1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel internal timers 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 8 * 9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 10 * "A Kernel Model for Precision Timekeeping" by Dave Mills 11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 12 * serialize accesses to xtime/lost_ticks). 13 * Copyright (C) 1998 Andrea Arcangeli 14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 19 */ 20 21 #include <linux/kernel_stat.h> 22 #include <linux/export.h> 23 #include <linux/interrupt.h> 24 #include <linux/percpu.h> 25 #include <linux/init.h> 26 #include <linux/mm.h> 27 #include <linux/swap.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/notifier.h> 30 #include <linux/thread_info.h> 31 #include <linux/time.h> 32 #include <linux/jiffies.h> 33 #include <linux/posix-timers.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/delay.h> 37 #include <linux/tick.h> 38 #include <linux/kallsyms.h> 39 #include <linux/irq_work.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/sched/nohz.h> 43 #include <linux/sched/debug.h> 44 #include <linux/slab.h> 45 #include <linux/compat.h> 46 #include <linux/random.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/div64.h> 51 #include <asm/timex.h> 52 #include <asm/io.h> 53 54 #include "tick-internal.h" 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/timer.h> 58 59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 60 61 EXPORT_SYMBOL(jiffies_64); 62 63 /* 64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of 65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each 66 * level has a different granularity. 67 * 68 * The level granularity is: LVL_CLK_DIV ^ lvl 69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) 70 * 71 * The array level of a newly armed timer depends on the relative expiry 72 * time. The farther the expiry time is away the higher the array level and 73 * therefor the granularity becomes. 74 * 75 * Contrary to the original timer wheel implementation, which aims for 'exact' 76 * expiry of the timers, this implementation removes the need for recascading 77 * the timers into the lower array levels. The previous 'classic' timer wheel 78 * implementation of the kernel already violated the 'exact' expiry by adding 79 * slack to the expiry time to provide batched expiration. The granularity 80 * levels provide implicit batching. 81 * 82 * This is an optimization of the original timer wheel implementation for the 83 * majority of the timer wheel use cases: timeouts. The vast majority of 84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If 85 * the timeout expires it indicates that normal operation is disturbed, so it 86 * does not matter much whether the timeout comes with a slight delay. 87 * 88 * The only exception to this are networking timers with a small expiry 89 * time. They rely on the granularity. Those fit into the first wheel level, 90 * which has HZ granularity. 91 * 92 * We don't have cascading anymore. timers with a expiry time above the 93 * capacity of the last wheel level are force expired at the maximum timeout 94 * value of the last wheel level. From data sampling we know that the maximum 95 * value observed is 5 days (network connection tracking), so this should not 96 * be an issue. 97 * 98 * The currently chosen array constants values are a good compromise between 99 * array size and granularity. 100 * 101 * This results in the following granularity and range levels: 102 * 103 * HZ 1000 steps 104 * Level Offset Granularity Range 105 * 0 0 1 ms 0 ms - 63 ms 106 * 1 64 8 ms 64 ms - 511 ms 107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) 108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) 109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) 110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) 111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) 112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) 113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) 114 * 115 * HZ 300 116 * Level Offset Granularity Range 117 * 0 0 3 ms 0 ms - 210 ms 118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) 119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) 120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) 121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) 122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) 123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) 124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) 125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) 126 * 127 * HZ 250 128 * Level Offset Granularity Range 129 * 0 0 4 ms 0 ms - 255 ms 130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) 131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) 132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) 133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) 134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) 135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) 136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) 137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) 138 * 139 * HZ 100 140 * Level Offset Granularity Range 141 * 0 0 10 ms 0 ms - 630 ms 142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) 143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) 144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) 145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) 146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) 147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) 148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) 149 */ 150 151 /* Clock divisor for the next level */ 152 #define LVL_CLK_SHIFT 3 153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) 154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1) 155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) 156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) 157 158 /* 159 * The time start value for each level to select the bucket at enqueue 160 * time. We start from the last possible delta of the previous level 161 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). 162 */ 163 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) 164 165 /* Size of each clock level */ 166 #define LVL_BITS 6 167 #define LVL_SIZE (1UL << LVL_BITS) 168 #define LVL_MASK (LVL_SIZE - 1) 169 #define LVL_OFFS(n) ((n) * LVL_SIZE) 170 171 /* Level depth */ 172 #if HZ > 100 173 # define LVL_DEPTH 9 174 # else 175 # define LVL_DEPTH 8 176 #endif 177 178 /* The cutoff (max. capacity of the wheel) */ 179 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) 180 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) 181 182 /* 183 * The resulting wheel size. If NOHZ is configured we allocate two 184 * wheels so we have a separate storage for the deferrable timers. 185 */ 186 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) 187 188 #ifdef CONFIG_NO_HZ_COMMON 189 # define NR_BASES 2 190 # define BASE_STD 0 191 # define BASE_DEF 1 192 #else 193 # define NR_BASES 1 194 # define BASE_STD 0 195 # define BASE_DEF 0 196 #endif 197 198 struct timer_base { 199 raw_spinlock_t lock; 200 struct timer_list *running_timer; 201 #ifdef CONFIG_PREEMPT_RT 202 spinlock_t expiry_lock; 203 atomic_t timer_waiters; 204 #endif 205 unsigned long clk; 206 unsigned long next_expiry; 207 unsigned int cpu; 208 bool next_expiry_recalc; 209 bool is_idle; 210 DECLARE_BITMAP(pending_map, WHEEL_SIZE); 211 struct hlist_head vectors[WHEEL_SIZE]; 212 } ____cacheline_aligned; 213 214 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); 215 216 #ifdef CONFIG_NO_HZ_COMMON 217 218 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); 219 static DEFINE_MUTEX(timer_keys_mutex); 220 221 static void timer_update_keys(struct work_struct *work); 222 static DECLARE_WORK(timer_update_work, timer_update_keys); 223 224 #ifdef CONFIG_SMP 225 unsigned int sysctl_timer_migration = 1; 226 227 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); 228 229 static void timers_update_migration(void) 230 { 231 if (sysctl_timer_migration && tick_nohz_active) 232 static_branch_enable(&timers_migration_enabled); 233 else 234 static_branch_disable(&timers_migration_enabled); 235 } 236 #else 237 static inline void timers_update_migration(void) { } 238 #endif /* !CONFIG_SMP */ 239 240 static void timer_update_keys(struct work_struct *work) 241 { 242 mutex_lock(&timer_keys_mutex); 243 timers_update_migration(); 244 static_branch_enable(&timers_nohz_active); 245 mutex_unlock(&timer_keys_mutex); 246 } 247 248 void timers_update_nohz(void) 249 { 250 schedule_work(&timer_update_work); 251 } 252 253 int timer_migration_handler(struct ctl_table *table, int write, 254 void *buffer, size_t *lenp, loff_t *ppos) 255 { 256 int ret; 257 258 mutex_lock(&timer_keys_mutex); 259 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 260 if (!ret && write) 261 timers_update_migration(); 262 mutex_unlock(&timer_keys_mutex); 263 return ret; 264 } 265 266 static inline bool is_timers_nohz_active(void) 267 { 268 return static_branch_unlikely(&timers_nohz_active); 269 } 270 #else 271 static inline bool is_timers_nohz_active(void) { return false; } 272 #endif /* NO_HZ_COMMON */ 273 274 static unsigned long round_jiffies_common(unsigned long j, int cpu, 275 bool force_up) 276 { 277 int rem; 278 unsigned long original = j; 279 280 /* 281 * We don't want all cpus firing their timers at once hitting the 282 * same lock or cachelines, so we skew each extra cpu with an extra 283 * 3 jiffies. This 3 jiffies came originally from the mm/ code which 284 * already did this. 285 * The skew is done by adding 3*cpunr, then round, then subtract this 286 * extra offset again. 287 */ 288 j += cpu * 3; 289 290 rem = j % HZ; 291 292 /* 293 * If the target jiffie is just after a whole second (which can happen 294 * due to delays of the timer irq, long irq off times etc etc) then 295 * we should round down to the whole second, not up. Use 1/4th second 296 * as cutoff for this rounding as an extreme upper bound for this. 297 * But never round down if @force_up is set. 298 */ 299 if (rem < HZ/4 && !force_up) /* round down */ 300 j = j - rem; 301 else /* round up */ 302 j = j - rem + HZ; 303 304 /* now that we have rounded, subtract the extra skew again */ 305 j -= cpu * 3; 306 307 /* 308 * Make sure j is still in the future. Otherwise return the 309 * unmodified value. 310 */ 311 return time_is_after_jiffies(j) ? j : original; 312 } 313 314 /** 315 * __round_jiffies - function to round jiffies to a full second 316 * @j: the time in (absolute) jiffies that should be rounded 317 * @cpu: the processor number on which the timeout will happen 318 * 319 * __round_jiffies() rounds an absolute time in the future (in jiffies) 320 * up or down to (approximately) full seconds. This is useful for timers 321 * for which the exact time they fire does not matter too much, as long as 322 * they fire approximately every X seconds. 323 * 324 * By rounding these timers to whole seconds, all such timers will fire 325 * at the same time, rather than at various times spread out. The goal 326 * of this is to have the CPU wake up less, which saves power. 327 * 328 * The exact rounding is skewed for each processor to avoid all 329 * processors firing at the exact same time, which could lead 330 * to lock contention or spurious cache line bouncing. 331 * 332 * The return value is the rounded version of the @j parameter. 333 */ 334 unsigned long __round_jiffies(unsigned long j, int cpu) 335 { 336 return round_jiffies_common(j, cpu, false); 337 } 338 EXPORT_SYMBOL_GPL(__round_jiffies); 339 340 /** 341 * __round_jiffies_relative - function to round jiffies to a full second 342 * @j: the time in (relative) jiffies that should be rounded 343 * @cpu: the processor number on which the timeout will happen 344 * 345 * __round_jiffies_relative() rounds a time delta in the future (in jiffies) 346 * up or down to (approximately) full seconds. This is useful for timers 347 * for which the exact time they fire does not matter too much, as long as 348 * they fire approximately every X seconds. 349 * 350 * By rounding these timers to whole seconds, all such timers will fire 351 * at the same time, rather than at various times spread out. The goal 352 * of this is to have the CPU wake up less, which saves power. 353 * 354 * The exact rounding is skewed for each processor to avoid all 355 * processors firing at the exact same time, which could lead 356 * to lock contention or spurious cache line bouncing. 357 * 358 * The return value is the rounded version of the @j parameter. 359 */ 360 unsigned long __round_jiffies_relative(unsigned long j, int cpu) 361 { 362 unsigned long j0 = jiffies; 363 364 /* Use j0 because jiffies might change while we run */ 365 return round_jiffies_common(j + j0, cpu, false) - j0; 366 } 367 EXPORT_SYMBOL_GPL(__round_jiffies_relative); 368 369 /** 370 * round_jiffies - function to round jiffies to a full second 371 * @j: the time in (absolute) jiffies that should be rounded 372 * 373 * round_jiffies() rounds an absolute time in the future (in jiffies) 374 * up or down to (approximately) full seconds. This is useful for timers 375 * for which the exact time they fire does not matter too much, as long as 376 * they fire approximately every X seconds. 377 * 378 * By rounding these timers to whole seconds, all such timers will fire 379 * at the same time, rather than at various times spread out. The goal 380 * of this is to have the CPU wake up less, which saves power. 381 * 382 * The return value is the rounded version of the @j parameter. 383 */ 384 unsigned long round_jiffies(unsigned long j) 385 { 386 return round_jiffies_common(j, raw_smp_processor_id(), false); 387 } 388 EXPORT_SYMBOL_GPL(round_jiffies); 389 390 /** 391 * round_jiffies_relative - function to round jiffies to a full second 392 * @j: the time in (relative) jiffies that should be rounded 393 * 394 * round_jiffies_relative() rounds a time delta in the future (in jiffies) 395 * up or down to (approximately) full seconds. This is useful for timers 396 * for which the exact time they fire does not matter too much, as long as 397 * they fire approximately every X seconds. 398 * 399 * By rounding these timers to whole seconds, all such timers will fire 400 * at the same time, rather than at various times spread out. The goal 401 * of this is to have the CPU wake up less, which saves power. 402 * 403 * The return value is the rounded version of the @j parameter. 404 */ 405 unsigned long round_jiffies_relative(unsigned long j) 406 { 407 return __round_jiffies_relative(j, raw_smp_processor_id()); 408 } 409 EXPORT_SYMBOL_GPL(round_jiffies_relative); 410 411 /** 412 * __round_jiffies_up - function to round jiffies up to a full second 413 * @j: the time in (absolute) jiffies that should be rounded 414 * @cpu: the processor number on which the timeout will happen 415 * 416 * This is the same as __round_jiffies() except that it will never 417 * round down. This is useful for timeouts for which the exact time 418 * of firing does not matter too much, as long as they don't fire too 419 * early. 420 */ 421 unsigned long __round_jiffies_up(unsigned long j, int cpu) 422 { 423 return round_jiffies_common(j, cpu, true); 424 } 425 EXPORT_SYMBOL_GPL(__round_jiffies_up); 426 427 /** 428 * __round_jiffies_up_relative - function to round jiffies up to a full second 429 * @j: the time in (relative) jiffies that should be rounded 430 * @cpu: the processor number on which the timeout will happen 431 * 432 * This is the same as __round_jiffies_relative() except that it will never 433 * round down. This is useful for timeouts for which the exact time 434 * of firing does not matter too much, as long as they don't fire too 435 * early. 436 */ 437 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) 438 { 439 unsigned long j0 = jiffies; 440 441 /* Use j0 because jiffies might change while we run */ 442 return round_jiffies_common(j + j0, cpu, true) - j0; 443 } 444 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); 445 446 /** 447 * round_jiffies_up - function to round jiffies up to a full second 448 * @j: the time in (absolute) jiffies that should be rounded 449 * 450 * This is the same as round_jiffies() except that it will never 451 * round down. This is useful for timeouts for which the exact time 452 * of firing does not matter too much, as long as they don't fire too 453 * early. 454 */ 455 unsigned long round_jiffies_up(unsigned long j) 456 { 457 return round_jiffies_common(j, raw_smp_processor_id(), true); 458 } 459 EXPORT_SYMBOL_GPL(round_jiffies_up); 460 461 /** 462 * round_jiffies_up_relative - function to round jiffies up to a full second 463 * @j: the time in (relative) jiffies that should be rounded 464 * 465 * This is the same as round_jiffies_relative() except that it will never 466 * round down. This is useful for timeouts for which the exact time 467 * of firing does not matter too much, as long as they don't fire too 468 * early. 469 */ 470 unsigned long round_jiffies_up_relative(unsigned long j) 471 { 472 return __round_jiffies_up_relative(j, raw_smp_processor_id()); 473 } 474 EXPORT_SYMBOL_GPL(round_jiffies_up_relative); 475 476 477 static inline unsigned int timer_get_idx(struct timer_list *timer) 478 { 479 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; 480 } 481 482 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) 483 { 484 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | 485 idx << TIMER_ARRAYSHIFT; 486 } 487 488 /* 489 * Helper function to calculate the array index for a given expiry 490 * time. 491 */ 492 static inline unsigned calc_index(unsigned long expires, unsigned lvl, 493 unsigned long *bucket_expiry) 494 { 495 496 /* 497 * The timer wheel has to guarantee that a timer does not fire 498 * early. Early expiry can happen due to: 499 * - Timer is armed at the edge of a tick 500 * - Truncation of the expiry time in the outer wheel levels 501 * 502 * Round up with level granularity to prevent this. 503 */ 504 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); 505 *bucket_expiry = expires << LVL_SHIFT(lvl); 506 return LVL_OFFS(lvl) + (expires & LVL_MASK); 507 } 508 509 static int calc_wheel_index(unsigned long expires, unsigned long clk, 510 unsigned long *bucket_expiry) 511 { 512 unsigned long delta = expires - clk; 513 unsigned int idx; 514 515 if (delta < LVL_START(1)) { 516 idx = calc_index(expires, 0, bucket_expiry); 517 } else if (delta < LVL_START(2)) { 518 idx = calc_index(expires, 1, bucket_expiry); 519 } else if (delta < LVL_START(3)) { 520 idx = calc_index(expires, 2, bucket_expiry); 521 } else if (delta < LVL_START(4)) { 522 idx = calc_index(expires, 3, bucket_expiry); 523 } else if (delta < LVL_START(5)) { 524 idx = calc_index(expires, 4, bucket_expiry); 525 } else if (delta < LVL_START(6)) { 526 idx = calc_index(expires, 5, bucket_expiry); 527 } else if (delta < LVL_START(7)) { 528 idx = calc_index(expires, 6, bucket_expiry); 529 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { 530 idx = calc_index(expires, 7, bucket_expiry); 531 } else if ((long) delta < 0) { 532 idx = clk & LVL_MASK; 533 *bucket_expiry = clk; 534 } else { 535 /* 536 * Force expire obscene large timeouts to expire at the 537 * capacity limit of the wheel. 538 */ 539 if (delta >= WHEEL_TIMEOUT_CUTOFF) 540 expires = clk + WHEEL_TIMEOUT_MAX; 541 542 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); 543 } 544 return idx; 545 } 546 547 static void 548 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) 549 { 550 if (!is_timers_nohz_active()) 551 return; 552 553 /* 554 * TODO: This wants some optimizing similar to the code below, but we 555 * will do that when we switch from push to pull for deferrable timers. 556 */ 557 if (timer->flags & TIMER_DEFERRABLE) { 558 if (tick_nohz_full_cpu(base->cpu)) 559 wake_up_nohz_cpu(base->cpu); 560 return; 561 } 562 563 /* 564 * We might have to IPI the remote CPU if the base is idle and the 565 * timer is not deferrable. If the other CPU is on the way to idle 566 * then it can't set base->is_idle as we hold the base lock: 567 */ 568 if (base->is_idle) 569 wake_up_nohz_cpu(base->cpu); 570 } 571 572 /* 573 * Enqueue the timer into the hash bucket, mark it pending in 574 * the bitmap, store the index in the timer flags then wake up 575 * the target CPU if needed. 576 */ 577 static void enqueue_timer(struct timer_base *base, struct timer_list *timer, 578 unsigned int idx, unsigned long bucket_expiry) 579 { 580 581 hlist_add_head(&timer->entry, base->vectors + idx); 582 __set_bit(idx, base->pending_map); 583 timer_set_idx(timer, idx); 584 585 trace_timer_start(timer, timer->expires, timer->flags); 586 587 /* 588 * Check whether this is the new first expiring timer. The 589 * effective expiry time of the timer is required here 590 * (bucket_expiry) instead of timer->expires. 591 */ 592 if (time_before(bucket_expiry, base->next_expiry)) { 593 /* 594 * Set the next expiry time and kick the CPU so it 595 * can reevaluate the wheel: 596 */ 597 base->next_expiry = bucket_expiry; 598 base->next_expiry_recalc = false; 599 trigger_dyntick_cpu(base, timer); 600 } 601 } 602 603 static void internal_add_timer(struct timer_base *base, struct timer_list *timer) 604 { 605 unsigned long bucket_expiry; 606 unsigned int idx; 607 608 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); 609 enqueue_timer(base, timer, idx, bucket_expiry); 610 } 611 612 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 613 614 static const struct debug_obj_descr timer_debug_descr; 615 616 static void *timer_debug_hint(void *addr) 617 { 618 return ((struct timer_list *) addr)->function; 619 } 620 621 static bool timer_is_static_object(void *addr) 622 { 623 struct timer_list *timer = addr; 624 625 return (timer->entry.pprev == NULL && 626 timer->entry.next == TIMER_ENTRY_STATIC); 627 } 628 629 /* 630 * fixup_init is called when: 631 * - an active object is initialized 632 */ 633 static bool timer_fixup_init(void *addr, enum debug_obj_state state) 634 { 635 struct timer_list *timer = addr; 636 637 switch (state) { 638 case ODEBUG_STATE_ACTIVE: 639 del_timer_sync(timer); 640 debug_object_init(timer, &timer_debug_descr); 641 return true; 642 default: 643 return false; 644 } 645 } 646 647 /* Stub timer callback for improperly used timers. */ 648 static void stub_timer(struct timer_list *unused) 649 { 650 WARN_ON(1); 651 } 652 653 /* 654 * fixup_activate is called when: 655 * - an active object is activated 656 * - an unknown non-static object is activated 657 */ 658 static bool timer_fixup_activate(void *addr, enum debug_obj_state state) 659 { 660 struct timer_list *timer = addr; 661 662 switch (state) { 663 case ODEBUG_STATE_NOTAVAILABLE: 664 timer_setup(timer, stub_timer, 0); 665 return true; 666 667 case ODEBUG_STATE_ACTIVE: 668 WARN_ON(1); 669 fallthrough; 670 default: 671 return false; 672 } 673 } 674 675 /* 676 * fixup_free is called when: 677 * - an active object is freed 678 */ 679 static bool timer_fixup_free(void *addr, enum debug_obj_state state) 680 { 681 struct timer_list *timer = addr; 682 683 switch (state) { 684 case ODEBUG_STATE_ACTIVE: 685 del_timer_sync(timer); 686 debug_object_free(timer, &timer_debug_descr); 687 return true; 688 default: 689 return false; 690 } 691 } 692 693 /* 694 * fixup_assert_init is called when: 695 * - an untracked/uninit-ed object is found 696 */ 697 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) 698 { 699 struct timer_list *timer = addr; 700 701 switch (state) { 702 case ODEBUG_STATE_NOTAVAILABLE: 703 timer_setup(timer, stub_timer, 0); 704 return true; 705 default: 706 return false; 707 } 708 } 709 710 static const struct debug_obj_descr timer_debug_descr = { 711 .name = "timer_list", 712 .debug_hint = timer_debug_hint, 713 .is_static_object = timer_is_static_object, 714 .fixup_init = timer_fixup_init, 715 .fixup_activate = timer_fixup_activate, 716 .fixup_free = timer_fixup_free, 717 .fixup_assert_init = timer_fixup_assert_init, 718 }; 719 720 static inline void debug_timer_init(struct timer_list *timer) 721 { 722 debug_object_init(timer, &timer_debug_descr); 723 } 724 725 static inline void debug_timer_activate(struct timer_list *timer) 726 { 727 debug_object_activate(timer, &timer_debug_descr); 728 } 729 730 static inline void debug_timer_deactivate(struct timer_list *timer) 731 { 732 debug_object_deactivate(timer, &timer_debug_descr); 733 } 734 735 static inline void debug_timer_free(struct timer_list *timer) 736 { 737 debug_object_free(timer, &timer_debug_descr); 738 } 739 740 static inline void debug_timer_assert_init(struct timer_list *timer) 741 { 742 debug_object_assert_init(timer, &timer_debug_descr); 743 } 744 745 static void do_init_timer(struct timer_list *timer, 746 void (*func)(struct timer_list *), 747 unsigned int flags, 748 const char *name, struct lock_class_key *key); 749 750 void init_timer_on_stack_key(struct timer_list *timer, 751 void (*func)(struct timer_list *), 752 unsigned int flags, 753 const char *name, struct lock_class_key *key) 754 { 755 debug_object_init_on_stack(timer, &timer_debug_descr); 756 do_init_timer(timer, func, flags, name, key); 757 } 758 EXPORT_SYMBOL_GPL(init_timer_on_stack_key); 759 760 void destroy_timer_on_stack(struct timer_list *timer) 761 { 762 debug_object_free(timer, &timer_debug_descr); 763 } 764 EXPORT_SYMBOL_GPL(destroy_timer_on_stack); 765 766 #else 767 static inline void debug_timer_init(struct timer_list *timer) { } 768 static inline void debug_timer_activate(struct timer_list *timer) { } 769 static inline void debug_timer_deactivate(struct timer_list *timer) { } 770 static inline void debug_timer_assert_init(struct timer_list *timer) { } 771 #endif 772 773 static inline void debug_init(struct timer_list *timer) 774 { 775 debug_timer_init(timer); 776 trace_timer_init(timer); 777 } 778 779 static inline void debug_deactivate(struct timer_list *timer) 780 { 781 debug_timer_deactivate(timer); 782 trace_timer_cancel(timer); 783 } 784 785 static inline void debug_assert_init(struct timer_list *timer) 786 { 787 debug_timer_assert_init(timer); 788 } 789 790 static void do_init_timer(struct timer_list *timer, 791 void (*func)(struct timer_list *), 792 unsigned int flags, 793 const char *name, struct lock_class_key *key) 794 { 795 timer->entry.pprev = NULL; 796 timer->function = func; 797 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) 798 flags &= TIMER_INIT_FLAGS; 799 timer->flags = flags | raw_smp_processor_id(); 800 lockdep_init_map(&timer->lockdep_map, name, key, 0); 801 } 802 803 /** 804 * init_timer_key - initialize a timer 805 * @timer: the timer to be initialized 806 * @func: timer callback function 807 * @flags: timer flags 808 * @name: name of the timer 809 * @key: lockdep class key of the fake lock used for tracking timer 810 * sync lock dependencies 811 * 812 * init_timer_key() must be done to a timer prior calling *any* of the 813 * other timer functions. 814 */ 815 void init_timer_key(struct timer_list *timer, 816 void (*func)(struct timer_list *), unsigned int flags, 817 const char *name, struct lock_class_key *key) 818 { 819 debug_init(timer); 820 do_init_timer(timer, func, flags, name, key); 821 } 822 EXPORT_SYMBOL(init_timer_key); 823 824 static inline void detach_timer(struct timer_list *timer, bool clear_pending) 825 { 826 struct hlist_node *entry = &timer->entry; 827 828 debug_deactivate(timer); 829 830 __hlist_del(entry); 831 if (clear_pending) 832 entry->pprev = NULL; 833 entry->next = LIST_POISON2; 834 } 835 836 static int detach_if_pending(struct timer_list *timer, struct timer_base *base, 837 bool clear_pending) 838 { 839 unsigned idx = timer_get_idx(timer); 840 841 if (!timer_pending(timer)) 842 return 0; 843 844 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) { 845 __clear_bit(idx, base->pending_map); 846 base->next_expiry_recalc = true; 847 } 848 849 detach_timer(timer, clear_pending); 850 return 1; 851 } 852 853 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) 854 { 855 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); 856 857 /* 858 * If the timer is deferrable and NO_HZ_COMMON is set then we need 859 * to use the deferrable base. 860 */ 861 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 862 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); 863 return base; 864 } 865 866 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) 867 { 868 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 869 870 /* 871 * If the timer is deferrable and NO_HZ_COMMON is set then we need 872 * to use the deferrable base. 873 */ 874 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) 875 base = this_cpu_ptr(&timer_bases[BASE_DEF]); 876 return base; 877 } 878 879 static inline struct timer_base *get_timer_base(u32 tflags) 880 { 881 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); 882 } 883 884 static inline struct timer_base * 885 get_target_base(struct timer_base *base, unsigned tflags) 886 { 887 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 888 if (static_branch_likely(&timers_migration_enabled) && 889 !(tflags & TIMER_PINNED)) 890 return get_timer_cpu_base(tflags, get_nohz_timer_target()); 891 #endif 892 return get_timer_this_cpu_base(tflags); 893 } 894 895 static inline void forward_timer_base(struct timer_base *base) 896 { 897 unsigned long jnow = READ_ONCE(jiffies); 898 899 /* 900 * No need to forward if we are close enough below jiffies. 901 * Also while executing timers, base->clk is 1 offset ahead 902 * of jiffies to avoid endless requeuing to current jffies. 903 */ 904 if ((long)(jnow - base->clk) < 1) 905 return; 906 907 /* 908 * If the next expiry value is > jiffies, then we fast forward to 909 * jiffies otherwise we forward to the next expiry value. 910 */ 911 if (time_after(base->next_expiry, jnow)) { 912 base->clk = jnow; 913 } else { 914 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) 915 return; 916 base->clk = base->next_expiry; 917 } 918 } 919 920 921 /* 922 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means 923 * that all timers which are tied to this base are locked, and the base itself 924 * is locked too. 925 * 926 * So __run_timers/migrate_timers can safely modify all timers which could 927 * be found in the base->vectors array. 928 * 929 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need 930 * to wait until the migration is done. 931 */ 932 static struct timer_base *lock_timer_base(struct timer_list *timer, 933 unsigned long *flags) 934 __acquires(timer->base->lock) 935 { 936 for (;;) { 937 struct timer_base *base; 938 u32 tf; 939 940 /* 941 * We need to use READ_ONCE() here, otherwise the compiler 942 * might re-read @tf between the check for TIMER_MIGRATING 943 * and spin_lock(). 944 */ 945 tf = READ_ONCE(timer->flags); 946 947 if (!(tf & TIMER_MIGRATING)) { 948 base = get_timer_base(tf); 949 raw_spin_lock_irqsave(&base->lock, *flags); 950 if (timer->flags == tf) 951 return base; 952 raw_spin_unlock_irqrestore(&base->lock, *flags); 953 } 954 cpu_relax(); 955 } 956 } 957 958 #define MOD_TIMER_PENDING_ONLY 0x01 959 #define MOD_TIMER_REDUCE 0x02 960 #define MOD_TIMER_NOTPENDING 0x04 961 962 static inline int 963 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) 964 { 965 unsigned long clk = 0, flags, bucket_expiry; 966 struct timer_base *base, *new_base; 967 unsigned int idx = UINT_MAX; 968 int ret = 0; 969 970 BUG_ON(!timer->function); 971 972 /* 973 * This is a common optimization triggered by the networking code - if 974 * the timer is re-modified to have the same timeout or ends up in the 975 * same array bucket then just return: 976 */ 977 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { 978 /* 979 * The downside of this optimization is that it can result in 980 * larger granularity than you would get from adding a new 981 * timer with this expiry. 982 */ 983 long diff = timer->expires - expires; 984 985 if (!diff) 986 return 1; 987 if (options & MOD_TIMER_REDUCE && diff <= 0) 988 return 1; 989 990 /* 991 * We lock timer base and calculate the bucket index right 992 * here. If the timer ends up in the same bucket, then we 993 * just update the expiry time and avoid the whole 994 * dequeue/enqueue dance. 995 */ 996 base = lock_timer_base(timer, &flags); 997 forward_timer_base(base); 998 999 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && 1000 time_before_eq(timer->expires, expires)) { 1001 ret = 1; 1002 goto out_unlock; 1003 } 1004 1005 clk = base->clk; 1006 idx = calc_wheel_index(expires, clk, &bucket_expiry); 1007 1008 /* 1009 * Retrieve and compare the array index of the pending 1010 * timer. If it matches set the expiry to the new value so a 1011 * subsequent call will exit in the expires check above. 1012 */ 1013 if (idx == timer_get_idx(timer)) { 1014 if (!(options & MOD_TIMER_REDUCE)) 1015 timer->expires = expires; 1016 else if (time_after(timer->expires, expires)) 1017 timer->expires = expires; 1018 ret = 1; 1019 goto out_unlock; 1020 } 1021 } else { 1022 base = lock_timer_base(timer, &flags); 1023 forward_timer_base(base); 1024 } 1025 1026 ret = detach_if_pending(timer, base, false); 1027 if (!ret && (options & MOD_TIMER_PENDING_ONLY)) 1028 goto out_unlock; 1029 1030 new_base = get_target_base(base, timer->flags); 1031 1032 if (base != new_base) { 1033 /* 1034 * We are trying to schedule the timer on the new base. 1035 * However we can't change timer's base while it is running, 1036 * otherwise del_timer_sync() can't detect that the timer's 1037 * handler yet has not finished. This also guarantees that the 1038 * timer is serialized wrt itself. 1039 */ 1040 if (likely(base->running_timer != timer)) { 1041 /* See the comment in lock_timer_base() */ 1042 timer->flags |= TIMER_MIGRATING; 1043 1044 raw_spin_unlock(&base->lock); 1045 base = new_base; 1046 raw_spin_lock(&base->lock); 1047 WRITE_ONCE(timer->flags, 1048 (timer->flags & ~TIMER_BASEMASK) | base->cpu); 1049 forward_timer_base(base); 1050 } 1051 } 1052 1053 debug_timer_activate(timer); 1054 1055 timer->expires = expires; 1056 /* 1057 * If 'idx' was calculated above and the base time did not advance 1058 * between calculating 'idx' and possibly switching the base, only 1059 * enqueue_timer() is required. Otherwise we need to (re)calculate 1060 * the wheel index via internal_add_timer(). 1061 */ 1062 if (idx != UINT_MAX && clk == base->clk) 1063 enqueue_timer(base, timer, idx, bucket_expiry); 1064 else 1065 internal_add_timer(base, timer); 1066 1067 out_unlock: 1068 raw_spin_unlock_irqrestore(&base->lock, flags); 1069 1070 return ret; 1071 } 1072 1073 /** 1074 * mod_timer_pending - modify a pending timer's timeout 1075 * @timer: the pending timer to be modified 1076 * @expires: new timeout in jiffies 1077 * 1078 * mod_timer_pending() is the same for pending timers as mod_timer(), 1079 * but will not re-activate and modify already deleted timers. 1080 * 1081 * It is useful for unserialized use of timers. 1082 */ 1083 int mod_timer_pending(struct timer_list *timer, unsigned long expires) 1084 { 1085 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); 1086 } 1087 EXPORT_SYMBOL(mod_timer_pending); 1088 1089 /** 1090 * mod_timer - modify a timer's timeout 1091 * @timer: the timer to be modified 1092 * @expires: new timeout in jiffies 1093 * 1094 * mod_timer() is a more efficient way to update the expire field of an 1095 * active timer (if the timer is inactive it will be activated) 1096 * 1097 * mod_timer(timer, expires) is equivalent to: 1098 * 1099 * del_timer(timer); timer->expires = expires; add_timer(timer); 1100 * 1101 * Note that if there are multiple unserialized concurrent users of the 1102 * same timer, then mod_timer() is the only safe way to modify the timeout, 1103 * since add_timer() cannot modify an already running timer. 1104 * 1105 * The function returns whether it has modified a pending timer or not. 1106 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 1107 * active timer returns 1.) 1108 */ 1109 int mod_timer(struct timer_list *timer, unsigned long expires) 1110 { 1111 return __mod_timer(timer, expires, 0); 1112 } 1113 EXPORT_SYMBOL(mod_timer); 1114 1115 /** 1116 * timer_reduce - Modify a timer's timeout if it would reduce the timeout 1117 * @timer: The timer to be modified 1118 * @expires: New timeout in jiffies 1119 * 1120 * timer_reduce() is very similar to mod_timer(), except that it will only 1121 * modify a running timer if that would reduce the expiration time (it will 1122 * start a timer that isn't running). 1123 */ 1124 int timer_reduce(struct timer_list *timer, unsigned long expires) 1125 { 1126 return __mod_timer(timer, expires, MOD_TIMER_REDUCE); 1127 } 1128 EXPORT_SYMBOL(timer_reduce); 1129 1130 /** 1131 * add_timer - start a timer 1132 * @timer: the timer to be added 1133 * 1134 * The kernel will do a ->function(@timer) callback from the 1135 * timer interrupt at the ->expires point in the future. The 1136 * current time is 'jiffies'. 1137 * 1138 * The timer's ->expires, ->function fields must be set prior calling this 1139 * function. 1140 * 1141 * Timers with an ->expires field in the past will be executed in the next 1142 * timer tick. 1143 */ 1144 void add_timer(struct timer_list *timer) 1145 { 1146 BUG_ON(timer_pending(timer)); 1147 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); 1148 } 1149 EXPORT_SYMBOL(add_timer); 1150 1151 /** 1152 * add_timer_on - start a timer on a particular CPU 1153 * @timer: the timer to be added 1154 * @cpu: the CPU to start it on 1155 * 1156 * This is not very scalable on SMP. Double adds are not possible. 1157 */ 1158 void add_timer_on(struct timer_list *timer, int cpu) 1159 { 1160 struct timer_base *new_base, *base; 1161 unsigned long flags; 1162 1163 BUG_ON(timer_pending(timer) || !timer->function); 1164 1165 new_base = get_timer_cpu_base(timer->flags, cpu); 1166 1167 /* 1168 * If @timer was on a different CPU, it should be migrated with the 1169 * old base locked to prevent other operations proceeding with the 1170 * wrong base locked. See lock_timer_base(). 1171 */ 1172 base = lock_timer_base(timer, &flags); 1173 if (base != new_base) { 1174 timer->flags |= TIMER_MIGRATING; 1175 1176 raw_spin_unlock(&base->lock); 1177 base = new_base; 1178 raw_spin_lock(&base->lock); 1179 WRITE_ONCE(timer->flags, 1180 (timer->flags & ~TIMER_BASEMASK) | cpu); 1181 } 1182 forward_timer_base(base); 1183 1184 debug_timer_activate(timer); 1185 internal_add_timer(base, timer); 1186 raw_spin_unlock_irqrestore(&base->lock, flags); 1187 } 1188 EXPORT_SYMBOL_GPL(add_timer_on); 1189 1190 /** 1191 * del_timer - deactivate a timer. 1192 * @timer: the timer to be deactivated 1193 * 1194 * del_timer() deactivates a timer - this works on both active and inactive 1195 * timers. 1196 * 1197 * The function returns whether it has deactivated a pending timer or not. 1198 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 1199 * active timer returns 1.) 1200 */ 1201 int del_timer(struct timer_list *timer) 1202 { 1203 struct timer_base *base; 1204 unsigned long flags; 1205 int ret = 0; 1206 1207 debug_assert_init(timer); 1208 1209 if (timer_pending(timer)) { 1210 base = lock_timer_base(timer, &flags); 1211 ret = detach_if_pending(timer, base, true); 1212 raw_spin_unlock_irqrestore(&base->lock, flags); 1213 } 1214 1215 return ret; 1216 } 1217 EXPORT_SYMBOL(del_timer); 1218 1219 /** 1220 * try_to_del_timer_sync - Try to deactivate a timer 1221 * @timer: timer to delete 1222 * 1223 * This function tries to deactivate a timer. Upon successful (ret >= 0) 1224 * exit the timer is not queued and the handler is not running on any CPU. 1225 */ 1226 int try_to_del_timer_sync(struct timer_list *timer) 1227 { 1228 struct timer_base *base; 1229 unsigned long flags; 1230 int ret = -1; 1231 1232 debug_assert_init(timer); 1233 1234 base = lock_timer_base(timer, &flags); 1235 1236 if (base->running_timer != timer) 1237 ret = detach_if_pending(timer, base, true); 1238 1239 raw_spin_unlock_irqrestore(&base->lock, flags); 1240 1241 return ret; 1242 } 1243 EXPORT_SYMBOL(try_to_del_timer_sync); 1244 1245 #ifdef CONFIG_PREEMPT_RT 1246 static __init void timer_base_init_expiry_lock(struct timer_base *base) 1247 { 1248 spin_lock_init(&base->expiry_lock); 1249 } 1250 1251 static inline void timer_base_lock_expiry(struct timer_base *base) 1252 { 1253 spin_lock(&base->expiry_lock); 1254 } 1255 1256 static inline void timer_base_unlock_expiry(struct timer_base *base) 1257 { 1258 spin_unlock(&base->expiry_lock); 1259 } 1260 1261 /* 1262 * The counterpart to del_timer_wait_running(). 1263 * 1264 * If there is a waiter for base->expiry_lock, then it was waiting for the 1265 * timer callback to finish. Drop expiry_lock and reaquire it. That allows 1266 * the waiter to acquire the lock and make progress. 1267 */ 1268 static void timer_sync_wait_running(struct timer_base *base) 1269 { 1270 if (atomic_read(&base->timer_waiters)) { 1271 spin_unlock(&base->expiry_lock); 1272 spin_lock(&base->expiry_lock); 1273 } 1274 } 1275 1276 /* 1277 * This function is called on PREEMPT_RT kernels when the fast path 1278 * deletion of a timer failed because the timer callback function was 1279 * running. 1280 * 1281 * This prevents priority inversion, if the softirq thread on a remote CPU 1282 * got preempted, and it prevents a life lock when the task which tries to 1283 * delete a timer preempted the softirq thread running the timer callback 1284 * function. 1285 */ 1286 static void del_timer_wait_running(struct timer_list *timer) 1287 { 1288 u32 tf; 1289 1290 tf = READ_ONCE(timer->flags); 1291 if (!(tf & TIMER_MIGRATING)) { 1292 struct timer_base *base = get_timer_base(tf); 1293 1294 /* 1295 * Mark the base as contended and grab the expiry lock, 1296 * which is held by the softirq across the timer 1297 * callback. Drop the lock immediately so the softirq can 1298 * expire the next timer. In theory the timer could already 1299 * be running again, but that's more than unlikely and just 1300 * causes another wait loop. 1301 */ 1302 atomic_inc(&base->timer_waiters); 1303 spin_lock_bh(&base->expiry_lock); 1304 atomic_dec(&base->timer_waiters); 1305 spin_unlock_bh(&base->expiry_lock); 1306 } 1307 } 1308 #else 1309 static inline void timer_base_init_expiry_lock(struct timer_base *base) { } 1310 static inline void timer_base_lock_expiry(struct timer_base *base) { } 1311 static inline void timer_base_unlock_expiry(struct timer_base *base) { } 1312 static inline void timer_sync_wait_running(struct timer_base *base) { } 1313 static inline void del_timer_wait_running(struct timer_list *timer) { } 1314 #endif 1315 1316 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 1317 /** 1318 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1319 * @timer: the timer to be deactivated 1320 * 1321 * This function only differs from del_timer() on SMP: besides deactivating 1322 * the timer it also makes sure the handler has finished executing on other 1323 * CPUs. 1324 * 1325 * Synchronization rules: Callers must prevent restarting of the timer, 1326 * otherwise this function is meaningless. It must not be called from 1327 * interrupt contexts unless the timer is an irqsafe one. The caller must 1328 * not hold locks which would prevent completion of the timer's 1329 * handler. The timer's handler must not call add_timer_on(). Upon exit the 1330 * timer is not queued and the handler is not running on any CPU. 1331 * 1332 * Note: For !irqsafe timers, you must not hold locks that are held in 1333 * interrupt context while calling this function. Even if the lock has 1334 * nothing to do with the timer in question. Here's why:: 1335 * 1336 * CPU0 CPU1 1337 * ---- ---- 1338 * <SOFTIRQ> 1339 * call_timer_fn(); 1340 * base->running_timer = mytimer; 1341 * spin_lock_irq(somelock); 1342 * <IRQ> 1343 * spin_lock(somelock); 1344 * del_timer_sync(mytimer); 1345 * while (base->running_timer == mytimer); 1346 * 1347 * Now del_timer_sync() will never return and never release somelock. 1348 * The interrupt on the other CPU is waiting to grab somelock but 1349 * it has interrupted the softirq that CPU0 is waiting to finish. 1350 * 1351 * The function returns whether it has deactivated a pending timer or not. 1352 */ 1353 int del_timer_sync(struct timer_list *timer) 1354 { 1355 int ret; 1356 1357 #ifdef CONFIG_LOCKDEP 1358 unsigned long flags; 1359 1360 /* 1361 * If lockdep gives a backtrace here, please reference 1362 * the synchronization rules above. 1363 */ 1364 local_irq_save(flags); 1365 lock_map_acquire(&timer->lockdep_map); 1366 lock_map_release(&timer->lockdep_map); 1367 local_irq_restore(flags); 1368 #endif 1369 /* 1370 * don't use it in hardirq context, because it 1371 * could lead to deadlock. 1372 */ 1373 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1374 1375 do { 1376 ret = try_to_del_timer_sync(timer); 1377 1378 if (unlikely(ret < 0)) { 1379 del_timer_wait_running(timer); 1380 cpu_relax(); 1381 } 1382 } while (ret < 0); 1383 1384 return ret; 1385 } 1386 EXPORT_SYMBOL(del_timer_sync); 1387 #endif 1388 1389 static void call_timer_fn(struct timer_list *timer, 1390 void (*fn)(struct timer_list *), 1391 unsigned long baseclk) 1392 { 1393 int count = preempt_count(); 1394 1395 #ifdef CONFIG_LOCKDEP 1396 /* 1397 * It is permissible to free the timer from inside the 1398 * function that is called from it, this we need to take into 1399 * account for lockdep too. To avoid bogus "held lock freed" 1400 * warnings as well as problems when looking into 1401 * timer->lockdep_map, make a copy and use that here. 1402 */ 1403 struct lockdep_map lockdep_map; 1404 1405 lockdep_copy_map(&lockdep_map, &timer->lockdep_map); 1406 #endif 1407 /* 1408 * Couple the lock chain with the lock chain at 1409 * del_timer_sync() by acquiring the lock_map around the fn() 1410 * call here and in del_timer_sync(). 1411 */ 1412 lock_map_acquire(&lockdep_map); 1413 1414 trace_timer_expire_entry(timer, baseclk); 1415 fn(timer); 1416 trace_timer_expire_exit(timer); 1417 1418 lock_map_release(&lockdep_map); 1419 1420 if (count != preempt_count()) { 1421 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", 1422 fn, count, preempt_count()); 1423 /* 1424 * Restore the preempt count. That gives us a decent 1425 * chance to survive and extract information. If the 1426 * callback kept a lock held, bad luck, but not worse 1427 * than the BUG() we had. 1428 */ 1429 preempt_count_set(count); 1430 } 1431 } 1432 1433 static void expire_timers(struct timer_base *base, struct hlist_head *head) 1434 { 1435 /* 1436 * This value is required only for tracing. base->clk was 1437 * incremented directly before expire_timers was called. But expiry 1438 * is related to the old base->clk value. 1439 */ 1440 unsigned long baseclk = base->clk - 1; 1441 1442 while (!hlist_empty(head)) { 1443 struct timer_list *timer; 1444 void (*fn)(struct timer_list *); 1445 1446 timer = hlist_entry(head->first, struct timer_list, entry); 1447 1448 base->running_timer = timer; 1449 detach_timer(timer, true); 1450 1451 fn = timer->function; 1452 1453 if (timer->flags & TIMER_IRQSAFE) { 1454 raw_spin_unlock(&base->lock); 1455 call_timer_fn(timer, fn, baseclk); 1456 base->running_timer = NULL; 1457 raw_spin_lock(&base->lock); 1458 } else { 1459 raw_spin_unlock_irq(&base->lock); 1460 call_timer_fn(timer, fn, baseclk); 1461 base->running_timer = NULL; 1462 timer_sync_wait_running(base); 1463 raw_spin_lock_irq(&base->lock); 1464 } 1465 } 1466 } 1467 1468 static int collect_expired_timers(struct timer_base *base, 1469 struct hlist_head *heads) 1470 { 1471 unsigned long clk = base->clk = base->next_expiry; 1472 struct hlist_head *vec; 1473 int i, levels = 0; 1474 unsigned int idx; 1475 1476 for (i = 0; i < LVL_DEPTH; i++) { 1477 idx = (clk & LVL_MASK) + i * LVL_SIZE; 1478 1479 if (__test_and_clear_bit(idx, base->pending_map)) { 1480 vec = base->vectors + idx; 1481 hlist_move_list(vec, heads++); 1482 levels++; 1483 } 1484 /* Is it time to look at the next level? */ 1485 if (clk & LVL_CLK_MASK) 1486 break; 1487 /* Shift clock for the next level granularity */ 1488 clk >>= LVL_CLK_SHIFT; 1489 } 1490 return levels; 1491 } 1492 1493 /* 1494 * Find the next pending bucket of a level. Search from level start (@offset) 1495 * + @clk upwards and if nothing there, search from start of the level 1496 * (@offset) up to @offset + clk. 1497 */ 1498 static int next_pending_bucket(struct timer_base *base, unsigned offset, 1499 unsigned clk) 1500 { 1501 unsigned pos, start = offset + clk; 1502 unsigned end = offset + LVL_SIZE; 1503 1504 pos = find_next_bit(base->pending_map, end, start); 1505 if (pos < end) 1506 return pos - start; 1507 1508 pos = find_next_bit(base->pending_map, start, offset); 1509 return pos < start ? pos + LVL_SIZE - start : -1; 1510 } 1511 1512 /* 1513 * Search the first expiring timer in the various clock levels. Caller must 1514 * hold base->lock. 1515 */ 1516 static unsigned long __next_timer_interrupt(struct timer_base *base) 1517 { 1518 unsigned long clk, next, adj; 1519 unsigned lvl, offset = 0; 1520 1521 next = base->clk + NEXT_TIMER_MAX_DELTA; 1522 clk = base->clk; 1523 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { 1524 int pos = next_pending_bucket(base, offset, clk & LVL_MASK); 1525 unsigned long lvl_clk = clk & LVL_CLK_MASK; 1526 1527 if (pos >= 0) { 1528 unsigned long tmp = clk + (unsigned long) pos; 1529 1530 tmp <<= LVL_SHIFT(lvl); 1531 if (time_before(tmp, next)) 1532 next = tmp; 1533 1534 /* 1535 * If the next expiration happens before we reach 1536 * the next level, no need to check further. 1537 */ 1538 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) 1539 break; 1540 } 1541 /* 1542 * Clock for the next level. If the current level clock lower 1543 * bits are zero, we look at the next level as is. If not we 1544 * need to advance it by one because that's going to be the 1545 * next expiring bucket in that level. base->clk is the next 1546 * expiring jiffie. So in case of: 1547 * 1548 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1549 * 0 0 0 0 0 0 1550 * 1551 * we have to look at all levels @index 0. With 1552 * 1553 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1554 * 0 0 0 0 0 2 1555 * 1556 * LVL0 has the next expiring bucket @index 2. The upper 1557 * levels have the next expiring bucket @index 1. 1558 * 1559 * In case that the propagation wraps the next level the same 1560 * rules apply: 1561 * 1562 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 1563 * 0 0 0 0 F 2 1564 * 1565 * So after looking at LVL0 we get: 1566 * 1567 * LVL5 LVL4 LVL3 LVL2 LVL1 1568 * 0 0 0 1 0 1569 * 1570 * So no propagation from LVL1 to LVL2 because that happened 1571 * with the add already, but then we need to propagate further 1572 * from LVL2 to LVL3. 1573 * 1574 * So the simple check whether the lower bits of the current 1575 * level are 0 or not is sufficient for all cases. 1576 */ 1577 adj = lvl_clk ? 1 : 0; 1578 clk >>= LVL_CLK_SHIFT; 1579 clk += adj; 1580 } 1581 1582 base->next_expiry_recalc = false; 1583 1584 return next; 1585 } 1586 1587 #ifdef CONFIG_NO_HZ_COMMON 1588 /* 1589 * Check, if the next hrtimer event is before the next timer wheel 1590 * event: 1591 */ 1592 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) 1593 { 1594 u64 nextevt = hrtimer_get_next_event(); 1595 1596 /* 1597 * If high resolution timers are enabled 1598 * hrtimer_get_next_event() returns KTIME_MAX. 1599 */ 1600 if (expires <= nextevt) 1601 return expires; 1602 1603 /* 1604 * If the next timer is already expired, return the tick base 1605 * time so the tick is fired immediately. 1606 */ 1607 if (nextevt <= basem) 1608 return basem; 1609 1610 /* 1611 * Round up to the next jiffie. High resolution timers are 1612 * off, so the hrtimers are expired in the tick and we need to 1613 * make sure that this tick really expires the timer to avoid 1614 * a ping pong of the nohz stop code. 1615 * 1616 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 1617 */ 1618 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; 1619 } 1620 1621 /** 1622 * get_next_timer_interrupt - return the time (clock mono) of the next timer 1623 * @basej: base time jiffies 1624 * @basem: base time clock monotonic 1625 * 1626 * Returns the tick aligned clock monotonic time of the next pending 1627 * timer or KTIME_MAX if no timer is pending. 1628 */ 1629 u64 get_next_timer_interrupt(unsigned long basej, u64 basem) 1630 { 1631 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1632 u64 expires = KTIME_MAX; 1633 unsigned long nextevt; 1634 bool is_max_delta; 1635 1636 /* 1637 * Pretend that there is no timer pending if the cpu is offline. 1638 * Possible pending timers will be migrated later to an active cpu. 1639 */ 1640 if (cpu_is_offline(smp_processor_id())) 1641 return expires; 1642 1643 raw_spin_lock(&base->lock); 1644 if (base->next_expiry_recalc) 1645 base->next_expiry = __next_timer_interrupt(base); 1646 nextevt = base->next_expiry; 1647 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA); 1648 1649 /* 1650 * We have a fresh next event. Check whether we can forward the 1651 * base. We can only do that when @basej is past base->clk 1652 * otherwise we might rewind base->clk. 1653 */ 1654 if (time_after(basej, base->clk)) { 1655 if (time_after(nextevt, basej)) 1656 base->clk = basej; 1657 else if (time_after(nextevt, base->clk)) 1658 base->clk = nextevt; 1659 } 1660 1661 if (time_before_eq(nextevt, basej)) { 1662 expires = basem; 1663 base->is_idle = false; 1664 } else { 1665 if (!is_max_delta) 1666 expires = basem + (u64)(nextevt - basej) * TICK_NSEC; 1667 /* 1668 * If we expect to sleep more than a tick, mark the base idle. 1669 * Also the tick is stopped so any added timer must forward 1670 * the base clk itself to keep granularity small. This idle 1671 * logic is only maintained for the BASE_STD base, deferrable 1672 * timers may still see large granularity skew (by design). 1673 */ 1674 if ((expires - basem) > TICK_NSEC) 1675 base->is_idle = true; 1676 } 1677 raw_spin_unlock(&base->lock); 1678 1679 return cmp_next_hrtimer_event(basem, expires); 1680 } 1681 1682 /** 1683 * timer_clear_idle - Clear the idle state of the timer base 1684 * 1685 * Called with interrupts disabled 1686 */ 1687 void timer_clear_idle(void) 1688 { 1689 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1690 1691 /* 1692 * We do this unlocked. The worst outcome is a remote enqueue sending 1693 * a pointless IPI, but taking the lock would just make the window for 1694 * sending the IPI a few instructions smaller for the cost of taking 1695 * the lock in the exit from idle path. 1696 */ 1697 base->is_idle = false; 1698 } 1699 #endif 1700 1701 /* 1702 * Called from the timer interrupt handler to charge one tick to the current 1703 * process. user_tick is 1 if the tick is user time, 0 for system. 1704 */ 1705 void update_process_times(int user_tick) 1706 { 1707 struct task_struct *p = current; 1708 1709 PRANDOM_ADD_NOISE(jiffies, user_tick, p, 0); 1710 1711 /* Note: this timer irq context must be accounted for as well. */ 1712 account_process_tick(p, user_tick); 1713 run_local_timers(); 1714 rcu_sched_clock_irq(user_tick); 1715 #ifdef CONFIG_IRQ_WORK 1716 if (in_irq()) 1717 irq_work_tick(); 1718 #endif 1719 scheduler_tick(); 1720 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1721 run_posix_cpu_timers(); 1722 } 1723 1724 /** 1725 * __run_timers - run all expired timers (if any) on this CPU. 1726 * @base: the timer vector to be processed. 1727 */ 1728 static inline void __run_timers(struct timer_base *base) 1729 { 1730 struct hlist_head heads[LVL_DEPTH]; 1731 int levels; 1732 1733 if (time_before(jiffies, base->next_expiry)) 1734 return; 1735 1736 timer_base_lock_expiry(base); 1737 raw_spin_lock_irq(&base->lock); 1738 1739 while (time_after_eq(jiffies, base->clk) && 1740 time_after_eq(jiffies, base->next_expiry)) { 1741 levels = collect_expired_timers(base, heads); 1742 /* 1743 * The only possible reason for not finding any expired 1744 * timer at this clk is that all matching timers have been 1745 * dequeued. 1746 */ 1747 WARN_ON_ONCE(!levels && !base->next_expiry_recalc); 1748 base->clk++; 1749 base->next_expiry = __next_timer_interrupt(base); 1750 1751 while (levels--) 1752 expire_timers(base, heads + levels); 1753 } 1754 raw_spin_unlock_irq(&base->lock); 1755 timer_base_unlock_expiry(base); 1756 } 1757 1758 /* 1759 * This function runs timers and the timer-tq in bottom half context. 1760 */ 1761 static __latent_entropy void run_timer_softirq(struct softirq_action *h) 1762 { 1763 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1764 1765 __run_timers(base); 1766 if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1767 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); 1768 } 1769 1770 /* 1771 * Called by the local, per-CPU timer interrupt on SMP. 1772 */ 1773 void run_local_timers(void) 1774 { 1775 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); 1776 1777 hrtimer_run_queues(); 1778 /* Raise the softirq only if required. */ 1779 if (time_before(jiffies, base->next_expiry)) { 1780 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) 1781 return; 1782 /* CPU is awake, so check the deferrable base. */ 1783 base++; 1784 if (time_before(jiffies, base->next_expiry)) 1785 return; 1786 } 1787 raise_softirq(TIMER_SOFTIRQ); 1788 } 1789 1790 /* 1791 * Since schedule_timeout()'s timer is defined on the stack, it must store 1792 * the target task on the stack as well. 1793 */ 1794 struct process_timer { 1795 struct timer_list timer; 1796 struct task_struct *task; 1797 }; 1798 1799 static void process_timeout(struct timer_list *t) 1800 { 1801 struct process_timer *timeout = from_timer(timeout, t, timer); 1802 1803 wake_up_process(timeout->task); 1804 } 1805 1806 /** 1807 * schedule_timeout - sleep until timeout 1808 * @timeout: timeout value in jiffies 1809 * 1810 * Make the current task sleep until @timeout jiffies have elapsed. 1811 * The function behavior depends on the current task state 1812 * (see also set_current_state() description): 1813 * 1814 * %TASK_RUNNING - the scheduler is called, but the task does not sleep 1815 * at all. That happens because sched_submit_work() does nothing for 1816 * tasks in %TASK_RUNNING state. 1817 * 1818 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1819 * pass before the routine returns unless the current task is explicitly 1820 * woken up, (e.g. by wake_up_process()). 1821 * 1822 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1823 * delivered to the current task or the current task is explicitly woken 1824 * up. 1825 * 1826 * The current task state is guaranteed to be %TASK_RUNNING when this 1827 * routine returns. 1828 * 1829 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1830 * the CPU away without a bound on the timeout. In this case the return 1831 * value will be %MAX_SCHEDULE_TIMEOUT. 1832 * 1833 * Returns 0 when the timer has expired otherwise the remaining time in 1834 * jiffies will be returned. In all cases the return value is guaranteed 1835 * to be non-negative. 1836 */ 1837 signed long __sched schedule_timeout(signed long timeout) 1838 { 1839 struct process_timer timer; 1840 unsigned long expire; 1841 1842 switch (timeout) 1843 { 1844 case MAX_SCHEDULE_TIMEOUT: 1845 /* 1846 * These two special cases are useful to be comfortable 1847 * in the caller. Nothing more. We could take 1848 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1849 * but I' d like to return a valid offset (>=0) to allow 1850 * the caller to do everything it want with the retval. 1851 */ 1852 schedule(); 1853 goto out; 1854 default: 1855 /* 1856 * Another bit of PARANOID. Note that the retval will be 1857 * 0 since no piece of kernel is supposed to do a check 1858 * for a negative retval of schedule_timeout() (since it 1859 * should never happens anyway). You just have the printk() 1860 * that will tell you if something is gone wrong and where. 1861 */ 1862 if (timeout < 0) { 1863 printk(KERN_ERR "schedule_timeout: wrong timeout " 1864 "value %lx\n", timeout); 1865 dump_stack(); 1866 current->state = TASK_RUNNING; 1867 goto out; 1868 } 1869 } 1870 1871 expire = timeout + jiffies; 1872 1873 timer.task = current; 1874 timer_setup_on_stack(&timer.timer, process_timeout, 0); 1875 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); 1876 schedule(); 1877 del_singleshot_timer_sync(&timer.timer); 1878 1879 /* Remove the timer from the object tracker */ 1880 destroy_timer_on_stack(&timer.timer); 1881 1882 timeout = expire - jiffies; 1883 1884 out: 1885 return timeout < 0 ? 0 : timeout; 1886 } 1887 EXPORT_SYMBOL(schedule_timeout); 1888 1889 /* 1890 * We can use __set_current_state() here because schedule_timeout() calls 1891 * schedule() unconditionally. 1892 */ 1893 signed long __sched schedule_timeout_interruptible(signed long timeout) 1894 { 1895 __set_current_state(TASK_INTERRUPTIBLE); 1896 return schedule_timeout(timeout); 1897 } 1898 EXPORT_SYMBOL(schedule_timeout_interruptible); 1899 1900 signed long __sched schedule_timeout_killable(signed long timeout) 1901 { 1902 __set_current_state(TASK_KILLABLE); 1903 return schedule_timeout(timeout); 1904 } 1905 EXPORT_SYMBOL(schedule_timeout_killable); 1906 1907 signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1908 { 1909 __set_current_state(TASK_UNINTERRUPTIBLE); 1910 return schedule_timeout(timeout); 1911 } 1912 EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1913 1914 /* 1915 * Like schedule_timeout_uninterruptible(), except this task will not contribute 1916 * to load average. 1917 */ 1918 signed long __sched schedule_timeout_idle(signed long timeout) 1919 { 1920 __set_current_state(TASK_IDLE); 1921 return schedule_timeout(timeout); 1922 } 1923 EXPORT_SYMBOL(schedule_timeout_idle); 1924 1925 #ifdef CONFIG_HOTPLUG_CPU 1926 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) 1927 { 1928 struct timer_list *timer; 1929 int cpu = new_base->cpu; 1930 1931 while (!hlist_empty(head)) { 1932 timer = hlist_entry(head->first, struct timer_list, entry); 1933 detach_timer(timer, false); 1934 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; 1935 internal_add_timer(new_base, timer); 1936 } 1937 } 1938 1939 int timers_prepare_cpu(unsigned int cpu) 1940 { 1941 struct timer_base *base; 1942 int b; 1943 1944 for (b = 0; b < NR_BASES; b++) { 1945 base = per_cpu_ptr(&timer_bases[b], cpu); 1946 base->clk = jiffies; 1947 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 1948 base->is_idle = false; 1949 } 1950 return 0; 1951 } 1952 1953 int timers_dead_cpu(unsigned int cpu) 1954 { 1955 struct timer_base *old_base; 1956 struct timer_base *new_base; 1957 int b, i; 1958 1959 BUG_ON(cpu_online(cpu)); 1960 1961 for (b = 0; b < NR_BASES; b++) { 1962 old_base = per_cpu_ptr(&timer_bases[b], cpu); 1963 new_base = get_cpu_ptr(&timer_bases[b]); 1964 /* 1965 * The caller is globally serialized and nobody else 1966 * takes two locks at once, deadlock is not possible. 1967 */ 1968 raw_spin_lock_irq(&new_base->lock); 1969 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1970 1971 /* 1972 * The current CPUs base clock might be stale. Update it 1973 * before moving the timers over. 1974 */ 1975 forward_timer_base(new_base); 1976 1977 BUG_ON(old_base->running_timer); 1978 1979 for (i = 0; i < WHEEL_SIZE; i++) 1980 migrate_timer_list(new_base, old_base->vectors + i); 1981 1982 raw_spin_unlock(&old_base->lock); 1983 raw_spin_unlock_irq(&new_base->lock); 1984 put_cpu_ptr(&timer_bases); 1985 } 1986 return 0; 1987 } 1988 1989 #endif /* CONFIG_HOTPLUG_CPU */ 1990 1991 static void __init init_timer_cpu(int cpu) 1992 { 1993 struct timer_base *base; 1994 int i; 1995 1996 for (i = 0; i < NR_BASES; i++) { 1997 base = per_cpu_ptr(&timer_bases[i], cpu); 1998 base->cpu = cpu; 1999 raw_spin_lock_init(&base->lock); 2000 base->clk = jiffies; 2001 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; 2002 timer_base_init_expiry_lock(base); 2003 } 2004 } 2005 2006 static void __init init_timer_cpus(void) 2007 { 2008 int cpu; 2009 2010 for_each_possible_cpu(cpu) 2011 init_timer_cpu(cpu); 2012 } 2013 2014 void __init init_timers(void) 2015 { 2016 init_timer_cpus(); 2017 posix_cputimers_init_work(); 2018 open_softirq(TIMER_SOFTIRQ, run_timer_softirq); 2019 } 2020 2021 /** 2022 * msleep - sleep safely even with waitqueue interruptions 2023 * @msecs: Time in milliseconds to sleep for 2024 */ 2025 void msleep(unsigned int msecs) 2026 { 2027 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2028 2029 while (timeout) 2030 timeout = schedule_timeout_uninterruptible(timeout); 2031 } 2032 2033 EXPORT_SYMBOL(msleep); 2034 2035 /** 2036 * msleep_interruptible - sleep waiting for signals 2037 * @msecs: Time in milliseconds to sleep for 2038 */ 2039 unsigned long msleep_interruptible(unsigned int msecs) 2040 { 2041 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 2042 2043 while (timeout && !signal_pending(current)) 2044 timeout = schedule_timeout_interruptible(timeout); 2045 return jiffies_to_msecs(timeout); 2046 } 2047 2048 EXPORT_SYMBOL(msleep_interruptible); 2049 2050 /** 2051 * usleep_range - Sleep for an approximate time 2052 * @min: Minimum time in usecs to sleep 2053 * @max: Maximum time in usecs to sleep 2054 * 2055 * In non-atomic context where the exact wakeup time is flexible, use 2056 * usleep_range() instead of udelay(). The sleep improves responsiveness 2057 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces 2058 * power usage by allowing hrtimers to take advantage of an already- 2059 * scheduled interrupt instead of scheduling a new one just for this sleep. 2060 */ 2061 void __sched usleep_range(unsigned long min, unsigned long max) 2062 { 2063 ktime_t exp = ktime_add_us(ktime_get(), min); 2064 u64 delta = (u64)(max - min) * NSEC_PER_USEC; 2065 2066 for (;;) { 2067 __set_current_state(TASK_UNINTERRUPTIBLE); 2068 /* Do not return before the requested sleep time has elapsed */ 2069 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) 2070 break; 2071 } 2072 } 2073 EXPORT_SYMBOL(usleep_range); 2074