xref: /openbmc/linux/kernel/time/timekeeping.c (revision bf070bb0)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28 
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32 
33 #define TK_CLEAR_NTP		(1 << 0)
34 #define TK_MIRROR		(1 << 1)
35 #define TK_CLOCK_WAS_SET	(1 << 2)
36 
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42 	seqcount_t		seq;
43 	struct timekeeper	timekeeper;
44 } tk_core ____cacheline_aligned;
45 
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48 
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:	Sequence counter for protecting updates. The lowest bit
52  *		is the index for the tk_read_base array
53  * @base:	tk_read_base array. Access is indexed by the lowest bit of
54  *		@seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59 	seqcount_t		seq;
60 	struct tk_read_base	base[2];
61 };
62 
63 /* Suspend-time cycles value for halted fast timekeeper. */
64 static u64 cycles_at_suspend;
65 
66 static u64 dummy_clock_read(struct clocksource *cs)
67 {
68 	return cycles_at_suspend;
69 }
70 
71 static struct clocksource dummy_clock = {
72 	.read = dummy_clock_read,
73 };
74 
75 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76 	.base[0] = { .clock = &dummy_clock, },
77 	.base[1] = { .clock = &dummy_clock, },
78 };
79 
80 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
81 	.base[0] = { .clock = &dummy_clock, },
82 	.base[1] = { .clock = &dummy_clock, },
83 };
84 
85 /* flag for if timekeeping is suspended */
86 int __read_mostly timekeeping_suspended;
87 
88 static inline void tk_normalize_xtime(struct timekeeper *tk)
89 {
90 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 		tk->xtime_sec++;
93 	}
94 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96 		tk->raw_sec++;
97 	}
98 }
99 
100 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
101 {
102 	struct timespec64 ts;
103 
104 	ts.tv_sec = tk->xtime_sec;
105 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 	return ts;
107 }
108 
109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 {
111 	tk->xtime_sec = ts->tv_sec;
112 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 }
114 
115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 {
117 	tk->xtime_sec += ts->tv_sec;
118 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119 	tk_normalize_xtime(tk);
120 }
121 
122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123 {
124 	struct timespec64 tmp;
125 
126 	/*
127 	 * Verify consistency of: offset_real = -wall_to_monotonic
128 	 * before modifying anything
129 	 */
130 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131 					-tk->wall_to_monotonic.tv_nsec);
132 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133 	tk->wall_to_monotonic = wtm;
134 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135 	tk->offs_real = timespec64_to_ktime(tmp);
136 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 }
138 
139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140 {
141 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 }
143 
144 /*
145  * tk_clock_read - atomic clocksource read() helper
146  *
147  * This helper is necessary to use in the read paths because, while the
148  * seqlock ensures we don't return a bad value while structures are updated,
149  * it doesn't protect from potential crashes. There is the possibility that
150  * the tkr's clocksource may change between the read reference, and the
151  * clock reference passed to the read function.  This can cause crashes if
152  * the wrong clocksource is passed to the wrong read function.
153  * This isn't necessary to use when holding the timekeeper_lock or doing
154  * a read of the fast-timekeeper tkrs (which is protected by its own locking
155  * and update logic).
156  */
157 static inline u64 tk_clock_read(struct tk_read_base *tkr)
158 {
159 	struct clocksource *clock = READ_ONCE(tkr->clock);
160 
161 	return clock->read(clock);
162 }
163 
164 #ifdef CONFIG_DEBUG_TIMEKEEPING
165 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
166 
167 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
168 {
169 
170 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171 	const char *name = tk->tkr_mono.clock->name;
172 
173 	if (offset > max_cycles) {
174 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175 				offset, name, max_cycles);
176 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177 	} else {
178 		if (offset > (max_cycles >> 1)) {
179 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180 					offset, name, max_cycles >> 1);
181 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
182 		}
183 	}
184 
185 	if (tk->underflow_seen) {
186 		if (jiffies - tk->last_warning > WARNING_FREQ) {
187 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
188 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
189 			printk_deferred("         Your kernel is probably still fine.\n");
190 			tk->last_warning = jiffies;
191 		}
192 		tk->underflow_seen = 0;
193 	}
194 
195 	if (tk->overflow_seen) {
196 		if (jiffies - tk->last_warning > WARNING_FREQ) {
197 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
198 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
199 			printk_deferred("         Your kernel is probably still fine.\n");
200 			tk->last_warning = jiffies;
201 		}
202 		tk->overflow_seen = 0;
203 	}
204 }
205 
206 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
207 {
208 	struct timekeeper *tk = &tk_core.timekeeper;
209 	u64 now, last, mask, max, delta;
210 	unsigned int seq;
211 
212 	/*
213 	 * Since we're called holding a seqlock, the data may shift
214 	 * under us while we're doing the calculation. This can cause
215 	 * false positives, since we'd note a problem but throw the
216 	 * results away. So nest another seqlock here to atomically
217 	 * grab the points we are checking with.
218 	 */
219 	do {
220 		seq = read_seqcount_begin(&tk_core.seq);
221 		now = tk_clock_read(tkr);
222 		last = tkr->cycle_last;
223 		mask = tkr->mask;
224 		max = tkr->clock->max_cycles;
225 	} while (read_seqcount_retry(&tk_core.seq, seq));
226 
227 	delta = clocksource_delta(now, last, mask);
228 
229 	/*
230 	 * Try to catch underflows by checking if we are seeing small
231 	 * mask-relative negative values.
232 	 */
233 	if (unlikely((~delta & mask) < (mask >> 3))) {
234 		tk->underflow_seen = 1;
235 		delta = 0;
236 	}
237 
238 	/* Cap delta value to the max_cycles values to avoid mult overflows */
239 	if (unlikely(delta > max)) {
240 		tk->overflow_seen = 1;
241 		delta = tkr->clock->max_cycles;
242 	}
243 
244 	return delta;
245 }
246 #else
247 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
248 {
249 }
250 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
251 {
252 	u64 cycle_now, delta;
253 
254 	/* read clocksource */
255 	cycle_now = tk_clock_read(tkr);
256 
257 	/* calculate the delta since the last update_wall_time */
258 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
259 
260 	return delta;
261 }
262 #endif
263 
264 /**
265  * tk_setup_internals - Set up internals to use clocksource clock.
266  *
267  * @tk:		The target timekeeper to setup.
268  * @clock:		Pointer to clocksource.
269  *
270  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
271  * pair and interval request.
272  *
273  * Unless you're the timekeeping code, you should not be using this!
274  */
275 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
276 {
277 	u64 interval;
278 	u64 tmp, ntpinterval;
279 	struct clocksource *old_clock;
280 
281 	++tk->cs_was_changed_seq;
282 	old_clock = tk->tkr_mono.clock;
283 	tk->tkr_mono.clock = clock;
284 	tk->tkr_mono.mask = clock->mask;
285 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
286 
287 	tk->tkr_raw.clock = clock;
288 	tk->tkr_raw.mask = clock->mask;
289 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
290 
291 	/* Do the ns -> cycle conversion first, using original mult */
292 	tmp = NTP_INTERVAL_LENGTH;
293 	tmp <<= clock->shift;
294 	ntpinterval = tmp;
295 	tmp += clock->mult/2;
296 	do_div(tmp, clock->mult);
297 	if (tmp == 0)
298 		tmp = 1;
299 
300 	interval = (u64) tmp;
301 	tk->cycle_interval = interval;
302 
303 	/* Go back from cycles -> shifted ns */
304 	tk->xtime_interval = interval * clock->mult;
305 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306 	tk->raw_interval = interval * clock->mult;
307 
308 	 /* if changing clocks, convert xtime_nsec shift units */
309 	if (old_clock) {
310 		int shift_change = clock->shift - old_clock->shift;
311 		if (shift_change < 0) {
312 			tk->tkr_mono.xtime_nsec >>= -shift_change;
313 			tk->tkr_raw.xtime_nsec >>= -shift_change;
314 		} else {
315 			tk->tkr_mono.xtime_nsec <<= shift_change;
316 			tk->tkr_raw.xtime_nsec <<= shift_change;
317 		}
318 	}
319 
320 	tk->tkr_mono.shift = clock->shift;
321 	tk->tkr_raw.shift = clock->shift;
322 
323 	tk->ntp_error = 0;
324 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
326 
327 	/*
328 	 * The timekeeper keeps its own mult values for the currently
329 	 * active clocksource. These value will be adjusted via NTP
330 	 * to counteract clock drifting.
331 	 */
332 	tk->tkr_mono.mult = clock->mult;
333 	tk->tkr_raw.mult = clock->mult;
334 	tk->ntp_err_mult = 0;
335 }
336 
337 /* Timekeeper helper functions. */
338 
339 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
340 static u32 default_arch_gettimeoffset(void) { return 0; }
341 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
342 #else
343 static inline u32 arch_gettimeoffset(void) { return 0; }
344 #endif
345 
346 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
347 {
348 	u64 nsec;
349 
350 	nsec = delta * tkr->mult + tkr->xtime_nsec;
351 	nsec >>= tkr->shift;
352 
353 	/* If arch requires, add in get_arch_timeoffset() */
354 	return nsec + arch_gettimeoffset();
355 }
356 
357 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
358 {
359 	u64 delta;
360 
361 	delta = timekeeping_get_delta(tkr);
362 	return timekeeping_delta_to_ns(tkr, delta);
363 }
364 
365 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
366 {
367 	u64 delta;
368 
369 	/* calculate the delta since the last update_wall_time */
370 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
371 	return timekeeping_delta_to_ns(tkr, delta);
372 }
373 
374 /**
375  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
376  * @tkr: Timekeeping readout base from which we take the update
377  *
378  * We want to use this from any context including NMI and tracing /
379  * instrumenting the timekeeping code itself.
380  *
381  * Employ the latch technique; see @raw_write_seqcount_latch.
382  *
383  * So if a NMI hits the update of base[0] then it will use base[1]
384  * which is still consistent. In the worst case this can result is a
385  * slightly wrong timestamp (a few nanoseconds). See
386  * @ktime_get_mono_fast_ns.
387  */
388 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
389 {
390 	struct tk_read_base *base = tkf->base;
391 
392 	/* Force readers off to base[1] */
393 	raw_write_seqcount_latch(&tkf->seq);
394 
395 	/* Update base[0] */
396 	memcpy(base, tkr, sizeof(*base));
397 
398 	/* Force readers back to base[0] */
399 	raw_write_seqcount_latch(&tkf->seq);
400 
401 	/* Update base[1] */
402 	memcpy(base + 1, base, sizeof(*base));
403 }
404 
405 /**
406  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
407  *
408  * This timestamp is not guaranteed to be monotonic across an update.
409  * The timestamp is calculated by:
410  *
411  *	now = base_mono + clock_delta * slope
412  *
413  * So if the update lowers the slope, readers who are forced to the
414  * not yet updated second array are still using the old steeper slope.
415  *
416  * tmono
417  * ^
418  * |    o  n
419  * |   o n
420  * |  u
421  * | o
422  * |o
423  * |12345678---> reader order
424  *
425  * o = old slope
426  * u = update
427  * n = new slope
428  *
429  * So reader 6 will observe time going backwards versus reader 5.
430  *
431  * While other CPUs are likely to be able observe that, the only way
432  * for a CPU local observation is when an NMI hits in the middle of
433  * the update. Timestamps taken from that NMI context might be ahead
434  * of the following timestamps. Callers need to be aware of that and
435  * deal with it.
436  */
437 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
438 {
439 	struct tk_read_base *tkr;
440 	unsigned int seq;
441 	u64 now;
442 
443 	do {
444 		seq = raw_read_seqcount_latch(&tkf->seq);
445 		tkr = tkf->base + (seq & 0x01);
446 		now = ktime_to_ns(tkr->base);
447 
448 		now += timekeeping_delta_to_ns(tkr,
449 				clocksource_delta(
450 					tk_clock_read(tkr),
451 					tkr->cycle_last,
452 					tkr->mask));
453 	} while (read_seqcount_retry(&tkf->seq, seq));
454 
455 	return now;
456 }
457 
458 u64 ktime_get_mono_fast_ns(void)
459 {
460 	return __ktime_get_fast_ns(&tk_fast_mono);
461 }
462 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
463 
464 u64 ktime_get_raw_fast_ns(void)
465 {
466 	return __ktime_get_fast_ns(&tk_fast_raw);
467 }
468 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
469 
470 /**
471  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
472  *
473  * To keep it NMI safe since we're accessing from tracing, we're not using a
474  * separate timekeeper with updates to monotonic clock and boot offset
475  * protected with seqlocks. This has the following minor side effects:
476  *
477  * (1) Its possible that a timestamp be taken after the boot offset is updated
478  * but before the timekeeper is updated. If this happens, the new boot offset
479  * is added to the old timekeeping making the clock appear to update slightly
480  * earlier:
481  *    CPU 0                                        CPU 1
482  *    timekeeping_inject_sleeptime64()
483  *    __timekeeping_inject_sleeptime(tk, delta);
484  *                                                 timestamp();
485  *    timekeeping_update(tk, TK_CLEAR_NTP...);
486  *
487  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
488  * partially updated.  Since the tk->offs_boot update is a rare event, this
489  * should be a rare occurrence which postprocessing should be able to handle.
490  */
491 u64 notrace ktime_get_boot_fast_ns(void)
492 {
493 	struct timekeeper *tk = &tk_core.timekeeper;
494 
495 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
496 }
497 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
498 
499 
500 /*
501  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
502  */
503 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
504 {
505 	struct tk_read_base *tkr;
506 	unsigned int seq;
507 	u64 now;
508 
509 	do {
510 		seq = raw_read_seqcount_latch(&tkf->seq);
511 		tkr = tkf->base + (seq & 0x01);
512 		now = ktime_to_ns(tkr->base_real);
513 
514 		now += timekeeping_delta_to_ns(tkr,
515 				clocksource_delta(
516 					tk_clock_read(tkr),
517 					tkr->cycle_last,
518 					tkr->mask));
519 	} while (read_seqcount_retry(&tkf->seq, seq));
520 
521 	return now;
522 }
523 
524 /**
525  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
526  */
527 u64 ktime_get_real_fast_ns(void)
528 {
529 	return __ktime_get_real_fast_ns(&tk_fast_mono);
530 }
531 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
532 
533 /**
534  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
535  * @tk: Timekeeper to snapshot.
536  *
537  * It generally is unsafe to access the clocksource after timekeeping has been
538  * suspended, so take a snapshot of the readout base of @tk and use it as the
539  * fast timekeeper's readout base while suspended.  It will return the same
540  * number of cycles every time until timekeeping is resumed at which time the
541  * proper readout base for the fast timekeeper will be restored automatically.
542  */
543 static void halt_fast_timekeeper(struct timekeeper *tk)
544 {
545 	static struct tk_read_base tkr_dummy;
546 	struct tk_read_base *tkr = &tk->tkr_mono;
547 
548 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
549 	cycles_at_suspend = tk_clock_read(tkr);
550 	tkr_dummy.clock = &dummy_clock;
551 	tkr_dummy.base_real = tkr->base + tk->offs_real;
552 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
553 
554 	tkr = &tk->tkr_raw;
555 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
556 	tkr_dummy.clock = &dummy_clock;
557 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
558 }
559 
560 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
561 #warning Please contact your maintainers, as GENERIC_TIME_VSYSCALL_OLD compatibity will disappear soon.
562 
563 static inline void update_vsyscall(struct timekeeper *tk)
564 {
565 	struct timespec xt, wm;
566 
567 	xt = timespec64_to_timespec(tk_xtime(tk));
568 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
569 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
570 			    tk->tkr_mono.cycle_last);
571 }
572 
573 static inline void old_vsyscall_fixup(struct timekeeper *tk)
574 {
575 	s64 remainder;
576 
577 	/*
578 	* Store only full nanoseconds into xtime_nsec after rounding
579 	* it up and add the remainder to the error difference.
580 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
581 	* by truncating the remainder in vsyscalls. However, it causes
582 	* additional work to be done in timekeeping_adjust(). Once
583 	* the vsyscall implementations are converted to use xtime_nsec
584 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
585 	* users are removed, this can be killed.
586 	*/
587 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
588 	if (remainder != 0) {
589 		tk->tkr_mono.xtime_nsec -= remainder;
590 		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
591 		tk->ntp_error += remainder << tk->ntp_error_shift;
592 		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
593 	}
594 }
595 #else
596 #define old_vsyscall_fixup(tk)
597 #endif
598 
599 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
600 
601 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
602 {
603 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
604 }
605 
606 /**
607  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
608  */
609 int pvclock_gtod_register_notifier(struct notifier_block *nb)
610 {
611 	struct timekeeper *tk = &tk_core.timekeeper;
612 	unsigned long flags;
613 	int ret;
614 
615 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
616 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
617 	update_pvclock_gtod(tk, true);
618 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
619 
620 	return ret;
621 }
622 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
623 
624 /**
625  * pvclock_gtod_unregister_notifier - unregister a pvclock
626  * timedata update listener
627  */
628 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
629 {
630 	unsigned long flags;
631 	int ret;
632 
633 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
634 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
635 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
636 
637 	return ret;
638 }
639 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
640 
641 /*
642  * tk_update_leap_state - helper to update the next_leap_ktime
643  */
644 static inline void tk_update_leap_state(struct timekeeper *tk)
645 {
646 	tk->next_leap_ktime = ntp_get_next_leap();
647 	if (tk->next_leap_ktime != KTIME_MAX)
648 		/* Convert to monotonic time */
649 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
650 }
651 
652 /*
653  * Update the ktime_t based scalar nsec members of the timekeeper
654  */
655 static inline void tk_update_ktime_data(struct timekeeper *tk)
656 {
657 	u64 seconds;
658 	u32 nsec;
659 
660 	/*
661 	 * The xtime based monotonic readout is:
662 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
663 	 * The ktime based monotonic readout is:
664 	 *	nsec = base_mono + now();
665 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
666 	 */
667 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
668 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
669 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
670 
671 	/*
672 	 * The sum of the nanoseconds portions of xtime and
673 	 * wall_to_monotonic can be greater/equal one second. Take
674 	 * this into account before updating tk->ktime_sec.
675 	 */
676 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
677 	if (nsec >= NSEC_PER_SEC)
678 		seconds++;
679 	tk->ktime_sec = seconds;
680 
681 	/* Update the monotonic raw base */
682 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
683 }
684 
685 /* must hold timekeeper_lock */
686 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
687 {
688 	if (action & TK_CLEAR_NTP) {
689 		tk->ntp_error = 0;
690 		ntp_clear();
691 	}
692 
693 	tk_update_leap_state(tk);
694 	tk_update_ktime_data(tk);
695 
696 	update_vsyscall(tk);
697 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
698 
699 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
700 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
701 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
702 
703 	if (action & TK_CLOCK_WAS_SET)
704 		tk->clock_was_set_seq++;
705 	/*
706 	 * The mirroring of the data to the shadow-timekeeper needs
707 	 * to happen last here to ensure we don't over-write the
708 	 * timekeeper structure on the next update with stale data
709 	 */
710 	if (action & TK_MIRROR)
711 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
712 		       sizeof(tk_core.timekeeper));
713 }
714 
715 /**
716  * timekeeping_forward_now - update clock to the current time
717  *
718  * Forward the current clock to update its state since the last call to
719  * update_wall_time(). This is useful before significant clock changes,
720  * as it avoids having to deal with this time offset explicitly.
721  */
722 static void timekeeping_forward_now(struct timekeeper *tk)
723 {
724 	u64 cycle_now, delta;
725 
726 	cycle_now = tk_clock_read(&tk->tkr_mono);
727 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
728 	tk->tkr_mono.cycle_last = cycle_now;
729 	tk->tkr_raw.cycle_last  = cycle_now;
730 
731 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
732 
733 	/* If arch requires, add in get_arch_timeoffset() */
734 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
735 
736 
737 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
738 
739 	/* If arch requires, add in get_arch_timeoffset() */
740 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
741 
742 	tk_normalize_xtime(tk);
743 }
744 
745 /**
746  * __getnstimeofday64 - Returns the time of day in a timespec64.
747  * @ts:		pointer to the timespec to be set
748  *
749  * Updates the time of day in the timespec.
750  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
751  */
752 int __getnstimeofday64(struct timespec64 *ts)
753 {
754 	struct timekeeper *tk = &tk_core.timekeeper;
755 	unsigned long seq;
756 	u64 nsecs;
757 
758 	do {
759 		seq = read_seqcount_begin(&tk_core.seq);
760 
761 		ts->tv_sec = tk->xtime_sec;
762 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
763 
764 	} while (read_seqcount_retry(&tk_core.seq, seq));
765 
766 	ts->tv_nsec = 0;
767 	timespec64_add_ns(ts, nsecs);
768 
769 	/*
770 	 * Do not bail out early, in case there were callers still using
771 	 * the value, even in the face of the WARN_ON.
772 	 */
773 	if (unlikely(timekeeping_suspended))
774 		return -EAGAIN;
775 	return 0;
776 }
777 EXPORT_SYMBOL(__getnstimeofday64);
778 
779 /**
780  * getnstimeofday64 - Returns the time of day in a timespec64.
781  * @ts:		pointer to the timespec64 to be set
782  *
783  * Returns the time of day in a timespec64 (WARN if suspended).
784  */
785 void getnstimeofday64(struct timespec64 *ts)
786 {
787 	WARN_ON(__getnstimeofday64(ts));
788 }
789 EXPORT_SYMBOL(getnstimeofday64);
790 
791 ktime_t ktime_get(void)
792 {
793 	struct timekeeper *tk = &tk_core.timekeeper;
794 	unsigned int seq;
795 	ktime_t base;
796 	u64 nsecs;
797 
798 	WARN_ON(timekeeping_suspended);
799 
800 	do {
801 		seq = read_seqcount_begin(&tk_core.seq);
802 		base = tk->tkr_mono.base;
803 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
804 
805 	} while (read_seqcount_retry(&tk_core.seq, seq));
806 
807 	return ktime_add_ns(base, nsecs);
808 }
809 EXPORT_SYMBOL_GPL(ktime_get);
810 
811 u32 ktime_get_resolution_ns(void)
812 {
813 	struct timekeeper *tk = &tk_core.timekeeper;
814 	unsigned int seq;
815 	u32 nsecs;
816 
817 	WARN_ON(timekeeping_suspended);
818 
819 	do {
820 		seq = read_seqcount_begin(&tk_core.seq);
821 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
822 	} while (read_seqcount_retry(&tk_core.seq, seq));
823 
824 	return nsecs;
825 }
826 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
827 
828 static ktime_t *offsets[TK_OFFS_MAX] = {
829 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
830 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
831 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
832 };
833 
834 ktime_t ktime_get_with_offset(enum tk_offsets offs)
835 {
836 	struct timekeeper *tk = &tk_core.timekeeper;
837 	unsigned int seq;
838 	ktime_t base, *offset = offsets[offs];
839 	u64 nsecs;
840 
841 	WARN_ON(timekeeping_suspended);
842 
843 	do {
844 		seq = read_seqcount_begin(&tk_core.seq);
845 		base = ktime_add(tk->tkr_mono.base, *offset);
846 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
847 
848 	} while (read_seqcount_retry(&tk_core.seq, seq));
849 
850 	return ktime_add_ns(base, nsecs);
851 
852 }
853 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
854 
855 /**
856  * ktime_mono_to_any() - convert mononotic time to any other time
857  * @tmono:	time to convert.
858  * @offs:	which offset to use
859  */
860 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
861 {
862 	ktime_t *offset = offsets[offs];
863 	unsigned long seq;
864 	ktime_t tconv;
865 
866 	do {
867 		seq = read_seqcount_begin(&tk_core.seq);
868 		tconv = ktime_add(tmono, *offset);
869 	} while (read_seqcount_retry(&tk_core.seq, seq));
870 
871 	return tconv;
872 }
873 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
874 
875 /**
876  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
877  */
878 ktime_t ktime_get_raw(void)
879 {
880 	struct timekeeper *tk = &tk_core.timekeeper;
881 	unsigned int seq;
882 	ktime_t base;
883 	u64 nsecs;
884 
885 	do {
886 		seq = read_seqcount_begin(&tk_core.seq);
887 		base = tk->tkr_raw.base;
888 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
889 
890 	} while (read_seqcount_retry(&tk_core.seq, seq));
891 
892 	return ktime_add_ns(base, nsecs);
893 }
894 EXPORT_SYMBOL_GPL(ktime_get_raw);
895 
896 /**
897  * ktime_get_ts64 - get the monotonic clock in timespec64 format
898  * @ts:		pointer to timespec variable
899  *
900  * The function calculates the monotonic clock from the realtime
901  * clock and the wall_to_monotonic offset and stores the result
902  * in normalized timespec64 format in the variable pointed to by @ts.
903  */
904 void ktime_get_ts64(struct timespec64 *ts)
905 {
906 	struct timekeeper *tk = &tk_core.timekeeper;
907 	struct timespec64 tomono;
908 	unsigned int seq;
909 	u64 nsec;
910 
911 	WARN_ON(timekeeping_suspended);
912 
913 	do {
914 		seq = read_seqcount_begin(&tk_core.seq);
915 		ts->tv_sec = tk->xtime_sec;
916 		nsec = timekeeping_get_ns(&tk->tkr_mono);
917 		tomono = tk->wall_to_monotonic;
918 
919 	} while (read_seqcount_retry(&tk_core.seq, seq));
920 
921 	ts->tv_sec += tomono.tv_sec;
922 	ts->tv_nsec = 0;
923 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
924 }
925 EXPORT_SYMBOL_GPL(ktime_get_ts64);
926 
927 /**
928  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
929  *
930  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
931  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
932  * works on both 32 and 64 bit systems. On 32 bit systems the readout
933  * covers ~136 years of uptime which should be enough to prevent
934  * premature wrap arounds.
935  */
936 time64_t ktime_get_seconds(void)
937 {
938 	struct timekeeper *tk = &tk_core.timekeeper;
939 
940 	WARN_ON(timekeeping_suspended);
941 	return tk->ktime_sec;
942 }
943 EXPORT_SYMBOL_GPL(ktime_get_seconds);
944 
945 /**
946  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
947  *
948  * Returns the wall clock seconds since 1970. This replaces the
949  * get_seconds() interface which is not y2038 safe on 32bit systems.
950  *
951  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
952  * 32bit systems the access must be protected with the sequence
953  * counter to provide "atomic" access to the 64bit tk->xtime_sec
954  * value.
955  */
956 time64_t ktime_get_real_seconds(void)
957 {
958 	struct timekeeper *tk = &tk_core.timekeeper;
959 	time64_t seconds;
960 	unsigned int seq;
961 
962 	if (IS_ENABLED(CONFIG_64BIT))
963 		return tk->xtime_sec;
964 
965 	do {
966 		seq = read_seqcount_begin(&tk_core.seq);
967 		seconds = tk->xtime_sec;
968 
969 	} while (read_seqcount_retry(&tk_core.seq, seq));
970 
971 	return seconds;
972 }
973 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
974 
975 /**
976  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
977  * but without the sequence counter protect. This internal function
978  * is called just when timekeeping lock is already held.
979  */
980 time64_t __ktime_get_real_seconds(void)
981 {
982 	struct timekeeper *tk = &tk_core.timekeeper;
983 
984 	return tk->xtime_sec;
985 }
986 
987 /**
988  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
989  * @systime_snapshot:	pointer to struct receiving the system time snapshot
990  */
991 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
992 {
993 	struct timekeeper *tk = &tk_core.timekeeper;
994 	unsigned long seq;
995 	ktime_t base_raw;
996 	ktime_t base_real;
997 	u64 nsec_raw;
998 	u64 nsec_real;
999 	u64 now;
1000 
1001 	WARN_ON_ONCE(timekeeping_suspended);
1002 
1003 	do {
1004 		seq = read_seqcount_begin(&tk_core.seq);
1005 		now = tk_clock_read(&tk->tkr_mono);
1006 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1007 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1008 		base_real = ktime_add(tk->tkr_mono.base,
1009 				      tk_core.timekeeper.offs_real);
1010 		base_raw = tk->tkr_raw.base;
1011 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1012 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1013 	} while (read_seqcount_retry(&tk_core.seq, seq));
1014 
1015 	systime_snapshot->cycles = now;
1016 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1017 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1018 }
1019 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1020 
1021 /* Scale base by mult/div checking for overflow */
1022 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1023 {
1024 	u64 tmp, rem;
1025 
1026 	tmp = div64_u64_rem(*base, div, &rem);
1027 
1028 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1029 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1030 		return -EOVERFLOW;
1031 	tmp *= mult;
1032 	rem *= mult;
1033 
1034 	do_div(rem, div);
1035 	*base = tmp + rem;
1036 	return 0;
1037 }
1038 
1039 /**
1040  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1041  * @history:			Snapshot representing start of history
1042  * @partial_history_cycles:	Cycle offset into history (fractional part)
1043  * @total_history_cycles:	Total history length in cycles
1044  * @discontinuity:		True indicates clock was set on history period
1045  * @ts:				Cross timestamp that should be adjusted using
1046  *	partial/total ratio
1047  *
1048  * Helper function used by get_device_system_crosststamp() to correct the
1049  * crosstimestamp corresponding to the start of the current interval to the
1050  * system counter value (timestamp point) provided by the driver. The
1051  * total_history_* quantities are the total history starting at the provided
1052  * reference point and ending at the start of the current interval. The cycle
1053  * count between the driver timestamp point and the start of the current
1054  * interval is partial_history_cycles.
1055  */
1056 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1057 					 u64 partial_history_cycles,
1058 					 u64 total_history_cycles,
1059 					 bool discontinuity,
1060 					 struct system_device_crosststamp *ts)
1061 {
1062 	struct timekeeper *tk = &tk_core.timekeeper;
1063 	u64 corr_raw, corr_real;
1064 	bool interp_forward;
1065 	int ret;
1066 
1067 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1068 		return 0;
1069 
1070 	/* Interpolate shortest distance from beginning or end of history */
1071 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1072 	partial_history_cycles = interp_forward ?
1073 		total_history_cycles - partial_history_cycles :
1074 		partial_history_cycles;
1075 
1076 	/*
1077 	 * Scale the monotonic raw time delta by:
1078 	 *	partial_history_cycles / total_history_cycles
1079 	 */
1080 	corr_raw = (u64)ktime_to_ns(
1081 		ktime_sub(ts->sys_monoraw, history->raw));
1082 	ret = scale64_check_overflow(partial_history_cycles,
1083 				     total_history_cycles, &corr_raw);
1084 	if (ret)
1085 		return ret;
1086 
1087 	/*
1088 	 * If there is a discontinuity in the history, scale monotonic raw
1089 	 *	correction by:
1090 	 *	mult(real)/mult(raw) yielding the realtime correction
1091 	 * Otherwise, calculate the realtime correction similar to monotonic
1092 	 *	raw calculation
1093 	 */
1094 	if (discontinuity) {
1095 		corr_real = mul_u64_u32_div
1096 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1097 	} else {
1098 		corr_real = (u64)ktime_to_ns(
1099 			ktime_sub(ts->sys_realtime, history->real));
1100 		ret = scale64_check_overflow(partial_history_cycles,
1101 					     total_history_cycles, &corr_real);
1102 		if (ret)
1103 			return ret;
1104 	}
1105 
1106 	/* Fixup monotonic raw and real time time values */
1107 	if (interp_forward) {
1108 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1109 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1110 	} else {
1111 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1112 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 /*
1119  * cycle_between - true if test occurs chronologically between before and after
1120  */
1121 static bool cycle_between(u64 before, u64 test, u64 after)
1122 {
1123 	if (test > before && test < after)
1124 		return true;
1125 	if (test < before && before > after)
1126 		return true;
1127 	return false;
1128 }
1129 
1130 /**
1131  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1132  * @get_time_fn:	Callback to get simultaneous device time and
1133  *	system counter from the device driver
1134  * @ctx:		Context passed to get_time_fn()
1135  * @history_begin:	Historical reference point used to interpolate system
1136  *	time when counter provided by the driver is before the current interval
1137  * @xtstamp:		Receives simultaneously captured system and device time
1138  *
1139  * Reads a timestamp from a device and correlates it to system time
1140  */
1141 int get_device_system_crosststamp(int (*get_time_fn)
1142 				  (ktime_t *device_time,
1143 				   struct system_counterval_t *sys_counterval,
1144 				   void *ctx),
1145 				  void *ctx,
1146 				  struct system_time_snapshot *history_begin,
1147 				  struct system_device_crosststamp *xtstamp)
1148 {
1149 	struct system_counterval_t system_counterval;
1150 	struct timekeeper *tk = &tk_core.timekeeper;
1151 	u64 cycles, now, interval_start;
1152 	unsigned int clock_was_set_seq = 0;
1153 	ktime_t base_real, base_raw;
1154 	u64 nsec_real, nsec_raw;
1155 	u8 cs_was_changed_seq;
1156 	unsigned long seq;
1157 	bool do_interp;
1158 	int ret;
1159 
1160 	do {
1161 		seq = read_seqcount_begin(&tk_core.seq);
1162 		/*
1163 		 * Try to synchronously capture device time and a system
1164 		 * counter value calling back into the device driver
1165 		 */
1166 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1167 		if (ret)
1168 			return ret;
1169 
1170 		/*
1171 		 * Verify that the clocksource associated with the captured
1172 		 * system counter value is the same as the currently installed
1173 		 * timekeeper clocksource
1174 		 */
1175 		if (tk->tkr_mono.clock != system_counterval.cs)
1176 			return -ENODEV;
1177 		cycles = system_counterval.cycles;
1178 
1179 		/*
1180 		 * Check whether the system counter value provided by the
1181 		 * device driver is on the current timekeeping interval.
1182 		 */
1183 		now = tk_clock_read(&tk->tkr_mono);
1184 		interval_start = tk->tkr_mono.cycle_last;
1185 		if (!cycle_between(interval_start, cycles, now)) {
1186 			clock_was_set_seq = tk->clock_was_set_seq;
1187 			cs_was_changed_seq = tk->cs_was_changed_seq;
1188 			cycles = interval_start;
1189 			do_interp = true;
1190 		} else {
1191 			do_interp = false;
1192 		}
1193 
1194 		base_real = ktime_add(tk->tkr_mono.base,
1195 				      tk_core.timekeeper.offs_real);
1196 		base_raw = tk->tkr_raw.base;
1197 
1198 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1199 						     system_counterval.cycles);
1200 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1201 						    system_counterval.cycles);
1202 	} while (read_seqcount_retry(&tk_core.seq, seq));
1203 
1204 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1205 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1206 
1207 	/*
1208 	 * Interpolate if necessary, adjusting back from the start of the
1209 	 * current interval
1210 	 */
1211 	if (do_interp) {
1212 		u64 partial_history_cycles, total_history_cycles;
1213 		bool discontinuity;
1214 
1215 		/*
1216 		 * Check that the counter value occurs after the provided
1217 		 * history reference and that the history doesn't cross a
1218 		 * clocksource change
1219 		 */
1220 		if (!history_begin ||
1221 		    !cycle_between(history_begin->cycles,
1222 				   system_counterval.cycles, cycles) ||
1223 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1224 			return -EINVAL;
1225 		partial_history_cycles = cycles - system_counterval.cycles;
1226 		total_history_cycles = cycles - history_begin->cycles;
1227 		discontinuity =
1228 			history_begin->clock_was_set_seq != clock_was_set_seq;
1229 
1230 		ret = adjust_historical_crosststamp(history_begin,
1231 						    partial_history_cycles,
1232 						    total_history_cycles,
1233 						    discontinuity, xtstamp);
1234 		if (ret)
1235 			return ret;
1236 	}
1237 
1238 	return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1241 
1242 /**
1243  * do_gettimeofday - Returns the time of day in a timeval
1244  * @tv:		pointer to the timeval to be set
1245  *
1246  * NOTE: Users should be converted to using getnstimeofday()
1247  */
1248 void do_gettimeofday(struct timeval *tv)
1249 {
1250 	struct timespec64 now;
1251 
1252 	getnstimeofday64(&now);
1253 	tv->tv_sec = now.tv_sec;
1254 	tv->tv_usec = now.tv_nsec/1000;
1255 }
1256 EXPORT_SYMBOL(do_gettimeofday);
1257 
1258 /**
1259  * do_settimeofday64 - Sets the time of day.
1260  * @ts:     pointer to the timespec64 variable containing the new time
1261  *
1262  * Sets the time of day to the new time and update NTP and notify hrtimers
1263  */
1264 int do_settimeofday64(const struct timespec64 *ts)
1265 {
1266 	struct timekeeper *tk = &tk_core.timekeeper;
1267 	struct timespec64 ts_delta, xt;
1268 	unsigned long flags;
1269 	int ret = 0;
1270 
1271 	if (!timespec64_valid_strict(ts))
1272 		return -EINVAL;
1273 
1274 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1275 	write_seqcount_begin(&tk_core.seq);
1276 
1277 	timekeeping_forward_now(tk);
1278 
1279 	xt = tk_xtime(tk);
1280 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1281 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1282 
1283 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1284 		ret = -EINVAL;
1285 		goto out;
1286 	}
1287 
1288 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1289 
1290 	tk_set_xtime(tk, ts);
1291 out:
1292 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1293 
1294 	write_seqcount_end(&tk_core.seq);
1295 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1296 
1297 	/* signal hrtimers about time change */
1298 	clock_was_set();
1299 
1300 	return ret;
1301 }
1302 EXPORT_SYMBOL(do_settimeofday64);
1303 
1304 /**
1305  * timekeeping_inject_offset - Adds or subtracts from the current time.
1306  * @tv:		pointer to the timespec variable containing the offset
1307  *
1308  * Adds or subtracts an offset value from the current time.
1309  */
1310 static int timekeeping_inject_offset(struct timespec64 *ts)
1311 {
1312 	struct timekeeper *tk = &tk_core.timekeeper;
1313 	unsigned long flags;
1314 	struct timespec64 tmp;
1315 	int ret = 0;
1316 
1317 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1318 		return -EINVAL;
1319 
1320 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1321 	write_seqcount_begin(&tk_core.seq);
1322 
1323 	timekeeping_forward_now(tk);
1324 
1325 	/* Make sure the proposed value is valid */
1326 	tmp = timespec64_add(tk_xtime(tk), *ts);
1327 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1328 	    !timespec64_valid_strict(&tmp)) {
1329 		ret = -EINVAL;
1330 		goto error;
1331 	}
1332 
1333 	tk_xtime_add(tk, ts);
1334 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1335 
1336 error: /* even if we error out, we forwarded the time, so call update */
1337 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1338 
1339 	write_seqcount_end(&tk_core.seq);
1340 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1341 
1342 	/* signal hrtimers about time change */
1343 	clock_was_set();
1344 
1345 	return ret;
1346 }
1347 
1348 /*
1349  * Indicates if there is an offset between the system clock and the hardware
1350  * clock/persistent clock/rtc.
1351  */
1352 int persistent_clock_is_local;
1353 
1354 /*
1355  * Adjust the time obtained from the CMOS to be UTC time instead of
1356  * local time.
1357  *
1358  * This is ugly, but preferable to the alternatives.  Otherwise we
1359  * would either need to write a program to do it in /etc/rc (and risk
1360  * confusion if the program gets run more than once; it would also be
1361  * hard to make the program warp the clock precisely n hours)  or
1362  * compile in the timezone information into the kernel.  Bad, bad....
1363  *
1364  *						- TYT, 1992-01-01
1365  *
1366  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1367  * as real UNIX machines always do it. This avoids all headaches about
1368  * daylight saving times and warping kernel clocks.
1369  */
1370 void timekeeping_warp_clock(void)
1371 {
1372 	if (sys_tz.tz_minuteswest != 0) {
1373 		struct timespec64 adjust;
1374 
1375 		persistent_clock_is_local = 1;
1376 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1377 		adjust.tv_nsec = 0;
1378 		timekeeping_inject_offset(&adjust);
1379 	}
1380 }
1381 
1382 /**
1383  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1384  *
1385  */
1386 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1387 {
1388 	tk->tai_offset = tai_offset;
1389 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1390 }
1391 
1392 /**
1393  * change_clocksource - Swaps clocksources if a new one is available
1394  *
1395  * Accumulates current time interval and initializes new clocksource
1396  */
1397 static int change_clocksource(void *data)
1398 {
1399 	struct timekeeper *tk = &tk_core.timekeeper;
1400 	struct clocksource *new, *old;
1401 	unsigned long flags;
1402 
1403 	new = (struct clocksource *) data;
1404 
1405 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1406 	write_seqcount_begin(&tk_core.seq);
1407 
1408 	timekeeping_forward_now(tk);
1409 	/*
1410 	 * If the cs is in module, get a module reference. Succeeds
1411 	 * for built-in code (owner == NULL) as well.
1412 	 */
1413 	if (try_module_get(new->owner)) {
1414 		if (!new->enable || new->enable(new) == 0) {
1415 			old = tk->tkr_mono.clock;
1416 			tk_setup_internals(tk, new);
1417 			if (old->disable)
1418 				old->disable(old);
1419 			module_put(old->owner);
1420 		} else {
1421 			module_put(new->owner);
1422 		}
1423 	}
1424 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1425 
1426 	write_seqcount_end(&tk_core.seq);
1427 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1428 
1429 	return 0;
1430 }
1431 
1432 /**
1433  * timekeeping_notify - Install a new clock source
1434  * @clock:		pointer to the clock source
1435  *
1436  * This function is called from clocksource.c after a new, better clock
1437  * source has been registered. The caller holds the clocksource_mutex.
1438  */
1439 int timekeeping_notify(struct clocksource *clock)
1440 {
1441 	struct timekeeper *tk = &tk_core.timekeeper;
1442 
1443 	if (tk->tkr_mono.clock == clock)
1444 		return 0;
1445 	stop_machine(change_clocksource, clock, NULL);
1446 	tick_clock_notify();
1447 	return tk->tkr_mono.clock == clock ? 0 : -1;
1448 }
1449 
1450 /**
1451  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1452  * @ts:		pointer to the timespec64 to be set
1453  *
1454  * Returns the raw monotonic time (completely un-modified by ntp)
1455  */
1456 void getrawmonotonic64(struct timespec64 *ts)
1457 {
1458 	struct timekeeper *tk = &tk_core.timekeeper;
1459 	unsigned long seq;
1460 	u64 nsecs;
1461 
1462 	do {
1463 		seq = read_seqcount_begin(&tk_core.seq);
1464 		ts->tv_sec = tk->raw_sec;
1465 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1466 
1467 	} while (read_seqcount_retry(&tk_core.seq, seq));
1468 
1469 	ts->tv_nsec = 0;
1470 	timespec64_add_ns(ts, nsecs);
1471 }
1472 EXPORT_SYMBOL(getrawmonotonic64);
1473 
1474 
1475 /**
1476  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1477  */
1478 int timekeeping_valid_for_hres(void)
1479 {
1480 	struct timekeeper *tk = &tk_core.timekeeper;
1481 	unsigned long seq;
1482 	int ret;
1483 
1484 	do {
1485 		seq = read_seqcount_begin(&tk_core.seq);
1486 
1487 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1488 
1489 	} while (read_seqcount_retry(&tk_core.seq, seq));
1490 
1491 	return ret;
1492 }
1493 
1494 /**
1495  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1496  */
1497 u64 timekeeping_max_deferment(void)
1498 {
1499 	struct timekeeper *tk = &tk_core.timekeeper;
1500 	unsigned long seq;
1501 	u64 ret;
1502 
1503 	do {
1504 		seq = read_seqcount_begin(&tk_core.seq);
1505 
1506 		ret = tk->tkr_mono.clock->max_idle_ns;
1507 
1508 	} while (read_seqcount_retry(&tk_core.seq, seq));
1509 
1510 	return ret;
1511 }
1512 
1513 /**
1514  * read_persistent_clock -  Return time from the persistent clock.
1515  *
1516  * Weak dummy function for arches that do not yet support it.
1517  * Reads the time from the battery backed persistent clock.
1518  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1519  *
1520  *  XXX - Do be sure to remove it once all arches implement it.
1521  */
1522 void __weak read_persistent_clock(struct timespec *ts)
1523 {
1524 	ts->tv_sec = 0;
1525 	ts->tv_nsec = 0;
1526 }
1527 
1528 void __weak read_persistent_clock64(struct timespec64 *ts64)
1529 {
1530 	struct timespec ts;
1531 
1532 	read_persistent_clock(&ts);
1533 	*ts64 = timespec_to_timespec64(ts);
1534 }
1535 
1536 /**
1537  * read_boot_clock64 -  Return time of the system start.
1538  *
1539  * Weak dummy function for arches that do not yet support it.
1540  * Function to read the exact time the system has been started.
1541  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1542  *
1543  *  XXX - Do be sure to remove it once all arches implement it.
1544  */
1545 void __weak read_boot_clock64(struct timespec64 *ts)
1546 {
1547 	ts->tv_sec = 0;
1548 	ts->tv_nsec = 0;
1549 }
1550 
1551 /* Flag for if timekeeping_resume() has injected sleeptime */
1552 static bool sleeptime_injected;
1553 
1554 /* Flag for if there is a persistent clock on this platform */
1555 static bool persistent_clock_exists;
1556 
1557 /*
1558  * timekeeping_init - Initializes the clocksource and common timekeeping values
1559  */
1560 void __init timekeeping_init(void)
1561 {
1562 	struct timekeeper *tk = &tk_core.timekeeper;
1563 	struct clocksource *clock;
1564 	unsigned long flags;
1565 	struct timespec64 now, boot, tmp;
1566 
1567 	read_persistent_clock64(&now);
1568 	if (!timespec64_valid_strict(&now)) {
1569 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1570 			"         Check your CMOS/BIOS settings.\n");
1571 		now.tv_sec = 0;
1572 		now.tv_nsec = 0;
1573 	} else if (now.tv_sec || now.tv_nsec)
1574 		persistent_clock_exists = true;
1575 
1576 	read_boot_clock64(&boot);
1577 	if (!timespec64_valid_strict(&boot)) {
1578 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1579 			"         Check your CMOS/BIOS settings.\n");
1580 		boot.tv_sec = 0;
1581 		boot.tv_nsec = 0;
1582 	}
1583 
1584 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1585 	write_seqcount_begin(&tk_core.seq);
1586 	ntp_init();
1587 
1588 	clock = clocksource_default_clock();
1589 	if (clock->enable)
1590 		clock->enable(clock);
1591 	tk_setup_internals(tk, clock);
1592 
1593 	tk_set_xtime(tk, &now);
1594 	tk->raw_sec = 0;
1595 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1596 		boot = tk_xtime(tk);
1597 
1598 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1599 	tk_set_wall_to_mono(tk, tmp);
1600 
1601 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1602 
1603 	write_seqcount_end(&tk_core.seq);
1604 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1605 }
1606 
1607 /* time in seconds when suspend began for persistent clock */
1608 static struct timespec64 timekeeping_suspend_time;
1609 
1610 /**
1611  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1612  * @delta: pointer to a timespec delta value
1613  *
1614  * Takes a timespec offset measuring a suspend interval and properly
1615  * adds the sleep offset to the timekeeping variables.
1616  */
1617 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1618 					   struct timespec64 *delta)
1619 {
1620 	if (!timespec64_valid_strict(delta)) {
1621 		printk_deferred(KERN_WARNING
1622 				"__timekeeping_inject_sleeptime: Invalid "
1623 				"sleep delta value!\n");
1624 		return;
1625 	}
1626 	tk_xtime_add(tk, delta);
1627 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1628 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1629 	tk_debug_account_sleep_time(delta);
1630 }
1631 
1632 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1633 /**
1634  * We have three kinds of time sources to use for sleep time
1635  * injection, the preference order is:
1636  * 1) non-stop clocksource
1637  * 2) persistent clock (ie: RTC accessible when irqs are off)
1638  * 3) RTC
1639  *
1640  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1641  * If system has neither 1) nor 2), 3) will be used finally.
1642  *
1643  *
1644  * If timekeeping has injected sleeptime via either 1) or 2),
1645  * 3) becomes needless, so in this case we don't need to call
1646  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1647  * means.
1648  */
1649 bool timekeeping_rtc_skipresume(void)
1650 {
1651 	return sleeptime_injected;
1652 }
1653 
1654 /**
1655  * 1) can be determined whether to use or not only when doing
1656  * timekeeping_resume() which is invoked after rtc_suspend(),
1657  * so we can't skip rtc_suspend() surely if system has 1).
1658  *
1659  * But if system has 2), 2) will definitely be used, so in this
1660  * case we don't need to call rtc_suspend(), and this is what
1661  * timekeeping_rtc_skipsuspend() means.
1662  */
1663 bool timekeeping_rtc_skipsuspend(void)
1664 {
1665 	return persistent_clock_exists;
1666 }
1667 
1668 /**
1669  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1670  * @delta: pointer to a timespec64 delta value
1671  *
1672  * This hook is for architectures that cannot support read_persistent_clock64
1673  * because their RTC/persistent clock is only accessible when irqs are enabled.
1674  * and also don't have an effective nonstop clocksource.
1675  *
1676  * This function should only be called by rtc_resume(), and allows
1677  * a suspend offset to be injected into the timekeeping values.
1678  */
1679 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1680 {
1681 	struct timekeeper *tk = &tk_core.timekeeper;
1682 	unsigned long flags;
1683 
1684 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1685 	write_seqcount_begin(&tk_core.seq);
1686 
1687 	timekeeping_forward_now(tk);
1688 
1689 	__timekeeping_inject_sleeptime(tk, delta);
1690 
1691 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1692 
1693 	write_seqcount_end(&tk_core.seq);
1694 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1695 
1696 	/* signal hrtimers about time change */
1697 	clock_was_set();
1698 }
1699 #endif
1700 
1701 /**
1702  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1703  */
1704 void timekeeping_resume(void)
1705 {
1706 	struct timekeeper *tk = &tk_core.timekeeper;
1707 	struct clocksource *clock = tk->tkr_mono.clock;
1708 	unsigned long flags;
1709 	struct timespec64 ts_new, ts_delta;
1710 	u64 cycle_now;
1711 
1712 	sleeptime_injected = false;
1713 	read_persistent_clock64(&ts_new);
1714 
1715 	clockevents_resume();
1716 	clocksource_resume();
1717 
1718 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1719 	write_seqcount_begin(&tk_core.seq);
1720 
1721 	/*
1722 	 * After system resumes, we need to calculate the suspended time and
1723 	 * compensate it for the OS time. There are 3 sources that could be
1724 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1725 	 * device.
1726 	 *
1727 	 * One specific platform may have 1 or 2 or all of them, and the
1728 	 * preference will be:
1729 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1730 	 * The less preferred source will only be tried if there is no better
1731 	 * usable source. The rtc part is handled separately in rtc core code.
1732 	 */
1733 	cycle_now = tk_clock_read(&tk->tkr_mono);
1734 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1735 		cycle_now > tk->tkr_mono.cycle_last) {
1736 		u64 nsec, cyc_delta;
1737 
1738 		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1739 					      tk->tkr_mono.mask);
1740 		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1741 		ts_delta = ns_to_timespec64(nsec);
1742 		sleeptime_injected = true;
1743 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1744 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1745 		sleeptime_injected = true;
1746 	}
1747 
1748 	if (sleeptime_injected)
1749 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1750 
1751 	/* Re-base the last cycle value */
1752 	tk->tkr_mono.cycle_last = cycle_now;
1753 	tk->tkr_raw.cycle_last  = cycle_now;
1754 
1755 	tk->ntp_error = 0;
1756 	timekeeping_suspended = 0;
1757 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1758 	write_seqcount_end(&tk_core.seq);
1759 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1760 
1761 	touch_softlockup_watchdog();
1762 
1763 	tick_resume();
1764 	hrtimers_resume();
1765 }
1766 
1767 int timekeeping_suspend(void)
1768 {
1769 	struct timekeeper *tk = &tk_core.timekeeper;
1770 	unsigned long flags;
1771 	struct timespec64		delta, delta_delta;
1772 	static struct timespec64	old_delta;
1773 
1774 	read_persistent_clock64(&timekeeping_suspend_time);
1775 
1776 	/*
1777 	 * On some systems the persistent_clock can not be detected at
1778 	 * timekeeping_init by its return value, so if we see a valid
1779 	 * value returned, update the persistent_clock_exists flag.
1780 	 */
1781 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1782 		persistent_clock_exists = true;
1783 
1784 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1785 	write_seqcount_begin(&tk_core.seq);
1786 	timekeeping_forward_now(tk);
1787 	timekeeping_suspended = 1;
1788 
1789 	if (persistent_clock_exists) {
1790 		/*
1791 		 * To avoid drift caused by repeated suspend/resumes,
1792 		 * which each can add ~1 second drift error,
1793 		 * try to compensate so the difference in system time
1794 		 * and persistent_clock time stays close to constant.
1795 		 */
1796 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1797 		delta_delta = timespec64_sub(delta, old_delta);
1798 		if (abs(delta_delta.tv_sec) >= 2) {
1799 			/*
1800 			 * if delta_delta is too large, assume time correction
1801 			 * has occurred and set old_delta to the current delta.
1802 			 */
1803 			old_delta = delta;
1804 		} else {
1805 			/* Otherwise try to adjust old_system to compensate */
1806 			timekeeping_suspend_time =
1807 				timespec64_add(timekeeping_suspend_time, delta_delta);
1808 		}
1809 	}
1810 
1811 	timekeeping_update(tk, TK_MIRROR);
1812 	halt_fast_timekeeper(tk);
1813 	write_seqcount_end(&tk_core.seq);
1814 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1815 
1816 	tick_suspend();
1817 	clocksource_suspend();
1818 	clockevents_suspend();
1819 
1820 	return 0;
1821 }
1822 
1823 /* sysfs resume/suspend bits for timekeeping */
1824 static struct syscore_ops timekeeping_syscore_ops = {
1825 	.resume		= timekeeping_resume,
1826 	.suspend	= timekeeping_suspend,
1827 };
1828 
1829 static int __init timekeeping_init_ops(void)
1830 {
1831 	register_syscore_ops(&timekeeping_syscore_ops);
1832 	return 0;
1833 }
1834 device_initcall(timekeeping_init_ops);
1835 
1836 /*
1837  * Apply a multiplier adjustment to the timekeeper
1838  */
1839 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1840 							 s64 offset,
1841 							 bool negative,
1842 							 int adj_scale)
1843 {
1844 	s64 interval = tk->cycle_interval;
1845 	s32 mult_adj = 1;
1846 
1847 	if (negative) {
1848 		mult_adj = -mult_adj;
1849 		interval = -interval;
1850 		offset  = -offset;
1851 	}
1852 	mult_adj <<= adj_scale;
1853 	interval <<= adj_scale;
1854 	offset <<= adj_scale;
1855 
1856 	/*
1857 	 * So the following can be confusing.
1858 	 *
1859 	 * To keep things simple, lets assume mult_adj == 1 for now.
1860 	 *
1861 	 * When mult_adj != 1, remember that the interval and offset values
1862 	 * have been appropriately scaled so the math is the same.
1863 	 *
1864 	 * The basic idea here is that we're increasing the multiplier
1865 	 * by one, this causes the xtime_interval to be incremented by
1866 	 * one cycle_interval. This is because:
1867 	 *	xtime_interval = cycle_interval * mult
1868 	 * So if mult is being incremented by one:
1869 	 *	xtime_interval = cycle_interval * (mult + 1)
1870 	 * Its the same as:
1871 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1872 	 * Which can be shortened to:
1873 	 *	xtime_interval += cycle_interval
1874 	 *
1875 	 * So offset stores the non-accumulated cycles. Thus the current
1876 	 * time (in shifted nanoseconds) is:
1877 	 *	now = (offset * adj) + xtime_nsec
1878 	 * Now, even though we're adjusting the clock frequency, we have
1879 	 * to keep time consistent. In other words, we can't jump back
1880 	 * in time, and we also want to avoid jumping forward in time.
1881 	 *
1882 	 * So given the same offset value, we need the time to be the same
1883 	 * both before and after the freq adjustment.
1884 	 *	now = (offset * adj_1) + xtime_nsec_1
1885 	 *	now = (offset * adj_2) + xtime_nsec_2
1886 	 * So:
1887 	 *	(offset * adj_1) + xtime_nsec_1 =
1888 	 *		(offset * adj_2) + xtime_nsec_2
1889 	 * And we know:
1890 	 *	adj_2 = adj_1 + 1
1891 	 * So:
1892 	 *	(offset * adj_1) + xtime_nsec_1 =
1893 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1894 	 *	(offset * adj_1) + xtime_nsec_1 =
1895 	 *		(offset * adj_1) + offset + xtime_nsec_2
1896 	 * Canceling the sides:
1897 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1898 	 * Which gives us:
1899 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1900 	 * Which simplfies to:
1901 	 *	xtime_nsec -= offset
1902 	 *
1903 	 * XXX - TODO: Doc ntp_error calculation.
1904 	 */
1905 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1906 		/* NTP adjustment caused clocksource mult overflow */
1907 		WARN_ON_ONCE(1);
1908 		return;
1909 	}
1910 
1911 	tk->tkr_mono.mult += mult_adj;
1912 	tk->xtime_interval += interval;
1913 	tk->tkr_mono.xtime_nsec -= offset;
1914 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1915 }
1916 
1917 /*
1918  * Calculate the multiplier adjustment needed to match the frequency
1919  * specified by NTP
1920  */
1921 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1922 							s64 offset)
1923 {
1924 	s64 interval = tk->cycle_interval;
1925 	s64 xinterval = tk->xtime_interval;
1926 	u32 base = tk->tkr_mono.clock->mult;
1927 	u32 max = tk->tkr_mono.clock->maxadj;
1928 	u32 cur_adj = tk->tkr_mono.mult;
1929 	s64 tick_error;
1930 	bool negative;
1931 	u32 adj_scale;
1932 
1933 	/* Remove any current error adj from freq calculation */
1934 	if (tk->ntp_err_mult)
1935 		xinterval -= tk->cycle_interval;
1936 
1937 	tk->ntp_tick = ntp_tick_length();
1938 
1939 	/* Calculate current error per tick */
1940 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1941 	tick_error -= (xinterval + tk->xtime_remainder);
1942 
1943 	/* Don't worry about correcting it if its small */
1944 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1945 		return;
1946 
1947 	/* preserve the direction of correction */
1948 	negative = (tick_error < 0);
1949 
1950 	/* If any adjustment would pass the max, just return */
1951 	if (negative && (cur_adj - 1) <= (base - max))
1952 		return;
1953 	if (!negative && (cur_adj + 1) >= (base + max))
1954 		return;
1955 	/*
1956 	 * Sort out the magnitude of the correction, but
1957 	 * avoid making so large a correction that we go
1958 	 * over the max adjustment.
1959 	 */
1960 	adj_scale = 0;
1961 	tick_error = abs(tick_error);
1962 	while (tick_error > interval) {
1963 		u32 adj = 1 << (adj_scale + 1);
1964 
1965 		/* Check if adjustment gets us within 1 unit from the max */
1966 		if (negative && (cur_adj - adj) <= (base - max))
1967 			break;
1968 		if (!negative && (cur_adj + adj) >= (base + max))
1969 			break;
1970 
1971 		adj_scale++;
1972 		tick_error >>= 1;
1973 	}
1974 
1975 	/* scale the corrections */
1976 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1977 }
1978 
1979 /*
1980  * Adjust the timekeeper's multiplier to the correct frequency
1981  * and also to reduce the accumulated error value.
1982  */
1983 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1984 {
1985 	/* Correct for the current frequency error */
1986 	timekeeping_freqadjust(tk, offset);
1987 
1988 	/* Next make a small adjustment to fix any cumulative error */
1989 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1990 		tk->ntp_err_mult = 1;
1991 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1992 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1993 		/* Undo any existing error adjustment */
1994 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1995 		tk->ntp_err_mult = 0;
1996 	}
1997 
1998 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1999 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2000 			> tk->tkr_mono.clock->maxadj))) {
2001 		printk_once(KERN_WARNING
2002 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2003 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2004 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2005 	}
2006 
2007 	/*
2008 	 * It may be possible that when we entered this function, xtime_nsec
2009 	 * was very small.  Further, if we're slightly speeding the clocksource
2010 	 * in the code above, its possible the required corrective factor to
2011 	 * xtime_nsec could cause it to underflow.
2012 	 *
2013 	 * Now, since we already accumulated the second, cannot simply roll
2014 	 * the accumulated second back, since the NTP subsystem has been
2015 	 * notified via second_overflow. So instead we push xtime_nsec forward
2016 	 * by the amount we underflowed, and add that amount into the error.
2017 	 *
2018 	 * We'll correct this error next time through this function, when
2019 	 * xtime_nsec is not as small.
2020 	 */
2021 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2022 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
2023 		tk->tkr_mono.xtime_nsec = 0;
2024 		tk->ntp_error += neg << tk->ntp_error_shift;
2025 	}
2026 }
2027 
2028 /**
2029  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2030  *
2031  * Helper function that accumulates the nsecs greater than a second
2032  * from the xtime_nsec field to the xtime_secs field.
2033  * It also calls into the NTP code to handle leapsecond processing.
2034  *
2035  */
2036 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2037 {
2038 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2039 	unsigned int clock_set = 0;
2040 
2041 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2042 		int leap;
2043 
2044 		tk->tkr_mono.xtime_nsec -= nsecps;
2045 		tk->xtime_sec++;
2046 
2047 		/* Figure out if its a leap sec and apply if needed */
2048 		leap = second_overflow(tk->xtime_sec);
2049 		if (unlikely(leap)) {
2050 			struct timespec64 ts;
2051 
2052 			tk->xtime_sec += leap;
2053 
2054 			ts.tv_sec = leap;
2055 			ts.tv_nsec = 0;
2056 			tk_set_wall_to_mono(tk,
2057 				timespec64_sub(tk->wall_to_monotonic, ts));
2058 
2059 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2060 
2061 			clock_set = TK_CLOCK_WAS_SET;
2062 		}
2063 	}
2064 	return clock_set;
2065 }
2066 
2067 /**
2068  * logarithmic_accumulation - shifted accumulation of cycles
2069  *
2070  * This functions accumulates a shifted interval of cycles into
2071  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2072  * loop.
2073  *
2074  * Returns the unconsumed cycles.
2075  */
2076 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2077 				    u32 shift, unsigned int *clock_set)
2078 {
2079 	u64 interval = tk->cycle_interval << shift;
2080 	u64 snsec_per_sec;
2081 
2082 	/* If the offset is smaller than a shifted interval, do nothing */
2083 	if (offset < interval)
2084 		return offset;
2085 
2086 	/* Accumulate one shifted interval */
2087 	offset -= interval;
2088 	tk->tkr_mono.cycle_last += interval;
2089 	tk->tkr_raw.cycle_last  += interval;
2090 
2091 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2092 	*clock_set |= accumulate_nsecs_to_secs(tk);
2093 
2094 	/* Accumulate raw time */
2095 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2096 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2097 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2098 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2099 		tk->raw_sec++;
2100 	}
2101 
2102 	/* Accumulate error between NTP and clock interval */
2103 	tk->ntp_error += tk->ntp_tick << shift;
2104 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2105 						(tk->ntp_error_shift + shift);
2106 
2107 	return offset;
2108 }
2109 
2110 /**
2111  * update_wall_time - Uses the current clocksource to increment the wall time
2112  *
2113  */
2114 void update_wall_time(void)
2115 {
2116 	struct timekeeper *real_tk = &tk_core.timekeeper;
2117 	struct timekeeper *tk = &shadow_timekeeper;
2118 	u64 offset;
2119 	int shift = 0, maxshift;
2120 	unsigned int clock_set = 0;
2121 	unsigned long flags;
2122 
2123 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2124 
2125 	/* Make sure we're fully resumed: */
2126 	if (unlikely(timekeeping_suspended))
2127 		goto out;
2128 
2129 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2130 	offset = real_tk->cycle_interval;
2131 #else
2132 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2133 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2134 #endif
2135 
2136 	/* Check if there's really nothing to do */
2137 	if (offset < real_tk->cycle_interval)
2138 		goto out;
2139 
2140 	/* Do some additional sanity checking */
2141 	timekeeping_check_update(tk, offset);
2142 
2143 	/*
2144 	 * With NO_HZ we may have to accumulate many cycle_intervals
2145 	 * (think "ticks") worth of time at once. To do this efficiently,
2146 	 * we calculate the largest doubling multiple of cycle_intervals
2147 	 * that is smaller than the offset.  We then accumulate that
2148 	 * chunk in one go, and then try to consume the next smaller
2149 	 * doubled multiple.
2150 	 */
2151 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2152 	shift = max(0, shift);
2153 	/* Bound shift to one less than what overflows tick_length */
2154 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2155 	shift = min(shift, maxshift);
2156 	while (offset >= tk->cycle_interval) {
2157 		offset = logarithmic_accumulation(tk, offset, shift,
2158 							&clock_set);
2159 		if (offset < tk->cycle_interval<<shift)
2160 			shift--;
2161 	}
2162 
2163 	/* correct the clock when NTP error is too big */
2164 	timekeeping_adjust(tk, offset);
2165 
2166 	/*
2167 	 * XXX This can be killed once everyone converts
2168 	 * to the new update_vsyscall.
2169 	 */
2170 	old_vsyscall_fixup(tk);
2171 
2172 	/*
2173 	 * Finally, make sure that after the rounding
2174 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2175 	 */
2176 	clock_set |= accumulate_nsecs_to_secs(tk);
2177 
2178 	write_seqcount_begin(&tk_core.seq);
2179 	/*
2180 	 * Update the real timekeeper.
2181 	 *
2182 	 * We could avoid this memcpy by switching pointers, but that
2183 	 * requires changes to all other timekeeper usage sites as
2184 	 * well, i.e. move the timekeeper pointer getter into the
2185 	 * spinlocked/seqcount protected sections. And we trade this
2186 	 * memcpy under the tk_core.seq against one before we start
2187 	 * updating.
2188 	 */
2189 	timekeeping_update(tk, clock_set);
2190 	memcpy(real_tk, tk, sizeof(*tk));
2191 	/* The memcpy must come last. Do not put anything here! */
2192 	write_seqcount_end(&tk_core.seq);
2193 out:
2194 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2195 	if (clock_set)
2196 		/* Have to call _delayed version, since in irq context*/
2197 		clock_was_set_delayed();
2198 }
2199 
2200 /**
2201  * getboottime64 - Return the real time of system boot.
2202  * @ts:		pointer to the timespec64 to be set
2203  *
2204  * Returns the wall-time of boot in a timespec64.
2205  *
2206  * This is based on the wall_to_monotonic offset and the total suspend
2207  * time. Calls to settimeofday will affect the value returned (which
2208  * basically means that however wrong your real time clock is at boot time,
2209  * you get the right time here).
2210  */
2211 void getboottime64(struct timespec64 *ts)
2212 {
2213 	struct timekeeper *tk = &tk_core.timekeeper;
2214 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2215 
2216 	*ts = ktime_to_timespec64(t);
2217 }
2218 EXPORT_SYMBOL_GPL(getboottime64);
2219 
2220 unsigned long get_seconds(void)
2221 {
2222 	struct timekeeper *tk = &tk_core.timekeeper;
2223 
2224 	return tk->xtime_sec;
2225 }
2226 EXPORT_SYMBOL(get_seconds);
2227 
2228 struct timespec __current_kernel_time(void)
2229 {
2230 	struct timekeeper *tk = &tk_core.timekeeper;
2231 
2232 	return timespec64_to_timespec(tk_xtime(tk));
2233 }
2234 
2235 struct timespec64 current_kernel_time64(void)
2236 {
2237 	struct timekeeper *tk = &tk_core.timekeeper;
2238 	struct timespec64 now;
2239 	unsigned long seq;
2240 
2241 	do {
2242 		seq = read_seqcount_begin(&tk_core.seq);
2243 
2244 		now = tk_xtime(tk);
2245 	} while (read_seqcount_retry(&tk_core.seq, seq));
2246 
2247 	return now;
2248 }
2249 EXPORT_SYMBOL(current_kernel_time64);
2250 
2251 struct timespec64 get_monotonic_coarse64(void)
2252 {
2253 	struct timekeeper *tk = &tk_core.timekeeper;
2254 	struct timespec64 now, mono;
2255 	unsigned long seq;
2256 
2257 	do {
2258 		seq = read_seqcount_begin(&tk_core.seq);
2259 
2260 		now = tk_xtime(tk);
2261 		mono = tk->wall_to_monotonic;
2262 	} while (read_seqcount_retry(&tk_core.seq, seq));
2263 
2264 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2265 				now.tv_nsec + mono.tv_nsec);
2266 
2267 	return now;
2268 }
2269 EXPORT_SYMBOL(get_monotonic_coarse64);
2270 
2271 /*
2272  * Must hold jiffies_lock
2273  */
2274 void do_timer(unsigned long ticks)
2275 {
2276 	jiffies_64 += ticks;
2277 	calc_global_load(ticks);
2278 }
2279 
2280 /**
2281  * ktime_get_update_offsets_now - hrtimer helper
2282  * @cwsseq:	pointer to check and store the clock was set sequence number
2283  * @offs_real:	pointer to storage for monotonic -> realtime offset
2284  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2285  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2286  *
2287  * Returns current monotonic time and updates the offsets if the
2288  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2289  * different.
2290  *
2291  * Called from hrtimer_interrupt() or retrigger_next_event()
2292  */
2293 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2294 				     ktime_t *offs_boot, ktime_t *offs_tai)
2295 {
2296 	struct timekeeper *tk = &tk_core.timekeeper;
2297 	unsigned int seq;
2298 	ktime_t base;
2299 	u64 nsecs;
2300 
2301 	do {
2302 		seq = read_seqcount_begin(&tk_core.seq);
2303 
2304 		base = tk->tkr_mono.base;
2305 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2306 		base = ktime_add_ns(base, nsecs);
2307 
2308 		if (*cwsseq != tk->clock_was_set_seq) {
2309 			*cwsseq = tk->clock_was_set_seq;
2310 			*offs_real = tk->offs_real;
2311 			*offs_boot = tk->offs_boot;
2312 			*offs_tai = tk->offs_tai;
2313 		}
2314 
2315 		/* Handle leapsecond insertion adjustments */
2316 		if (unlikely(base >= tk->next_leap_ktime))
2317 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2318 
2319 	} while (read_seqcount_retry(&tk_core.seq, seq));
2320 
2321 	return base;
2322 }
2323 
2324 /**
2325  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2326  */
2327 static int timekeeping_validate_timex(struct timex *txc)
2328 {
2329 	if (txc->modes & ADJ_ADJTIME) {
2330 		/* singleshot must not be used with any other mode bits */
2331 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2332 			return -EINVAL;
2333 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2334 		    !capable(CAP_SYS_TIME))
2335 			return -EPERM;
2336 	} else {
2337 		/* In order to modify anything, you gotta be super-user! */
2338 		if (txc->modes && !capable(CAP_SYS_TIME))
2339 			return -EPERM;
2340 		/*
2341 		 * if the quartz is off by more than 10% then
2342 		 * something is VERY wrong!
2343 		 */
2344 		if (txc->modes & ADJ_TICK &&
2345 		    (txc->tick <  900000/USER_HZ ||
2346 		     txc->tick > 1100000/USER_HZ))
2347 			return -EINVAL;
2348 	}
2349 
2350 	if (txc->modes & ADJ_SETOFFSET) {
2351 		/* In order to inject time, you gotta be super-user! */
2352 		if (!capable(CAP_SYS_TIME))
2353 			return -EPERM;
2354 
2355 		/*
2356 		 * Validate if a timespec/timeval used to inject a time
2357 		 * offset is valid.  Offsets can be postive or negative, so
2358 		 * we don't check tv_sec. The value of the timeval/timespec
2359 		 * is the sum of its fields,but *NOTE*:
2360 		 * The field tv_usec/tv_nsec must always be non-negative and
2361 		 * we can't have more nanoseconds/microseconds than a second.
2362 		 */
2363 		if (txc->time.tv_usec < 0)
2364 			return -EINVAL;
2365 
2366 		if (txc->modes & ADJ_NANO) {
2367 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2368 				return -EINVAL;
2369 		} else {
2370 			if (txc->time.tv_usec >= USEC_PER_SEC)
2371 				return -EINVAL;
2372 		}
2373 	}
2374 
2375 	/*
2376 	 * Check for potential multiplication overflows that can
2377 	 * only happen on 64-bit systems:
2378 	 */
2379 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2380 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2381 			return -EINVAL;
2382 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2383 			return -EINVAL;
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 
2390 /**
2391  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2392  */
2393 int do_adjtimex(struct timex *txc)
2394 {
2395 	struct timekeeper *tk = &tk_core.timekeeper;
2396 	unsigned long flags;
2397 	struct timespec64 ts;
2398 	s32 orig_tai, tai;
2399 	int ret;
2400 
2401 	/* Validate the data before disabling interrupts */
2402 	ret = timekeeping_validate_timex(txc);
2403 	if (ret)
2404 		return ret;
2405 
2406 	if (txc->modes & ADJ_SETOFFSET) {
2407 		struct timespec64 delta;
2408 		delta.tv_sec  = txc->time.tv_sec;
2409 		delta.tv_nsec = txc->time.tv_usec;
2410 		if (!(txc->modes & ADJ_NANO))
2411 			delta.tv_nsec *= 1000;
2412 		ret = timekeeping_inject_offset(&delta);
2413 		if (ret)
2414 			return ret;
2415 	}
2416 
2417 	getnstimeofday64(&ts);
2418 
2419 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2420 	write_seqcount_begin(&tk_core.seq);
2421 
2422 	orig_tai = tai = tk->tai_offset;
2423 	ret = __do_adjtimex(txc, &ts, &tai);
2424 
2425 	if (tai != orig_tai) {
2426 		__timekeeping_set_tai_offset(tk, tai);
2427 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2428 	}
2429 	tk_update_leap_state(tk);
2430 
2431 	write_seqcount_end(&tk_core.seq);
2432 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2433 
2434 	if (tai != orig_tai)
2435 		clock_was_set();
2436 
2437 	ntp_notify_cmos_timer();
2438 
2439 	return ret;
2440 }
2441 
2442 #ifdef CONFIG_NTP_PPS
2443 /**
2444  * hardpps() - Accessor function to NTP __hardpps function
2445  */
2446 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2447 {
2448 	unsigned long flags;
2449 
2450 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2451 	write_seqcount_begin(&tk_core.seq);
2452 
2453 	__hardpps(phase_ts, raw_ts);
2454 
2455 	write_seqcount_end(&tk_core.seq);
2456 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2457 }
2458 EXPORT_SYMBOL(hardpps);
2459 #endif /* CONFIG_NTP_PPS */
2460 
2461 /**
2462  * xtime_update() - advances the timekeeping infrastructure
2463  * @ticks:	number of ticks, that have elapsed since the last call.
2464  *
2465  * Must be called with interrupts disabled.
2466  */
2467 void xtime_update(unsigned long ticks)
2468 {
2469 	write_seqlock(&jiffies_lock);
2470 	do_timer(ticks);
2471 	write_sequnlock(&jiffies_lock);
2472 	update_wall_time();
2473 }
2474