpu: the CPU to start it on 1086 * 1087 * This is not very scalable on SMP. Double adds are not possible. 1088 */ 1089 void add_timer_on(struct timer_list *timer, int cpu) 1090 { 1091 struct timer_base *new_base, *base; 1092 unsigned long flags; 1093 1094 BUG_ON(timer_pending(timer) || !timer->function); 1095 1096 new_base = get_timer_cpu_base(timer->flags, cpu); 1097 1098 /* 1099 * If @timer was on a different CPU, it should be migrated with the 1100 * old base locked to prevent other operations proceeding with the 1101 * wrong base locked. See lock_timer_base(). 1102 */ 1103 base = lock_timer_base(timer, &flags); 1104 if (base != new_base) { 1105 timer->flags |= TIMER_MIGRATING; 1106 1107 spin_unlock(&base->lock); 1108 base = new_base; 1109 spin_lock(&base->lock); 1110 WRITE_ONCE(timer->flags, 1111 (timer->flags & ~TIMER_BASEMASK) | cpu); 1112 } 1113 1114 debug_activate(timer, timer->expires); 1115 internal_add_timer(base, timer); 1116 spin_unlock_irqrestore(&base->lock, flags); 1117 } 1118 EXPORT_SYMBOL_GPL(add_timer_on); 1119 1120 /** 1121 * del_timer - deactive a timer. 1122 * @timer: the timer to be deactivated 1123 * 1124 * del_timer() deactivates a timer - this works on both active and inactive 1125 * timers. 1126 * 1127 * The function returns whether it has deactivated a pending timer or not. 1128 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1129 * active timer returns 1.) 1130 */ 1131 int del_timer(struct timer_list *timer) 1132 { 1133 struct timer_base *base; 1134 unsigned long flags; 1135 int ret = 0; 1136 1137 debug_assert_init(timer); 1138 1139 if (timer_pending(timer)) { 1140 base = lock_timer_base(timer, &flags); 1141 ret = detach_if_pending(timer, base, true); 1142 spin_unlock_irqrestore(&base->lock, flags); 1143 } 1144 1145 return ret; 1146 } 1147 EXPORT_SYMBOL(del_timer); 1148 1149 /** 1150 * try_to_del_timer_sync - Try to deactivate a timer 1151 * @timer: timer do del 1152 * 1153 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1154 * exit the timer is not queued and the handler is not running on any CPU. 1155 */ 1156 int try_to_del_timer_sync(struct timer_list *timer) 1157 { 1158 struct timer_base *base; 1159 unsigned long flags; 1160 int ret = -1; 1161 1162 debug_assert_init(timer); 1163 1164 base = lock_timer_base(timer, &flags); 1165 1166 if (base->running_timer != timer) 1167 ret = detach_if_pending(timer, base, true); 1168 1169 spin_unlock_irqrestore(&base->lock, flags); 1170 1171 return ret; 1172 } 1173 EXPORT_SYMBOL(try_to_del_timer_sync); 1174 1175 #ifdef CONFIG_SMP 1176 /** 1177 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1178 * @timer: the timer to be deactivated 1179 * 1180 * This function only differs from del_timer() on SMP: besides deactivating 1181 * the timer it also makes sure the handler has finished executing on other 1182 * CPUs. 1183 * 1184 * Synchronization rules: Callers must prevent restarting of the timer, 1185 * otherwise this function is meaningless. It must not be called from 1186 * interrupt contexts unless the timer is an irqsafe one. The caller must 1187 * not hold locks which would prevent completion of the timer's 1188 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1189 * timer is not queued and the handler is not running on any CPU. 1190 * 1191 * Note: For !irqsafe timers, you must not hold locks that are held in 1192 * interrupt context while calling this function. Even if the lock has 1193 * nothing to do with the timer in question. Here's why: 1194 * 1195 * CPU0 CPU1 1196 * ---- ---- 1197 * <SOFTIRQ> 1198 * call_timer_fn(); 1199 * base->running_timer = mytimer; 1200 * spin_lock_irq(somelock); 1201 * <IRQ> 1202 * spin_lock(somelock); 1203 * del_timer_sync(mytimer); 1204 * while (base->running_timer == mytimer); 1205 * 1206 * Now del_timer_sync() will never return and never release somelock. 1207 * The interrupt on the other CPU is waiting to grab somelock but 1208 * it has interrupted the softirq that CPU0 is waiting to finish. 1209 * 1210 * The function returns whether it has deactivated a pending timer or not. 1211 */ 1212 int del_timer_sync(struct timer_list *timer) 1213 { 1214 #ifdef CONFIG_LOCKDEP 1215 unsigned long flags; 1216 1217 /* 1218 * If lockdep gives a backtrace here, please reference 1219 * the synchronization rules above. 1220 */ 1221 local_irq_save(flags); 1222 lock_map_acquire(&timer->lockdep_map); 1223 lock_map_release(&timer->lockdep_map); 1224 local_irq_restore(flags); 1225 #endif 1226 /* 1227 * don't use it in hardirq context, because it 1228 * could lead to deadlock. 1229 */ 1230 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1231 for (;;) { 1232 int ret = try_to_del_timer_sync(timer); 1233 if (ret >= 0) 1234 return ret; 1235 cpu_relax(); 1236 } 1237 } 1238 EXPORT_SYMBOL(del_timer_sync); 1239 #endif 1240 1241 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), 1242 unsigned long data) 1243 { 1244 int count = preempt_count(); 1245 1246 #ifdef CONFIG_LOCKDEP 1247 /* 1248 * It is permissible to free the timer from inside the 1249 * function that is called from it, this we need to take into 1250 * account for lockdep too. To avoid bogus "held lock freed" 1251 * warnings as well as problems when looking into 1252 * timer->lockdep_map, make a copy and use that here. 1253 */ 1254 struct lockdep_map lockdep_map; 1255 1256 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1257 #endif 1258 /* 1259 * Couple the lock chain with the lock chain at 1260 * del_timer_sync() by acquiring the lock_map around the fn() 1261 * call here and in del_timer_sync(). 1262 */ 1263 lock_map_acquire(&lockdep_map); 1264 1265 trace_timer_expire_entry(timer); 1266 fn(data); 1267 trace_timer_expire_exit(timer); 1268 1269 lock_map_release(&lockdep_map); 1270 1271 if (count != preempt_count()) { 1272 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", 1273 fn, count, preempt_count()); 1274 /* 1275 * Restore the preempt count. That gives us a decent 1276 * chance to survive and extract information. If the 1277 * callback kept a lock held, bad luck, but not worse 1278 * than the BUG() we had. 1279 */ 1280 preempt_count_set(count); 1281 } 1282 } 1283 1284 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1285 { 1286 while (!hlist_empty(head)) { 1287 struct timer_list *timer; 1288 void (*fn)(unsigned long); 1289 unsigned long data; 1290 1291 timer = hlist_entry(head->first, struct timer_list, entry); 1292 1293 base->running_timer = timer; 1294 detach_timer(timer, true); 1295 1296 fn = timer->function; 1297 data = timer->data; 1298 1299 if (timer->flags & TIMER_IRQSAFE) { 1300 spin_unlock(&base->lock); 1301 call_timer_fn(timer, fn, data); 1302 spin_lock(&base->lock); 1303 } else { 1304 spin_unlock_irq(&base->lock); 1305 call_timer_fn(timer, fn, data); 1306 spin_lock_irq(&base->lock); 1307 } 1308 } 1309 } 1310 1311 static int __collect_expired_timers(struct timer_base *base, 1312 struct hlist_head *heads) 1313 { 1314 unsigned long clk = base->clk; 1315 struct hlist_head *vec; 1316 int i, levels = 0; 1317 unsigned int idx; 1318 1319 for (i = 0; i < LVL_DEPTH; i++) { 1320 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1321 1322 if (__test_and_clear_bit(idx, base->pending_map)) { 1323 vec = base->vectors + idx; 1324 hlist_move_list(vec, heads++); 1325 levels++; 1326 } 1327 /* Is it time to look at the next level? */ 1328 if (clk & LVL_CLK_MASK) 1329 break; 1330 /* Shift clock for the next level granularity */ 1331 clk >>= LVL_CLK_SHIFT; 1332 } 1333 return levels; 1334 } 1335 1336 #ifdef CONFIG_NO_HZ_COMMON 1337 /* 1338 * Find the next pending bucket of a level. Search from level start (@offset) 1339 * + @clk upwards and if nothing there, search from start of the level 1340 * (@offset) up to @offset + clk. 1341 */ 1342 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1343 unsigned clk) 1344 { 1345 unsigned pos, start = offset + clk; 1346 unsigned end = offset + LVL_SIZE; 1347 1348 pos = find_next_bit(base->pending_map, end, start); 1349 if (pos < end) 1350 return pos - start; 1351 1352 pos = find_next_bit(base->pending_map, start, offset); 1353 return pos < start ? pos + LVL_SIZE - start : -1; 1354 } 1355 1356 /* 1357 * Search the first expiring timer in the various clock levels. Caller must 1358 * hold base->lock. 1359 */ 1360 static unsigned long __next_timer_interrupt(struct timer_base *base) 1361 { 1362 unsigned long clk, next, adj; 1363 unsigned lvl, offset = 0; 1364 1365 next = base->clk + NEXT_TIMER_MAX_DELTA; 1366 clk = base->clk; 1367 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1368 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1369 1370 if (pos >= 0) { 1371 unsigned long tmp = clk + (unsigned long) pos; 1372 1373 tmp <<= LVL_SHIFT(lvl); 1374 if (time_before(tmp, next)) 1375 next = tmp; 1376 } 1377 /* 1378 * Clock for the next level. If the current level clock lower 1379 * bits are zero, we look at the next level as is. If not we 1380 * need to advance it by one because that's going to be the 1381 * next expiring bucket in that level. base->clk is the next 1382 * expiring jiffie. So in case of: 1383 * 1384 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1385 * 0 0 0 0 0 0 1386 * 1387 * we have to look at all levels @index 0. With 1388 * 1389 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1390 * 0 0 0 0 0 2 1391 * 1392 * LVL0 has the next expiring bucket @index 2. The upper 1393 * levels have the next expiring bucket @index 1. 1394 * 1395 * In case that the propagation wraps the next level the same 1396 * rules apply: 1397 * 1398 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1399 * 0 0 0 0 F 2 1400 * 1401 * So after looking at LVL0 we get: 1402 * 1403 * LVL5 LVL4 LVL3 LVL2 LVL1 1404 * 0 0 0 1 0 1405 * 1406 * So no propagation from LVL1 to LVL2 because that happened 1407 * with the add already, but then we need to propagate further 1408 * from LVL2 to LVL3. 1409 * 1410 * So the simple check whether the lower bits of the current 1411 * level are 0 or not is sufficient for all cases. 1412 */ 1413 adj = clk & LVL_CLK_MASK ? 1 : 0; 1414 clk >>= LVL_CLK_SHIFT; 1415 clk += adj; 1416 } 1417 return next; 1418 } 1419 1420 /* 1421 * Check, if the next hrtimer event is before the next timer wheel 1422 * event: 1423 */ 1424 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1425 { 1426 u64 nextevt = hrtimer_get_next_event(); 1427 1428 /* 1429 * If high resolution timers are enabled 1430 * hrtimer_get_next_event() returns KTIME_MAX. 1431 */ 1432 if (expires <= nextevt) 1433 return expires; 1434 1435 /* 1436 * If the next timer is already expired, return the tick base 1437 * time so the tick is fired immediately. 1438 */ 1439 if (nextevt <= basem) 1440 return basem; 1441 1442 /* 1443 * Round up to the next jiffie. High resolution timers are 1444 * off, so the hrtimers are expired in the tick and we need to 1445 * make sure that this tick really expires the timer to avoid 1446 * a ping pong of the nohz stop code. 1447 * 1448 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1449 */ 1450 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1451 } 1452 1453 /** 1454 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1455 * @basej: base time jiffies 1456 * @basem: base time clock monotonic 1457 * 1458 * Returns the tick aligned clock monotonic time of the next pending 1459 * timer or KTIME_MAX if no timer is pending. 1460 */ 1461 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1462 { 1463 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1464 u64 expires = KTIME_MAX; 1465 unsigned long nextevt; 1466 bool is_max_delta; 1467 1468 /* 1469 * Pretend that there is no timer pending if the cpu is offline. 1470 * Possible pending timers will be migrated later to an active cpu. 1471 */ 1472 if (cpu_is_offline(smp_processor_id())) 1473 return expires; 1474 1475 spin_lock(&base->lock); 1476 nextevt = __next_timer_interrupt(base); 1477 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1478 base->next_expiry = nextevt; 1479 /* 1480 * We have a fresh next event. Check whether we can forward the 1481 * base. We can only do that when @basej is past base->clk 1482 * otherwise we might rewind base->clk. 1483 */ 1484 if (time_after(basej, base->clk)) { 1485 if (time_after(nextevt, basej)) 1486 base->clk = basej; 1487 else if (time_after(nextevt, base->clk)) 1488 base->clk = nextevt; 1489 } 1490 1491 if (time_before_eq(nextevt, basej)) { 1492 expires = basem; 1493 base->is_idle = false; 1494 } else { 1495 if (!is_max_delta) 1496 expires = basem + (nextevt - basej) * TICK_NSEC; 1497 /* 1498 * If we expect to sleep more than a tick, mark the base idle: 1499 */ 1500 if ((expires - basem) > TICK_NSEC) 1501 base->is_idle = true; 1502 } 1503 spin_unlock(&base->lock); 1504 1505 return cmp_next_hrtimer_event(basem, expires); 1506 } 1507 1508 /** 1509 * timer_clear_idle - Clear the idle state of the timer base 1510 * 1511 * Called with interrupts disabled 1512 */ 1513 void timer_clear_idle(void) 1514 { 1515 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1516 1517 /* 1518 * We do this unlocked. The worst outcome is a remote enqueue sending 1519 * a pointless IPI, but taking the lock would just make the window for 1520 * sending the IPI a few instructions smaller for the cost of taking 1521 * the lock in the exit from idle path. 1522 */ 1523 base->is_idle = false; 1524 } 1525 1526 static int collect_expired_timers(struct timer_base *base, 1527 struct hlist_head *heads) 1528 { 1529 /* 1530 * NOHZ optimization. After a long idle sleep we need to forward the 1531 * base to current jiffies. Avoid a loop by searching the bitfield for 1532 * the next expiring timer. 1533 */ 1534 if ((long)(jiffies - base->clk) > 2) { 1535 unsigned long next = __next_timer_interrupt(base); 1536 1537 /* 1538 * If the next timer is ahead of time forward to current 1539 * jiffies, otherwise forward to the next expiry time: 1540 */ 1541 if (time_after(next, jiffies)) { 1542 /* The call site will increment clock! */ 1543 base->clk = jiffies - 1; 1544 return 0; 1545 } 1546 base->clk = next; 1547 } 1548 return __collect_expired_timers(base, heads); 1549 } 1550 #else 1551 static inline int collect_expired_timers(struct timer_base *base, 1552 struct hlist_head *heads) 1553 { 1554 return __collect_expired_timers(base, heads); 1555 } 1556 #endif 1557 1558 /* 1559 * Called from the timer interrupt handler to charge one tick to the current 1560 * process. user_tick is 1 if the tick is user time, 0 for system. 1561 */ 1562 void update_process_times(int user_tick) 1563 { 1564 struct task_struct *p = current; 1565 1566 /* Note: this timer irq context must be accounted for as well. */ 1567 account_process_tick(p, user_tick); 1568 run_local_timers(); 1569 rcu_check_callbacks(user_tick); 1570 #ifdef CONFIG_IRQ_WORK 1571 if (in_irq()) 1572 irq_work_tick(); 1573 #endif 1574 scheduler_tick(); 1575 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1576 run_posix_cpu_timers(p); 1577 } 1578 1579 /** 1580 * __run_timers - run all expired timers (if any) on this CPU. 1581 * @base: the timer vector to be processed. 1582 */ 1583 static inline void __run_timers(struct timer_base *base) 1584 { 1585 struct hlist_head heads[LVL_DEPTH]; 1586 int levels; 1587 1588 if (!time_after_eq(jiffies, base->clk)) 1589 return; 1590 1591 spin_lock_irq(&base->lock); 1592 1593 while (time_after_eq(jiffies, base->clk)) { 1594 1595 levels = collect_expired_timers(base, heads); 1596 base->clk++; 1597 1598 while (levels--) 1599 expire_timers(base, heads + levels); 1600 } 1601 base->running_timer = NULL; 1602 spin_unlock_irq(&base->lock); 1603 } 1604 1605 /* 1606 * This function runs timers and the timer-tq in bottom half context. 1607 */ 1608 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1609 { 1610 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1611 1612 __run_timers(base); 1613 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active) 1614 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1615 } 1616 1617 /* 1618 * Called by the local, per-CPU timer interrupt on SMP. 1619 */ 1620 void run_local_timers(void) 1621 { 1622 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1623 1624 hrtimer_run_queues(); 1625 /* Raise the softirq only if required. */ 1626 if (time_before(jiffies, base->clk)) { 1627 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active) 1628 return; 1629 /* CPU is awake, so check the deferrable base. */ 1630 base++; 1631 if (time_before(jiffies, base->clk)) 1632 return; 1633 } 1634 raise_softirq(TIMER_SOFTIRQ); 1635 } 1636 1637 static void process_timeout(unsigned long __data) 1638 { 1639 wake_up_process((struct task_struct *)__data); 1640 } 1641 1642 /** 1643 * schedule_timeout - sleep until timeout 1644 * @timeout: timeout value in jiffies 1645 * 1646 * Make the current task sleep until @timeout jiffies have 1647 * elapsed. The routine will return immediately unless 1648 * the current task state has been set (see set_current_state()). 1649 * 1650 * You can set the task state as follows - 1651 * 1652 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1653 * pass before the routine returns unless the current task is explicitly 1654 * woken up, (e.g. by wake_up_process())". 1655 * 1656 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1657 * delivered to the current task or the current task is explicitly woken 1658 * up. 1659 * 1660 * The current task state is guaranteed to be TASK_RUNNING when this 1661 * routine returns. 1662 * 1663 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1664 * the CPU away without a bound on the timeout. In this case the return 1665 * value will be %MAX_SCHEDULE_TIMEOUT. 1666 * 1667 * Returns 0 when the timer has expired otherwise the remaining time in 1668 * jiffies will be returned. In all cases the return value is guaranteed 1669 * to be non-negative. 1670 */ 1671 signed long __sched schedule_timeout(signed long timeout) 1672 { 1673 struct timer_list timer; 1674 unsigned long expire; 1675 1676 switch (timeout) 1677 { 1678 case MAX_SCHEDULE_TIMEOUT: 1679 /* 1680 * These two special cases are useful to be comfortable 1681 * in the caller. Nothing more. We could take 1682 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1683 * but I' d like to return a valid offset (>=0) to allow 1684 * the caller to do everything it want with the retval. 1685 */ 1686 schedule(); 1687 goto out; 1688 default: 1689 /* 1690 * Another bit of PARANOID. Note that the retval will be 1691 * 0 since no piece of kernel is supposed to do a check 1692 * for a negative retval of schedule_timeout() (since it 1693 * should never happens anyway). You just have the printk() 1694 * that will tell you if something is gone wrong and where. 1695 */ 1696 if (timeout < 0) { 1697 printk(KERN_ERR "schedule_timeout: wrong timeout " 1698 "value %lx\n", timeout); 1699 dump_stack(); 1700 current->state = TASK_RUNNING; 1701 goto out; 1702 } 1703 } 1704 1705 expire = timeout + jiffies; 1706 1707 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); 1708 __mod_timer(&timer, expire, false); 1709 schedule(); 1710 del_singleshot_timer_sync(&timer); 1711 1712 /* Remove the timer from the object tracker */ 1713 destroy_timer_on_stack(&timer); 1714 1715 timeout = expire - jiffies; 1716 1717 out: 1718 return timeout < 0 ? 0 : timeout; 1719 } 1720 EXPORT_SYMBOL(schedule_timeout); 1721 1722 /* 1723 * We can use __set_current_state() here because schedule_timeout() calls 1724 * schedule() unconditionally. 1725 */ 1726 signed long __sched schedule_timeout_interruptible(signed long timeout) 1727 { 1728 __set_current_state(TASK_INTERRUPTIBLE); 1729 return schedule_timeout(timeout); 1730 } 1731 EXPORT_SYMBOL(schedule_timeout_interruptible); 1732 1733 signed long __sched schedule_timeout_killable(signed long timeout) 1734 { 1735 __set_current_state(TASK_KILLABLE); 1736 return schedule_timeout(timeout); 1737 } 1738 EXPORT_SYMBOL(schedule_timeout_killable); 1739 1740 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1741 { 1742 __set_current_state(TASK_UNINTERRUPTIBLE); 1743 return schedule_timeout(timeout); 1744 } 1745 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1746 1747 /* 1748 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1749 * to load average. 1750 */ 1751 signed long __sched schedule_timeout_idle(signed long timeout) 1752 { 1753 __set_current_state(TASK_IDLE); 1754 return schedule_timeout(timeout); 1755 } 1756 EXPORT_SYMBOL(schedule_timeout_idle); 1757 1758 #ifdef CONFIG_HOTPLUG_CPU 1759 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1760 { 1761 struct timer_list *timer; 1762 int cpu = new_base->cpu; 1763 1764 while (!hlist_empty(head)) { 1765 timer = hlist_entry(head->first, struct timer_list, entry); 1766 detach_timer(timer, false); 1767 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1768 internal_add_timer(new_base, timer); 1769 } 1770 } 1771 1772 int timers_dead_cpu(unsigned int cpu) 1773 { 1774 struct timer_base *old_base; 1775 struct timer_base *new_base; 1776 int b, i; 1777 1778 BUG_ON(cpu_online(cpu)); 1779 1780 for (b = 0; b < NR_BASES; b++) { 1781 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1782 new_base = get_cpu_ptr(&timer_bases[b]); 1783 /* 1784 * The caller is globally serialized and nobody else 1785 * takes two locks at once, deadlock is not possible. 1786 */ 1787 spin_lock_irq(&new_base->lock); 1788 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1789 1790 BUG_ON(old_base->running_timer); 1791 1792 for (i = 0; i < WHEEL_SIZE; i++) 1793 migrate_timer_list(new_base, old_base->vectors + i); 1794 1795 spin_unlock(&old_base->lock); 1796 spin_unlock_irq(&new_base->lock); 1797 put_cpu_ptr(&timer_bases); 1798 } 1799 return 0; 1800 } 1801 1802 #endif /* CONFIG_HOTPLUG_CPU */ 1803 1804 static void __init init_timer_cpu(int cpu) 1805 { 1806 struct timer_base *base; 1807 int i; 1808 1809 for (i = 0; i < NR_BASES; i++) { 1810 base = per_cpu_ptr(&timer_bases[i], cpu); 1811 base->cpu = cpu; 1812 spin_lock_init(&base->lock); 1813 base->clk = jiffies; 1814 } 1815 } 1816 1817 static void __init init_timer_cpus(void) 1818 { 1819 int cpu; 1820 1821 for_each_possible_cpu(cpu) 1822 init_timer_cpu(cpu); 1823 } 1824 1825 void __init init_timers(void) 1826 { 1827 init_timer_cpus(); 1828 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 1829 } 1830 1831 /** 1832 * msleep - sleep safely even with waitqueue interruptions 1833 * @msecs: Time in milliseconds to sleep for 1834 */ 1835 void msleep(unsigned int msecs) 1836 { 1837 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1838 1839 while (timeout) 1840 timeout = schedule_timeout_uninterruptible(timeout); 1841 } 1842 1843 EXPORT_SYMBOL(msleep); 1844 1845 /** 1846 * msleep_interruptible - sleep waiting for signals 1847 * @msecs: Time in milliseconds to sleep for 1848 */ 1849 unsigned long msleep_interruptible(unsigned int msecs) 1850 { 1851 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1852 1853 while (timeout && !signal_pending(current)) 1854 timeout = schedule_timeout_interruptible(timeout); 1855 return jiffies_to_msecs(timeout); 1856 } 1857 1858 EXPORT_SYMBOL(msleep_interruptible); 1859 1860 /** 1861 * usleep_range - Sleep for an approximate time 1862 * @min: Minimum time in usecs to sleep 1863 * @max: Maximum time in usecs to sleep 1864 * 1865 * In non-atomic context where the exact wakeup time is flexible, use 1866 * usleep_range() instead of udelay(). The sleep improves responsiveness 1867 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 1868 * power usage by allowing hrtimers to take advantage of an already- 1869 * scheduled interrupt instead of scheduling a new one just for this sleep. 1870 */ 1871 void __sched usleep_range(unsigned long min, unsigned long max) 1872 { 1873 ktime_t exp = ktime_add_us(ktime_get(), min); 1874 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 1875 1876 for (;;) { 1877 __set_current_state(TASK_UNINTERRUPTIBLE); 1878 /* Do not return before the requested sleep time has elapsed */ 1879 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 1880 break; 1881 } 1882 } 1883 EXPORT_SYMBOL(usleep_range); 1884