1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 29 static struct timekeeper timekeeper; 30 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 31 static seqcount_t timekeeper_seq; 32 static struct timekeeper shadow_timekeeper; 33 34 /* flag for if timekeeping is suspended */ 35 int __read_mostly timekeeping_suspended; 36 37 /* Flag for if there is a persistent clock on this platform */ 38 bool __read_mostly persistent_clock_exist = false; 39 40 static inline void tk_normalize_xtime(struct timekeeper *tk) 41 { 42 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) { 43 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift; 44 tk->xtime_sec++; 45 } 46 } 47 48 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts) 49 { 50 tk->xtime_sec = ts->tv_sec; 51 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift; 52 } 53 54 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts) 55 { 56 tk->xtime_sec += ts->tv_sec; 57 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift; 58 tk_normalize_xtime(tk); 59 } 60 61 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm) 62 { 63 struct timespec tmp; 64 65 /* 66 * Verify consistency of: offset_real = -wall_to_monotonic 67 * before modifying anything 68 */ 69 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec, 70 -tk->wall_to_monotonic.tv_nsec); 71 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64); 72 tk->wall_to_monotonic = wtm; 73 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 74 tk->offs_real = timespec_to_ktime(tmp); 75 tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tk->tai_offset, 0)); 76 } 77 78 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t) 79 { 80 /* Verify consistency before modifying */ 81 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64); 82 83 tk->total_sleep_time = t; 84 tk->offs_boot = timespec_to_ktime(t); 85 } 86 87 /** 88 * timekeeper_setup_internals - Set up internals to use clocksource clock. 89 * 90 * @clock: Pointer to clocksource. 91 * 92 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 93 * pair and interval request. 94 * 95 * Unless you're the timekeeping code, you should not be using this! 96 */ 97 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 98 { 99 cycle_t interval; 100 u64 tmp, ntpinterval; 101 struct clocksource *old_clock; 102 103 old_clock = tk->clock; 104 tk->clock = clock; 105 tk->cycle_last = clock->cycle_last = clock->read(clock); 106 107 /* Do the ns -> cycle conversion first, using original mult */ 108 tmp = NTP_INTERVAL_LENGTH; 109 tmp <<= clock->shift; 110 ntpinterval = tmp; 111 tmp += clock->mult/2; 112 do_div(tmp, clock->mult); 113 if (tmp == 0) 114 tmp = 1; 115 116 interval = (cycle_t) tmp; 117 tk->cycle_interval = interval; 118 119 /* Go back from cycles -> shifted ns */ 120 tk->xtime_interval = (u64) interval * clock->mult; 121 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 122 tk->raw_interval = 123 ((u64) interval * clock->mult) >> clock->shift; 124 125 /* if changing clocks, convert xtime_nsec shift units */ 126 if (old_clock) { 127 int shift_change = clock->shift - old_clock->shift; 128 if (shift_change < 0) 129 tk->xtime_nsec >>= -shift_change; 130 else 131 tk->xtime_nsec <<= shift_change; 132 } 133 tk->shift = clock->shift; 134 135 tk->ntp_error = 0; 136 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 137 138 /* 139 * The timekeeper keeps its own mult values for the currently 140 * active clocksource. These value will be adjusted via NTP 141 * to counteract clock drifting. 142 */ 143 tk->mult = clock->mult; 144 } 145 146 /* Timekeeper helper functions. */ 147 148 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 149 u32 (*arch_gettimeoffset)(void); 150 151 u32 get_arch_timeoffset(void) 152 { 153 if (likely(arch_gettimeoffset)) 154 return arch_gettimeoffset(); 155 return 0; 156 } 157 #else 158 static inline u32 get_arch_timeoffset(void) { return 0; } 159 #endif 160 161 static inline s64 timekeeping_get_ns(struct timekeeper *tk) 162 { 163 cycle_t cycle_now, cycle_delta; 164 struct clocksource *clock; 165 s64 nsec; 166 167 /* read clocksource: */ 168 clock = tk->clock; 169 cycle_now = clock->read(clock); 170 171 /* calculate the delta since the last update_wall_time: */ 172 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 173 174 nsec = cycle_delta * tk->mult + tk->xtime_nsec; 175 nsec >>= tk->shift; 176 177 /* If arch requires, add in get_arch_timeoffset() */ 178 return nsec + get_arch_timeoffset(); 179 } 180 181 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 182 { 183 cycle_t cycle_now, cycle_delta; 184 struct clocksource *clock; 185 s64 nsec; 186 187 /* read clocksource: */ 188 clock = tk->clock; 189 cycle_now = clock->read(clock); 190 191 /* calculate the delta since the last update_wall_time: */ 192 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 193 194 /* convert delta to nanoseconds. */ 195 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 196 197 /* If arch requires, add in get_arch_timeoffset() */ 198 return nsec + get_arch_timeoffset(); 199 } 200 201 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 202 203 static void update_pvclock_gtod(struct timekeeper *tk) 204 { 205 raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk); 206 } 207 208 /** 209 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 210 */ 211 int pvclock_gtod_register_notifier(struct notifier_block *nb) 212 { 213 struct timekeeper *tk = &timekeeper; 214 unsigned long flags; 215 int ret; 216 217 raw_spin_lock_irqsave(&timekeeper_lock, flags); 218 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 219 update_pvclock_gtod(tk); 220 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 221 222 return ret; 223 } 224 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 225 226 /** 227 * pvclock_gtod_unregister_notifier - unregister a pvclock 228 * timedata update listener 229 */ 230 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 231 { 232 unsigned long flags; 233 int ret; 234 235 raw_spin_lock_irqsave(&timekeeper_lock, flags); 236 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 237 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 238 239 return ret; 240 } 241 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 242 243 /* must hold timekeeper_lock */ 244 static void timekeeping_update(struct timekeeper *tk, bool clearntp, bool mirror) 245 { 246 if (clearntp) { 247 tk->ntp_error = 0; 248 ntp_clear(); 249 } 250 update_vsyscall(tk); 251 update_pvclock_gtod(tk); 252 253 if (mirror) 254 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper)); 255 } 256 257 /** 258 * timekeeping_forward_now - update clock to the current time 259 * 260 * Forward the current clock to update its state since the last call to 261 * update_wall_time(). This is useful before significant clock changes, 262 * as it avoids having to deal with this time offset explicitly. 263 */ 264 static void timekeeping_forward_now(struct timekeeper *tk) 265 { 266 cycle_t cycle_now, cycle_delta; 267 struct clocksource *clock; 268 s64 nsec; 269 270 clock = tk->clock; 271 cycle_now = clock->read(clock); 272 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 273 tk->cycle_last = clock->cycle_last = cycle_now; 274 275 tk->xtime_nsec += cycle_delta * tk->mult; 276 277 /* If arch requires, add in get_arch_timeoffset() */ 278 tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift; 279 280 tk_normalize_xtime(tk); 281 282 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 283 timespec_add_ns(&tk->raw_time, nsec); 284 } 285 286 /** 287 * __getnstimeofday - Returns the time of day in a timespec. 288 * @ts: pointer to the timespec to be set 289 * 290 * Updates the time of day in the timespec. 291 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 292 */ 293 int __getnstimeofday(struct timespec *ts) 294 { 295 struct timekeeper *tk = &timekeeper; 296 unsigned long seq; 297 s64 nsecs = 0; 298 299 do { 300 seq = read_seqcount_begin(&timekeeper_seq); 301 302 ts->tv_sec = tk->xtime_sec; 303 nsecs = timekeeping_get_ns(tk); 304 305 } while (read_seqcount_retry(&timekeeper_seq, seq)); 306 307 ts->tv_nsec = 0; 308 timespec_add_ns(ts, nsecs); 309 310 /* 311 * Do not bail out early, in case there were callers still using 312 * the value, even in the face of the WARN_ON. 313 */ 314 if (unlikely(timekeeping_suspended)) 315 return -EAGAIN; 316 return 0; 317 } 318 EXPORT_SYMBOL(__getnstimeofday); 319 320 /** 321 * getnstimeofday - Returns the time of day in a timespec. 322 * @ts: pointer to the timespec to be set 323 * 324 * Returns the time of day in a timespec (WARN if suspended). 325 */ 326 void getnstimeofday(struct timespec *ts) 327 { 328 WARN_ON(__getnstimeofday(ts)); 329 } 330 EXPORT_SYMBOL(getnstimeofday); 331 332 ktime_t ktime_get(void) 333 { 334 struct timekeeper *tk = &timekeeper; 335 unsigned int seq; 336 s64 secs, nsecs; 337 338 WARN_ON(timekeeping_suspended); 339 340 do { 341 seq = read_seqcount_begin(&timekeeper_seq); 342 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 343 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec; 344 345 } while (read_seqcount_retry(&timekeeper_seq, seq)); 346 /* 347 * Use ktime_set/ktime_add_ns to create a proper ktime on 348 * 32-bit architectures without CONFIG_KTIME_SCALAR. 349 */ 350 return ktime_add_ns(ktime_set(secs, 0), nsecs); 351 } 352 EXPORT_SYMBOL_GPL(ktime_get); 353 354 /** 355 * ktime_get_ts - get the monotonic clock in timespec format 356 * @ts: pointer to timespec variable 357 * 358 * The function calculates the monotonic clock from the realtime 359 * clock and the wall_to_monotonic offset and stores the result 360 * in normalized timespec format in the variable pointed to by @ts. 361 */ 362 void ktime_get_ts(struct timespec *ts) 363 { 364 struct timekeeper *tk = &timekeeper; 365 struct timespec tomono; 366 s64 nsec; 367 unsigned int seq; 368 369 WARN_ON(timekeeping_suspended); 370 371 do { 372 seq = read_seqcount_begin(&timekeeper_seq); 373 ts->tv_sec = tk->xtime_sec; 374 nsec = timekeeping_get_ns(tk); 375 tomono = tk->wall_to_monotonic; 376 377 } while (read_seqcount_retry(&timekeeper_seq, seq)); 378 379 ts->tv_sec += tomono.tv_sec; 380 ts->tv_nsec = 0; 381 timespec_add_ns(ts, nsec + tomono.tv_nsec); 382 } 383 EXPORT_SYMBOL_GPL(ktime_get_ts); 384 385 386 /** 387 * timekeeping_clocktai - Returns the TAI time of day in a timespec 388 * @ts: pointer to the timespec to be set 389 * 390 * Returns the time of day in a timespec. 391 */ 392 void timekeeping_clocktai(struct timespec *ts) 393 { 394 struct timekeeper *tk = &timekeeper; 395 unsigned long seq; 396 u64 nsecs; 397 398 WARN_ON(timekeeping_suspended); 399 400 do { 401 seq = read_seqcount_begin(&timekeeper_seq); 402 403 ts->tv_sec = tk->xtime_sec + tk->tai_offset; 404 nsecs = timekeeping_get_ns(tk); 405 406 } while (read_seqcount_retry(&timekeeper_seq, seq)); 407 408 ts->tv_nsec = 0; 409 timespec_add_ns(ts, nsecs); 410 411 } 412 EXPORT_SYMBOL(timekeeping_clocktai); 413 414 415 /** 416 * ktime_get_clocktai - Returns the TAI time of day in a ktime 417 * 418 * Returns the time of day in a ktime. 419 */ 420 ktime_t ktime_get_clocktai(void) 421 { 422 struct timespec ts; 423 424 timekeeping_clocktai(&ts); 425 return timespec_to_ktime(ts); 426 } 427 EXPORT_SYMBOL(ktime_get_clocktai); 428 429 #ifdef CONFIG_NTP_PPS 430 431 /** 432 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 433 * @ts_raw: pointer to the timespec to be set to raw monotonic time 434 * @ts_real: pointer to the timespec to be set to the time of day 435 * 436 * This function reads both the time of day and raw monotonic time at the 437 * same time atomically and stores the resulting timestamps in timespec 438 * format. 439 */ 440 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 441 { 442 struct timekeeper *tk = &timekeeper; 443 unsigned long seq; 444 s64 nsecs_raw, nsecs_real; 445 446 WARN_ON_ONCE(timekeeping_suspended); 447 448 do { 449 seq = read_seqcount_begin(&timekeeper_seq); 450 451 *ts_raw = tk->raw_time; 452 ts_real->tv_sec = tk->xtime_sec; 453 ts_real->tv_nsec = 0; 454 455 nsecs_raw = timekeeping_get_ns_raw(tk); 456 nsecs_real = timekeeping_get_ns(tk); 457 458 } while (read_seqcount_retry(&timekeeper_seq, seq)); 459 460 timespec_add_ns(ts_raw, nsecs_raw); 461 timespec_add_ns(ts_real, nsecs_real); 462 } 463 EXPORT_SYMBOL(getnstime_raw_and_real); 464 465 #endif /* CONFIG_NTP_PPS */ 466 467 /** 468 * do_gettimeofday - Returns the time of day in a timeval 469 * @tv: pointer to the timeval to be set 470 * 471 * NOTE: Users should be converted to using getnstimeofday() 472 */ 473 void do_gettimeofday(struct timeval *tv) 474 { 475 struct timespec now; 476 477 getnstimeofday(&now); 478 tv->tv_sec = now.tv_sec; 479 tv->tv_usec = now.tv_nsec/1000; 480 } 481 EXPORT_SYMBOL(do_gettimeofday); 482 483 /** 484 * do_settimeofday - Sets the time of day 485 * @tv: pointer to the timespec variable containing the new time 486 * 487 * Sets the time of day to the new time and update NTP and notify hrtimers 488 */ 489 int do_settimeofday(const struct timespec *tv) 490 { 491 struct timekeeper *tk = &timekeeper; 492 struct timespec ts_delta, xt; 493 unsigned long flags; 494 495 if (!timespec_valid_strict(tv)) 496 return -EINVAL; 497 498 raw_spin_lock_irqsave(&timekeeper_lock, flags); 499 write_seqcount_begin(&timekeeper_seq); 500 501 timekeeping_forward_now(tk); 502 503 xt = tk_xtime(tk); 504 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 505 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 506 507 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta)); 508 509 tk_set_xtime(tk, tv); 510 511 timekeeping_update(tk, true, true); 512 513 write_seqcount_end(&timekeeper_seq); 514 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 515 516 /* signal hrtimers about time change */ 517 clock_was_set(); 518 519 return 0; 520 } 521 EXPORT_SYMBOL(do_settimeofday); 522 523 /** 524 * timekeeping_inject_offset - Adds or subtracts from the current time. 525 * @tv: pointer to the timespec variable containing the offset 526 * 527 * Adds or subtracts an offset value from the current time. 528 */ 529 int timekeeping_inject_offset(struct timespec *ts) 530 { 531 struct timekeeper *tk = &timekeeper; 532 unsigned long flags; 533 struct timespec tmp; 534 int ret = 0; 535 536 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 537 return -EINVAL; 538 539 raw_spin_lock_irqsave(&timekeeper_lock, flags); 540 write_seqcount_begin(&timekeeper_seq); 541 542 timekeeping_forward_now(tk); 543 544 /* Make sure the proposed value is valid */ 545 tmp = timespec_add(tk_xtime(tk), *ts); 546 if (!timespec_valid_strict(&tmp)) { 547 ret = -EINVAL; 548 goto error; 549 } 550 551 tk_xtime_add(tk, ts); 552 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts)); 553 554 error: /* even if we error out, we forwarded the time, so call update */ 555 timekeeping_update(tk, true, true); 556 557 write_seqcount_end(&timekeeper_seq); 558 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 559 560 /* signal hrtimers about time change */ 561 clock_was_set(); 562 563 return ret; 564 } 565 EXPORT_SYMBOL(timekeeping_inject_offset); 566 567 568 /** 569 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 570 * 571 */ 572 s32 timekeeping_get_tai_offset(void) 573 { 574 struct timekeeper *tk = &timekeeper; 575 unsigned int seq; 576 s32 ret; 577 578 do { 579 seq = read_seqcount_begin(&timekeeper_seq); 580 ret = tk->tai_offset; 581 } while (read_seqcount_retry(&timekeeper_seq, seq)); 582 583 return ret; 584 } 585 586 /** 587 * __timekeeping_set_tai_offset - Lock free worker function 588 * 589 */ 590 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 591 { 592 tk->tai_offset = tai_offset; 593 tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tai_offset, 0)); 594 } 595 596 /** 597 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 598 * 599 */ 600 void timekeeping_set_tai_offset(s32 tai_offset) 601 { 602 struct timekeeper *tk = &timekeeper; 603 unsigned long flags; 604 605 raw_spin_lock_irqsave(&timekeeper_lock, flags); 606 write_seqcount_begin(&timekeeper_seq); 607 __timekeeping_set_tai_offset(tk, tai_offset); 608 write_seqcount_end(&timekeeper_seq); 609 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 610 clock_was_set(); 611 } 612 613 /** 614 * change_clocksource - Swaps clocksources if a new one is available 615 * 616 * Accumulates current time interval and initializes new clocksource 617 */ 618 static int change_clocksource(void *data) 619 { 620 struct timekeeper *tk = &timekeeper; 621 struct clocksource *new, *old; 622 unsigned long flags; 623 624 new = (struct clocksource *) data; 625 626 raw_spin_lock_irqsave(&timekeeper_lock, flags); 627 write_seqcount_begin(&timekeeper_seq); 628 629 timekeeping_forward_now(tk); 630 if (!new->enable || new->enable(new) == 0) { 631 old = tk->clock; 632 tk_setup_internals(tk, new); 633 if (old->disable) 634 old->disable(old); 635 } 636 timekeeping_update(tk, true, true); 637 638 write_seqcount_end(&timekeeper_seq); 639 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 640 641 return 0; 642 } 643 644 /** 645 * timekeeping_notify - Install a new clock source 646 * @clock: pointer to the clock source 647 * 648 * This function is called from clocksource.c after a new, better clock 649 * source has been registered. The caller holds the clocksource_mutex. 650 */ 651 void timekeeping_notify(struct clocksource *clock) 652 { 653 struct timekeeper *tk = &timekeeper; 654 655 if (tk->clock == clock) 656 return; 657 stop_machine(change_clocksource, clock, NULL); 658 tick_clock_notify(); 659 } 660 661 /** 662 * ktime_get_real - get the real (wall-) time in ktime_t format 663 * 664 * returns the time in ktime_t format 665 */ 666 ktime_t ktime_get_real(void) 667 { 668 struct timespec now; 669 670 getnstimeofday(&now); 671 672 return timespec_to_ktime(now); 673 } 674 EXPORT_SYMBOL_GPL(ktime_get_real); 675 676 /** 677 * getrawmonotonic - Returns the raw monotonic time in a timespec 678 * @ts: pointer to the timespec to be set 679 * 680 * Returns the raw monotonic time (completely un-modified by ntp) 681 */ 682 void getrawmonotonic(struct timespec *ts) 683 { 684 struct timekeeper *tk = &timekeeper; 685 unsigned long seq; 686 s64 nsecs; 687 688 do { 689 seq = read_seqcount_begin(&timekeeper_seq); 690 nsecs = timekeeping_get_ns_raw(tk); 691 *ts = tk->raw_time; 692 693 } while (read_seqcount_retry(&timekeeper_seq, seq)); 694 695 timespec_add_ns(ts, nsecs); 696 } 697 EXPORT_SYMBOL(getrawmonotonic); 698 699 /** 700 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 701 */ 702 int timekeeping_valid_for_hres(void) 703 { 704 struct timekeeper *tk = &timekeeper; 705 unsigned long seq; 706 int ret; 707 708 do { 709 seq = read_seqcount_begin(&timekeeper_seq); 710 711 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 712 713 } while (read_seqcount_retry(&timekeeper_seq, seq)); 714 715 return ret; 716 } 717 718 /** 719 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 720 */ 721 u64 timekeeping_max_deferment(void) 722 { 723 struct timekeeper *tk = &timekeeper; 724 unsigned long seq; 725 u64 ret; 726 727 do { 728 seq = read_seqcount_begin(&timekeeper_seq); 729 730 ret = tk->clock->max_idle_ns; 731 732 } while (read_seqcount_retry(&timekeeper_seq, seq)); 733 734 return ret; 735 } 736 737 /** 738 * read_persistent_clock - Return time from the persistent clock. 739 * 740 * Weak dummy function for arches that do not yet support it. 741 * Reads the time from the battery backed persistent clock. 742 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 743 * 744 * XXX - Do be sure to remove it once all arches implement it. 745 */ 746 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 747 { 748 ts->tv_sec = 0; 749 ts->tv_nsec = 0; 750 } 751 752 /** 753 * read_boot_clock - Return time of the system start. 754 * 755 * Weak dummy function for arches that do not yet support it. 756 * Function to read the exact time the system has been started. 757 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 758 * 759 * XXX - Do be sure to remove it once all arches implement it. 760 */ 761 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 762 { 763 ts->tv_sec = 0; 764 ts->tv_nsec = 0; 765 } 766 767 /* 768 * timekeeping_init - Initializes the clocksource and common timekeeping values 769 */ 770 void __init timekeeping_init(void) 771 { 772 struct timekeeper *tk = &timekeeper; 773 struct clocksource *clock; 774 unsigned long flags; 775 struct timespec now, boot, tmp; 776 777 read_persistent_clock(&now); 778 779 if (!timespec_valid_strict(&now)) { 780 pr_warn("WARNING: Persistent clock returned invalid value!\n" 781 " Check your CMOS/BIOS settings.\n"); 782 now.tv_sec = 0; 783 now.tv_nsec = 0; 784 } else if (now.tv_sec || now.tv_nsec) 785 persistent_clock_exist = true; 786 787 read_boot_clock(&boot); 788 if (!timespec_valid_strict(&boot)) { 789 pr_warn("WARNING: Boot clock returned invalid value!\n" 790 " Check your CMOS/BIOS settings.\n"); 791 boot.tv_sec = 0; 792 boot.tv_nsec = 0; 793 } 794 795 raw_spin_lock_irqsave(&timekeeper_lock, flags); 796 write_seqcount_begin(&timekeeper_seq); 797 ntp_init(); 798 799 clock = clocksource_default_clock(); 800 if (clock->enable) 801 clock->enable(clock); 802 tk_setup_internals(tk, clock); 803 804 tk_set_xtime(tk, &now); 805 tk->raw_time.tv_sec = 0; 806 tk->raw_time.tv_nsec = 0; 807 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 808 boot = tk_xtime(tk); 809 810 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec); 811 tk_set_wall_to_mono(tk, tmp); 812 813 tmp.tv_sec = 0; 814 tmp.tv_nsec = 0; 815 tk_set_sleep_time(tk, tmp); 816 817 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper)); 818 819 write_seqcount_end(&timekeeper_seq); 820 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 821 } 822 823 /* time in seconds when suspend began */ 824 static struct timespec timekeeping_suspend_time; 825 826 /** 827 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 828 * @delta: pointer to a timespec delta value 829 * 830 * Takes a timespec offset measuring a suspend interval and properly 831 * adds the sleep offset to the timekeeping variables. 832 */ 833 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 834 struct timespec *delta) 835 { 836 if (!timespec_valid_strict(delta)) { 837 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 838 "sleep delta value!\n"); 839 return; 840 } 841 tk_xtime_add(tk, delta); 842 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta)); 843 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta)); 844 } 845 846 /** 847 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 848 * @delta: pointer to a timespec delta value 849 * 850 * This hook is for architectures that cannot support read_persistent_clock 851 * because their RTC/persistent clock is only accessible when irqs are enabled. 852 * 853 * This function should only be called by rtc_resume(), and allows 854 * a suspend offset to be injected into the timekeeping values. 855 */ 856 void timekeeping_inject_sleeptime(struct timespec *delta) 857 { 858 struct timekeeper *tk = &timekeeper; 859 unsigned long flags; 860 861 /* 862 * Make sure we don't set the clock twice, as timekeeping_resume() 863 * already did it 864 */ 865 if (has_persistent_clock()) 866 return; 867 868 raw_spin_lock_irqsave(&timekeeper_lock, flags); 869 write_seqcount_begin(&timekeeper_seq); 870 871 timekeeping_forward_now(tk); 872 873 __timekeeping_inject_sleeptime(tk, delta); 874 875 timekeeping_update(tk, true, true); 876 877 write_seqcount_end(&timekeeper_seq); 878 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 879 880 /* signal hrtimers about time change */ 881 clock_was_set(); 882 } 883 884 /** 885 * timekeeping_resume - Resumes the generic timekeeping subsystem. 886 * 887 * This is for the generic clocksource timekeeping. 888 * xtime/wall_to_monotonic/jiffies/etc are 889 * still managed by arch specific suspend/resume code. 890 */ 891 static void timekeeping_resume(void) 892 { 893 struct timekeeper *tk = &timekeeper; 894 struct clocksource *clock = tk->clock; 895 unsigned long flags; 896 struct timespec ts_new, ts_delta; 897 cycle_t cycle_now, cycle_delta; 898 bool suspendtime_found = false; 899 900 read_persistent_clock(&ts_new); 901 902 clockevents_resume(); 903 clocksource_resume(); 904 905 raw_spin_lock_irqsave(&timekeeper_lock, flags); 906 write_seqcount_begin(&timekeeper_seq); 907 908 /* 909 * After system resumes, we need to calculate the suspended time and 910 * compensate it for the OS time. There are 3 sources that could be 911 * used: Nonstop clocksource during suspend, persistent clock and rtc 912 * device. 913 * 914 * One specific platform may have 1 or 2 or all of them, and the 915 * preference will be: 916 * suspend-nonstop clocksource -> persistent clock -> rtc 917 * The less preferred source will only be tried if there is no better 918 * usable source. The rtc part is handled separately in rtc core code. 919 */ 920 cycle_now = clock->read(clock); 921 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 922 cycle_now > clock->cycle_last) { 923 u64 num, max = ULLONG_MAX; 924 u32 mult = clock->mult; 925 u32 shift = clock->shift; 926 s64 nsec = 0; 927 928 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 929 930 /* 931 * "cycle_delta * mutl" may cause 64 bits overflow, if the 932 * suspended time is too long. In that case we need do the 933 * 64 bits math carefully 934 */ 935 do_div(max, mult); 936 if (cycle_delta > max) { 937 num = div64_u64(cycle_delta, max); 938 nsec = (((u64) max * mult) >> shift) * num; 939 cycle_delta -= num * max; 940 } 941 nsec += ((u64) cycle_delta * mult) >> shift; 942 943 ts_delta = ns_to_timespec(nsec); 944 suspendtime_found = true; 945 } else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) { 946 ts_delta = timespec_sub(ts_new, timekeeping_suspend_time); 947 suspendtime_found = true; 948 } 949 950 if (suspendtime_found) 951 __timekeeping_inject_sleeptime(tk, &ts_delta); 952 953 /* Re-base the last cycle value */ 954 tk->cycle_last = clock->cycle_last = cycle_now; 955 tk->ntp_error = 0; 956 timekeeping_suspended = 0; 957 timekeeping_update(tk, false, true); 958 write_seqcount_end(&timekeeper_seq); 959 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 960 961 touch_softlockup_watchdog(); 962 963 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 964 965 /* Resume hrtimers */ 966 hrtimers_resume(); 967 } 968 969 static int timekeeping_suspend(void) 970 { 971 struct timekeeper *tk = &timekeeper; 972 unsigned long flags; 973 struct timespec delta, delta_delta; 974 static struct timespec old_delta; 975 976 read_persistent_clock(&timekeeping_suspend_time); 977 978 /* 979 * On some systems the persistent_clock can not be detected at 980 * timekeeping_init by its return value, so if we see a valid 981 * value returned, update the persistent_clock_exists flag. 982 */ 983 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 984 persistent_clock_exist = true; 985 986 raw_spin_lock_irqsave(&timekeeper_lock, flags); 987 write_seqcount_begin(&timekeeper_seq); 988 timekeeping_forward_now(tk); 989 timekeeping_suspended = 1; 990 991 /* 992 * To avoid drift caused by repeated suspend/resumes, 993 * which each can add ~1 second drift error, 994 * try to compensate so the difference in system time 995 * and persistent_clock time stays close to constant. 996 */ 997 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time); 998 delta_delta = timespec_sub(delta, old_delta); 999 if (abs(delta_delta.tv_sec) >= 2) { 1000 /* 1001 * if delta_delta is too large, assume time correction 1002 * has occured and set old_delta to the current delta. 1003 */ 1004 old_delta = delta; 1005 } else { 1006 /* Otherwise try to adjust old_system to compensate */ 1007 timekeeping_suspend_time = 1008 timespec_add(timekeeping_suspend_time, delta_delta); 1009 } 1010 write_seqcount_end(&timekeeper_seq); 1011 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1012 1013 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 1014 clocksource_suspend(); 1015 clockevents_suspend(); 1016 1017 return 0; 1018 } 1019 1020 /* sysfs resume/suspend bits for timekeeping */ 1021 static struct syscore_ops timekeeping_syscore_ops = { 1022 .resume = timekeeping_resume, 1023 .suspend = timekeeping_suspend, 1024 }; 1025 1026 static int __init timekeeping_init_ops(void) 1027 { 1028 register_syscore_ops(&timekeeping_syscore_ops); 1029 return 0; 1030 } 1031 1032 device_initcall(timekeeping_init_ops); 1033 1034 /* 1035 * If the error is already larger, we look ahead even further 1036 * to compensate for late or lost adjustments. 1037 */ 1038 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk, 1039 s64 error, s64 *interval, 1040 s64 *offset) 1041 { 1042 s64 tick_error, i; 1043 u32 look_ahead, adj; 1044 s32 error2, mult; 1045 1046 /* 1047 * Use the current error value to determine how much to look ahead. 1048 * The larger the error the slower we adjust for it to avoid problems 1049 * with losing too many ticks, otherwise we would overadjust and 1050 * produce an even larger error. The smaller the adjustment the 1051 * faster we try to adjust for it, as lost ticks can do less harm 1052 * here. This is tuned so that an error of about 1 msec is adjusted 1053 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 1054 */ 1055 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 1056 error2 = abs(error2); 1057 for (look_ahead = 0; error2 > 0; look_ahead++) 1058 error2 >>= 2; 1059 1060 /* 1061 * Now calculate the error in (1 << look_ahead) ticks, but first 1062 * remove the single look ahead already included in the error. 1063 */ 1064 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1); 1065 tick_error -= tk->xtime_interval >> 1; 1066 error = ((error - tick_error) >> look_ahead) + tick_error; 1067 1068 /* Finally calculate the adjustment shift value. */ 1069 i = *interval; 1070 mult = 1; 1071 if (error < 0) { 1072 error = -error; 1073 *interval = -*interval; 1074 *offset = -*offset; 1075 mult = -1; 1076 } 1077 for (adj = 0; error > i; adj++) 1078 error >>= 1; 1079 1080 *interval <<= adj; 1081 *offset <<= adj; 1082 return mult << adj; 1083 } 1084 1085 /* 1086 * Adjust the multiplier to reduce the error value, 1087 * this is optimized for the most common adjustments of -1,0,1, 1088 * for other values we can do a bit more work. 1089 */ 1090 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1091 { 1092 s64 error, interval = tk->cycle_interval; 1093 int adj; 1094 1095 /* 1096 * The point of this is to check if the error is greater than half 1097 * an interval. 1098 * 1099 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 1100 * 1101 * Note we subtract one in the shift, so that error is really error*2. 1102 * This "saves" dividing(shifting) interval twice, but keeps the 1103 * (error > interval) comparison as still measuring if error is 1104 * larger than half an interval. 1105 * 1106 * Note: It does not "save" on aggravation when reading the code. 1107 */ 1108 error = tk->ntp_error >> (tk->ntp_error_shift - 1); 1109 if (error > interval) { 1110 /* 1111 * We now divide error by 4(via shift), which checks if 1112 * the error is greater than twice the interval. 1113 * If it is greater, we need a bigadjust, if its smaller, 1114 * we can adjust by 1. 1115 */ 1116 error >>= 2; 1117 /* 1118 * XXX - In update_wall_time, we round up to the next 1119 * nanosecond, and store the amount rounded up into 1120 * the error. This causes the likely below to be unlikely. 1121 * 1122 * The proper fix is to avoid rounding up by using 1123 * the high precision tk->xtime_nsec instead of 1124 * xtime.tv_nsec everywhere. Fixing this will take some 1125 * time. 1126 */ 1127 if (likely(error <= interval)) 1128 adj = 1; 1129 else 1130 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 1131 } else { 1132 if (error < -interval) { 1133 /* See comment above, this is just switched for the negative */ 1134 error >>= 2; 1135 if (likely(error >= -interval)) { 1136 adj = -1; 1137 interval = -interval; 1138 offset = -offset; 1139 } else { 1140 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 1141 } 1142 } else { 1143 goto out_adjust; 1144 } 1145 } 1146 1147 if (unlikely(tk->clock->maxadj && 1148 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) { 1149 printk_once(KERN_WARNING 1150 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1151 tk->clock->name, (long)tk->mult + adj, 1152 (long)tk->clock->mult + tk->clock->maxadj); 1153 } 1154 /* 1155 * So the following can be confusing. 1156 * 1157 * To keep things simple, lets assume adj == 1 for now. 1158 * 1159 * When adj != 1, remember that the interval and offset values 1160 * have been appropriately scaled so the math is the same. 1161 * 1162 * The basic idea here is that we're increasing the multiplier 1163 * by one, this causes the xtime_interval to be incremented by 1164 * one cycle_interval. This is because: 1165 * xtime_interval = cycle_interval * mult 1166 * So if mult is being incremented by one: 1167 * xtime_interval = cycle_interval * (mult + 1) 1168 * Its the same as: 1169 * xtime_interval = (cycle_interval * mult) + cycle_interval 1170 * Which can be shortened to: 1171 * xtime_interval += cycle_interval 1172 * 1173 * So offset stores the non-accumulated cycles. Thus the current 1174 * time (in shifted nanoseconds) is: 1175 * now = (offset * adj) + xtime_nsec 1176 * Now, even though we're adjusting the clock frequency, we have 1177 * to keep time consistent. In other words, we can't jump back 1178 * in time, and we also want to avoid jumping forward in time. 1179 * 1180 * So given the same offset value, we need the time to be the same 1181 * both before and after the freq adjustment. 1182 * now = (offset * adj_1) + xtime_nsec_1 1183 * now = (offset * adj_2) + xtime_nsec_2 1184 * So: 1185 * (offset * adj_1) + xtime_nsec_1 = 1186 * (offset * adj_2) + xtime_nsec_2 1187 * And we know: 1188 * adj_2 = adj_1 + 1 1189 * So: 1190 * (offset * adj_1) + xtime_nsec_1 = 1191 * (offset * (adj_1+1)) + xtime_nsec_2 1192 * (offset * adj_1) + xtime_nsec_1 = 1193 * (offset * adj_1) + offset + xtime_nsec_2 1194 * Canceling the sides: 1195 * xtime_nsec_1 = offset + xtime_nsec_2 1196 * Which gives us: 1197 * xtime_nsec_2 = xtime_nsec_1 - offset 1198 * Which simplfies to: 1199 * xtime_nsec -= offset 1200 * 1201 * XXX - TODO: Doc ntp_error calculation. 1202 */ 1203 tk->mult += adj; 1204 tk->xtime_interval += interval; 1205 tk->xtime_nsec -= offset; 1206 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1207 1208 out_adjust: 1209 /* 1210 * It may be possible that when we entered this function, xtime_nsec 1211 * was very small. Further, if we're slightly speeding the clocksource 1212 * in the code above, its possible the required corrective factor to 1213 * xtime_nsec could cause it to underflow. 1214 * 1215 * Now, since we already accumulated the second, cannot simply roll 1216 * the accumulated second back, since the NTP subsystem has been 1217 * notified via second_overflow. So instead we push xtime_nsec forward 1218 * by the amount we underflowed, and add that amount into the error. 1219 * 1220 * We'll correct this error next time through this function, when 1221 * xtime_nsec is not as small. 1222 */ 1223 if (unlikely((s64)tk->xtime_nsec < 0)) { 1224 s64 neg = -(s64)tk->xtime_nsec; 1225 tk->xtime_nsec = 0; 1226 tk->ntp_error += neg << tk->ntp_error_shift; 1227 } 1228 1229 } 1230 1231 /** 1232 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1233 * 1234 * Helper function that accumulates a the nsecs greater then a second 1235 * from the xtime_nsec field to the xtime_secs field. 1236 * It also calls into the NTP code to handle leapsecond processing. 1237 * 1238 */ 1239 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk) 1240 { 1241 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift; 1242 1243 while (tk->xtime_nsec >= nsecps) { 1244 int leap; 1245 1246 tk->xtime_nsec -= nsecps; 1247 tk->xtime_sec++; 1248 1249 /* Figure out if its a leap sec and apply if needed */ 1250 leap = second_overflow(tk->xtime_sec); 1251 if (unlikely(leap)) { 1252 struct timespec ts; 1253 1254 tk->xtime_sec += leap; 1255 1256 ts.tv_sec = leap; 1257 ts.tv_nsec = 0; 1258 tk_set_wall_to_mono(tk, 1259 timespec_sub(tk->wall_to_monotonic, ts)); 1260 1261 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1262 1263 clock_was_set_delayed(); 1264 } 1265 } 1266 } 1267 1268 /** 1269 * logarithmic_accumulation - shifted accumulation of cycles 1270 * 1271 * This functions accumulates a shifted interval of cycles into 1272 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1273 * loop. 1274 * 1275 * Returns the unconsumed cycles. 1276 */ 1277 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1278 u32 shift) 1279 { 1280 cycle_t interval = tk->cycle_interval << shift; 1281 u64 raw_nsecs; 1282 1283 /* If the offset is smaller then a shifted interval, do nothing */ 1284 if (offset < interval) 1285 return offset; 1286 1287 /* Accumulate one shifted interval */ 1288 offset -= interval; 1289 tk->cycle_last += interval; 1290 1291 tk->xtime_nsec += tk->xtime_interval << shift; 1292 accumulate_nsecs_to_secs(tk); 1293 1294 /* Accumulate raw time */ 1295 raw_nsecs = (u64)tk->raw_interval << shift; 1296 raw_nsecs += tk->raw_time.tv_nsec; 1297 if (raw_nsecs >= NSEC_PER_SEC) { 1298 u64 raw_secs = raw_nsecs; 1299 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1300 tk->raw_time.tv_sec += raw_secs; 1301 } 1302 tk->raw_time.tv_nsec = raw_nsecs; 1303 1304 /* Accumulate error between NTP and clock interval */ 1305 tk->ntp_error += ntp_tick_length() << shift; 1306 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1307 (tk->ntp_error_shift + shift); 1308 1309 return offset; 1310 } 1311 1312 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 1313 static inline void old_vsyscall_fixup(struct timekeeper *tk) 1314 { 1315 s64 remainder; 1316 1317 /* 1318 * Store only full nanoseconds into xtime_nsec after rounding 1319 * it up and add the remainder to the error difference. 1320 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 1321 * by truncating the remainder in vsyscalls. However, it causes 1322 * additional work to be done in timekeeping_adjust(). Once 1323 * the vsyscall implementations are converted to use xtime_nsec 1324 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 1325 * users are removed, this can be killed. 1326 */ 1327 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1); 1328 tk->xtime_nsec -= remainder; 1329 tk->xtime_nsec += 1ULL << tk->shift; 1330 tk->ntp_error += remainder << tk->ntp_error_shift; 1331 1332 } 1333 #else 1334 #define old_vsyscall_fixup(tk) 1335 #endif 1336 1337 1338 1339 /** 1340 * update_wall_time - Uses the current clocksource to increment the wall time 1341 * 1342 */ 1343 static void update_wall_time(void) 1344 { 1345 struct clocksource *clock; 1346 struct timekeeper *real_tk = &timekeeper; 1347 struct timekeeper *tk = &shadow_timekeeper; 1348 cycle_t offset; 1349 int shift = 0, maxshift; 1350 unsigned long flags; 1351 1352 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1353 1354 /* Make sure we're fully resumed: */ 1355 if (unlikely(timekeeping_suspended)) 1356 goto out; 1357 1358 clock = real_tk->clock; 1359 1360 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1361 offset = real_tk->cycle_interval; 1362 #else 1363 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1364 #endif 1365 1366 /* Check if there's really nothing to do */ 1367 if (offset < real_tk->cycle_interval) 1368 goto out; 1369 1370 /* 1371 * With NO_HZ we may have to accumulate many cycle_intervals 1372 * (think "ticks") worth of time at once. To do this efficiently, 1373 * we calculate the largest doubling multiple of cycle_intervals 1374 * that is smaller than the offset. We then accumulate that 1375 * chunk in one go, and then try to consume the next smaller 1376 * doubled multiple. 1377 */ 1378 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1379 shift = max(0, shift); 1380 /* Bound shift to one less than what overflows tick_length */ 1381 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1382 shift = min(shift, maxshift); 1383 while (offset >= tk->cycle_interval) { 1384 offset = logarithmic_accumulation(tk, offset, shift); 1385 if (offset < tk->cycle_interval<<shift) 1386 shift--; 1387 } 1388 1389 /* correct the clock when NTP error is too big */ 1390 timekeeping_adjust(tk, offset); 1391 1392 /* 1393 * XXX This can be killed once everyone converts 1394 * to the new update_vsyscall. 1395 */ 1396 old_vsyscall_fixup(tk); 1397 1398 /* 1399 * Finally, make sure that after the rounding 1400 * xtime_nsec isn't larger than NSEC_PER_SEC 1401 */ 1402 accumulate_nsecs_to_secs(tk); 1403 1404 write_seqcount_begin(&timekeeper_seq); 1405 /* Update clock->cycle_last with the new value */ 1406 clock->cycle_last = tk->cycle_last; 1407 /* 1408 * Update the real timekeeper. 1409 * 1410 * We could avoid this memcpy by switching pointers, but that 1411 * requires changes to all other timekeeper usage sites as 1412 * well, i.e. move the timekeeper pointer getter into the 1413 * spinlocked/seqcount protected sections. And we trade this 1414 * memcpy under the timekeeper_seq against one before we start 1415 * updating. 1416 */ 1417 memcpy(real_tk, tk, sizeof(*tk)); 1418 timekeeping_update(real_tk, false, false); 1419 write_seqcount_end(&timekeeper_seq); 1420 out: 1421 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1422 } 1423 1424 /** 1425 * getboottime - Return the real time of system boot. 1426 * @ts: pointer to the timespec to be set 1427 * 1428 * Returns the wall-time of boot in a timespec. 1429 * 1430 * This is based on the wall_to_monotonic offset and the total suspend 1431 * time. Calls to settimeofday will affect the value returned (which 1432 * basically means that however wrong your real time clock is at boot time, 1433 * you get the right time here). 1434 */ 1435 void getboottime(struct timespec *ts) 1436 { 1437 struct timekeeper *tk = &timekeeper; 1438 struct timespec boottime = { 1439 .tv_sec = tk->wall_to_monotonic.tv_sec + 1440 tk->total_sleep_time.tv_sec, 1441 .tv_nsec = tk->wall_to_monotonic.tv_nsec + 1442 tk->total_sleep_time.tv_nsec 1443 }; 1444 1445 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1446 } 1447 EXPORT_SYMBOL_GPL(getboottime); 1448 1449 /** 1450 * get_monotonic_boottime - Returns monotonic time since boot 1451 * @ts: pointer to the timespec to be set 1452 * 1453 * Returns the monotonic time since boot in a timespec. 1454 * 1455 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1456 * includes the time spent in suspend. 1457 */ 1458 void get_monotonic_boottime(struct timespec *ts) 1459 { 1460 struct timekeeper *tk = &timekeeper; 1461 struct timespec tomono, sleep; 1462 s64 nsec; 1463 unsigned int seq; 1464 1465 WARN_ON(timekeeping_suspended); 1466 1467 do { 1468 seq = read_seqcount_begin(&timekeeper_seq); 1469 ts->tv_sec = tk->xtime_sec; 1470 nsec = timekeeping_get_ns(tk); 1471 tomono = tk->wall_to_monotonic; 1472 sleep = tk->total_sleep_time; 1473 1474 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1475 1476 ts->tv_sec += tomono.tv_sec + sleep.tv_sec; 1477 ts->tv_nsec = 0; 1478 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec); 1479 } 1480 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1481 1482 /** 1483 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1484 * 1485 * Returns the monotonic time since boot in a ktime 1486 * 1487 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1488 * includes the time spent in suspend. 1489 */ 1490 ktime_t ktime_get_boottime(void) 1491 { 1492 struct timespec ts; 1493 1494 get_monotonic_boottime(&ts); 1495 return timespec_to_ktime(ts); 1496 } 1497 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1498 1499 /** 1500 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1501 * @ts: pointer to the timespec to be converted 1502 */ 1503 void monotonic_to_bootbased(struct timespec *ts) 1504 { 1505 struct timekeeper *tk = &timekeeper; 1506 1507 *ts = timespec_add(*ts, tk->total_sleep_time); 1508 } 1509 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1510 1511 unsigned long get_seconds(void) 1512 { 1513 struct timekeeper *tk = &timekeeper; 1514 1515 return tk->xtime_sec; 1516 } 1517 EXPORT_SYMBOL(get_seconds); 1518 1519 struct timespec __current_kernel_time(void) 1520 { 1521 struct timekeeper *tk = &timekeeper; 1522 1523 return tk_xtime(tk); 1524 } 1525 1526 struct timespec current_kernel_time(void) 1527 { 1528 struct timekeeper *tk = &timekeeper; 1529 struct timespec now; 1530 unsigned long seq; 1531 1532 do { 1533 seq = read_seqcount_begin(&timekeeper_seq); 1534 1535 now = tk_xtime(tk); 1536 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1537 1538 return now; 1539 } 1540 EXPORT_SYMBOL(current_kernel_time); 1541 1542 struct timespec get_monotonic_coarse(void) 1543 { 1544 struct timekeeper *tk = &timekeeper; 1545 struct timespec now, mono; 1546 unsigned long seq; 1547 1548 do { 1549 seq = read_seqcount_begin(&timekeeper_seq); 1550 1551 now = tk_xtime(tk); 1552 mono = tk->wall_to_monotonic; 1553 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1554 1555 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1556 now.tv_nsec + mono.tv_nsec); 1557 return now; 1558 } 1559 1560 /* 1561 * Must hold jiffies_lock 1562 */ 1563 void do_timer(unsigned long ticks) 1564 { 1565 jiffies_64 += ticks; 1566 update_wall_time(); 1567 calc_global_load(ticks); 1568 } 1569 1570 /** 1571 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1572 * and sleep offsets. 1573 * @xtim: pointer to timespec to be set with xtime 1574 * @wtom: pointer to timespec to be set with wall_to_monotonic 1575 * @sleep: pointer to timespec to be set with time in suspend 1576 */ 1577 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1578 struct timespec *wtom, struct timespec *sleep) 1579 { 1580 struct timekeeper *tk = &timekeeper; 1581 unsigned long seq; 1582 1583 do { 1584 seq = read_seqcount_begin(&timekeeper_seq); 1585 *xtim = tk_xtime(tk); 1586 *wtom = tk->wall_to_monotonic; 1587 *sleep = tk->total_sleep_time; 1588 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1589 } 1590 1591 #ifdef CONFIG_HIGH_RES_TIMERS 1592 /** 1593 * ktime_get_update_offsets - hrtimer helper 1594 * @offs_real: pointer to storage for monotonic -> realtime offset 1595 * @offs_boot: pointer to storage for monotonic -> boottime offset 1596 * 1597 * Returns current monotonic time and updates the offsets 1598 * Called from hrtimer_interupt() or retrigger_next_event() 1599 */ 1600 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot, 1601 ktime_t *offs_tai) 1602 { 1603 struct timekeeper *tk = &timekeeper; 1604 ktime_t now; 1605 unsigned int seq; 1606 u64 secs, nsecs; 1607 1608 do { 1609 seq = read_seqcount_begin(&timekeeper_seq); 1610 1611 secs = tk->xtime_sec; 1612 nsecs = timekeeping_get_ns(tk); 1613 1614 *offs_real = tk->offs_real; 1615 *offs_boot = tk->offs_boot; 1616 *offs_tai = tk->offs_tai; 1617 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1618 1619 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1620 now = ktime_sub(now, *offs_real); 1621 return now; 1622 } 1623 #endif 1624 1625 /** 1626 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1627 */ 1628 ktime_t ktime_get_monotonic_offset(void) 1629 { 1630 struct timekeeper *tk = &timekeeper; 1631 unsigned long seq; 1632 struct timespec wtom; 1633 1634 do { 1635 seq = read_seqcount_begin(&timekeeper_seq); 1636 wtom = tk->wall_to_monotonic; 1637 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1638 1639 return timespec_to_ktime(wtom); 1640 } 1641 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1642 1643 /** 1644 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1645 */ 1646 int do_adjtimex(struct timex *txc) 1647 { 1648 struct timekeeper *tk = &timekeeper; 1649 unsigned long flags; 1650 struct timespec ts; 1651 s32 orig_tai, tai; 1652 int ret; 1653 1654 /* Validate the data before disabling interrupts */ 1655 ret = ntp_validate_timex(txc); 1656 if (ret) 1657 return ret; 1658 1659 if (txc->modes & ADJ_SETOFFSET) { 1660 struct timespec delta; 1661 delta.tv_sec = txc->time.tv_sec; 1662 delta.tv_nsec = txc->time.tv_usec; 1663 if (!(txc->modes & ADJ_NANO)) 1664 delta.tv_nsec *= 1000; 1665 ret = timekeeping_inject_offset(&delta); 1666 if (ret) 1667 return ret; 1668 } 1669 1670 getnstimeofday(&ts); 1671 1672 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1673 write_seqcount_begin(&timekeeper_seq); 1674 1675 orig_tai = tai = tk->tai_offset; 1676 ret = __do_adjtimex(txc, &ts, &tai); 1677 1678 if (tai != orig_tai) { 1679 __timekeeping_set_tai_offset(tk, tai); 1680 clock_was_set_delayed(); 1681 } 1682 write_seqcount_end(&timekeeper_seq); 1683 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1684 1685 return ret; 1686 } 1687 1688 #ifdef CONFIG_NTP_PPS 1689 /** 1690 * hardpps() - Accessor function to NTP __hardpps function 1691 */ 1692 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 1693 { 1694 unsigned long flags; 1695 1696 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1697 write_seqcount_begin(&timekeeper_seq); 1698 1699 __hardpps(phase_ts, raw_ts); 1700 1701 write_seqcount_end(&timekeeper_seq); 1702 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1703 } 1704 EXPORT_SYMBOL(hardpps); 1705 #endif 1706 1707 /** 1708 * xtime_update() - advances the timekeeping infrastructure 1709 * @ticks: number of ticks, that have elapsed since the last call. 1710 * 1711 * Must be called with interrupts disabled. 1712 */ 1713 void xtime_update(unsigned long ticks) 1714 { 1715 write_seqlock(&jiffies_lock); 1716 do_timer(ticks); 1717 write_sequnlock(&jiffies_lock); 1718 } 1719