1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 old_clock = tk->tkr_mono.clock; 237 tk->tkr_mono.clock = clock; 238 tk->tkr_mono.read = clock->read; 239 tk->tkr_mono.mask = clock->mask; 240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 241 242 tk->tkr_raw.clock = clock; 243 tk->tkr_raw.read = clock->read; 244 tk->tkr_raw.mask = clock->mask; 245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 246 247 /* Do the ns -> cycle conversion first, using original mult */ 248 tmp = NTP_INTERVAL_LENGTH; 249 tmp <<= clock->shift; 250 ntpinterval = tmp; 251 tmp += clock->mult/2; 252 do_div(tmp, clock->mult); 253 if (tmp == 0) 254 tmp = 1; 255 256 interval = (cycle_t) tmp; 257 tk->cycle_interval = interval; 258 259 /* Go back from cycles -> shifted ns */ 260 tk->xtime_interval = (u64) interval * clock->mult; 261 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 262 tk->raw_interval = 263 ((u64) interval * clock->mult) >> clock->shift; 264 265 /* if changing clocks, convert xtime_nsec shift units */ 266 if (old_clock) { 267 int shift_change = clock->shift - old_clock->shift; 268 if (shift_change < 0) 269 tk->tkr_mono.xtime_nsec >>= -shift_change; 270 else 271 tk->tkr_mono.xtime_nsec <<= shift_change; 272 } 273 tk->tkr_raw.xtime_nsec = 0; 274 275 tk->tkr_mono.shift = clock->shift; 276 tk->tkr_raw.shift = clock->shift; 277 278 tk->ntp_error = 0; 279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 281 282 /* 283 * The timekeeper keeps its own mult values for the currently 284 * active clocksource. These value will be adjusted via NTP 285 * to counteract clock drifting. 286 */ 287 tk->tkr_mono.mult = clock->mult; 288 tk->tkr_raw.mult = clock->mult; 289 tk->ntp_err_mult = 0; 290 } 291 292 /* Timekeeper helper functions. */ 293 294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 295 static u32 default_arch_gettimeoffset(void) { return 0; } 296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 297 #else 298 static inline u32 arch_gettimeoffset(void) { return 0; } 299 #endif 300 301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 302 { 303 cycle_t delta; 304 s64 nsec; 305 306 delta = timekeeping_get_delta(tkr); 307 308 nsec = delta * tkr->mult + tkr->xtime_nsec; 309 nsec >>= tkr->shift; 310 311 /* If arch requires, add in get_arch_timeoffset() */ 312 return nsec + arch_gettimeoffset(); 313 } 314 315 /** 316 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 317 * @tkr: Timekeeping readout base from which we take the update 318 * 319 * We want to use this from any context including NMI and tracing / 320 * instrumenting the timekeeping code itself. 321 * 322 * Employ the latch technique; see @raw_write_seqcount_latch. 323 * 324 * So if a NMI hits the update of base[0] then it will use base[1] 325 * which is still consistent. In the worst case this can result is a 326 * slightly wrong timestamp (a few nanoseconds). See 327 * @ktime_get_mono_fast_ns. 328 */ 329 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 330 { 331 struct tk_read_base *base = tkf->base; 332 333 /* Force readers off to base[1] */ 334 raw_write_seqcount_latch(&tkf->seq); 335 336 /* Update base[0] */ 337 memcpy(base, tkr, sizeof(*base)); 338 339 /* Force readers back to base[0] */ 340 raw_write_seqcount_latch(&tkf->seq); 341 342 /* Update base[1] */ 343 memcpy(base + 1, base, sizeof(*base)); 344 } 345 346 /** 347 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 348 * 349 * This timestamp is not guaranteed to be monotonic across an update. 350 * The timestamp is calculated by: 351 * 352 * now = base_mono + clock_delta * slope 353 * 354 * So if the update lowers the slope, readers who are forced to the 355 * not yet updated second array are still using the old steeper slope. 356 * 357 * tmono 358 * ^ 359 * | o n 360 * | o n 361 * | u 362 * | o 363 * |o 364 * |12345678---> reader order 365 * 366 * o = old slope 367 * u = update 368 * n = new slope 369 * 370 * So reader 6 will observe time going backwards versus reader 5. 371 * 372 * While other CPUs are likely to be able observe that, the only way 373 * for a CPU local observation is when an NMI hits in the middle of 374 * the update. Timestamps taken from that NMI context might be ahead 375 * of the following timestamps. Callers need to be aware of that and 376 * deal with it. 377 */ 378 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 379 { 380 struct tk_read_base *tkr; 381 unsigned int seq; 382 u64 now; 383 384 do { 385 seq = raw_read_seqcount_latch(&tkf->seq); 386 tkr = tkf->base + (seq & 0x01); 387 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); 388 } while (read_seqcount_retry(&tkf->seq, seq)); 389 390 return now; 391 } 392 393 u64 ktime_get_mono_fast_ns(void) 394 { 395 return __ktime_get_fast_ns(&tk_fast_mono); 396 } 397 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 398 399 u64 ktime_get_raw_fast_ns(void) 400 { 401 return __ktime_get_fast_ns(&tk_fast_raw); 402 } 403 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 404 405 /* Suspend-time cycles value for halted fast timekeeper. */ 406 static cycle_t cycles_at_suspend; 407 408 static cycle_t dummy_clock_read(struct clocksource *cs) 409 { 410 return cycles_at_suspend; 411 } 412 413 /** 414 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 415 * @tk: Timekeeper to snapshot. 416 * 417 * It generally is unsafe to access the clocksource after timekeeping has been 418 * suspended, so take a snapshot of the readout base of @tk and use it as the 419 * fast timekeeper's readout base while suspended. It will return the same 420 * number of cycles every time until timekeeping is resumed at which time the 421 * proper readout base for the fast timekeeper will be restored automatically. 422 */ 423 static void halt_fast_timekeeper(struct timekeeper *tk) 424 { 425 static struct tk_read_base tkr_dummy; 426 struct tk_read_base *tkr = &tk->tkr_mono; 427 428 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 429 cycles_at_suspend = tkr->read(tkr->clock); 430 tkr_dummy.read = dummy_clock_read; 431 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 432 433 tkr = &tk->tkr_raw; 434 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 435 tkr_dummy.read = dummy_clock_read; 436 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 437 } 438 439 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 440 441 static inline void update_vsyscall(struct timekeeper *tk) 442 { 443 struct timespec xt, wm; 444 445 xt = timespec64_to_timespec(tk_xtime(tk)); 446 wm = timespec64_to_timespec(tk->wall_to_monotonic); 447 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 448 tk->tkr_mono.cycle_last); 449 } 450 451 static inline void old_vsyscall_fixup(struct timekeeper *tk) 452 { 453 s64 remainder; 454 455 /* 456 * Store only full nanoseconds into xtime_nsec after rounding 457 * it up and add the remainder to the error difference. 458 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 459 * by truncating the remainder in vsyscalls. However, it causes 460 * additional work to be done in timekeeping_adjust(). Once 461 * the vsyscall implementations are converted to use xtime_nsec 462 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 463 * users are removed, this can be killed. 464 */ 465 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 466 tk->tkr_mono.xtime_nsec -= remainder; 467 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 468 tk->ntp_error += remainder << tk->ntp_error_shift; 469 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 470 } 471 #else 472 #define old_vsyscall_fixup(tk) 473 #endif 474 475 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 476 477 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 478 { 479 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 480 } 481 482 /** 483 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 484 */ 485 int pvclock_gtod_register_notifier(struct notifier_block *nb) 486 { 487 struct timekeeper *tk = &tk_core.timekeeper; 488 unsigned long flags; 489 int ret; 490 491 raw_spin_lock_irqsave(&timekeeper_lock, flags); 492 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 493 update_pvclock_gtod(tk, true); 494 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 495 496 return ret; 497 } 498 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 499 500 /** 501 * pvclock_gtod_unregister_notifier - unregister a pvclock 502 * timedata update listener 503 */ 504 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 505 { 506 unsigned long flags; 507 int ret; 508 509 raw_spin_lock_irqsave(&timekeeper_lock, flags); 510 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 511 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 512 513 return ret; 514 } 515 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 516 517 /* 518 * tk_update_leap_state - helper to update the next_leap_ktime 519 */ 520 static inline void tk_update_leap_state(struct timekeeper *tk) 521 { 522 tk->next_leap_ktime = ntp_get_next_leap(); 523 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 524 /* Convert to monotonic time */ 525 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 526 } 527 528 /* 529 * Update the ktime_t based scalar nsec members of the timekeeper 530 */ 531 static inline void tk_update_ktime_data(struct timekeeper *tk) 532 { 533 u64 seconds; 534 u32 nsec; 535 536 /* 537 * The xtime based monotonic readout is: 538 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 539 * The ktime based monotonic readout is: 540 * nsec = base_mono + now(); 541 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 542 */ 543 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 544 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 545 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 546 547 /* Update the monotonic raw base */ 548 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 549 550 /* 551 * The sum of the nanoseconds portions of xtime and 552 * wall_to_monotonic can be greater/equal one second. Take 553 * this into account before updating tk->ktime_sec. 554 */ 555 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 556 if (nsec >= NSEC_PER_SEC) 557 seconds++; 558 tk->ktime_sec = seconds; 559 } 560 561 /* must hold timekeeper_lock */ 562 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 563 { 564 if (action & TK_CLEAR_NTP) { 565 tk->ntp_error = 0; 566 ntp_clear(); 567 } 568 569 tk_update_leap_state(tk); 570 tk_update_ktime_data(tk); 571 572 update_vsyscall(tk); 573 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 574 575 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 576 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 577 578 if (action & TK_CLOCK_WAS_SET) 579 tk->clock_was_set_seq++; 580 /* 581 * The mirroring of the data to the shadow-timekeeper needs 582 * to happen last here to ensure we don't over-write the 583 * timekeeper structure on the next update with stale data 584 */ 585 if (action & TK_MIRROR) 586 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 587 sizeof(tk_core.timekeeper)); 588 } 589 590 /** 591 * timekeeping_forward_now - update clock to the current time 592 * 593 * Forward the current clock to update its state since the last call to 594 * update_wall_time(). This is useful before significant clock changes, 595 * as it avoids having to deal with this time offset explicitly. 596 */ 597 static void timekeeping_forward_now(struct timekeeper *tk) 598 { 599 struct clocksource *clock = tk->tkr_mono.clock; 600 cycle_t cycle_now, delta; 601 s64 nsec; 602 603 cycle_now = tk->tkr_mono.read(clock); 604 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 605 tk->tkr_mono.cycle_last = cycle_now; 606 tk->tkr_raw.cycle_last = cycle_now; 607 608 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 609 610 /* If arch requires, add in get_arch_timeoffset() */ 611 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 612 613 tk_normalize_xtime(tk); 614 615 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 616 timespec64_add_ns(&tk->raw_time, nsec); 617 } 618 619 /** 620 * __getnstimeofday64 - Returns the time of day in a timespec64. 621 * @ts: pointer to the timespec to be set 622 * 623 * Updates the time of day in the timespec. 624 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 625 */ 626 int __getnstimeofday64(struct timespec64 *ts) 627 { 628 struct timekeeper *tk = &tk_core.timekeeper; 629 unsigned long seq; 630 s64 nsecs = 0; 631 632 do { 633 seq = read_seqcount_begin(&tk_core.seq); 634 635 ts->tv_sec = tk->xtime_sec; 636 nsecs = timekeeping_get_ns(&tk->tkr_mono); 637 638 } while (read_seqcount_retry(&tk_core.seq, seq)); 639 640 ts->tv_nsec = 0; 641 timespec64_add_ns(ts, nsecs); 642 643 /* 644 * Do not bail out early, in case there were callers still using 645 * the value, even in the face of the WARN_ON. 646 */ 647 if (unlikely(timekeeping_suspended)) 648 return -EAGAIN; 649 return 0; 650 } 651 EXPORT_SYMBOL(__getnstimeofday64); 652 653 /** 654 * getnstimeofday64 - Returns the time of day in a timespec64. 655 * @ts: pointer to the timespec64 to be set 656 * 657 * Returns the time of day in a timespec64 (WARN if suspended). 658 */ 659 void getnstimeofday64(struct timespec64 *ts) 660 { 661 WARN_ON(__getnstimeofday64(ts)); 662 } 663 EXPORT_SYMBOL(getnstimeofday64); 664 665 ktime_t ktime_get(void) 666 { 667 struct timekeeper *tk = &tk_core.timekeeper; 668 unsigned int seq; 669 ktime_t base; 670 s64 nsecs; 671 672 WARN_ON(timekeeping_suspended); 673 674 do { 675 seq = read_seqcount_begin(&tk_core.seq); 676 base = tk->tkr_mono.base; 677 nsecs = timekeeping_get_ns(&tk->tkr_mono); 678 679 } while (read_seqcount_retry(&tk_core.seq, seq)); 680 681 return ktime_add_ns(base, nsecs); 682 } 683 EXPORT_SYMBOL_GPL(ktime_get); 684 685 u32 ktime_get_resolution_ns(void) 686 { 687 struct timekeeper *tk = &tk_core.timekeeper; 688 unsigned int seq; 689 u32 nsecs; 690 691 WARN_ON(timekeeping_suspended); 692 693 do { 694 seq = read_seqcount_begin(&tk_core.seq); 695 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 696 } while (read_seqcount_retry(&tk_core.seq, seq)); 697 698 return nsecs; 699 } 700 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 701 702 static ktime_t *offsets[TK_OFFS_MAX] = { 703 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 704 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 705 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 706 }; 707 708 ktime_t ktime_get_with_offset(enum tk_offsets offs) 709 { 710 struct timekeeper *tk = &tk_core.timekeeper; 711 unsigned int seq; 712 ktime_t base, *offset = offsets[offs]; 713 s64 nsecs; 714 715 WARN_ON(timekeeping_suspended); 716 717 do { 718 seq = read_seqcount_begin(&tk_core.seq); 719 base = ktime_add(tk->tkr_mono.base, *offset); 720 nsecs = timekeeping_get_ns(&tk->tkr_mono); 721 722 } while (read_seqcount_retry(&tk_core.seq, seq)); 723 724 return ktime_add_ns(base, nsecs); 725 726 } 727 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 728 729 /** 730 * ktime_mono_to_any() - convert mononotic time to any other time 731 * @tmono: time to convert. 732 * @offs: which offset to use 733 */ 734 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 735 { 736 ktime_t *offset = offsets[offs]; 737 unsigned long seq; 738 ktime_t tconv; 739 740 do { 741 seq = read_seqcount_begin(&tk_core.seq); 742 tconv = ktime_add(tmono, *offset); 743 } while (read_seqcount_retry(&tk_core.seq, seq)); 744 745 return tconv; 746 } 747 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 748 749 /** 750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 751 */ 752 ktime_t ktime_get_raw(void) 753 { 754 struct timekeeper *tk = &tk_core.timekeeper; 755 unsigned int seq; 756 ktime_t base; 757 s64 nsecs; 758 759 do { 760 seq = read_seqcount_begin(&tk_core.seq); 761 base = tk->tkr_raw.base; 762 nsecs = timekeeping_get_ns(&tk->tkr_raw); 763 764 } while (read_seqcount_retry(&tk_core.seq, seq)); 765 766 return ktime_add_ns(base, nsecs); 767 } 768 EXPORT_SYMBOL_GPL(ktime_get_raw); 769 770 /** 771 * ktime_get_ts64 - get the monotonic clock in timespec64 format 772 * @ts: pointer to timespec variable 773 * 774 * The function calculates the monotonic clock from the realtime 775 * clock and the wall_to_monotonic offset and stores the result 776 * in normalized timespec64 format in the variable pointed to by @ts. 777 */ 778 void ktime_get_ts64(struct timespec64 *ts) 779 { 780 struct timekeeper *tk = &tk_core.timekeeper; 781 struct timespec64 tomono; 782 s64 nsec; 783 unsigned int seq; 784 785 WARN_ON(timekeeping_suspended); 786 787 do { 788 seq = read_seqcount_begin(&tk_core.seq); 789 ts->tv_sec = tk->xtime_sec; 790 nsec = timekeeping_get_ns(&tk->tkr_mono); 791 tomono = tk->wall_to_monotonic; 792 793 } while (read_seqcount_retry(&tk_core.seq, seq)); 794 795 ts->tv_sec += tomono.tv_sec; 796 ts->tv_nsec = 0; 797 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 798 } 799 EXPORT_SYMBOL_GPL(ktime_get_ts64); 800 801 /** 802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 803 * 804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 806 * works on both 32 and 64 bit systems. On 32 bit systems the readout 807 * covers ~136 years of uptime which should be enough to prevent 808 * premature wrap arounds. 809 */ 810 time64_t ktime_get_seconds(void) 811 { 812 struct timekeeper *tk = &tk_core.timekeeper; 813 814 WARN_ON(timekeeping_suspended); 815 return tk->ktime_sec; 816 } 817 EXPORT_SYMBOL_GPL(ktime_get_seconds); 818 819 /** 820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 821 * 822 * Returns the wall clock seconds since 1970. This replaces the 823 * get_seconds() interface which is not y2038 safe on 32bit systems. 824 * 825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 826 * 32bit systems the access must be protected with the sequence 827 * counter to provide "atomic" access to the 64bit tk->xtime_sec 828 * value. 829 */ 830 time64_t ktime_get_real_seconds(void) 831 { 832 struct timekeeper *tk = &tk_core.timekeeper; 833 time64_t seconds; 834 unsigned int seq; 835 836 if (IS_ENABLED(CONFIG_64BIT)) 837 return tk->xtime_sec; 838 839 do { 840 seq = read_seqcount_begin(&tk_core.seq); 841 seconds = tk->xtime_sec; 842 843 } while (read_seqcount_retry(&tk_core.seq, seq)); 844 845 return seconds; 846 } 847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 848 849 #ifdef CONFIG_NTP_PPS 850 851 /** 852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 853 * @ts_raw: pointer to the timespec to be set to raw monotonic time 854 * @ts_real: pointer to the timespec to be set to the time of day 855 * 856 * This function reads both the time of day and raw monotonic time at the 857 * same time atomically and stores the resulting timestamps in timespec 858 * format. 859 */ 860 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 861 { 862 struct timekeeper *tk = &tk_core.timekeeper; 863 unsigned long seq; 864 s64 nsecs_raw, nsecs_real; 865 866 WARN_ON_ONCE(timekeeping_suspended); 867 868 do { 869 seq = read_seqcount_begin(&tk_core.seq); 870 871 *ts_raw = timespec64_to_timespec(tk->raw_time); 872 ts_real->tv_sec = tk->xtime_sec; 873 ts_real->tv_nsec = 0; 874 875 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw); 876 nsecs_real = timekeeping_get_ns(&tk->tkr_mono); 877 878 } while (read_seqcount_retry(&tk_core.seq, seq)); 879 880 timespec_add_ns(ts_raw, nsecs_raw); 881 timespec_add_ns(ts_real, nsecs_real); 882 } 883 EXPORT_SYMBOL(getnstime_raw_and_real); 884 885 #endif /* CONFIG_NTP_PPS */ 886 887 /** 888 * do_gettimeofday - Returns the time of day in a timeval 889 * @tv: pointer to the timeval to be set 890 * 891 * NOTE: Users should be converted to using getnstimeofday() 892 */ 893 void do_gettimeofday(struct timeval *tv) 894 { 895 struct timespec64 now; 896 897 getnstimeofday64(&now); 898 tv->tv_sec = now.tv_sec; 899 tv->tv_usec = now.tv_nsec/1000; 900 } 901 EXPORT_SYMBOL(do_gettimeofday); 902 903 /** 904 * do_settimeofday64 - Sets the time of day. 905 * @ts: pointer to the timespec64 variable containing the new time 906 * 907 * Sets the time of day to the new time and update NTP and notify hrtimers 908 */ 909 int do_settimeofday64(const struct timespec64 *ts) 910 { 911 struct timekeeper *tk = &tk_core.timekeeper; 912 struct timespec64 ts_delta, xt; 913 unsigned long flags; 914 915 if (!timespec64_valid_strict(ts)) 916 return -EINVAL; 917 918 raw_spin_lock_irqsave(&timekeeper_lock, flags); 919 write_seqcount_begin(&tk_core.seq); 920 921 timekeeping_forward_now(tk); 922 923 xt = tk_xtime(tk); 924 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 925 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 926 927 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 928 929 tk_set_xtime(tk, ts); 930 931 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 932 933 write_seqcount_end(&tk_core.seq); 934 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 935 936 /* signal hrtimers about time change */ 937 clock_was_set(); 938 939 return 0; 940 } 941 EXPORT_SYMBOL(do_settimeofday64); 942 943 /** 944 * timekeeping_inject_offset - Adds or subtracts from the current time. 945 * @tv: pointer to the timespec variable containing the offset 946 * 947 * Adds or subtracts an offset value from the current time. 948 */ 949 int timekeeping_inject_offset(struct timespec *ts) 950 { 951 struct timekeeper *tk = &tk_core.timekeeper; 952 unsigned long flags; 953 struct timespec64 ts64, tmp; 954 int ret = 0; 955 956 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 957 return -EINVAL; 958 959 ts64 = timespec_to_timespec64(*ts); 960 961 raw_spin_lock_irqsave(&timekeeper_lock, flags); 962 write_seqcount_begin(&tk_core.seq); 963 964 timekeeping_forward_now(tk); 965 966 /* Make sure the proposed value is valid */ 967 tmp = timespec64_add(tk_xtime(tk), ts64); 968 if (!timespec64_valid_strict(&tmp)) { 969 ret = -EINVAL; 970 goto error; 971 } 972 973 tk_xtime_add(tk, &ts64); 974 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 975 976 error: /* even if we error out, we forwarded the time, so call update */ 977 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 978 979 write_seqcount_end(&tk_core.seq); 980 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 981 982 /* signal hrtimers about time change */ 983 clock_was_set(); 984 985 return ret; 986 } 987 EXPORT_SYMBOL(timekeeping_inject_offset); 988 989 990 /** 991 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 992 * 993 */ 994 s32 timekeeping_get_tai_offset(void) 995 { 996 struct timekeeper *tk = &tk_core.timekeeper; 997 unsigned int seq; 998 s32 ret; 999 1000 do { 1001 seq = read_seqcount_begin(&tk_core.seq); 1002 ret = tk->tai_offset; 1003 } while (read_seqcount_retry(&tk_core.seq, seq)); 1004 1005 return ret; 1006 } 1007 1008 /** 1009 * __timekeeping_set_tai_offset - Lock free worker function 1010 * 1011 */ 1012 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1013 { 1014 tk->tai_offset = tai_offset; 1015 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1016 } 1017 1018 /** 1019 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1020 * 1021 */ 1022 void timekeeping_set_tai_offset(s32 tai_offset) 1023 { 1024 struct timekeeper *tk = &tk_core.timekeeper; 1025 unsigned long flags; 1026 1027 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1028 write_seqcount_begin(&tk_core.seq); 1029 __timekeeping_set_tai_offset(tk, tai_offset); 1030 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1031 write_seqcount_end(&tk_core.seq); 1032 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1033 clock_was_set(); 1034 } 1035 1036 /** 1037 * change_clocksource - Swaps clocksources if a new one is available 1038 * 1039 * Accumulates current time interval and initializes new clocksource 1040 */ 1041 static int change_clocksource(void *data) 1042 { 1043 struct timekeeper *tk = &tk_core.timekeeper; 1044 struct clocksource *new, *old; 1045 unsigned long flags; 1046 1047 new = (struct clocksource *) data; 1048 1049 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1050 write_seqcount_begin(&tk_core.seq); 1051 1052 timekeeping_forward_now(tk); 1053 /* 1054 * If the cs is in module, get a module reference. Succeeds 1055 * for built-in code (owner == NULL) as well. 1056 */ 1057 if (try_module_get(new->owner)) { 1058 if (!new->enable || new->enable(new) == 0) { 1059 old = tk->tkr_mono.clock; 1060 tk_setup_internals(tk, new); 1061 if (old->disable) 1062 old->disable(old); 1063 module_put(old->owner); 1064 } else { 1065 module_put(new->owner); 1066 } 1067 } 1068 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1069 1070 write_seqcount_end(&tk_core.seq); 1071 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1072 1073 return 0; 1074 } 1075 1076 /** 1077 * timekeeping_notify - Install a new clock source 1078 * @clock: pointer to the clock source 1079 * 1080 * This function is called from clocksource.c after a new, better clock 1081 * source has been registered. The caller holds the clocksource_mutex. 1082 */ 1083 int timekeeping_notify(struct clocksource *clock) 1084 { 1085 struct timekeeper *tk = &tk_core.timekeeper; 1086 1087 if (tk->tkr_mono.clock == clock) 1088 return 0; 1089 stop_machine(change_clocksource, clock, NULL); 1090 tick_clock_notify(); 1091 return tk->tkr_mono.clock == clock ? 0 : -1; 1092 } 1093 1094 /** 1095 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1096 * @ts: pointer to the timespec64 to be set 1097 * 1098 * Returns the raw monotonic time (completely un-modified by ntp) 1099 */ 1100 void getrawmonotonic64(struct timespec64 *ts) 1101 { 1102 struct timekeeper *tk = &tk_core.timekeeper; 1103 struct timespec64 ts64; 1104 unsigned long seq; 1105 s64 nsecs; 1106 1107 do { 1108 seq = read_seqcount_begin(&tk_core.seq); 1109 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1110 ts64 = tk->raw_time; 1111 1112 } while (read_seqcount_retry(&tk_core.seq, seq)); 1113 1114 timespec64_add_ns(&ts64, nsecs); 1115 *ts = ts64; 1116 } 1117 EXPORT_SYMBOL(getrawmonotonic64); 1118 1119 1120 /** 1121 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1122 */ 1123 int timekeeping_valid_for_hres(void) 1124 { 1125 struct timekeeper *tk = &tk_core.timekeeper; 1126 unsigned long seq; 1127 int ret; 1128 1129 do { 1130 seq = read_seqcount_begin(&tk_core.seq); 1131 1132 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1133 1134 } while (read_seqcount_retry(&tk_core.seq, seq)); 1135 1136 return ret; 1137 } 1138 1139 /** 1140 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1141 */ 1142 u64 timekeeping_max_deferment(void) 1143 { 1144 struct timekeeper *tk = &tk_core.timekeeper; 1145 unsigned long seq; 1146 u64 ret; 1147 1148 do { 1149 seq = read_seqcount_begin(&tk_core.seq); 1150 1151 ret = tk->tkr_mono.clock->max_idle_ns; 1152 1153 } while (read_seqcount_retry(&tk_core.seq, seq)); 1154 1155 return ret; 1156 } 1157 1158 /** 1159 * read_persistent_clock - Return time from the persistent clock. 1160 * 1161 * Weak dummy function for arches that do not yet support it. 1162 * Reads the time from the battery backed persistent clock. 1163 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1164 * 1165 * XXX - Do be sure to remove it once all arches implement it. 1166 */ 1167 void __weak read_persistent_clock(struct timespec *ts) 1168 { 1169 ts->tv_sec = 0; 1170 ts->tv_nsec = 0; 1171 } 1172 1173 void __weak read_persistent_clock64(struct timespec64 *ts64) 1174 { 1175 struct timespec ts; 1176 1177 read_persistent_clock(&ts); 1178 *ts64 = timespec_to_timespec64(ts); 1179 } 1180 1181 /** 1182 * read_boot_clock64 - Return time of the system start. 1183 * 1184 * Weak dummy function for arches that do not yet support it. 1185 * Function to read the exact time the system has been started. 1186 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1187 * 1188 * XXX - Do be sure to remove it once all arches implement it. 1189 */ 1190 void __weak read_boot_clock64(struct timespec64 *ts) 1191 { 1192 ts->tv_sec = 0; 1193 ts->tv_nsec = 0; 1194 } 1195 1196 /* Flag for if timekeeping_resume() has injected sleeptime */ 1197 static bool sleeptime_injected; 1198 1199 /* Flag for if there is a persistent clock on this platform */ 1200 static bool persistent_clock_exists; 1201 1202 /* 1203 * timekeeping_init - Initializes the clocksource and common timekeeping values 1204 */ 1205 void __init timekeeping_init(void) 1206 { 1207 struct timekeeper *tk = &tk_core.timekeeper; 1208 struct clocksource *clock; 1209 unsigned long flags; 1210 struct timespec64 now, boot, tmp; 1211 1212 read_persistent_clock64(&now); 1213 if (!timespec64_valid_strict(&now)) { 1214 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1215 " Check your CMOS/BIOS settings.\n"); 1216 now.tv_sec = 0; 1217 now.tv_nsec = 0; 1218 } else if (now.tv_sec || now.tv_nsec) 1219 persistent_clock_exists = true; 1220 1221 read_boot_clock64(&boot); 1222 if (!timespec64_valid_strict(&boot)) { 1223 pr_warn("WARNING: Boot clock returned invalid value!\n" 1224 " Check your CMOS/BIOS settings.\n"); 1225 boot.tv_sec = 0; 1226 boot.tv_nsec = 0; 1227 } 1228 1229 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1230 write_seqcount_begin(&tk_core.seq); 1231 ntp_init(); 1232 1233 clock = clocksource_default_clock(); 1234 if (clock->enable) 1235 clock->enable(clock); 1236 tk_setup_internals(tk, clock); 1237 1238 tk_set_xtime(tk, &now); 1239 tk->raw_time.tv_sec = 0; 1240 tk->raw_time.tv_nsec = 0; 1241 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1242 boot = tk_xtime(tk); 1243 1244 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1245 tk_set_wall_to_mono(tk, tmp); 1246 1247 timekeeping_update(tk, TK_MIRROR); 1248 1249 write_seqcount_end(&tk_core.seq); 1250 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1251 } 1252 1253 /* time in seconds when suspend began for persistent clock */ 1254 static struct timespec64 timekeeping_suspend_time; 1255 1256 /** 1257 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1258 * @delta: pointer to a timespec delta value 1259 * 1260 * Takes a timespec offset measuring a suspend interval and properly 1261 * adds the sleep offset to the timekeeping variables. 1262 */ 1263 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1264 struct timespec64 *delta) 1265 { 1266 if (!timespec64_valid_strict(delta)) { 1267 printk_deferred(KERN_WARNING 1268 "__timekeeping_inject_sleeptime: Invalid " 1269 "sleep delta value!\n"); 1270 return; 1271 } 1272 tk_xtime_add(tk, delta); 1273 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1274 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1275 tk_debug_account_sleep_time(delta); 1276 } 1277 1278 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1279 /** 1280 * We have three kinds of time sources to use for sleep time 1281 * injection, the preference order is: 1282 * 1) non-stop clocksource 1283 * 2) persistent clock (ie: RTC accessible when irqs are off) 1284 * 3) RTC 1285 * 1286 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1287 * If system has neither 1) nor 2), 3) will be used finally. 1288 * 1289 * 1290 * If timekeeping has injected sleeptime via either 1) or 2), 1291 * 3) becomes needless, so in this case we don't need to call 1292 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1293 * means. 1294 */ 1295 bool timekeeping_rtc_skipresume(void) 1296 { 1297 return sleeptime_injected; 1298 } 1299 1300 /** 1301 * 1) can be determined whether to use or not only when doing 1302 * timekeeping_resume() which is invoked after rtc_suspend(), 1303 * so we can't skip rtc_suspend() surely if system has 1). 1304 * 1305 * But if system has 2), 2) will definitely be used, so in this 1306 * case we don't need to call rtc_suspend(), and this is what 1307 * timekeeping_rtc_skipsuspend() means. 1308 */ 1309 bool timekeeping_rtc_skipsuspend(void) 1310 { 1311 return persistent_clock_exists; 1312 } 1313 1314 /** 1315 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1316 * @delta: pointer to a timespec64 delta value 1317 * 1318 * This hook is for architectures that cannot support read_persistent_clock64 1319 * because their RTC/persistent clock is only accessible when irqs are enabled. 1320 * and also don't have an effective nonstop clocksource. 1321 * 1322 * This function should only be called by rtc_resume(), and allows 1323 * a suspend offset to be injected into the timekeeping values. 1324 */ 1325 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1326 { 1327 struct timekeeper *tk = &tk_core.timekeeper; 1328 unsigned long flags; 1329 1330 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1331 write_seqcount_begin(&tk_core.seq); 1332 1333 timekeeping_forward_now(tk); 1334 1335 __timekeeping_inject_sleeptime(tk, delta); 1336 1337 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1338 1339 write_seqcount_end(&tk_core.seq); 1340 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1341 1342 /* signal hrtimers about time change */ 1343 clock_was_set(); 1344 } 1345 #endif 1346 1347 /** 1348 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1349 */ 1350 void timekeeping_resume(void) 1351 { 1352 struct timekeeper *tk = &tk_core.timekeeper; 1353 struct clocksource *clock = tk->tkr_mono.clock; 1354 unsigned long flags; 1355 struct timespec64 ts_new, ts_delta; 1356 cycle_t cycle_now, cycle_delta; 1357 1358 sleeptime_injected = false; 1359 read_persistent_clock64(&ts_new); 1360 1361 clockevents_resume(); 1362 clocksource_resume(); 1363 1364 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1365 write_seqcount_begin(&tk_core.seq); 1366 1367 /* 1368 * After system resumes, we need to calculate the suspended time and 1369 * compensate it for the OS time. There are 3 sources that could be 1370 * used: Nonstop clocksource during suspend, persistent clock and rtc 1371 * device. 1372 * 1373 * One specific platform may have 1 or 2 or all of them, and the 1374 * preference will be: 1375 * suspend-nonstop clocksource -> persistent clock -> rtc 1376 * The less preferred source will only be tried if there is no better 1377 * usable source. The rtc part is handled separately in rtc core code. 1378 */ 1379 cycle_now = tk->tkr_mono.read(clock); 1380 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1381 cycle_now > tk->tkr_mono.cycle_last) { 1382 u64 num, max = ULLONG_MAX; 1383 u32 mult = clock->mult; 1384 u32 shift = clock->shift; 1385 s64 nsec = 0; 1386 1387 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1388 tk->tkr_mono.mask); 1389 1390 /* 1391 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1392 * suspended time is too long. In that case we need do the 1393 * 64 bits math carefully 1394 */ 1395 do_div(max, mult); 1396 if (cycle_delta > max) { 1397 num = div64_u64(cycle_delta, max); 1398 nsec = (((u64) max * mult) >> shift) * num; 1399 cycle_delta -= num * max; 1400 } 1401 nsec += ((u64) cycle_delta * mult) >> shift; 1402 1403 ts_delta = ns_to_timespec64(nsec); 1404 sleeptime_injected = true; 1405 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1406 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1407 sleeptime_injected = true; 1408 } 1409 1410 if (sleeptime_injected) 1411 __timekeeping_inject_sleeptime(tk, &ts_delta); 1412 1413 /* Re-base the last cycle value */ 1414 tk->tkr_mono.cycle_last = cycle_now; 1415 tk->tkr_raw.cycle_last = cycle_now; 1416 1417 tk->ntp_error = 0; 1418 timekeeping_suspended = 0; 1419 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1420 write_seqcount_end(&tk_core.seq); 1421 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1422 1423 touch_softlockup_watchdog(); 1424 1425 tick_resume(); 1426 hrtimers_resume(); 1427 } 1428 1429 int timekeeping_suspend(void) 1430 { 1431 struct timekeeper *tk = &tk_core.timekeeper; 1432 unsigned long flags; 1433 struct timespec64 delta, delta_delta; 1434 static struct timespec64 old_delta; 1435 1436 read_persistent_clock64(&timekeeping_suspend_time); 1437 1438 /* 1439 * On some systems the persistent_clock can not be detected at 1440 * timekeeping_init by its return value, so if we see a valid 1441 * value returned, update the persistent_clock_exists flag. 1442 */ 1443 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1444 persistent_clock_exists = true; 1445 1446 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1447 write_seqcount_begin(&tk_core.seq); 1448 timekeeping_forward_now(tk); 1449 timekeeping_suspended = 1; 1450 1451 if (persistent_clock_exists) { 1452 /* 1453 * To avoid drift caused by repeated suspend/resumes, 1454 * which each can add ~1 second drift error, 1455 * try to compensate so the difference in system time 1456 * and persistent_clock time stays close to constant. 1457 */ 1458 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1459 delta_delta = timespec64_sub(delta, old_delta); 1460 if (abs(delta_delta.tv_sec) >= 2) { 1461 /* 1462 * if delta_delta is too large, assume time correction 1463 * has occurred and set old_delta to the current delta. 1464 */ 1465 old_delta = delta; 1466 } else { 1467 /* Otherwise try to adjust old_system to compensate */ 1468 timekeeping_suspend_time = 1469 timespec64_add(timekeeping_suspend_time, delta_delta); 1470 } 1471 } 1472 1473 timekeeping_update(tk, TK_MIRROR); 1474 halt_fast_timekeeper(tk); 1475 write_seqcount_end(&tk_core.seq); 1476 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1477 1478 tick_suspend(); 1479 clocksource_suspend(); 1480 clockevents_suspend(); 1481 1482 return 0; 1483 } 1484 1485 /* sysfs resume/suspend bits for timekeeping */ 1486 static struct syscore_ops timekeeping_syscore_ops = { 1487 .resume = timekeeping_resume, 1488 .suspend = timekeeping_suspend, 1489 }; 1490 1491 static int __init timekeeping_init_ops(void) 1492 { 1493 register_syscore_ops(&timekeeping_syscore_ops); 1494 return 0; 1495 } 1496 device_initcall(timekeeping_init_ops); 1497 1498 /* 1499 * Apply a multiplier adjustment to the timekeeper 1500 */ 1501 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1502 s64 offset, 1503 bool negative, 1504 int adj_scale) 1505 { 1506 s64 interval = tk->cycle_interval; 1507 s32 mult_adj = 1; 1508 1509 if (negative) { 1510 mult_adj = -mult_adj; 1511 interval = -interval; 1512 offset = -offset; 1513 } 1514 mult_adj <<= adj_scale; 1515 interval <<= adj_scale; 1516 offset <<= adj_scale; 1517 1518 /* 1519 * So the following can be confusing. 1520 * 1521 * To keep things simple, lets assume mult_adj == 1 for now. 1522 * 1523 * When mult_adj != 1, remember that the interval and offset values 1524 * have been appropriately scaled so the math is the same. 1525 * 1526 * The basic idea here is that we're increasing the multiplier 1527 * by one, this causes the xtime_interval to be incremented by 1528 * one cycle_interval. This is because: 1529 * xtime_interval = cycle_interval * mult 1530 * So if mult is being incremented by one: 1531 * xtime_interval = cycle_interval * (mult + 1) 1532 * Its the same as: 1533 * xtime_interval = (cycle_interval * mult) + cycle_interval 1534 * Which can be shortened to: 1535 * xtime_interval += cycle_interval 1536 * 1537 * So offset stores the non-accumulated cycles. Thus the current 1538 * time (in shifted nanoseconds) is: 1539 * now = (offset * adj) + xtime_nsec 1540 * Now, even though we're adjusting the clock frequency, we have 1541 * to keep time consistent. In other words, we can't jump back 1542 * in time, and we also want to avoid jumping forward in time. 1543 * 1544 * So given the same offset value, we need the time to be the same 1545 * both before and after the freq adjustment. 1546 * now = (offset * adj_1) + xtime_nsec_1 1547 * now = (offset * adj_2) + xtime_nsec_2 1548 * So: 1549 * (offset * adj_1) + xtime_nsec_1 = 1550 * (offset * adj_2) + xtime_nsec_2 1551 * And we know: 1552 * adj_2 = adj_1 + 1 1553 * So: 1554 * (offset * adj_1) + xtime_nsec_1 = 1555 * (offset * (adj_1+1)) + xtime_nsec_2 1556 * (offset * adj_1) + xtime_nsec_1 = 1557 * (offset * adj_1) + offset + xtime_nsec_2 1558 * Canceling the sides: 1559 * xtime_nsec_1 = offset + xtime_nsec_2 1560 * Which gives us: 1561 * xtime_nsec_2 = xtime_nsec_1 - offset 1562 * Which simplfies to: 1563 * xtime_nsec -= offset 1564 * 1565 * XXX - TODO: Doc ntp_error calculation. 1566 */ 1567 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1568 /* NTP adjustment caused clocksource mult overflow */ 1569 WARN_ON_ONCE(1); 1570 return; 1571 } 1572 1573 tk->tkr_mono.mult += mult_adj; 1574 tk->xtime_interval += interval; 1575 tk->tkr_mono.xtime_nsec -= offset; 1576 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1577 } 1578 1579 /* 1580 * Calculate the multiplier adjustment needed to match the frequency 1581 * specified by NTP 1582 */ 1583 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1584 s64 offset) 1585 { 1586 s64 interval = tk->cycle_interval; 1587 s64 xinterval = tk->xtime_interval; 1588 s64 tick_error; 1589 bool negative; 1590 u32 adj; 1591 1592 /* Remove any current error adj from freq calculation */ 1593 if (tk->ntp_err_mult) 1594 xinterval -= tk->cycle_interval; 1595 1596 tk->ntp_tick = ntp_tick_length(); 1597 1598 /* Calculate current error per tick */ 1599 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1600 tick_error -= (xinterval + tk->xtime_remainder); 1601 1602 /* Don't worry about correcting it if its small */ 1603 if (likely((tick_error >= 0) && (tick_error <= interval))) 1604 return; 1605 1606 /* preserve the direction of correction */ 1607 negative = (tick_error < 0); 1608 1609 /* Sort out the magnitude of the correction */ 1610 tick_error = abs(tick_error); 1611 for (adj = 0; tick_error > interval; adj++) 1612 tick_error >>= 1; 1613 1614 /* scale the corrections */ 1615 timekeeping_apply_adjustment(tk, offset, negative, adj); 1616 } 1617 1618 /* 1619 * Adjust the timekeeper's multiplier to the correct frequency 1620 * and also to reduce the accumulated error value. 1621 */ 1622 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1623 { 1624 /* Correct for the current frequency error */ 1625 timekeeping_freqadjust(tk, offset); 1626 1627 /* Next make a small adjustment to fix any cumulative error */ 1628 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1629 tk->ntp_err_mult = 1; 1630 timekeeping_apply_adjustment(tk, offset, 0, 0); 1631 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1632 /* Undo any existing error adjustment */ 1633 timekeeping_apply_adjustment(tk, offset, 1, 0); 1634 tk->ntp_err_mult = 0; 1635 } 1636 1637 if (unlikely(tk->tkr_mono.clock->maxadj && 1638 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1639 > tk->tkr_mono.clock->maxadj))) { 1640 printk_once(KERN_WARNING 1641 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1642 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1643 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1644 } 1645 1646 /* 1647 * It may be possible that when we entered this function, xtime_nsec 1648 * was very small. Further, if we're slightly speeding the clocksource 1649 * in the code above, its possible the required corrective factor to 1650 * xtime_nsec could cause it to underflow. 1651 * 1652 * Now, since we already accumulated the second, cannot simply roll 1653 * the accumulated second back, since the NTP subsystem has been 1654 * notified via second_overflow. So instead we push xtime_nsec forward 1655 * by the amount we underflowed, and add that amount into the error. 1656 * 1657 * We'll correct this error next time through this function, when 1658 * xtime_nsec is not as small. 1659 */ 1660 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1661 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1662 tk->tkr_mono.xtime_nsec = 0; 1663 tk->ntp_error += neg << tk->ntp_error_shift; 1664 } 1665 } 1666 1667 /** 1668 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1669 * 1670 * Helper function that accumulates a the nsecs greater then a second 1671 * from the xtime_nsec field to the xtime_secs field. 1672 * It also calls into the NTP code to handle leapsecond processing. 1673 * 1674 */ 1675 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1676 { 1677 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1678 unsigned int clock_set = 0; 1679 1680 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1681 int leap; 1682 1683 tk->tkr_mono.xtime_nsec -= nsecps; 1684 tk->xtime_sec++; 1685 1686 /* Figure out if its a leap sec and apply if needed */ 1687 leap = second_overflow(tk->xtime_sec); 1688 if (unlikely(leap)) { 1689 struct timespec64 ts; 1690 1691 tk->xtime_sec += leap; 1692 1693 ts.tv_sec = leap; 1694 ts.tv_nsec = 0; 1695 tk_set_wall_to_mono(tk, 1696 timespec64_sub(tk->wall_to_monotonic, ts)); 1697 1698 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1699 1700 clock_set = TK_CLOCK_WAS_SET; 1701 } 1702 } 1703 return clock_set; 1704 } 1705 1706 /** 1707 * logarithmic_accumulation - shifted accumulation of cycles 1708 * 1709 * This functions accumulates a shifted interval of cycles into 1710 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1711 * loop. 1712 * 1713 * Returns the unconsumed cycles. 1714 */ 1715 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1716 u32 shift, 1717 unsigned int *clock_set) 1718 { 1719 cycle_t interval = tk->cycle_interval << shift; 1720 u64 raw_nsecs; 1721 1722 /* If the offset is smaller then a shifted interval, do nothing */ 1723 if (offset < interval) 1724 return offset; 1725 1726 /* Accumulate one shifted interval */ 1727 offset -= interval; 1728 tk->tkr_mono.cycle_last += interval; 1729 tk->tkr_raw.cycle_last += interval; 1730 1731 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 1732 *clock_set |= accumulate_nsecs_to_secs(tk); 1733 1734 /* Accumulate raw time */ 1735 raw_nsecs = (u64)tk->raw_interval << shift; 1736 raw_nsecs += tk->raw_time.tv_nsec; 1737 if (raw_nsecs >= NSEC_PER_SEC) { 1738 u64 raw_secs = raw_nsecs; 1739 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1740 tk->raw_time.tv_sec += raw_secs; 1741 } 1742 tk->raw_time.tv_nsec = raw_nsecs; 1743 1744 /* Accumulate error between NTP and clock interval */ 1745 tk->ntp_error += tk->ntp_tick << shift; 1746 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1747 (tk->ntp_error_shift + shift); 1748 1749 return offset; 1750 } 1751 1752 /** 1753 * update_wall_time - Uses the current clocksource to increment the wall time 1754 * 1755 */ 1756 void update_wall_time(void) 1757 { 1758 struct timekeeper *real_tk = &tk_core.timekeeper; 1759 struct timekeeper *tk = &shadow_timekeeper; 1760 cycle_t offset; 1761 int shift = 0, maxshift; 1762 unsigned int clock_set = 0; 1763 unsigned long flags; 1764 1765 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1766 1767 /* Make sure we're fully resumed: */ 1768 if (unlikely(timekeeping_suspended)) 1769 goto out; 1770 1771 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1772 offset = real_tk->cycle_interval; 1773 #else 1774 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 1775 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 1776 #endif 1777 1778 /* Check if there's really nothing to do */ 1779 if (offset < real_tk->cycle_interval) 1780 goto out; 1781 1782 /* Do some additional sanity checking */ 1783 timekeeping_check_update(real_tk, offset); 1784 1785 /* 1786 * With NO_HZ we may have to accumulate many cycle_intervals 1787 * (think "ticks") worth of time at once. To do this efficiently, 1788 * we calculate the largest doubling multiple of cycle_intervals 1789 * that is smaller than the offset. We then accumulate that 1790 * chunk in one go, and then try to consume the next smaller 1791 * doubled multiple. 1792 */ 1793 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1794 shift = max(0, shift); 1795 /* Bound shift to one less than what overflows tick_length */ 1796 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1797 shift = min(shift, maxshift); 1798 while (offset >= tk->cycle_interval) { 1799 offset = logarithmic_accumulation(tk, offset, shift, 1800 &clock_set); 1801 if (offset < tk->cycle_interval<<shift) 1802 shift--; 1803 } 1804 1805 /* correct the clock when NTP error is too big */ 1806 timekeeping_adjust(tk, offset); 1807 1808 /* 1809 * XXX This can be killed once everyone converts 1810 * to the new update_vsyscall. 1811 */ 1812 old_vsyscall_fixup(tk); 1813 1814 /* 1815 * Finally, make sure that after the rounding 1816 * xtime_nsec isn't larger than NSEC_PER_SEC 1817 */ 1818 clock_set |= accumulate_nsecs_to_secs(tk); 1819 1820 write_seqcount_begin(&tk_core.seq); 1821 /* 1822 * Update the real timekeeper. 1823 * 1824 * We could avoid this memcpy by switching pointers, but that 1825 * requires changes to all other timekeeper usage sites as 1826 * well, i.e. move the timekeeper pointer getter into the 1827 * spinlocked/seqcount protected sections. And we trade this 1828 * memcpy under the tk_core.seq against one before we start 1829 * updating. 1830 */ 1831 timekeeping_update(tk, clock_set); 1832 memcpy(real_tk, tk, sizeof(*tk)); 1833 /* The memcpy must come last. Do not put anything here! */ 1834 write_seqcount_end(&tk_core.seq); 1835 out: 1836 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1837 if (clock_set) 1838 /* Have to call _delayed version, since in irq context*/ 1839 clock_was_set_delayed(); 1840 } 1841 1842 /** 1843 * getboottime64 - Return the real time of system boot. 1844 * @ts: pointer to the timespec64 to be set 1845 * 1846 * Returns the wall-time of boot in a timespec64. 1847 * 1848 * This is based on the wall_to_monotonic offset and the total suspend 1849 * time. Calls to settimeofday will affect the value returned (which 1850 * basically means that however wrong your real time clock is at boot time, 1851 * you get the right time here). 1852 */ 1853 void getboottime64(struct timespec64 *ts) 1854 { 1855 struct timekeeper *tk = &tk_core.timekeeper; 1856 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1857 1858 *ts = ktime_to_timespec64(t); 1859 } 1860 EXPORT_SYMBOL_GPL(getboottime64); 1861 1862 unsigned long get_seconds(void) 1863 { 1864 struct timekeeper *tk = &tk_core.timekeeper; 1865 1866 return tk->xtime_sec; 1867 } 1868 EXPORT_SYMBOL(get_seconds); 1869 1870 struct timespec __current_kernel_time(void) 1871 { 1872 struct timekeeper *tk = &tk_core.timekeeper; 1873 1874 return timespec64_to_timespec(tk_xtime(tk)); 1875 } 1876 1877 struct timespec current_kernel_time(void) 1878 { 1879 struct timekeeper *tk = &tk_core.timekeeper; 1880 struct timespec64 now; 1881 unsigned long seq; 1882 1883 do { 1884 seq = read_seqcount_begin(&tk_core.seq); 1885 1886 now = tk_xtime(tk); 1887 } while (read_seqcount_retry(&tk_core.seq, seq)); 1888 1889 return timespec64_to_timespec(now); 1890 } 1891 EXPORT_SYMBOL(current_kernel_time); 1892 1893 struct timespec64 get_monotonic_coarse64(void) 1894 { 1895 struct timekeeper *tk = &tk_core.timekeeper; 1896 struct timespec64 now, mono; 1897 unsigned long seq; 1898 1899 do { 1900 seq = read_seqcount_begin(&tk_core.seq); 1901 1902 now = tk_xtime(tk); 1903 mono = tk->wall_to_monotonic; 1904 } while (read_seqcount_retry(&tk_core.seq, seq)); 1905 1906 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1907 now.tv_nsec + mono.tv_nsec); 1908 1909 return now; 1910 } 1911 1912 /* 1913 * Must hold jiffies_lock 1914 */ 1915 void do_timer(unsigned long ticks) 1916 { 1917 jiffies_64 += ticks; 1918 calc_global_load(ticks); 1919 } 1920 1921 /** 1922 * ktime_get_update_offsets_now - hrtimer helper 1923 * @cwsseq: pointer to check and store the clock was set sequence number 1924 * @offs_real: pointer to storage for monotonic -> realtime offset 1925 * @offs_boot: pointer to storage for monotonic -> boottime offset 1926 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1927 * 1928 * Returns current monotonic time and updates the offsets if the 1929 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 1930 * different. 1931 * 1932 * Called from hrtimer_interrupt() or retrigger_next_event() 1933 */ 1934 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 1935 ktime_t *offs_boot, ktime_t *offs_tai) 1936 { 1937 struct timekeeper *tk = &tk_core.timekeeper; 1938 unsigned int seq; 1939 ktime_t base; 1940 u64 nsecs; 1941 1942 do { 1943 seq = read_seqcount_begin(&tk_core.seq); 1944 1945 base = tk->tkr_mono.base; 1946 nsecs = timekeeping_get_ns(&tk->tkr_mono); 1947 base = ktime_add_ns(base, nsecs); 1948 1949 if (*cwsseq != tk->clock_was_set_seq) { 1950 *cwsseq = tk->clock_was_set_seq; 1951 *offs_real = tk->offs_real; 1952 *offs_boot = tk->offs_boot; 1953 *offs_tai = tk->offs_tai; 1954 } 1955 1956 /* Handle leapsecond insertion adjustments */ 1957 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 1958 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 1959 1960 } while (read_seqcount_retry(&tk_core.seq, seq)); 1961 1962 return base; 1963 } 1964 1965 /** 1966 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1967 */ 1968 int do_adjtimex(struct timex *txc) 1969 { 1970 struct timekeeper *tk = &tk_core.timekeeper; 1971 unsigned long flags; 1972 struct timespec64 ts; 1973 s32 orig_tai, tai; 1974 int ret; 1975 1976 /* Validate the data before disabling interrupts */ 1977 ret = ntp_validate_timex(txc); 1978 if (ret) 1979 return ret; 1980 1981 if (txc->modes & ADJ_SETOFFSET) { 1982 struct timespec delta; 1983 delta.tv_sec = txc->time.tv_sec; 1984 delta.tv_nsec = txc->time.tv_usec; 1985 if (!(txc->modes & ADJ_NANO)) 1986 delta.tv_nsec *= 1000; 1987 ret = timekeeping_inject_offset(&delta); 1988 if (ret) 1989 return ret; 1990 } 1991 1992 getnstimeofday64(&ts); 1993 1994 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1995 write_seqcount_begin(&tk_core.seq); 1996 1997 orig_tai = tai = tk->tai_offset; 1998 ret = __do_adjtimex(txc, &ts, &tai); 1999 2000 if (tai != orig_tai) { 2001 __timekeeping_set_tai_offset(tk, tai); 2002 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2003 } 2004 tk_update_leap_state(tk); 2005 2006 write_seqcount_end(&tk_core.seq); 2007 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2008 2009 if (tai != orig_tai) 2010 clock_was_set(); 2011 2012 ntp_notify_cmos_timer(); 2013 2014 return ret; 2015 } 2016 2017 #ifdef CONFIG_NTP_PPS 2018 /** 2019 * hardpps() - Accessor function to NTP __hardpps function 2020 */ 2021 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 2022 { 2023 unsigned long flags; 2024 2025 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2026 write_seqcount_begin(&tk_core.seq); 2027 2028 __hardpps(phase_ts, raw_ts); 2029 2030 write_seqcount_end(&tk_core.seq); 2031 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2032 } 2033 EXPORT_SYMBOL(hardpps); 2034 #endif 2035 2036 /** 2037 * xtime_update() - advances the timekeeping infrastructure 2038 * @ticks: number of ticks, that have elapsed since the last call. 2039 * 2040 * Must be called with interrupts disabled. 2041 */ 2042 void xtime_update(unsigned long ticks) 2043 { 2044 write_seqlock(&jiffies_lock); 2045 do_timer(ticks); 2046 write_sequnlock(&jiffies_lock); 2047 update_wall_time(); 2048 } 2049