xref: /openbmc/linux/kernel/time/timer.c (revision 06ff634c0dae791c17ceeeb60c74e14470d76898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 
47 #include <linux/uaccess.h>
48 #include <asm/unistd.h>
49 #include <asm/div64.h>
50 #include <asm/timex.h>
51 #include <asm/io.h>
52 
53 #include "tick-internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/timer.h>
57 
58 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
59 
60 EXPORT_SYMBOL(jiffies_64);
61 
62 /*
63  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
64  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
65  * level has a different granularity.
66  *
67  * The level granularity is:		LVL_CLK_DIV ^ lvl
68  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
69  *
70  * The array level of a newly armed timer depends on the relative expiry
71  * time. The farther the expiry time is away the higher the array level and
72  * therefor the granularity becomes.
73  *
74  * Contrary to the original timer wheel implementation, which aims for 'exact'
75  * expiry of the timers, this implementation removes the need for recascading
76  * the timers into the lower array levels. The previous 'classic' timer wheel
77  * implementation of the kernel already violated the 'exact' expiry by adding
78  * slack to the expiry time to provide batched expiration. The granularity
79  * levels provide implicit batching.
80  *
81  * This is an optimization of the original timer wheel implementation for the
82  * majority of the timer wheel use cases: timeouts. The vast majority of
83  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
84  * the timeout expires it indicates that normal operation is disturbed, so it
85  * does not matter much whether the timeout comes with a slight delay.
86  *
87  * The only exception to this are networking timers with a small expiry
88  * time. They rely on the granularity. Those fit into the first wheel level,
89  * which has HZ granularity.
90  *
91  * We don't have cascading anymore. timers with a expiry time above the
92  * capacity of the last wheel level are force expired at the maximum timeout
93  * value of the last wheel level. From data sampling we know that the maximum
94  * value observed is 5 days (network connection tracking), so this should not
95  * be an issue.
96  *
97  * The currently chosen array constants values are a good compromise between
98  * array size and granularity.
99  *
100  * This results in the following granularity and range levels:
101  *
102  * HZ 1000 steps
103  * Level Offset  Granularity            Range
104  *  0      0         1 ms                0 ms -         63 ms
105  *  1     64         8 ms               64 ms -        511 ms
106  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
107  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
108  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
109  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
110  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
111  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
112  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
113  *
114  * HZ  300
115  * Level Offset  Granularity            Range
116  *  0	   0         3 ms                0 ms -        210 ms
117  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
118  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
119  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
120  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
121  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
122  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
123  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
124  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
125  *
126  * HZ  250
127  * Level Offset  Granularity            Range
128  *  0	   0         4 ms                0 ms -        255 ms
129  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
130  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
131  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
132  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
133  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
134  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
135  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
136  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
137  *
138  * HZ  100
139  * Level Offset  Granularity            Range
140  *  0	   0         10 ms               0 ms -        630 ms
141  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
142  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
143  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
144  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
145  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
146  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
147  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
148  */
149 
150 /* Clock divisor for the next level */
151 #define LVL_CLK_SHIFT	3
152 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
153 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
154 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
155 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
156 
157 /*
158  * The time start value for each level to select the bucket at enqueue
159  * time.
160  */
161 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
162 
163 /* Size of each clock level */
164 #define LVL_BITS	6
165 #define LVL_SIZE	(1UL << LVL_BITS)
166 #define LVL_MASK	(LVL_SIZE - 1)
167 #define LVL_OFFS(n)	((n) * LVL_SIZE)
168 
169 /* Level depth */
170 #if HZ > 100
171 # define LVL_DEPTH	9
172 # else
173 # define LVL_DEPTH	8
174 #endif
175 
176 /* The cutoff (max. capacity of the wheel) */
177 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
178 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
179 
180 /*
181  * The resulting wheel size. If NOHZ is configured we allocate two
182  * wheels so we have a separate storage for the deferrable timers.
183  */
184 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
185 
186 #ifdef CONFIG_NO_HZ_COMMON
187 # define NR_BASES	2
188 # define BASE_STD	0
189 # define BASE_DEF	1
190 #else
191 # define NR_BASES	1
192 # define BASE_STD	0
193 # define BASE_DEF	0
194 #endif
195 
196 struct timer_base {
197 	raw_spinlock_t		lock;
198 	struct timer_list	*running_timer;
199 #ifdef CONFIG_PREEMPT_RT
200 	spinlock_t		expiry_lock;
201 	atomic_t		timer_waiters;
202 #endif
203 	unsigned long		clk;
204 	unsigned long		next_expiry;
205 	unsigned int		cpu;
206 	bool			is_idle;
207 	bool			must_forward_clk;
208 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
209 	struct hlist_head	vectors[WHEEL_SIZE];
210 } ____cacheline_aligned;
211 
212 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
213 
214 #ifdef CONFIG_NO_HZ_COMMON
215 
216 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
217 static DEFINE_MUTEX(timer_keys_mutex);
218 
219 static void timer_update_keys(struct work_struct *work);
220 static DECLARE_WORK(timer_update_work, timer_update_keys);
221 
222 #ifdef CONFIG_SMP
223 unsigned int sysctl_timer_migration = 1;
224 
225 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
226 
227 static void timers_update_migration(void)
228 {
229 	if (sysctl_timer_migration && tick_nohz_active)
230 		static_branch_enable(&timers_migration_enabled);
231 	else
232 		static_branch_disable(&timers_migration_enabled);
233 }
234 #else
235 static inline void timers_update_migration(void) { }
236 #endif /* !CONFIG_SMP */
237 
238 static void timer_update_keys(struct work_struct *work)
239 {
240 	mutex_lock(&timer_keys_mutex);
241 	timers_update_migration();
242 	static_branch_enable(&timers_nohz_active);
243 	mutex_unlock(&timer_keys_mutex);
244 }
245 
246 void timers_update_nohz(void)
247 {
248 	schedule_work(&timer_update_work);
249 }
250 
251 int timer_migration_handler(struct ctl_table *table, int write,
252 			    void __user *buffer, size_t *lenp,
253 			    loff_t *ppos)
254 {
255 	int ret;
256 
257 	mutex_lock(&timer_keys_mutex);
258 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
259 	if (!ret && write)
260 		timers_update_migration();
261 	mutex_unlock(&timer_keys_mutex);
262 	return ret;
263 }
264 
265 static inline bool is_timers_nohz_active(void)
266 {
267 	return static_branch_unlikely(&timers_nohz_active);
268 }
269 #else
270 static inline bool is_timers_nohz_active(void) { return false; }
271 #endif /* NO_HZ_COMMON */
272 
273 static unsigned long round_jiffies_common(unsigned long j, int cpu,
274 		bool force_up)
275 {
276 	int rem;
277 	unsigned long original = j;
278 
279 	/*
280 	 * We don't want all cpus firing their timers at once hitting the
281 	 * same lock or cachelines, so we skew each extra cpu with an extra
282 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
283 	 * already did this.
284 	 * The skew is done by adding 3*cpunr, then round, then subtract this
285 	 * extra offset again.
286 	 */
287 	j += cpu * 3;
288 
289 	rem = j % HZ;
290 
291 	/*
292 	 * If the target jiffie is just after a whole second (which can happen
293 	 * due to delays of the timer irq, long irq off times etc etc) then
294 	 * we should round down to the whole second, not up. Use 1/4th second
295 	 * as cutoff for this rounding as an extreme upper bound for this.
296 	 * But never round down if @force_up is set.
297 	 */
298 	if (rem < HZ/4 && !force_up) /* round down */
299 		j = j - rem;
300 	else /* round up */
301 		j = j - rem + HZ;
302 
303 	/* now that we have rounded, subtract the extra skew again */
304 	j -= cpu * 3;
305 
306 	/*
307 	 * Make sure j is still in the future. Otherwise return the
308 	 * unmodified value.
309 	 */
310 	return time_is_after_jiffies(j) ? j : original;
311 }
312 
313 /**
314  * __round_jiffies - function to round jiffies to a full second
315  * @j: the time in (absolute) jiffies that should be rounded
316  * @cpu: the processor number on which the timeout will happen
317  *
318  * __round_jiffies() rounds an absolute time in the future (in jiffies)
319  * up or down to (approximately) full seconds. This is useful for timers
320  * for which the exact time they fire does not matter too much, as long as
321  * they fire approximately every X seconds.
322  *
323  * By rounding these timers to whole seconds, all such timers will fire
324  * at the same time, rather than at various times spread out. The goal
325  * of this is to have the CPU wake up less, which saves power.
326  *
327  * The exact rounding is skewed for each processor to avoid all
328  * processors firing at the exact same time, which could lead
329  * to lock contention or spurious cache line bouncing.
330  *
331  * The return value is the rounded version of the @j parameter.
332  */
333 unsigned long __round_jiffies(unsigned long j, int cpu)
334 {
335 	return round_jiffies_common(j, cpu, false);
336 }
337 EXPORT_SYMBOL_GPL(__round_jiffies);
338 
339 /**
340  * __round_jiffies_relative - function to round jiffies to a full second
341  * @j: the time in (relative) jiffies that should be rounded
342  * @cpu: the processor number on which the timeout will happen
343  *
344  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
345  * up or down to (approximately) full seconds. This is useful for timers
346  * for which the exact time they fire does not matter too much, as long as
347  * they fire approximately every X seconds.
348  *
349  * By rounding these timers to whole seconds, all such timers will fire
350  * at the same time, rather than at various times spread out. The goal
351  * of this is to have the CPU wake up less, which saves power.
352  *
353  * The exact rounding is skewed for each processor to avoid all
354  * processors firing at the exact same time, which could lead
355  * to lock contention or spurious cache line bouncing.
356  *
357  * The return value is the rounded version of the @j parameter.
358  */
359 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
360 {
361 	unsigned long j0 = jiffies;
362 
363 	/* Use j0 because jiffies might change while we run */
364 	return round_jiffies_common(j + j0, cpu, false) - j0;
365 }
366 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
367 
368 /**
369  * round_jiffies - function to round jiffies to a full second
370  * @j: the time in (absolute) jiffies that should be rounded
371  *
372  * round_jiffies() rounds an absolute time in the future (in jiffies)
373  * up or down to (approximately) full seconds. This is useful for timers
374  * for which the exact time they fire does not matter too much, as long as
375  * they fire approximately every X seconds.
376  *
377  * By rounding these timers to whole seconds, all such timers will fire
378  * at the same time, rather than at various times spread out. The goal
379  * of this is to have the CPU wake up less, which saves power.
380  *
381  * The return value is the rounded version of the @j parameter.
382  */
383 unsigned long round_jiffies(unsigned long j)
384 {
385 	return round_jiffies_common(j, raw_smp_processor_id(), false);
386 }
387 EXPORT_SYMBOL_GPL(round_jiffies);
388 
389 /**
390  * round_jiffies_relative - function to round jiffies to a full second
391  * @j: the time in (relative) jiffies that should be rounded
392  *
393  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
394  * up or down to (approximately) full seconds. This is useful for timers
395  * for which the exact time they fire does not matter too much, as long as
396  * they fire approximately every X seconds.
397  *
398  * By rounding these timers to whole seconds, all such timers will fire
399  * at the same time, rather than at various times spread out. The goal
400  * of this is to have the CPU wake up less, which saves power.
401  *
402  * The return value is the rounded version of the @j parameter.
403  */
404 unsigned long round_jiffies_relative(unsigned long j)
405 {
406 	return __round_jiffies_relative(j, raw_smp_processor_id());
407 }
408 EXPORT_SYMBOL_GPL(round_jiffies_relative);
409 
410 /**
411  * __round_jiffies_up - function to round jiffies up to a full second
412  * @j: the time in (absolute) jiffies that should be rounded
413  * @cpu: the processor number on which the timeout will happen
414  *
415  * This is the same as __round_jiffies() except that it will never
416  * round down.  This is useful for timeouts for which the exact time
417  * of firing does not matter too much, as long as they don't fire too
418  * early.
419  */
420 unsigned long __round_jiffies_up(unsigned long j, int cpu)
421 {
422 	return round_jiffies_common(j, cpu, true);
423 }
424 EXPORT_SYMBOL_GPL(__round_jiffies_up);
425 
426 /**
427  * __round_jiffies_up_relative - function to round jiffies up to a full second
428  * @j: the time in (relative) jiffies that should be rounded
429  * @cpu: the processor number on which the timeout will happen
430  *
431  * This is the same as __round_jiffies_relative() except that it will never
432  * round down.  This is useful for timeouts for which the exact time
433  * of firing does not matter too much, as long as they don't fire too
434  * early.
435  */
436 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
437 {
438 	unsigned long j0 = jiffies;
439 
440 	/* Use j0 because jiffies might change while we run */
441 	return round_jiffies_common(j + j0, cpu, true) - j0;
442 }
443 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
444 
445 /**
446  * round_jiffies_up - function to round jiffies up to a full second
447  * @j: the time in (absolute) jiffies that should be rounded
448  *
449  * This is the same as round_jiffies() except that it will never
450  * round down.  This is useful for timeouts for which the exact time
451  * of firing does not matter too much, as long as they don't fire too
452  * early.
453  */
454 unsigned long round_jiffies_up(unsigned long j)
455 {
456 	return round_jiffies_common(j, raw_smp_processor_id(), true);
457 }
458 EXPORT_SYMBOL_GPL(round_jiffies_up);
459 
460 /**
461  * round_jiffies_up_relative - function to round jiffies up to a full second
462  * @j: the time in (relative) jiffies that should be rounded
463  *
464  * This is the same as round_jiffies_relative() except that it will never
465  * round down.  This is useful for timeouts for which the exact time
466  * of firing does not matter too much, as long as they don't fire too
467  * early.
468  */
469 unsigned long round_jiffies_up_relative(unsigned long j)
470 {
471 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
472 }
473 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
474 
475 
476 static inline unsigned int timer_get_idx(struct timer_list *timer)
477 {
478 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
479 }
480 
481 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
482 {
483 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
484 			idx << TIMER_ARRAYSHIFT;
485 }
486 
487 /*
488  * Helper function to calculate the array index for a given expiry
489  * time.
490  */
491 static inline unsigned calc_index(unsigned expires, unsigned lvl)
492 {
493 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
494 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
495 }
496 
497 static int calc_wheel_index(unsigned long expires, unsigned long clk)
498 {
499 	unsigned long delta = expires - clk;
500 	unsigned int idx;
501 
502 	if (delta < LVL_START(1)) {
503 		idx = calc_index(expires, 0);
504 	} else if (delta < LVL_START(2)) {
505 		idx = calc_index(expires, 1);
506 	} else if (delta < LVL_START(3)) {
507 		idx = calc_index(expires, 2);
508 	} else if (delta < LVL_START(4)) {
509 		idx = calc_index(expires, 3);
510 	} else if (delta < LVL_START(5)) {
511 		idx = calc_index(expires, 4);
512 	} else if (delta < LVL_START(6)) {
513 		idx = calc_index(expires, 5);
514 	} else if (delta < LVL_START(7)) {
515 		idx = calc_index(expires, 6);
516 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
517 		idx = calc_index(expires, 7);
518 	} else if ((long) delta < 0) {
519 		idx = clk & LVL_MASK;
520 	} else {
521 		/*
522 		 * Force expire obscene large timeouts to expire at the
523 		 * capacity limit of the wheel.
524 		 */
525 		if (expires >= WHEEL_TIMEOUT_CUTOFF)
526 			expires = WHEEL_TIMEOUT_MAX;
527 
528 		idx = calc_index(expires, LVL_DEPTH - 1);
529 	}
530 	return idx;
531 }
532 
533 /*
534  * Enqueue the timer into the hash bucket, mark it pending in
535  * the bitmap and store the index in the timer flags.
536  */
537 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
538 			  unsigned int idx)
539 {
540 	hlist_add_head(&timer->entry, base->vectors + idx);
541 	__set_bit(idx, base->pending_map);
542 	timer_set_idx(timer, idx);
543 
544 	trace_timer_start(timer, timer->expires, timer->flags);
545 }
546 
547 static void
548 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
549 {
550 	unsigned int idx;
551 
552 	idx = calc_wheel_index(timer->expires, base->clk);
553 	enqueue_timer(base, timer, idx);
554 }
555 
556 static void
557 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
558 {
559 	if (!is_timers_nohz_active())
560 		return;
561 
562 	/*
563 	 * TODO: This wants some optimizing similar to the code below, but we
564 	 * will do that when we switch from push to pull for deferrable timers.
565 	 */
566 	if (timer->flags & TIMER_DEFERRABLE) {
567 		if (tick_nohz_full_cpu(base->cpu))
568 			wake_up_nohz_cpu(base->cpu);
569 		return;
570 	}
571 
572 	/*
573 	 * We might have to IPI the remote CPU if the base is idle and the
574 	 * timer is not deferrable. If the other CPU is on the way to idle
575 	 * then it can't set base->is_idle as we hold the base lock:
576 	 */
577 	if (!base->is_idle)
578 		return;
579 
580 	/* Check whether this is the new first expiring timer: */
581 	if (time_after_eq(timer->expires, base->next_expiry))
582 		return;
583 
584 	/*
585 	 * Set the next expiry time and kick the CPU so it can reevaluate the
586 	 * wheel:
587 	 */
588 	base->next_expiry = timer->expires;
589 	wake_up_nohz_cpu(base->cpu);
590 }
591 
592 static void
593 internal_add_timer(struct timer_base *base, struct timer_list *timer)
594 {
595 	__internal_add_timer(base, timer);
596 	trigger_dyntick_cpu(base, timer);
597 }
598 
599 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
600 
601 static struct debug_obj_descr timer_debug_descr;
602 
603 static void *timer_debug_hint(void *addr)
604 {
605 	return ((struct timer_list *) addr)->function;
606 }
607 
608 static bool timer_is_static_object(void *addr)
609 {
610 	struct timer_list *timer = addr;
611 
612 	return (timer->entry.pprev == NULL &&
613 		timer->entry.next == TIMER_ENTRY_STATIC);
614 }
615 
616 /*
617  * fixup_init is called when:
618  * - an active object is initialized
619  */
620 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
621 {
622 	struct timer_list *timer = addr;
623 
624 	switch (state) {
625 	case ODEBUG_STATE_ACTIVE:
626 		del_timer_sync(timer);
627 		debug_object_init(timer, &timer_debug_descr);
628 		return true;
629 	default:
630 		return false;
631 	}
632 }
633 
634 /* Stub timer callback for improperly used timers. */
635 static void stub_timer(struct timer_list *unused)
636 {
637 	WARN_ON(1);
638 }
639 
640 /*
641  * fixup_activate is called when:
642  * - an active object is activated
643  * - an unknown non-static object is activated
644  */
645 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
646 {
647 	struct timer_list *timer = addr;
648 
649 	switch (state) {
650 	case ODEBUG_STATE_NOTAVAILABLE:
651 		timer_setup(timer, stub_timer, 0);
652 		return true;
653 
654 	case ODEBUG_STATE_ACTIVE:
655 		WARN_ON(1);
656 		/* fall through */
657 	default:
658 		return false;
659 	}
660 }
661 
662 /*
663  * fixup_free is called when:
664  * - an active object is freed
665  */
666 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
667 {
668 	struct timer_list *timer = addr;
669 
670 	switch (state) {
671 	case ODEBUG_STATE_ACTIVE:
672 		del_timer_sync(timer);
673 		debug_object_free(timer, &timer_debug_descr);
674 		return true;
675 	default:
676 		return false;
677 	}
678 }
679 
680 /*
681  * fixup_assert_init is called when:
682  * - an untracked/uninit-ed object is found
683  */
684 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
685 {
686 	struct timer_list *timer = addr;
687 
688 	switch (state) {
689 	case ODEBUG_STATE_NOTAVAILABLE:
690 		timer_setup(timer, stub_timer, 0);
691 		return true;
692 	default:
693 		return false;
694 	}
695 }
696 
697 static struct debug_obj_descr timer_debug_descr = {
698 	.name			= "timer_list",
699 	.debug_hint		= timer_debug_hint,
700 	.is_static_object	= timer_is_static_object,
701 	.fixup_init		= timer_fixup_init,
702 	.fixup_activate		= timer_fixup_activate,
703 	.fixup_free		= timer_fixup_free,
704 	.fixup_assert_init	= timer_fixup_assert_init,
705 };
706 
707 static inline void debug_timer_init(struct timer_list *timer)
708 {
709 	debug_object_init(timer, &timer_debug_descr);
710 }
711 
712 static inline void debug_timer_activate(struct timer_list *timer)
713 {
714 	debug_object_activate(timer, &timer_debug_descr);
715 }
716 
717 static inline void debug_timer_deactivate(struct timer_list *timer)
718 {
719 	debug_object_deactivate(timer, &timer_debug_descr);
720 }
721 
722 static inline void debug_timer_free(struct timer_list *timer)
723 {
724 	debug_object_free(timer, &timer_debug_descr);
725 }
726 
727 static inline void debug_timer_assert_init(struct timer_list *timer)
728 {
729 	debug_object_assert_init(timer, &timer_debug_descr);
730 }
731 
732 static void do_init_timer(struct timer_list *timer,
733 			  void (*func)(struct timer_list *),
734 			  unsigned int flags,
735 			  const char *name, struct lock_class_key *key);
736 
737 void init_timer_on_stack_key(struct timer_list *timer,
738 			     void (*func)(struct timer_list *),
739 			     unsigned int flags,
740 			     const char *name, struct lock_class_key *key)
741 {
742 	debug_object_init_on_stack(timer, &timer_debug_descr);
743 	do_init_timer(timer, func, flags, name, key);
744 }
745 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
746 
747 void destroy_timer_on_stack(struct timer_list *timer)
748 {
749 	debug_object_free(timer, &timer_debug_descr);
750 }
751 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
752 
753 #else
754 static inline void debug_timer_init(struct timer_list *timer) { }
755 static inline void debug_timer_activate(struct timer_list *timer) { }
756 static inline void debug_timer_deactivate(struct timer_list *timer) { }
757 static inline void debug_timer_assert_init(struct timer_list *timer) { }
758 #endif
759 
760 static inline void debug_init(struct timer_list *timer)
761 {
762 	debug_timer_init(timer);
763 	trace_timer_init(timer);
764 }
765 
766 static inline void debug_deactivate(struct timer_list *timer)
767 {
768 	debug_timer_deactivate(timer);
769 	trace_timer_cancel(timer);
770 }
771 
772 static inline void debug_assert_init(struct timer_list *timer)
773 {
774 	debug_timer_assert_init(timer);
775 }
776 
777 static void do_init_timer(struct timer_list *timer,
778 			  void (*func)(struct timer_list *),
779 			  unsigned int flags,
780 			  const char *name, struct lock_class_key *key)
781 {
782 	timer->entry.pprev = NULL;
783 	timer->function = func;
784 	timer->flags = flags | raw_smp_processor_id();
785 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
786 }
787 
788 /**
789  * init_timer_key - initialize a timer
790  * @timer: the timer to be initialized
791  * @func: timer callback function
792  * @flags: timer flags
793  * @name: name of the timer
794  * @key: lockdep class key of the fake lock used for tracking timer
795  *       sync lock dependencies
796  *
797  * init_timer_key() must be done to a timer prior calling *any* of the
798  * other timer functions.
799  */
800 void init_timer_key(struct timer_list *timer,
801 		    void (*func)(struct timer_list *), unsigned int flags,
802 		    const char *name, struct lock_class_key *key)
803 {
804 	debug_init(timer);
805 	do_init_timer(timer, func, flags, name, key);
806 }
807 EXPORT_SYMBOL(init_timer_key);
808 
809 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
810 {
811 	struct hlist_node *entry = &timer->entry;
812 
813 	debug_deactivate(timer);
814 
815 	__hlist_del(entry);
816 	if (clear_pending)
817 		entry->pprev = NULL;
818 	entry->next = LIST_POISON2;
819 }
820 
821 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
822 			     bool clear_pending)
823 {
824 	unsigned idx = timer_get_idx(timer);
825 
826 	if (!timer_pending(timer))
827 		return 0;
828 
829 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
830 		__clear_bit(idx, base->pending_map);
831 
832 	detach_timer(timer, clear_pending);
833 	return 1;
834 }
835 
836 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
837 {
838 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
839 
840 	/*
841 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
842 	 * to use the deferrable base.
843 	 */
844 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
845 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
846 	return base;
847 }
848 
849 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
850 {
851 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
852 
853 	/*
854 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
855 	 * to use the deferrable base.
856 	 */
857 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
858 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
859 	return base;
860 }
861 
862 static inline struct timer_base *get_timer_base(u32 tflags)
863 {
864 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
865 }
866 
867 static inline struct timer_base *
868 get_target_base(struct timer_base *base, unsigned tflags)
869 {
870 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
871 	if (static_branch_likely(&timers_migration_enabled) &&
872 	    !(tflags & TIMER_PINNED))
873 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
874 #endif
875 	return get_timer_this_cpu_base(tflags);
876 }
877 
878 static inline void forward_timer_base(struct timer_base *base)
879 {
880 #ifdef CONFIG_NO_HZ_COMMON
881 	unsigned long jnow;
882 
883 	/*
884 	 * We only forward the base when we are idle or have just come out of
885 	 * idle (must_forward_clk logic), and have a delta between base clock
886 	 * and jiffies. In the common case, run_timers will take care of it.
887 	 */
888 	if (likely(!base->must_forward_clk))
889 		return;
890 
891 	jnow = READ_ONCE(jiffies);
892 	base->must_forward_clk = base->is_idle;
893 	if ((long)(jnow - base->clk) < 2)
894 		return;
895 
896 	/*
897 	 * If the next expiry value is > jiffies, then we fast forward to
898 	 * jiffies otherwise we forward to the next expiry value.
899 	 */
900 	if (time_after(base->next_expiry, jnow))
901 		base->clk = jnow;
902 	else
903 		base->clk = base->next_expiry;
904 #endif
905 }
906 
907 
908 /*
909  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
910  * that all timers which are tied to this base are locked, and the base itself
911  * is locked too.
912  *
913  * So __run_timers/migrate_timers can safely modify all timers which could
914  * be found in the base->vectors array.
915  *
916  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
917  * to wait until the migration is done.
918  */
919 static struct timer_base *lock_timer_base(struct timer_list *timer,
920 					  unsigned long *flags)
921 	__acquires(timer->base->lock)
922 {
923 	for (;;) {
924 		struct timer_base *base;
925 		u32 tf;
926 
927 		/*
928 		 * We need to use READ_ONCE() here, otherwise the compiler
929 		 * might re-read @tf between the check for TIMER_MIGRATING
930 		 * and spin_lock().
931 		 */
932 		tf = READ_ONCE(timer->flags);
933 
934 		if (!(tf & TIMER_MIGRATING)) {
935 			base = get_timer_base(tf);
936 			raw_spin_lock_irqsave(&base->lock, *flags);
937 			if (timer->flags == tf)
938 				return base;
939 			raw_spin_unlock_irqrestore(&base->lock, *flags);
940 		}
941 		cpu_relax();
942 	}
943 }
944 
945 #define MOD_TIMER_PENDING_ONLY		0x01
946 #define MOD_TIMER_REDUCE		0x02
947 #define MOD_TIMER_NOTPENDING		0x04
948 
949 static inline int
950 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
951 {
952 	struct timer_base *base, *new_base;
953 	unsigned int idx = UINT_MAX;
954 	unsigned long clk = 0, flags;
955 	int ret = 0;
956 
957 	BUG_ON(!timer->function);
958 
959 	/*
960 	 * This is a common optimization triggered by the networking code - if
961 	 * the timer is re-modified to have the same timeout or ends up in the
962 	 * same array bucket then just return:
963 	 */
964 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
965 		/*
966 		 * The downside of this optimization is that it can result in
967 		 * larger granularity than you would get from adding a new
968 		 * timer with this expiry.
969 		 */
970 		long diff = timer->expires - expires;
971 
972 		if (!diff)
973 			return 1;
974 		if (options & MOD_TIMER_REDUCE && diff <= 0)
975 			return 1;
976 
977 		/*
978 		 * We lock timer base and calculate the bucket index right
979 		 * here. If the timer ends up in the same bucket, then we
980 		 * just update the expiry time and avoid the whole
981 		 * dequeue/enqueue dance.
982 		 */
983 		base = lock_timer_base(timer, &flags);
984 		forward_timer_base(base);
985 
986 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
987 		    time_before_eq(timer->expires, expires)) {
988 			ret = 1;
989 			goto out_unlock;
990 		}
991 
992 		clk = base->clk;
993 		idx = calc_wheel_index(expires, clk);
994 
995 		/*
996 		 * Retrieve and compare the array index of the pending
997 		 * timer. If it matches set the expiry to the new value so a
998 		 * subsequent call will exit in the expires check above.
999 		 */
1000 		if (idx == timer_get_idx(timer)) {
1001 			if (!(options & MOD_TIMER_REDUCE))
1002 				timer->expires = expires;
1003 			else if (time_after(timer->expires, expires))
1004 				timer->expires = expires;
1005 			ret = 1;
1006 			goto out_unlock;
1007 		}
1008 	} else {
1009 		base = lock_timer_base(timer, &flags);
1010 		forward_timer_base(base);
1011 	}
1012 
1013 	ret = detach_if_pending(timer, base, false);
1014 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1015 		goto out_unlock;
1016 
1017 	new_base = get_target_base(base, timer->flags);
1018 
1019 	if (base != new_base) {
1020 		/*
1021 		 * We are trying to schedule the timer on the new base.
1022 		 * However we can't change timer's base while it is running,
1023 		 * otherwise del_timer_sync() can't detect that the timer's
1024 		 * handler yet has not finished. This also guarantees that the
1025 		 * timer is serialized wrt itself.
1026 		 */
1027 		if (likely(base->running_timer != timer)) {
1028 			/* See the comment in lock_timer_base() */
1029 			timer->flags |= TIMER_MIGRATING;
1030 
1031 			raw_spin_unlock(&base->lock);
1032 			base = new_base;
1033 			raw_spin_lock(&base->lock);
1034 			WRITE_ONCE(timer->flags,
1035 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1036 			forward_timer_base(base);
1037 		}
1038 	}
1039 
1040 	debug_timer_activate(timer);
1041 
1042 	timer->expires = expires;
1043 	/*
1044 	 * If 'idx' was calculated above and the base time did not advance
1045 	 * between calculating 'idx' and possibly switching the base, only
1046 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1047 	 * we need to (re)calculate the wheel index via
1048 	 * internal_add_timer().
1049 	 */
1050 	if (idx != UINT_MAX && clk == base->clk) {
1051 		enqueue_timer(base, timer, idx);
1052 		trigger_dyntick_cpu(base, timer);
1053 	} else {
1054 		internal_add_timer(base, timer);
1055 	}
1056 
1057 out_unlock:
1058 	raw_spin_unlock_irqrestore(&base->lock, flags);
1059 
1060 	return ret;
1061 }
1062 
1063 /**
1064  * mod_timer_pending - modify a pending timer's timeout
1065  * @timer: the pending timer to be modified
1066  * @expires: new timeout in jiffies
1067  *
1068  * mod_timer_pending() is the same for pending timers as mod_timer(),
1069  * but will not re-activate and modify already deleted timers.
1070  *
1071  * It is useful for unserialized use of timers.
1072  */
1073 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1074 {
1075 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1076 }
1077 EXPORT_SYMBOL(mod_timer_pending);
1078 
1079 /**
1080  * mod_timer - modify a timer's timeout
1081  * @timer: the timer to be modified
1082  * @expires: new timeout in jiffies
1083  *
1084  * mod_timer() is a more efficient way to update the expire field of an
1085  * active timer (if the timer is inactive it will be activated)
1086  *
1087  * mod_timer(timer, expires) is equivalent to:
1088  *
1089  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1090  *
1091  * Note that if there are multiple unserialized concurrent users of the
1092  * same timer, then mod_timer() is the only safe way to modify the timeout,
1093  * since add_timer() cannot modify an already running timer.
1094  *
1095  * The function returns whether it has modified a pending timer or not.
1096  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1097  * active timer returns 1.)
1098  */
1099 int mod_timer(struct timer_list *timer, unsigned long expires)
1100 {
1101 	return __mod_timer(timer, expires, 0);
1102 }
1103 EXPORT_SYMBOL(mod_timer);
1104 
1105 /**
1106  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1107  * @timer:	The timer to be modified
1108  * @expires:	New timeout in jiffies
1109  *
1110  * timer_reduce() is very similar to mod_timer(), except that it will only
1111  * modify a running timer if that would reduce the expiration time (it will
1112  * start a timer that isn't running).
1113  */
1114 int timer_reduce(struct timer_list *timer, unsigned long expires)
1115 {
1116 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1117 }
1118 EXPORT_SYMBOL(timer_reduce);
1119 
1120 /**
1121  * add_timer - start a timer
1122  * @timer: the timer to be added
1123  *
1124  * The kernel will do a ->function(@timer) callback from the
1125  * timer interrupt at the ->expires point in the future. The
1126  * current time is 'jiffies'.
1127  *
1128  * The timer's ->expires, ->function fields must be set prior calling this
1129  * function.
1130  *
1131  * Timers with an ->expires field in the past will be executed in the next
1132  * timer tick.
1133  */
1134 void add_timer(struct timer_list *timer)
1135 {
1136 	BUG_ON(timer_pending(timer));
1137 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1138 }
1139 EXPORT_SYMBOL(add_timer);
1140 
1141 /**
1142  * add_timer_on - start a timer on a particular CPU
1143  * @timer: the timer to be added
1144  * @cpu: the CPU to start it on
1145  *
1146  * This is not very scalable on SMP. Double adds are not possible.
1147  */
1148 void add_timer_on(struct timer_list *timer, int cpu)
1149 {
1150 	struct timer_base *new_base, *base;
1151 	unsigned long flags;
1152 
1153 	BUG_ON(timer_pending(timer) || !timer->function);
1154 
1155 	new_base = get_timer_cpu_base(timer->flags, cpu);
1156 
1157 	/*
1158 	 * If @timer was on a different CPU, it should be migrated with the
1159 	 * old base locked to prevent other operations proceeding with the
1160 	 * wrong base locked.  See lock_timer_base().
1161 	 */
1162 	base = lock_timer_base(timer, &flags);
1163 	if (base != new_base) {
1164 		timer->flags |= TIMER_MIGRATING;
1165 
1166 		raw_spin_unlock(&base->lock);
1167 		base = new_base;
1168 		raw_spin_lock(&base->lock);
1169 		WRITE_ONCE(timer->flags,
1170 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1171 	}
1172 	forward_timer_base(base);
1173 
1174 	debug_timer_activate(timer);
1175 	internal_add_timer(base, timer);
1176 	raw_spin_unlock_irqrestore(&base->lock, flags);
1177 }
1178 EXPORT_SYMBOL_GPL(add_timer_on);
1179 
1180 /**
1181  * del_timer - deactivate a timer.
1182  * @timer: the timer to be deactivated
1183  *
1184  * del_timer() deactivates a timer - this works on both active and inactive
1185  * timers.
1186  *
1187  * The function returns whether it has deactivated a pending timer or not.
1188  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1189  * active timer returns 1.)
1190  */
1191 int del_timer(struct timer_list *timer)
1192 {
1193 	struct timer_base *base;
1194 	unsigned long flags;
1195 	int ret = 0;
1196 
1197 	debug_assert_init(timer);
1198 
1199 	if (timer_pending(timer)) {
1200 		base = lock_timer_base(timer, &flags);
1201 		ret = detach_if_pending(timer, base, true);
1202 		raw_spin_unlock_irqrestore(&base->lock, flags);
1203 	}
1204 
1205 	return ret;
1206 }
1207 EXPORT_SYMBOL(del_timer);
1208 
1209 /**
1210  * try_to_del_timer_sync - Try to deactivate a timer
1211  * @timer: timer to delete
1212  *
1213  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1214  * exit the timer is not queued and the handler is not running on any CPU.
1215  */
1216 int try_to_del_timer_sync(struct timer_list *timer)
1217 {
1218 	struct timer_base *base;
1219 	unsigned long flags;
1220 	int ret = -1;
1221 
1222 	debug_assert_init(timer);
1223 
1224 	base = lock_timer_base(timer, &flags);
1225 
1226 	if (base->running_timer != timer)
1227 		ret = detach_if_pending(timer, base, true);
1228 
1229 	raw_spin_unlock_irqrestore(&base->lock, flags);
1230 
1231 	return ret;
1232 }
1233 EXPORT_SYMBOL(try_to_del_timer_sync);
1234 
1235 #ifdef CONFIG_PREEMPT_RT
1236 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1237 {
1238 	spin_lock_init(&base->expiry_lock);
1239 }
1240 
1241 static inline void timer_base_lock_expiry(struct timer_base *base)
1242 {
1243 	spin_lock(&base->expiry_lock);
1244 }
1245 
1246 static inline void timer_base_unlock_expiry(struct timer_base *base)
1247 {
1248 	spin_unlock(&base->expiry_lock);
1249 }
1250 
1251 /*
1252  * The counterpart to del_timer_wait_running().
1253  *
1254  * If there is a waiter for base->expiry_lock, then it was waiting for the
1255  * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1256  * the waiter to acquire the lock and make progress.
1257  */
1258 static void timer_sync_wait_running(struct timer_base *base)
1259 {
1260 	if (atomic_read(&base->timer_waiters)) {
1261 		spin_unlock(&base->expiry_lock);
1262 		spin_lock(&base->expiry_lock);
1263 	}
1264 }
1265 
1266 /*
1267  * This function is called on PREEMPT_RT kernels when the fast path
1268  * deletion of a timer failed because the timer callback function was
1269  * running.
1270  *
1271  * This prevents priority inversion, if the softirq thread on a remote CPU
1272  * got preempted, and it prevents a life lock when the task which tries to
1273  * delete a timer preempted the softirq thread running the timer callback
1274  * function.
1275  */
1276 static void del_timer_wait_running(struct timer_list *timer)
1277 {
1278 	u32 tf;
1279 
1280 	tf = READ_ONCE(timer->flags);
1281 	if (!(tf & TIMER_MIGRATING)) {
1282 		struct timer_base *base = get_timer_base(tf);
1283 
1284 		/*
1285 		 * Mark the base as contended and grab the expiry lock,
1286 		 * which is held by the softirq across the timer
1287 		 * callback. Drop the lock immediately so the softirq can
1288 		 * expire the next timer. In theory the timer could already
1289 		 * be running again, but that's more than unlikely and just
1290 		 * causes another wait loop.
1291 		 */
1292 		atomic_inc(&base->timer_waiters);
1293 		spin_lock_bh(&base->expiry_lock);
1294 		atomic_dec(&base->timer_waiters);
1295 		spin_unlock_bh(&base->expiry_lock);
1296 	}
1297 }
1298 #else
1299 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1300 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1301 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1302 static inline void timer_sync_wait_running(struct timer_base *base) { }
1303 static inline void del_timer_wait_running(struct timer_list *timer) { }
1304 #endif
1305 
1306 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1307 /**
1308  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1309  * @timer: the timer to be deactivated
1310  *
1311  * This function only differs from del_timer() on SMP: besides deactivating
1312  * the timer it also makes sure the handler has finished executing on other
1313  * CPUs.
1314  *
1315  * Synchronization rules: Callers must prevent restarting of the timer,
1316  * otherwise this function is meaningless. It must not be called from
1317  * interrupt contexts unless the timer is an irqsafe one. The caller must
1318  * not hold locks which would prevent completion of the timer's
1319  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1320  * timer is not queued and the handler is not running on any CPU.
1321  *
1322  * Note: For !irqsafe timers, you must not hold locks that are held in
1323  *   interrupt context while calling this function. Even if the lock has
1324  *   nothing to do with the timer in question.  Here's why::
1325  *
1326  *    CPU0                             CPU1
1327  *    ----                             ----
1328  *                                     <SOFTIRQ>
1329  *                                       call_timer_fn();
1330  *                                       base->running_timer = mytimer;
1331  *    spin_lock_irq(somelock);
1332  *                                     <IRQ>
1333  *                                        spin_lock(somelock);
1334  *    del_timer_sync(mytimer);
1335  *    while (base->running_timer == mytimer);
1336  *
1337  * Now del_timer_sync() will never return and never release somelock.
1338  * The interrupt on the other CPU is waiting to grab somelock but
1339  * it has interrupted the softirq that CPU0 is waiting to finish.
1340  *
1341  * The function returns whether it has deactivated a pending timer or not.
1342  */
1343 int del_timer_sync(struct timer_list *timer)
1344 {
1345 	int ret;
1346 
1347 #ifdef CONFIG_LOCKDEP
1348 	unsigned long flags;
1349 
1350 	/*
1351 	 * If lockdep gives a backtrace here, please reference
1352 	 * the synchronization rules above.
1353 	 */
1354 	local_irq_save(flags);
1355 	lock_map_acquire(&timer->lockdep_map);
1356 	lock_map_release(&timer->lockdep_map);
1357 	local_irq_restore(flags);
1358 #endif
1359 	/*
1360 	 * don't use it in hardirq context, because it
1361 	 * could lead to deadlock.
1362 	 */
1363 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1364 
1365 	do {
1366 		ret = try_to_del_timer_sync(timer);
1367 
1368 		if (unlikely(ret < 0)) {
1369 			del_timer_wait_running(timer);
1370 			cpu_relax();
1371 		}
1372 	} while (ret < 0);
1373 
1374 	return ret;
1375 }
1376 EXPORT_SYMBOL(del_timer_sync);
1377 #endif
1378 
1379 static void call_timer_fn(struct timer_list *timer,
1380 			  void (*fn)(struct timer_list *),
1381 			  unsigned long baseclk)
1382 {
1383 	int count = preempt_count();
1384 
1385 #ifdef CONFIG_LOCKDEP
1386 	/*
1387 	 * It is permissible to free the timer from inside the
1388 	 * function that is called from it, this we need to take into
1389 	 * account for lockdep too. To avoid bogus "held lock freed"
1390 	 * warnings as well as problems when looking into
1391 	 * timer->lockdep_map, make a copy and use that here.
1392 	 */
1393 	struct lockdep_map lockdep_map;
1394 
1395 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1396 #endif
1397 	/*
1398 	 * Couple the lock chain with the lock chain at
1399 	 * del_timer_sync() by acquiring the lock_map around the fn()
1400 	 * call here and in del_timer_sync().
1401 	 */
1402 	lock_map_acquire(&lockdep_map);
1403 
1404 	trace_timer_expire_entry(timer, baseclk);
1405 	fn(timer);
1406 	trace_timer_expire_exit(timer);
1407 
1408 	lock_map_release(&lockdep_map);
1409 
1410 	if (count != preempt_count()) {
1411 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1412 			  fn, count, preempt_count());
1413 		/*
1414 		 * Restore the preempt count. That gives us a decent
1415 		 * chance to survive and extract information. If the
1416 		 * callback kept a lock held, bad luck, but not worse
1417 		 * than the BUG() we had.
1418 		 */
1419 		preempt_count_set(count);
1420 	}
1421 }
1422 
1423 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1424 {
1425 	/*
1426 	 * This value is required only for tracing. base->clk was
1427 	 * incremented directly before expire_timers was called. But expiry
1428 	 * is related to the old base->clk value.
1429 	 */
1430 	unsigned long baseclk = base->clk - 1;
1431 
1432 	while (!hlist_empty(head)) {
1433 		struct timer_list *timer;
1434 		void (*fn)(struct timer_list *);
1435 
1436 		timer = hlist_entry(head->first, struct timer_list, entry);
1437 
1438 		base->running_timer = timer;
1439 		detach_timer(timer, true);
1440 
1441 		fn = timer->function;
1442 
1443 		if (timer->flags & TIMER_IRQSAFE) {
1444 			raw_spin_unlock(&base->lock);
1445 			call_timer_fn(timer, fn, baseclk);
1446 			base->running_timer = NULL;
1447 			raw_spin_lock(&base->lock);
1448 		} else {
1449 			raw_spin_unlock_irq(&base->lock);
1450 			call_timer_fn(timer, fn, baseclk);
1451 			base->running_timer = NULL;
1452 			timer_sync_wait_running(base);
1453 			raw_spin_lock_irq(&base->lock);
1454 		}
1455 	}
1456 }
1457 
1458 static int __collect_expired_timers(struct timer_base *base,
1459 				    struct hlist_head *heads)
1460 {
1461 	unsigned long clk = base->clk;
1462 	struct hlist_head *vec;
1463 	int i, levels = 0;
1464 	unsigned int idx;
1465 
1466 	for (i = 0; i < LVL_DEPTH; i++) {
1467 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1468 
1469 		if (__test_and_clear_bit(idx, base->pending_map)) {
1470 			vec = base->vectors + idx;
1471 			hlist_move_list(vec, heads++);
1472 			levels++;
1473 		}
1474 		/* Is it time to look at the next level? */
1475 		if (clk & LVL_CLK_MASK)
1476 			break;
1477 		/* Shift clock for the next level granularity */
1478 		clk >>= LVL_CLK_SHIFT;
1479 	}
1480 	return levels;
1481 }
1482 
1483 #ifdef CONFIG_NO_HZ_COMMON
1484 /*
1485  * Find the next pending bucket of a level. Search from level start (@offset)
1486  * + @clk upwards and if nothing there, search from start of the level
1487  * (@offset) up to @offset + clk.
1488  */
1489 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1490 			       unsigned clk)
1491 {
1492 	unsigned pos, start = offset + clk;
1493 	unsigned end = offset + LVL_SIZE;
1494 
1495 	pos = find_next_bit(base->pending_map, end, start);
1496 	if (pos < end)
1497 		return pos - start;
1498 
1499 	pos = find_next_bit(base->pending_map, start, offset);
1500 	return pos < start ? pos + LVL_SIZE - start : -1;
1501 }
1502 
1503 /*
1504  * Search the first expiring timer in the various clock levels. Caller must
1505  * hold base->lock.
1506  */
1507 static unsigned long __next_timer_interrupt(struct timer_base *base)
1508 {
1509 	unsigned long clk, next, adj;
1510 	unsigned lvl, offset = 0;
1511 
1512 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1513 	clk = base->clk;
1514 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1515 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1516 
1517 		if (pos >= 0) {
1518 			unsigned long tmp = clk + (unsigned long) pos;
1519 
1520 			tmp <<= LVL_SHIFT(lvl);
1521 			if (time_before(tmp, next))
1522 				next = tmp;
1523 		}
1524 		/*
1525 		 * Clock for the next level. If the current level clock lower
1526 		 * bits are zero, we look at the next level as is. If not we
1527 		 * need to advance it by one because that's going to be the
1528 		 * next expiring bucket in that level. base->clk is the next
1529 		 * expiring jiffie. So in case of:
1530 		 *
1531 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1532 		 *  0    0    0    0    0    0
1533 		 *
1534 		 * we have to look at all levels @index 0. With
1535 		 *
1536 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1537 		 *  0    0    0    0    0    2
1538 		 *
1539 		 * LVL0 has the next expiring bucket @index 2. The upper
1540 		 * levels have the next expiring bucket @index 1.
1541 		 *
1542 		 * In case that the propagation wraps the next level the same
1543 		 * rules apply:
1544 		 *
1545 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1546 		 *  0    0    0    0    F    2
1547 		 *
1548 		 * So after looking at LVL0 we get:
1549 		 *
1550 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1551 		 *  0    0    0    1    0
1552 		 *
1553 		 * So no propagation from LVL1 to LVL2 because that happened
1554 		 * with the add already, but then we need to propagate further
1555 		 * from LVL2 to LVL3.
1556 		 *
1557 		 * So the simple check whether the lower bits of the current
1558 		 * level are 0 or not is sufficient for all cases.
1559 		 */
1560 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1561 		clk >>= LVL_CLK_SHIFT;
1562 		clk += adj;
1563 	}
1564 	return next;
1565 }
1566 
1567 /*
1568  * Check, if the next hrtimer event is before the next timer wheel
1569  * event:
1570  */
1571 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1572 {
1573 	u64 nextevt = hrtimer_get_next_event();
1574 
1575 	/*
1576 	 * If high resolution timers are enabled
1577 	 * hrtimer_get_next_event() returns KTIME_MAX.
1578 	 */
1579 	if (expires <= nextevt)
1580 		return expires;
1581 
1582 	/*
1583 	 * If the next timer is already expired, return the tick base
1584 	 * time so the tick is fired immediately.
1585 	 */
1586 	if (nextevt <= basem)
1587 		return basem;
1588 
1589 	/*
1590 	 * Round up to the next jiffie. High resolution timers are
1591 	 * off, so the hrtimers are expired in the tick and we need to
1592 	 * make sure that this tick really expires the timer to avoid
1593 	 * a ping pong of the nohz stop code.
1594 	 *
1595 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1596 	 */
1597 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1598 }
1599 
1600 /**
1601  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1602  * @basej:	base time jiffies
1603  * @basem:	base time clock monotonic
1604  *
1605  * Returns the tick aligned clock monotonic time of the next pending
1606  * timer or KTIME_MAX if no timer is pending.
1607  */
1608 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1609 {
1610 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1611 	u64 expires = KTIME_MAX;
1612 	unsigned long nextevt;
1613 	bool is_max_delta;
1614 
1615 	/*
1616 	 * Pretend that there is no timer pending if the cpu is offline.
1617 	 * Possible pending timers will be migrated later to an active cpu.
1618 	 */
1619 	if (cpu_is_offline(smp_processor_id()))
1620 		return expires;
1621 
1622 	raw_spin_lock(&base->lock);
1623 	nextevt = __next_timer_interrupt(base);
1624 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1625 	base->next_expiry = nextevt;
1626 	/*
1627 	 * We have a fresh next event. Check whether we can forward the
1628 	 * base. We can only do that when @basej is past base->clk
1629 	 * otherwise we might rewind base->clk.
1630 	 */
1631 	if (time_after(basej, base->clk)) {
1632 		if (time_after(nextevt, basej))
1633 			base->clk = basej;
1634 		else if (time_after(nextevt, base->clk))
1635 			base->clk = nextevt;
1636 	}
1637 
1638 	if (time_before_eq(nextevt, basej)) {
1639 		expires = basem;
1640 		base->is_idle = false;
1641 	} else {
1642 		if (!is_max_delta)
1643 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1644 		/*
1645 		 * If we expect to sleep more than a tick, mark the base idle.
1646 		 * Also the tick is stopped so any added timer must forward
1647 		 * the base clk itself to keep granularity small. This idle
1648 		 * logic is only maintained for the BASE_STD base, deferrable
1649 		 * timers may still see large granularity skew (by design).
1650 		 */
1651 		if ((expires - basem) > TICK_NSEC) {
1652 			base->must_forward_clk = true;
1653 			base->is_idle = true;
1654 		}
1655 	}
1656 	raw_spin_unlock(&base->lock);
1657 
1658 	return cmp_next_hrtimer_event(basem, expires);
1659 }
1660 
1661 /**
1662  * timer_clear_idle - Clear the idle state of the timer base
1663  *
1664  * Called with interrupts disabled
1665  */
1666 void timer_clear_idle(void)
1667 {
1668 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1669 
1670 	/*
1671 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1672 	 * a pointless IPI, but taking the lock would just make the window for
1673 	 * sending the IPI a few instructions smaller for the cost of taking
1674 	 * the lock in the exit from idle path.
1675 	 */
1676 	base->is_idle = false;
1677 }
1678 
1679 static int collect_expired_timers(struct timer_base *base,
1680 				  struct hlist_head *heads)
1681 {
1682 	unsigned long now = READ_ONCE(jiffies);
1683 
1684 	/*
1685 	 * NOHZ optimization. After a long idle sleep we need to forward the
1686 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1687 	 * the next expiring timer.
1688 	 */
1689 	if ((long)(now - base->clk) > 2) {
1690 		unsigned long next = __next_timer_interrupt(base);
1691 
1692 		/*
1693 		 * If the next timer is ahead of time forward to current
1694 		 * jiffies, otherwise forward to the next expiry time:
1695 		 */
1696 		if (time_after(next, now)) {
1697 			/*
1698 			 * The call site will increment base->clk and then
1699 			 * terminate the expiry loop immediately.
1700 			 */
1701 			base->clk = now;
1702 			return 0;
1703 		}
1704 		base->clk = next;
1705 	}
1706 	return __collect_expired_timers(base, heads);
1707 }
1708 #else
1709 static inline int collect_expired_timers(struct timer_base *base,
1710 					 struct hlist_head *heads)
1711 {
1712 	return __collect_expired_timers(base, heads);
1713 }
1714 #endif
1715 
1716 /*
1717  * Called from the timer interrupt handler to charge one tick to the current
1718  * process.  user_tick is 1 if the tick is user time, 0 for system.
1719  */
1720 void update_process_times(int user_tick)
1721 {
1722 	struct task_struct *p = current;
1723 
1724 	/* Note: this timer irq context must be accounted for as well. */
1725 	account_process_tick(p, user_tick);
1726 	run_local_timers();
1727 	rcu_sched_clock_irq(user_tick);
1728 #ifdef CONFIG_IRQ_WORK
1729 	if (in_irq())
1730 		irq_work_tick();
1731 #endif
1732 	scheduler_tick();
1733 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1734 		run_posix_cpu_timers();
1735 }
1736 
1737 /**
1738  * __run_timers - run all expired timers (if any) on this CPU.
1739  * @base: the timer vector to be processed.
1740  */
1741 static inline void __run_timers(struct timer_base *base)
1742 {
1743 	struct hlist_head heads[LVL_DEPTH];
1744 	int levels;
1745 
1746 	if (!time_after_eq(jiffies, base->clk))
1747 		return;
1748 
1749 	timer_base_lock_expiry(base);
1750 	raw_spin_lock_irq(&base->lock);
1751 
1752 	/*
1753 	 * timer_base::must_forward_clk must be cleared before running
1754 	 * timers so that any timer functions that call mod_timer() will
1755 	 * not try to forward the base. Idle tracking / clock forwarding
1756 	 * logic is only used with BASE_STD timers.
1757 	 *
1758 	 * The must_forward_clk flag is cleared unconditionally also for
1759 	 * the deferrable base. The deferrable base is not affected by idle
1760 	 * tracking and never forwarded, so clearing the flag is a NOOP.
1761 	 *
1762 	 * The fact that the deferrable base is never forwarded can cause
1763 	 * large variations in granularity for deferrable timers, but they
1764 	 * can be deferred for long periods due to idle anyway.
1765 	 */
1766 	base->must_forward_clk = false;
1767 
1768 	while (time_after_eq(jiffies, base->clk)) {
1769 
1770 		levels = collect_expired_timers(base, heads);
1771 		base->clk++;
1772 
1773 		while (levels--)
1774 			expire_timers(base, heads + levels);
1775 	}
1776 	raw_spin_unlock_irq(&base->lock);
1777 	timer_base_unlock_expiry(base);
1778 }
1779 
1780 /*
1781  * This function runs timers and the timer-tq in bottom half context.
1782  */
1783 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1784 {
1785 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1786 
1787 	__run_timers(base);
1788 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1789 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1790 }
1791 
1792 /*
1793  * Called by the local, per-CPU timer interrupt on SMP.
1794  */
1795 void run_local_timers(void)
1796 {
1797 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1798 
1799 	hrtimer_run_queues();
1800 	/* Raise the softirq only if required. */
1801 	if (time_before(jiffies, base->clk)) {
1802 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1803 			return;
1804 		/* CPU is awake, so check the deferrable base. */
1805 		base++;
1806 		if (time_before(jiffies, base->clk))
1807 			return;
1808 	}
1809 	raise_softirq(TIMER_SOFTIRQ);
1810 }
1811 
1812 /*
1813  * Since schedule_timeout()'s timer is defined on the stack, it must store
1814  * the target task on the stack as well.
1815  */
1816 struct process_timer {
1817 	struct timer_list timer;
1818 	struct task_struct *task;
1819 };
1820 
1821 static void process_timeout(struct timer_list *t)
1822 {
1823 	struct process_timer *timeout = from_timer(timeout, t, timer);
1824 
1825 	wake_up_process(timeout->task);
1826 }
1827 
1828 /**
1829  * schedule_timeout - sleep until timeout
1830  * @timeout: timeout value in jiffies
1831  *
1832  * Make the current task sleep until @timeout jiffies have elapsed.
1833  * The function behavior depends on the current task state
1834  * (see also set_current_state() description):
1835  *
1836  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1837  * at all. That happens because sched_submit_work() does nothing for
1838  * tasks in %TASK_RUNNING state.
1839  *
1840  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1841  * pass before the routine returns unless the current task is explicitly
1842  * woken up, (e.g. by wake_up_process()).
1843  *
1844  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1845  * delivered to the current task or the current task is explicitly woken
1846  * up.
1847  *
1848  * The current task state is guaranteed to be %TASK_RUNNING when this
1849  * routine returns.
1850  *
1851  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1852  * the CPU away without a bound on the timeout. In this case the return
1853  * value will be %MAX_SCHEDULE_TIMEOUT.
1854  *
1855  * Returns 0 when the timer has expired otherwise the remaining time in
1856  * jiffies will be returned. In all cases the return value is guaranteed
1857  * to be non-negative.
1858  */
1859 signed long __sched schedule_timeout(signed long timeout)
1860 {
1861 	struct process_timer timer;
1862 	unsigned long expire;
1863 
1864 	switch (timeout)
1865 	{
1866 	case MAX_SCHEDULE_TIMEOUT:
1867 		/*
1868 		 * These two special cases are useful to be comfortable
1869 		 * in the caller. Nothing more. We could take
1870 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1871 		 * but I' d like to return a valid offset (>=0) to allow
1872 		 * the caller to do everything it want with the retval.
1873 		 */
1874 		schedule();
1875 		goto out;
1876 	default:
1877 		/*
1878 		 * Another bit of PARANOID. Note that the retval will be
1879 		 * 0 since no piece of kernel is supposed to do a check
1880 		 * for a negative retval of schedule_timeout() (since it
1881 		 * should never happens anyway). You just have the printk()
1882 		 * that will tell you if something is gone wrong and where.
1883 		 */
1884 		if (timeout < 0) {
1885 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1886 				"value %lx\n", timeout);
1887 			dump_stack();
1888 			current->state = TASK_RUNNING;
1889 			goto out;
1890 		}
1891 	}
1892 
1893 	expire = timeout + jiffies;
1894 
1895 	timer.task = current;
1896 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1897 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1898 	schedule();
1899 	del_singleshot_timer_sync(&timer.timer);
1900 
1901 	/* Remove the timer from the object tracker */
1902 	destroy_timer_on_stack(&timer.timer);
1903 
1904 	timeout = expire - jiffies;
1905 
1906  out:
1907 	return timeout < 0 ? 0 : timeout;
1908 }
1909 EXPORT_SYMBOL(schedule_timeout);
1910 
1911 /*
1912  * We can use __set_current_state() here because schedule_timeout() calls
1913  * schedule() unconditionally.
1914  */
1915 signed long __sched schedule_timeout_interruptible(signed long timeout)
1916 {
1917 	__set_current_state(TASK_INTERRUPTIBLE);
1918 	return schedule_timeout(timeout);
1919 }
1920 EXPORT_SYMBOL(schedule_timeout_interruptible);
1921 
1922 signed long __sched schedule_timeout_killable(signed long timeout)
1923 {
1924 	__set_current_state(TASK_KILLABLE);
1925 	return schedule_timeout(timeout);
1926 }
1927 EXPORT_SYMBOL(schedule_timeout_killable);
1928 
1929 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1930 {
1931 	__set_current_state(TASK_UNINTERRUPTIBLE);
1932 	return schedule_timeout(timeout);
1933 }
1934 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1935 
1936 /*
1937  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1938  * to load average.
1939  */
1940 signed long __sched schedule_timeout_idle(signed long timeout)
1941 {
1942 	__set_current_state(TASK_IDLE);
1943 	return schedule_timeout(timeout);
1944 }
1945 EXPORT_SYMBOL(schedule_timeout_idle);
1946 
1947 #ifdef CONFIG_HOTPLUG_CPU
1948 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1949 {
1950 	struct timer_list *timer;
1951 	int cpu = new_base->cpu;
1952 
1953 	while (!hlist_empty(head)) {
1954 		timer = hlist_entry(head->first, struct timer_list, entry);
1955 		detach_timer(timer, false);
1956 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1957 		internal_add_timer(new_base, timer);
1958 	}
1959 }
1960 
1961 int timers_prepare_cpu(unsigned int cpu)
1962 {
1963 	struct timer_base *base;
1964 	int b;
1965 
1966 	for (b = 0; b < NR_BASES; b++) {
1967 		base = per_cpu_ptr(&timer_bases[b], cpu);
1968 		base->clk = jiffies;
1969 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1970 		base->is_idle = false;
1971 		base->must_forward_clk = true;
1972 	}
1973 	return 0;
1974 }
1975 
1976 int timers_dead_cpu(unsigned int cpu)
1977 {
1978 	struct timer_base *old_base;
1979 	struct timer_base *new_base;
1980 	int b, i;
1981 
1982 	BUG_ON(cpu_online(cpu));
1983 
1984 	for (b = 0; b < NR_BASES; b++) {
1985 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1986 		new_base = get_cpu_ptr(&timer_bases[b]);
1987 		/*
1988 		 * The caller is globally serialized and nobody else
1989 		 * takes two locks at once, deadlock is not possible.
1990 		 */
1991 		raw_spin_lock_irq(&new_base->lock);
1992 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1993 
1994 		/*
1995 		 * The current CPUs base clock might be stale. Update it
1996 		 * before moving the timers over.
1997 		 */
1998 		forward_timer_base(new_base);
1999 
2000 		BUG_ON(old_base->running_timer);
2001 
2002 		for (i = 0; i < WHEEL_SIZE; i++)
2003 			migrate_timer_list(new_base, old_base->vectors + i);
2004 
2005 		raw_spin_unlock(&old_base->lock);
2006 		raw_spin_unlock_irq(&new_base->lock);
2007 		put_cpu_ptr(&timer_bases);
2008 	}
2009 	return 0;
2010 }
2011 
2012 #endif /* CONFIG_HOTPLUG_CPU */
2013 
2014 static void __init init_timer_cpu(int cpu)
2015 {
2016 	struct timer_base *base;
2017 	int i;
2018 
2019 	for (i = 0; i < NR_BASES; i++) {
2020 		base = per_cpu_ptr(&timer_bases[i], cpu);
2021 		base->cpu = cpu;
2022 		raw_spin_lock_init(&base->lock);
2023 		base->clk = jiffies;
2024 		timer_base_init_expiry_lock(base);
2025 	}
2026 }
2027 
2028 static void __init init_timer_cpus(void)
2029 {
2030 	int cpu;
2031 
2032 	for_each_possible_cpu(cpu)
2033 		init_timer_cpu(cpu);
2034 }
2035 
2036 void __init init_timers(void)
2037 {
2038 	init_timer_cpus();
2039 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2040 }
2041 
2042 /**
2043  * msleep - sleep safely even with waitqueue interruptions
2044  * @msecs: Time in milliseconds to sleep for
2045  */
2046 void msleep(unsigned int msecs)
2047 {
2048 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2049 
2050 	while (timeout)
2051 		timeout = schedule_timeout_uninterruptible(timeout);
2052 }
2053 
2054 EXPORT_SYMBOL(msleep);
2055 
2056 /**
2057  * msleep_interruptible - sleep waiting for signals
2058  * @msecs: Time in milliseconds to sleep for
2059  */
2060 unsigned long msleep_interruptible(unsigned int msecs)
2061 {
2062 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2063 
2064 	while (timeout && !signal_pending(current))
2065 		timeout = schedule_timeout_interruptible(timeout);
2066 	return jiffies_to_msecs(timeout);
2067 }
2068 
2069 EXPORT_SYMBOL(msleep_interruptible);
2070 
2071 /**
2072  * usleep_range - Sleep for an approximate time
2073  * @min: Minimum time in usecs to sleep
2074  * @max: Maximum time in usecs to sleep
2075  *
2076  * In non-atomic context where the exact wakeup time is flexible, use
2077  * usleep_range() instead of udelay().  The sleep improves responsiveness
2078  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2079  * power usage by allowing hrtimers to take advantage of an already-
2080  * scheduled interrupt instead of scheduling a new one just for this sleep.
2081  */
2082 void __sched usleep_range(unsigned long min, unsigned long max)
2083 {
2084 	ktime_t exp = ktime_add_us(ktime_get(), min);
2085 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2086 
2087 	for (;;) {
2088 		__set_current_state(TASK_UNINTERRUPTIBLE);
2089 		/* Do not return before the requested sleep time has elapsed */
2090 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2091 			break;
2092 	}
2093 }
2094 EXPORT_SYMBOL(usleep_range);
2095