xref: /openbmc/linux/kernel/time/timekeeping.c (revision d78c317f)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* The shift value of the current clocksource. */
29 	int	shift;
30 
31 	/* Number of clock cycles in one NTP interval. */
32 	cycle_t cycle_interval;
33 	/* Number of clock shifted nano seconds in one NTP interval. */
34 	u64	xtime_interval;
35 	/* shifted nano seconds left over when rounding cycle_interval */
36 	s64	xtime_remainder;
37 	/* Raw nano seconds accumulated per NTP interval. */
38 	u32	raw_interval;
39 
40 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 	u64	xtime_nsec;
42 	/* Difference between accumulated time and NTP time in ntp
43 	 * shifted nano seconds. */
44 	s64	ntp_error;
45 	/* Shift conversion between clock shifted nano seconds and
46 	 * ntp shifted nano seconds. */
47 	int	ntp_error_shift;
48 	/* NTP adjusted clock multiplier */
49 	u32	mult;
50 };
51 
52 static struct timekeeper timekeeper;
53 
54 /**
55  * timekeeper_setup_internals - Set up internals to use clocksource clock.
56  *
57  * @clock:		Pointer to clocksource.
58  *
59  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60  * pair and interval request.
61  *
62  * Unless you're the timekeeping code, you should not be using this!
63  */
64 static void timekeeper_setup_internals(struct clocksource *clock)
65 {
66 	cycle_t interval;
67 	u64 tmp, ntpinterval;
68 
69 	timekeeper.clock = clock;
70 	clock->cycle_last = clock->read(clock);
71 
72 	/* Do the ns -> cycle conversion first, using original mult */
73 	tmp = NTP_INTERVAL_LENGTH;
74 	tmp <<= clock->shift;
75 	ntpinterval = tmp;
76 	tmp += clock->mult/2;
77 	do_div(tmp, clock->mult);
78 	if (tmp == 0)
79 		tmp = 1;
80 
81 	interval = (cycle_t) tmp;
82 	timekeeper.cycle_interval = interval;
83 
84 	/* Go back from cycles -> shifted ns */
85 	timekeeper.xtime_interval = (u64) interval * clock->mult;
86 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 	timekeeper.raw_interval =
88 		((u64) interval * clock->mult) >> clock->shift;
89 
90 	timekeeper.xtime_nsec = 0;
91 	timekeeper.shift = clock->shift;
92 
93 	timekeeper.ntp_error = 0;
94 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 
96 	/*
97 	 * The timekeeper keeps its own mult values for the currently
98 	 * active clocksource. These value will be adjusted via NTP
99 	 * to counteract clock drifting.
100 	 */
101 	timekeeper.mult = clock->mult;
102 }
103 
104 /* Timekeeper helper functions. */
105 static inline s64 timekeeping_get_ns(void)
106 {
107 	cycle_t cycle_now, cycle_delta;
108 	struct clocksource *clock;
109 
110 	/* read clocksource: */
111 	clock = timekeeper.clock;
112 	cycle_now = clock->read(clock);
113 
114 	/* calculate the delta since the last update_wall_time: */
115 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
116 
117 	/* return delta convert to nanoseconds using ntp adjusted mult. */
118 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 				  timekeeper.shift);
120 }
121 
122 static inline s64 timekeeping_get_ns_raw(void)
123 {
124 	cycle_t cycle_now, cycle_delta;
125 	struct clocksource *clock;
126 
127 	/* read clocksource: */
128 	clock = timekeeper.clock;
129 	cycle_now = clock->read(clock);
130 
131 	/* calculate the delta since the last update_wall_time: */
132 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
133 
134 	/* return delta convert to nanoseconds. */
135 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
136 }
137 
138 /*
139  * This read-write spinlock protects us from races in SMP while
140  * playing with xtime.
141  */
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 
144 
145 /*
146  * The current time
147  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
149  * at zero at system boot time, so wall_to_monotonic will be negative,
150  * however, we will ALWAYS keep the tv_nsec part positive so we can use
151  * the usual normalization.
152  *
153  * wall_to_monotonic is moved after resume from suspend for the monotonic
154  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155  * to get the real boot based time offset.
156  *
157  * - wall_to_monotonic is no longer the boot time, getboottime must be
158  * used instead.
159  */
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
163 
164 /*
165  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
166  */
167 static struct timespec raw_time;
168 
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
171 
172 /* must hold xtime_lock */
173 void timekeeping_leap_insert(int leapsecond)
174 {
175 	xtime.tv_sec += leapsecond;
176 	wall_to_monotonic.tv_sec -= leapsecond;
177 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 			timekeeper.mult);
179 }
180 
181 /**
182  * timekeeping_forward_now - update clock to the current time
183  *
184  * Forward the current clock to update its state since the last call to
185  * update_wall_time(). This is useful before significant clock changes,
186  * as it avoids having to deal with this time offset explicitly.
187  */
188 static void timekeeping_forward_now(void)
189 {
190 	cycle_t cycle_now, cycle_delta;
191 	struct clocksource *clock;
192 	s64 nsec;
193 
194 	clock = timekeeper.clock;
195 	cycle_now = clock->read(clock);
196 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 	clock->cycle_last = cycle_now;
198 
199 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 				  timekeeper.shift);
201 
202 	/* If arch requires, add in gettimeoffset() */
203 	nsec += arch_gettimeoffset();
204 
205 	timespec_add_ns(&xtime, nsec);
206 
207 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 	timespec_add_ns(&raw_time, nsec);
209 }
210 
211 /**
212  * getnstimeofday - Returns the time of day in a timespec
213  * @ts:		pointer to the timespec to be set
214  *
215  * Returns the time of day in a timespec.
216  */
217 void getnstimeofday(struct timespec *ts)
218 {
219 	unsigned long seq;
220 	s64 nsecs;
221 
222 	WARN_ON(timekeeping_suspended);
223 
224 	do {
225 		seq = read_seqbegin(&xtime_lock);
226 
227 		*ts = xtime;
228 		nsecs = timekeeping_get_ns();
229 
230 		/* If arch requires, add in gettimeoffset() */
231 		nsecs += arch_gettimeoffset();
232 
233 	} while (read_seqretry(&xtime_lock, seq));
234 
235 	timespec_add_ns(ts, nsecs);
236 }
237 
238 EXPORT_SYMBOL(getnstimeofday);
239 
240 ktime_t ktime_get(void)
241 {
242 	unsigned int seq;
243 	s64 secs, nsecs;
244 
245 	WARN_ON(timekeeping_suspended);
246 
247 	do {
248 		seq = read_seqbegin(&xtime_lock);
249 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 		nsecs += timekeeping_get_ns();
252 		/* If arch requires, add in gettimeoffset() */
253 		nsecs += arch_gettimeoffset();
254 
255 	} while (read_seqretry(&xtime_lock, seq));
256 	/*
257 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
258 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
259 	 */
260 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
261 }
262 EXPORT_SYMBOL_GPL(ktime_get);
263 
264 /**
265  * ktime_get_ts - get the monotonic clock in timespec format
266  * @ts:		pointer to timespec variable
267  *
268  * The function calculates the monotonic clock from the realtime
269  * clock and the wall_to_monotonic offset and stores the result
270  * in normalized timespec format in the variable pointed to by @ts.
271  */
272 void ktime_get_ts(struct timespec *ts)
273 {
274 	struct timespec tomono;
275 	unsigned int seq;
276 	s64 nsecs;
277 
278 	WARN_ON(timekeeping_suspended);
279 
280 	do {
281 		seq = read_seqbegin(&xtime_lock);
282 		*ts = xtime;
283 		tomono = wall_to_monotonic;
284 		nsecs = timekeeping_get_ns();
285 		/* If arch requires, add in gettimeoffset() */
286 		nsecs += arch_gettimeoffset();
287 
288 	} while (read_seqretry(&xtime_lock, seq));
289 
290 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
291 				ts->tv_nsec + tomono.tv_nsec + nsecs);
292 }
293 EXPORT_SYMBOL_GPL(ktime_get_ts);
294 
295 #ifdef CONFIG_NTP_PPS
296 
297 /**
298  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
299  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
300  * @ts_real:	pointer to the timespec to be set to the time of day
301  *
302  * This function reads both the time of day and raw monotonic time at the
303  * same time atomically and stores the resulting timestamps in timespec
304  * format.
305  */
306 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
307 {
308 	unsigned long seq;
309 	s64 nsecs_raw, nsecs_real;
310 
311 	WARN_ON_ONCE(timekeeping_suspended);
312 
313 	do {
314 		u32 arch_offset;
315 
316 		seq = read_seqbegin(&xtime_lock);
317 
318 		*ts_raw = raw_time;
319 		*ts_real = xtime;
320 
321 		nsecs_raw = timekeeping_get_ns_raw();
322 		nsecs_real = timekeeping_get_ns();
323 
324 		/* If arch requires, add in gettimeoffset() */
325 		arch_offset = arch_gettimeoffset();
326 		nsecs_raw += arch_offset;
327 		nsecs_real += arch_offset;
328 
329 	} while (read_seqretry(&xtime_lock, seq));
330 
331 	timespec_add_ns(ts_raw, nsecs_raw);
332 	timespec_add_ns(ts_real, nsecs_real);
333 }
334 EXPORT_SYMBOL(getnstime_raw_and_real);
335 
336 #endif /* CONFIG_NTP_PPS */
337 
338 /**
339  * do_gettimeofday - Returns the time of day in a timeval
340  * @tv:		pointer to the timeval to be set
341  *
342  * NOTE: Users should be converted to using getnstimeofday()
343  */
344 void do_gettimeofday(struct timeval *tv)
345 {
346 	struct timespec now;
347 
348 	getnstimeofday(&now);
349 	tv->tv_sec = now.tv_sec;
350 	tv->tv_usec = now.tv_nsec/1000;
351 }
352 
353 EXPORT_SYMBOL(do_gettimeofday);
354 /**
355  * do_settimeofday - Sets the time of day
356  * @tv:		pointer to the timespec variable containing the new time
357  *
358  * Sets the time of day to the new time and update NTP and notify hrtimers
359  */
360 int do_settimeofday(const struct timespec *tv)
361 {
362 	struct timespec ts_delta;
363 	unsigned long flags;
364 
365 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
366 		return -EINVAL;
367 
368 	write_seqlock_irqsave(&xtime_lock, flags);
369 
370 	timekeeping_forward_now();
371 
372 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
373 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
374 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
375 
376 	xtime = *tv;
377 
378 	timekeeper.ntp_error = 0;
379 	ntp_clear();
380 
381 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
382 				timekeeper.mult);
383 
384 	write_sequnlock_irqrestore(&xtime_lock, flags);
385 
386 	/* signal hrtimers about time change */
387 	clock_was_set();
388 
389 	return 0;
390 }
391 
392 EXPORT_SYMBOL(do_settimeofday);
393 
394 
395 /**
396  * timekeeping_inject_offset - Adds or subtracts from the current time.
397  * @tv:		pointer to the timespec variable containing the offset
398  *
399  * Adds or subtracts an offset value from the current time.
400  */
401 int timekeeping_inject_offset(struct timespec *ts)
402 {
403 	unsigned long flags;
404 
405 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
406 		return -EINVAL;
407 
408 	write_seqlock_irqsave(&xtime_lock, flags);
409 
410 	timekeeping_forward_now();
411 
412 	xtime = timespec_add(xtime, *ts);
413 	wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
414 
415 	timekeeper.ntp_error = 0;
416 	ntp_clear();
417 
418 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
419 				timekeeper.mult);
420 
421 	write_sequnlock_irqrestore(&xtime_lock, flags);
422 
423 	/* signal hrtimers about time change */
424 	clock_was_set();
425 
426 	return 0;
427 }
428 EXPORT_SYMBOL(timekeeping_inject_offset);
429 
430 /**
431  * change_clocksource - Swaps clocksources if a new one is available
432  *
433  * Accumulates current time interval and initializes new clocksource
434  */
435 static int change_clocksource(void *data)
436 {
437 	struct clocksource *new, *old;
438 
439 	new = (struct clocksource *) data;
440 
441 	timekeeping_forward_now();
442 	if (!new->enable || new->enable(new) == 0) {
443 		old = timekeeper.clock;
444 		timekeeper_setup_internals(new);
445 		if (old->disable)
446 			old->disable(old);
447 	}
448 	return 0;
449 }
450 
451 /**
452  * timekeeping_notify - Install a new clock source
453  * @clock:		pointer to the clock source
454  *
455  * This function is called from clocksource.c after a new, better clock
456  * source has been registered. The caller holds the clocksource_mutex.
457  */
458 void timekeeping_notify(struct clocksource *clock)
459 {
460 	if (timekeeper.clock == clock)
461 		return;
462 	stop_machine(change_clocksource, clock, NULL);
463 	tick_clock_notify();
464 }
465 
466 /**
467  * ktime_get_real - get the real (wall-) time in ktime_t format
468  *
469  * returns the time in ktime_t format
470  */
471 ktime_t ktime_get_real(void)
472 {
473 	struct timespec now;
474 
475 	getnstimeofday(&now);
476 
477 	return timespec_to_ktime(now);
478 }
479 EXPORT_SYMBOL_GPL(ktime_get_real);
480 
481 /**
482  * getrawmonotonic - Returns the raw monotonic time in a timespec
483  * @ts:		pointer to the timespec to be set
484  *
485  * Returns the raw monotonic time (completely un-modified by ntp)
486  */
487 void getrawmonotonic(struct timespec *ts)
488 {
489 	unsigned long seq;
490 	s64 nsecs;
491 
492 	do {
493 		seq = read_seqbegin(&xtime_lock);
494 		nsecs = timekeeping_get_ns_raw();
495 		*ts = raw_time;
496 
497 	} while (read_seqretry(&xtime_lock, seq));
498 
499 	timespec_add_ns(ts, nsecs);
500 }
501 EXPORT_SYMBOL(getrawmonotonic);
502 
503 
504 /**
505  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
506  */
507 int timekeeping_valid_for_hres(void)
508 {
509 	unsigned long seq;
510 	int ret;
511 
512 	do {
513 		seq = read_seqbegin(&xtime_lock);
514 
515 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
516 
517 	} while (read_seqretry(&xtime_lock, seq));
518 
519 	return ret;
520 }
521 
522 /**
523  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
524  *
525  * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
526  * ensure that the clocksource does not change!
527  */
528 u64 timekeeping_max_deferment(void)
529 {
530 	return timekeeper.clock->max_idle_ns;
531 }
532 
533 /**
534  * read_persistent_clock -  Return time from the persistent clock.
535  *
536  * Weak dummy function for arches that do not yet support it.
537  * Reads the time from the battery backed persistent clock.
538  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
539  *
540  *  XXX - Do be sure to remove it once all arches implement it.
541  */
542 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
543 {
544 	ts->tv_sec = 0;
545 	ts->tv_nsec = 0;
546 }
547 
548 /**
549  * read_boot_clock -  Return time of the system start.
550  *
551  * Weak dummy function for arches that do not yet support it.
552  * Function to read the exact time the system has been started.
553  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
554  *
555  *  XXX - Do be sure to remove it once all arches implement it.
556  */
557 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
558 {
559 	ts->tv_sec = 0;
560 	ts->tv_nsec = 0;
561 }
562 
563 /*
564  * timekeeping_init - Initializes the clocksource and common timekeeping values
565  */
566 void __init timekeeping_init(void)
567 {
568 	struct clocksource *clock;
569 	unsigned long flags;
570 	struct timespec now, boot;
571 
572 	read_persistent_clock(&now);
573 	read_boot_clock(&boot);
574 
575 	write_seqlock_irqsave(&xtime_lock, flags);
576 
577 	ntp_init();
578 
579 	clock = clocksource_default_clock();
580 	if (clock->enable)
581 		clock->enable(clock);
582 	timekeeper_setup_internals(clock);
583 
584 	xtime.tv_sec = now.tv_sec;
585 	xtime.tv_nsec = now.tv_nsec;
586 	raw_time.tv_sec = 0;
587 	raw_time.tv_nsec = 0;
588 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
589 		boot.tv_sec = xtime.tv_sec;
590 		boot.tv_nsec = xtime.tv_nsec;
591 	}
592 	set_normalized_timespec(&wall_to_monotonic,
593 				-boot.tv_sec, -boot.tv_nsec);
594 	total_sleep_time.tv_sec = 0;
595 	total_sleep_time.tv_nsec = 0;
596 	write_sequnlock_irqrestore(&xtime_lock, flags);
597 }
598 
599 /* time in seconds when suspend began */
600 static struct timespec timekeeping_suspend_time;
601 
602 /**
603  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
604  * @delta: pointer to a timespec delta value
605  *
606  * Takes a timespec offset measuring a suspend interval and properly
607  * adds the sleep offset to the timekeeping variables.
608  */
609 static void __timekeeping_inject_sleeptime(struct timespec *delta)
610 {
611 	if (!timespec_valid(delta)) {
612 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
613 					"sleep delta value!\n");
614 		return;
615 	}
616 
617 	xtime = timespec_add(xtime, *delta);
618 	wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
619 	total_sleep_time = timespec_add(total_sleep_time, *delta);
620 }
621 
622 
623 /**
624  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
625  * @delta: pointer to a timespec delta value
626  *
627  * This hook is for architectures that cannot support read_persistent_clock
628  * because their RTC/persistent clock is only accessible when irqs are enabled.
629  *
630  * This function should only be called by rtc_resume(), and allows
631  * a suspend offset to be injected into the timekeeping values.
632  */
633 void timekeeping_inject_sleeptime(struct timespec *delta)
634 {
635 	unsigned long flags;
636 	struct timespec ts;
637 
638 	/* Make sure we don't set the clock twice */
639 	read_persistent_clock(&ts);
640 	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
641 		return;
642 
643 	write_seqlock_irqsave(&xtime_lock, flags);
644 	timekeeping_forward_now();
645 
646 	__timekeeping_inject_sleeptime(delta);
647 
648 	timekeeper.ntp_error = 0;
649 	ntp_clear();
650 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
651 				timekeeper.mult);
652 
653 	write_sequnlock_irqrestore(&xtime_lock, flags);
654 
655 	/* signal hrtimers about time change */
656 	clock_was_set();
657 }
658 
659 
660 /**
661  * timekeeping_resume - Resumes the generic timekeeping subsystem.
662  *
663  * This is for the generic clocksource timekeeping.
664  * xtime/wall_to_monotonic/jiffies/etc are
665  * still managed by arch specific suspend/resume code.
666  */
667 static void timekeeping_resume(void)
668 {
669 	unsigned long flags;
670 	struct timespec ts;
671 
672 	read_persistent_clock(&ts);
673 
674 	clocksource_resume();
675 
676 	write_seqlock_irqsave(&xtime_lock, flags);
677 
678 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
679 		ts = timespec_sub(ts, timekeeping_suspend_time);
680 		__timekeeping_inject_sleeptime(&ts);
681 	}
682 	/* re-base the last cycle value */
683 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
684 	timekeeper.ntp_error = 0;
685 	timekeeping_suspended = 0;
686 	write_sequnlock_irqrestore(&xtime_lock, flags);
687 
688 	touch_softlockup_watchdog();
689 
690 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
691 
692 	/* Resume hrtimers */
693 	hrtimers_resume();
694 }
695 
696 static int timekeeping_suspend(void)
697 {
698 	unsigned long flags;
699 	struct timespec		delta, delta_delta;
700 	static struct timespec	old_delta;
701 
702 	read_persistent_clock(&timekeeping_suspend_time);
703 
704 	write_seqlock_irqsave(&xtime_lock, flags);
705 	timekeeping_forward_now();
706 	timekeeping_suspended = 1;
707 
708 	/*
709 	 * To avoid drift caused by repeated suspend/resumes,
710 	 * which each can add ~1 second drift error,
711 	 * try to compensate so the difference in system time
712 	 * and persistent_clock time stays close to constant.
713 	 */
714 	delta = timespec_sub(xtime, timekeeping_suspend_time);
715 	delta_delta = timespec_sub(delta, old_delta);
716 	if (abs(delta_delta.tv_sec)  >= 2) {
717 		/*
718 		 * if delta_delta is too large, assume time correction
719 		 * has occured and set old_delta to the current delta.
720 		 */
721 		old_delta = delta;
722 	} else {
723 		/* Otherwise try to adjust old_system to compensate */
724 		timekeeping_suspend_time =
725 			timespec_add(timekeeping_suspend_time, delta_delta);
726 	}
727 	write_sequnlock_irqrestore(&xtime_lock, flags);
728 
729 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
730 	clocksource_suspend();
731 
732 	return 0;
733 }
734 
735 /* sysfs resume/suspend bits for timekeeping */
736 static struct syscore_ops timekeeping_syscore_ops = {
737 	.resume		= timekeeping_resume,
738 	.suspend	= timekeeping_suspend,
739 };
740 
741 static int __init timekeeping_init_ops(void)
742 {
743 	register_syscore_ops(&timekeeping_syscore_ops);
744 	return 0;
745 }
746 
747 device_initcall(timekeeping_init_ops);
748 
749 /*
750  * If the error is already larger, we look ahead even further
751  * to compensate for late or lost adjustments.
752  */
753 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
754 						 s64 *offset)
755 {
756 	s64 tick_error, i;
757 	u32 look_ahead, adj;
758 	s32 error2, mult;
759 
760 	/*
761 	 * Use the current error value to determine how much to look ahead.
762 	 * The larger the error the slower we adjust for it to avoid problems
763 	 * with losing too many ticks, otherwise we would overadjust and
764 	 * produce an even larger error.  The smaller the adjustment the
765 	 * faster we try to adjust for it, as lost ticks can do less harm
766 	 * here.  This is tuned so that an error of about 1 msec is adjusted
767 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
768 	 */
769 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
770 	error2 = abs(error2);
771 	for (look_ahead = 0; error2 > 0; look_ahead++)
772 		error2 >>= 2;
773 
774 	/*
775 	 * Now calculate the error in (1 << look_ahead) ticks, but first
776 	 * remove the single look ahead already included in the error.
777 	 */
778 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
779 	tick_error -= timekeeper.xtime_interval >> 1;
780 	error = ((error - tick_error) >> look_ahead) + tick_error;
781 
782 	/* Finally calculate the adjustment shift value.  */
783 	i = *interval;
784 	mult = 1;
785 	if (error < 0) {
786 		error = -error;
787 		*interval = -*interval;
788 		*offset = -*offset;
789 		mult = -1;
790 	}
791 	for (adj = 0; error > i; adj++)
792 		error >>= 1;
793 
794 	*interval <<= adj;
795 	*offset <<= adj;
796 	return mult << adj;
797 }
798 
799 /*
800  * Adjust the multiplier to reduce the error value,
801  * this is optimized for the most common adjustments of -1,0,1,
802  * for other values we can do a bit more work.
803  */
804 static void timekeeping_adjust(s64 offset)
805 {
806 	s64 error, interval = timekeeper.cycle_interval;
807 	int adj;
808 
809 	/*
810 	 * The point of this is to check if the error is greater then half
811 	 * an interval.
812 	 *
813 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
814 	 *
815 	 * Note we subtract one in the shift, so that error is really error*2.
816 	 * This "saves" dividing(shifting) interval twice, but keeps the
817 	 * (error > interval) comparison as still measuring if error is
818 	 * larger then half an interval.
819 	 *
820 	 * Note: It does not "save" on aggravation when reading the code.
821 	 */
822 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
823 	if (error > interval) {
824 		/*
825 		 * We now divide error by 4(via shift), which checks if
826 		 * the error is greater then twice the interval.
827 		 * If it is greater, we need a bigadjust, if its smaller,
828 		 * we can adjust by 1.
829 		 */
830 		error >>= 2;
831 		/*
832 		 * XXX - In update_wall_time, we round up to the next
833 		 * nanosecond, and store the amount rounded up into
834 		 * the error. This causes the likely below to be unlikely.
835 		 *
836 		 * The proper fix is to avoid rounding up by using
837 		 * the high precision timekeeper.xtime_nsec instead of
838 		 * xtime.tv_nsec everywhere. Fixing this will take some
839 		 * time.
840 		 */
841 		if (likely(error <= interval))
842 			adj = 1;
843 		else
844 			adj = timekeeping_bigadjust(error, &interval, &offset);
845 	} else if (error < -interval) {
846 		/* See comment above, this is just switched for the negative */
847 		error >>= 2;
848 		if (likely(error >= -interval)) {
849 			adj = -1;
850 			interval = -interval;
851 			offset = -offset;
852 		} else
853 			adj = timekeeping_bigadjust(error, &interval, &offset);
854 	} else /* No adjustment needed */
855 		return;
856 
857 	WARN_ONCE(timekeeper.clock->maxadj &&
858 			(timekeeper.mult + adj > timekeeper.clock->mult +
859 						timekeeper.clock->maxadj),
860 			"Adjusting %s more then 11%% (%ld vs %ld)\n",
861 			timekeeper.clock->name, (long)timekeeper.mult + adj,
862 			(long)timekeeper.clock->mult +
863 				timekeeper.clock->maxadj);
864 	/*
865 	 * So the following can be confusing.
866 	 *
867 	 * To keep things simple, lets assume adj == 1 for now.
868 	 *
869 	 * When adj != 1, remember that the interval and offset values
870 	 * have been appropriately scaled so the math is the same.
871 	 *
872 	 * The basic idea here is that we're increasing the multiplier
873 	 * by one, this causes the xtime_interval to be incremented by
874 	 * one cycle_interval. This is because:
875 	 *	xtime_interval = cycle_interval * mult
876 	 * So if mult is being incremented by one:
877 	 *	xtime_interval = cycle_interval * (mult + 1)
878 	 * Its the same as:
879 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
880 	 * Which can be shortened to:
881 	 *	xtime_interval += cycle_interval
882 	 *
883 	 * So offset stores the non-accumulated cycles. Thus the current
884 	 * time (in shifted nanoseconds) is:
885 	 *	now = (offset * adj) + xtime_nsec
886 	 * Now, even though we're adjusting the clock frequency, we have
887 	 * to keep time consistent. In other words, we can't jump back
888 	 * in time, and we also want to avoid jumping forward in time.
889 	 *
890 	 * So given the same offset value, we need the time to be the same
891 	 * both before and after the freq adjustment.
892 	 *	now = (offset * adj_1) + xtime_nsec_1
893 	 *	now = (offset * adj_2) + xtime_nsec_2
894 	 * So:
895 	 *	(offset * adj_1) + xtime_nsec_1 =
896 	 *		(offset * adj_2) + xtime_nsec_2
897 	 * And we know:
898 	 *	adj_2 = adj_1 + 1
899 	 * So:
900 	 *	(offset * adj_1) + xtime_nsec_1 =
901 	 *		(offset * (adj_1+1)) + xtime_nsec_2
902 	 *	(offset * adj_1) + xtime_nsec_1 =
903 	 *		(offset * adj_1) + offset + xtime_nsec_2
904 	 * Canceling the sides:
905 	 *	xtime_nsec_1 = offset + xtime_nsec_2
906 	 * Which gives us:
907 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
908 	 * Which simplfies to:
909 	 *	xtime_nsec -= offset
910 	 *
911 	 * XXX - TODO: Doc ntp_error calculation.
912 	 */
913 	timekeeper.mult += adj;
914 	timekeeper.xtime_interval += interval;
915 	timekeeper.xtime_nsec -= offset;
916 	timekeeper.ntp_error -= (interval - offset) <<
917 				timekeeper.ntp_error_shift;
918 }
919 
920 
921 /**
922  * logarithmic_accumulation - shifted accumulation of cycles
923  *
924  * This functions accumulates a shifted interval of cycles into
925  * into a shifted interval nanoseconds. Allows for O(log) accumulation
926  * loop.
927  *
928  * Returns the unconsumed cycles.
929  */
930 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
931 {
932 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
933 	u64 raw_nsecs;
934 
935 	/* If the offset is smaller then a shifted interval, do nothing */
936 	if (offset < timekeeper.cycle_interval<<shift)
937 		return offset;
938 
939 	/* Accumulate one shifted interval */
940 	offset -= timekeeper.cycle_interval << shift;
941 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
942 
943 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
944 	while (timekeeper.xtime_nsec >= nsecps) {
945 		timekeeper.xtime_nsec -= nsecps;
946 		xtime.tv_sec++;
947 		second_overflow();
948 	}
949 
950 	/* Accumulate raw time */
951 	raw_nsecs = timekeeper.raw_interval << shift;
952 	raw_nsecs += raw_time.tv_nsec;
953 	if (raw_nsecs >= NSEC_PER_SEC) {
954 		u64 raw_secs = raw_nsecs;
955 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
956 		raw_time.tv_sec += raw_secs;
957 	}
958 	raw_time.tv_nsec = raw_nsecs;
959 
960 	/* Accumulate error between NTP and clock interval */
961 	timekeeper.ntp_error += tick_length << shift;
962 	timekeeper.ntp_error -=
963 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
964 				(timekeeper.ntp_error_shift + shift);
965 
966 	return offset;
967 }
968 
969 
970 /**
971  * update_wall_time - Uses the current clocksource to increment the wall time
972  *
973  * Called from the timer interrupt, must hold a write on xtime_lock.
974  */
975 static void update_wall_time(void)
976 {
977 	struct clocksource *clock;
978 	cycle_t offset;
979 	int shift = 0, maxshift;
980 
981 	/* Make sure we're fully resumed: */
982 	if (unlikely(timekeeping_suspended))
983 		return;
984 
985 	clock = timekeeper.clock;
986 
987 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
988 	offset = timekeeper.cycle_interval;
989 #else
990 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
991 #endif
992 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
993 
994 	/*
995 	 * With NO_HZ we may have to accumulate many cycle_intervals
996 	 * (think "ticks") worth of time at once. To do this efficiently,
997 	 * we calculate the largest doubling multiple of cycle_intervals
998 	 * that is smaller then the offset. We then accumulate that
999 	 * chunk in one go, and then try to consume the next smaller
1000 	 * doubled multiple.
1001 	 */
1002 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1003 	shift = max(0, shift);
1004 	/* Bound shift to one less then what overflows tick_length */
1005 	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
1006 	shift = min(shift, maxshift);
1007 	while (offset >= timekeeper.cycle_interval) {
1008 		offset = logarithmic_accumulation(offset, shift);
1009 		if(offset < timekeeper.cycle_interval<<shift)
1010 			shift--;
1011 	}
1012 
1013 	/* correct the clock when NTP error is too big */
1014 	timekeeping_adjust(offset);
1015 
1016 	/*
1017 	 * Since in the loop above, we accumulate any amount of time
1018 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1019 	 * xtime_nsec to be fairly small after the loop. Further, if we're
1020 	 * slightly speeding the clocksource up in timekeeping_adjust(),
1021 	 * its possible the required corrective factor to xtime_nsec could
1022 	 * cause it to underflow.
1023 	 *
1024 	 * Now, we cannot simply roll the accumulated second back, since
1025 	 * the NTP subsystem has been notified via second_overflow. So
1026 	 * instead we push xtime_nsec forward by the amount we underflowed,
1027 	 * and add that amount into the error.
1028 	 *
1029 	 * We'll correct this error next time through this function, when
1030 	 * xtime_nsec is not as small.
1031 	 */
1032 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1033 		s64 neg = -(s64)timekeeper.xtime_nsec;
1034 		timekeeper.xtime_nsec = 0;
1035 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1036 	}
1037 
1038 
1039 	/*
1040 	 * Store full nanoseconds into xtime after rounding it up and
1041 	 * add the remainder to the error difference.
1042 	 */
1043 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
1044 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
1045 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
1046 				timekeeper.ntp_error_shift;
1047 
1048 	/*
1049 	 * Finally, make sure that after the rounding
1050 	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1051 	 */
1052 	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
1053 		xtime.tv_nsec -= NSEC_PER_SEC;
1054 		xtime.tv_sec++;
1055 		second_overflow();
1056 	}
1057 
1058 	/* check to see if there is a new clocksource to use */
1059 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
1060 				timekeeper.mult);
1061 }
1062 
1063 /**
1064  * getboottime - Return the real time of system boot.
1065  * @ts:		pointer to the timespec to be set
1066  *
1067  * Returns the wall-time of boot in a timespec.
1068  *
1069  * This is based on the wall_to_monotonic offset and the total suspend
1070  * time. Calls to settimeofday will affect the value returned (which
1071  * basically means that however wrong your real time clock is at boot time,
1072  * you get the right time here).
1073  */
1074 void getboottime(struct timespec *ts)
1075 {
1076 	struct timespec boottime = {
1077 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
1078 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
1079 	};
1080 
1081 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1082 }
1083 EXPORT_SYMBOL_GPL(getboottime);
1084 
1085 
1086 /**
1087  * get_monotonic_boottime - Returns monotonic time since boot
1088  * @ts:		pointer to the timespec to be set
1089  *
1090  * Returns the monotonic time since boot in a timespec.
1091  *
1092  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1093  * includes the time spent in suspend.
1094  */
1095 void get_monotonic_boottime(struct timespec *ts)
1096 {
1097 	struct timespec tomono, sleep;
1098 	unsigned int seq;
1099 	s64 nsecs;
1100 
1101 	WARN_ON(timekeeping_suspended);
1102 
1103 	do {
1104 		seq = read_seqbegin(&xtime_lock);
1105 		*ts = xtime;
1106 		tomono = wall_to_monotonic;
1107 		sleep = total_sleep_time;
1108 		nsecs = timekeeping_get_ns();
1109 
1110 	} while (read_seqretry(&xtime_lock, seq));
1111 
1112 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1113 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1114 }
1115 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1116 
1117 /**
1118  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1119  *
1120  * Returns the monotonic time since boot in a ktime
1121  *
1122  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1123  * includes the time spent in suspend.
1124  */
1125 ktime_t ktime_get_boottime(void)
1126 {
1127 	struct timespec ts;
1128 
1129 	get_monotonic_boottime(&ts);
1130 	return timespec_to_ktime(ts);
1131 }
1132 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1133 
1134 /**
1135  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1136  * @ts:		pointer to the timespec to be converted
1137  */
1138 void monotonic_to_bootbased(struct timespec *ts)
1139 {
1140 	*ts = timespec_add(*ts, total_sleep_time);
1141 }
1142 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1143 
1144 unsigned long get_seconds(void)
1145 {
1146 	return xtime.tv_sec;
1147 }
1148 EXPORT_SYMBOL(get_seconds);
1149 
1150 struct timespec __current_kernel_time(void)
1151 {
1152 	return xtime;
1153 }
1154 
1155 struct timespec current_kernel_time(void)
1156 {
1157 	struct timespec now;
1158 	unsigned long seq;
1159 
1160 	do {
1161 		seq = read_seqbegin(&xtime_lock);
1162 
1163 		now = xtime;
1164 	} while (read_seqretry(&xtime_lock, seq));
1165 
1166 	return now;
1167 }
1168 EXPORT_SYMBOL(current_kernel_time);
1169 
1170 struct timespec get_monotonic_coarse(void)
1171 {
1172 	struct timespec now, mono;
1173 	unsigned long seq;
1174 
1175 	do {
1176 		seq = read_seqbegin(&xtime_lock);
1177 
1178 		now = xtime;
1179 		mono = wall_to_monotonic;
1180 	} while (read_seqretry(&xtime_lock, seq));
1181 
1182 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1183 				now.tv_nsec + mono.tv_nsec);
1184 	return now;
1185 }
1186 
1187 /*
1188  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1189  * without sampling the sequence number in xtime_lock.
1190  * jiffies is defined in the linker script...
1191  */
1192 void do_timer(unsigned long ticks)
1193 {
1194 	jiffies_64 += ticks;
1195 	update_wall_time();
1196 	calc_global_load(ticks);
1197 }
1198 
1199 /**
1200  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1201  *    and sleep offsets.
1202  * @xtim:	pointer to timespec to be set with xtime
1203  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1204  * @sleep:	pointer to timespec to be set with time in suspend
1205  */
1206 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1207 				struct timespec *wtom, struct timespec *sleep)
1208 {
1209 	unsigned long seq;
1210 
1211 	do {
1212 		seq = read_seqbegin(&xtime_lock);
1213 		*xtim = xtime;
1214 		*wtom = wall_to_monotonic;
1215 		*sleep = total_sleep_time;
1216 	} while (read_seqretry(&xtime_lock, seq));
1217 }
1218 
1219 /**
1220  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1221  */
1222 ktime_t ktime_get_monotonic_offset(void)
1223 {
1224 	unsigned long seq;
1225 	struct timespec wtom;
1226 
1227 	do {
1228 		seq = read_seqbegin(&xtime_lock);
1229 		wtom = wall_to_monotonic;
1230 	} while (read_seqretry(&xtime_lock, seq));
1231 	return timespec_to_ktime(wtom);
1232 }
1233 
1234 /**
1235  * xtime_update() - advances the timekeeping infrastructure
1236  * @ticks:	number of ticks, that have elapsed since the last call.
1237  *
1238  * Must be called with interrupts disabled.
1239  */
1240 void xtime_update(unsigned long ticks)
1241 {
1242 	write_seqlock(&xtime_lock);
1243 	do_timer(ticks);
1244 	write_sequnlock(&xtime_lock);
1245 }
1246