xref: /openbmc/linux/kernel/time/timekeeping.c (revision bc5aa3a0)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124 
125 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 	const char *name = tk->tkr_mono.clock->name;
127 
128 	if (offset > max_cycles) {
129 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 				offset, name, max_cycles);
131 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 	} else {
133 		if (offset > (max_cycles >> 1)) {
134 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 					offset, name, max_cycles >> 1);
136 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 		}
138 	}
139 
140 	if (tk->underflow_seen) {
141 		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144 			printk_deferred("         Your kernel is probably still fine.\n");
145 			tk->last_warning = jiffies;
146 		}
147 		tk->underflow_seen = 0;
148 	}
149 
150 	if (tk->overflow_seen) {
151 		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154 			printk_deferred("         Your kernel is probably still fine.\n");
155 			tk->last_warning = jiffies;
156 		}
157 		tk->overflow_seen = 0;
158 	}
159 }
160 
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 	struct timekeeper *tk = &tk_core.timekeeper;
164 	cycle_t now, last, mask, max, delta;
165 	unsigned int seq;
166 
167 	/*
168 	 * Since we're called holding a seqlock, the data may shift
169 	 * under us while we're doing the calculation. This can cause
170 	 * false positives, since we'd note a problem but throw the
171 	 * results away. So nest another seqlock here to atomically
172 	 * grab the points we are checking with.
173 	 */
174 	do {
175 		seq = read_seqcount_begin(&tk_core.seq);
176 		now = tkr->read(tkr->clock);
177 		last = tkr->cycle_last;
178 		mask = tkr->mask;
179 		max = tkr->clock->max_cycles;
180 	} while (read_seqcount_retry(&tk_core.seq, seq));
181 
182 	delta = clocksource_delta(now, last, mask);
183 
184 	/*
185 	 * Try to catch underflows by checking if we are seeing small
186 	 * mask-relative negative values.
187 	 */
188 	if (unlikely((~delta & mask) < (mask >> 3))) {
189 		tk->underflow_seen = 1;
190 		delta = 0;
191 	}
192 
193 	/* Cap delta value to the max_cycles values to avoid mult overflows */
194 	if (unlikely(delta > max)) {
195 		tk->overflow_seen = 1;
196 		delta = tkr->clock->max_cycles;
197 	}
198 
199 	return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 	cycle_t cycle_now, delta;
208 
209 	/* read clocksource */
210 	cycle_now = tkr->read(tkr->clock);
211 
212 	/* calculate the delta since the last update_wall_time */
213 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214 
215 	return delta;
216 }
217 #endif
218 
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:		The target timekeeper to setup.
223  * @clock:		Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 	cycle_t interval;
233 	u64 tmp, ntpinterval;
234 	struct clocksource *old_clock;
235 
236 	++tk->cs_was_changed_seq;
237 	old_clock = tk->tkr_mono.clock;
238 	tk->tkr_mono.clock = clock;
239 	tk->tkr_mono.read = clock->read;
240 	tk->tkr_mono.mask = clock->mask;
241 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242 
243 	tk->tkr_raw.clock = clock;
244 	tk->tkr_raw.read = clock->read;
245 	tk->tkr_raw.mask = clock->mask;
246 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247 
248 	/* Do the ns -> cycle conversion first, using original mult */
249 	tmp = NTP_INTERVAL_LENGTH;
250 	tmp <<= clock->shift;
251 	ntpinterval = tmp;
252 	tmp += clock->mult/2;
253 	do_div(tmp, clock->mult);
254 	if (tmp == 0)
255 		tmp = 1;
256 
257 	interval = (cycle_t) tmp;
258 	tk->cycle_interval = interval;
259 
260 	/* Go back from cycles -> shifted ns */
261 	tk->xtime_interval = (u64) interval * clock->mult;
262 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 	tk->raw_interval =
264 		((u64) interval * clock->mult) >> clock->shift;
265 
266 	 /* if changing clocks, convert xtime_nsec shift units */
267 	if (old_clock) {
268 		int shift_change = clock->shift - old_clock->shift;
269 		if (shift_change < 0)
270 			tk->tkr_mono.xtime_nsec >>= -shift_change;
271 		else
272 			tk->tkr_mono.xtime_nsec <<= shift_change;
273 	}
274 	tk->tkr_raw.xtime_nsec = 0;
275 
276 	tk->tkr_mono.shift = clock->shift;
277 	tk->tkr_raw.shift = clock->shift;
278 
279 	tk->ntp_error = 0;
280 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 
283 	/*
284 	 * The timekeeper keeps its own mult values for the currently
285 	 * active clocksource. These value will be adjusted via NTP
286 	 * to counteract clock drifting.
287 	 */
288 	tk->tkr_mono.mult = clock->mult;
289 	tk->tkr_raw.mult = clock->mult;
290 	tk->ntp_err_mult = 0;
291 }
292 
293 /* Timekeeper helper functions. */
294 
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301 
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 					  cycle_t delta)
304 {
305 	s64 nsec;
306 
307 	nsec = delta * tkr->mult + tkr->xtime_nsec;
308 	nsec >>= tkr->shift;
309 
310 	/* If arch requires, add in get_arch_timeoffset() */
311 	return nsec + arch_gettimeoffset();
312 }
313 
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 	cycle_t delta;
317 
318 	delta = timekeeping_get_delta(tkr);
319 	return timekeeping_delta_to_ns(tkr, delta);
320 }
321 
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 					    cycle_t cycles)
324 {
325 	cycle_t delta;
326 
327 	/* calculate the delta since the last update_wall_time */
328 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 	return timekeeping_delta_to_ns(tkr, delta);
330 }
331 
332 /**
333  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334  * @tkr: Timekeeping readout base from which we take the update
335  *
336  * We want to use this from any context including NMI and tracing /
337  * instrumenting the timekeeping code itself.
338  *
339  * Employ the latch technique; see @raw_write_seqcount_latch.
340  *
341  * So if a NMI hits the update of base[0] then it will use base[1]
342  * which is still consistent. In the worst case this can result is a
343  * slightly wrong timestamp (a few nanoseconds). See
344  * @ktime_get_mono_fast_ns.
345  */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348 	struct tk_read_base *base = tkf->base;
349 
350 	/* Force readers off to base[1] */
351 	raw_write_seqcount_latch(&tkf->seq);
352 
353 	/* Update base[0] */
354 	memcpy(base, tkr, sizeof(*base));
355 
356 	/* Force readers back to base[0] */
357 	raw_write_seqcount_latch(&tkf->seq);
358 
359 	/* Update base[1] */
360 	memcpy(base + 1, base, sizeof(*base));
361 }
362 
363 /**
364  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365  *
366  * This timestamp is not guaranteed to be monotonic across an update.
367  * The timestamp is calculated by:
368  *
369  *	now = base_mono + clock_delta * slope
370  *
371  * So if the update lowers the slope, readers who are forced to the
372  * not yet updated second array are still using the old steeper slope.
373  *
374  * tmono
375  * ^
376  * |    o  n
377  * |   o n
378  * |  u
379  * | o
380  * |o
381  * |12345678---> reader order
382  *
383  * o = old slope
384  * u = update
385  * n = new slope
386  *
387  * So reader 6 will observe time going backwards versus reader 5.
388  *
389  * While other CPUs are likely to be able observe that, the only way
390  * for a CPU local observation is when an NMI hits in the middle of
391  * the update. Timestamps taken from that NMI context might be ahead
392  * of the following timestamps. Callers need to be aware of that and
393  * deal with it.
394  */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397 	struct tk_read_base *tkr;
398 	unsigned int seq;
399 	u64 now;
400 
401 	do {
402 		seq = raw_read_seqcount_latch(&tkf->seq);
403 		tkr = tkf->base + (seq & 0x01);
404 		now = ktime_to_ns(tkr->base);
405 
406 		now += clocksource_delta(tkr->read(tkr->clock),
407 					 tkr->cycle_last, tkr->mask);
408 	} while (read_seqcount_retry(&tkf->seq, seq));
409 
410 	return now;
411 }
412 
413 u64 ktime_get_mono_fast_ns(void)
414 {
415 	return __ktime_get_fast_ns(&tk_fast_mono);
416 }
417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
418 
419 u64 ktime_get_raw_fast_ns(void)
420 {
421 	return __ktime_get_fast_ns(&tk_fast_raw);
422 }
423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
424 
425 /* Suspend-time cycles value for halted fast timekeeper. */
426 static cycle_t cycles_at_suspend;
427 
428 static cycle_t dummy_clock_read(struct clocksource *cs)
429 {
430 	return cycles_at_suspend;
431 }
432 
433 /**
434  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
435  * @tk: Timekeeper to snapshot.
436  *
437  * It generally is unsafe to access the clocksource after timekeeping has been
438  * suspended, so take a snapshot of the readout base of @tk and use it as the
439  * fast timekeeper's readout base while suspended.  It will return the same
440  * number of cycles every time until timekeeping is resumed at which time the
441  * proper readout base for the fast timekeeper will be restored automatically.
442  */
443 static void halt_fast_timekeeper(struct timekeeper *tk)
444 {
445 	static struct tk_read_base tkr_dummy;
446 	struct tk_read_base *tkr = &tk->tkr_mono;
447 
448 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
449 	cycles_at_suspend = tkr->read(tkr->clock);
450 	tkr_dummy.read = dummy_clock_read;
451 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
452 
453 	tkr = &tk->tkr_raw;
454 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
455 	tkr_dummy.read = dummy_clock_read;
456 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
457 }
458 
459 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
460 
461 static inline void update_vsyscall(struct timekeeper *tk)
462 {
463 	struct timespec xt, wm;
464 
465 	xt = timespec64_to_timespec(tk_xtime(tk));
466 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
467 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
468 			    tk->tkr_mono.cycle_last);
469 }
470 
471 static inline void old_vsyscall_fixup(struct timekeeper *tk)
472 {
473 	s64 remainder;
474 
475 	/*
476 	* Store only full nanoseconds into xtime_nsec after rounding
477 	* it up and add the remainder to the error difference.
478 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
479 	* by truncating the remainder in vsyscalls. However, it causes
480 	* additional work to be done in timekeeping_adjust(). Once
481 	* the vsyscall implementations are converted to use xtime_nsec
482 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
483 	* users are removed, this can be killed.
484 	*/
485 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
486 	if (remainder != 0) {
487 		tk->tkr_mono.xtime_nsec -= remainder;
488 		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
489 		tk->ntp_error += remainder << tk->ntp_error_shift;
490 		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
491 	}
492 }
493 #else
494 #define old_vsyscall_fixup(tk)
495 #endif
496 
497 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
498 
499 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
500 {
501 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
502 }
503 
504 /**
505  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
506  */
507 int pvclock_gtod_register_notifier(struct notifier_block *nb)
508 {
509 	struct timekeeper *tk = &tk_core.timekeeper;
510 	unsigned long flags;
511 	int ret;
512 
513 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
514 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
515 	update_pvclock_gtod(tk, true);
516 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
517 
518 	return ret;
519 }
520 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
521 
522 /**
523  * pvclock_gtod_unregister_notifier - unregister a pvclock
524  * timedata update listener
525  */
526 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
527 {
528 	unsigned long flags;
529 	int ret;
530 
531 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
532 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
533 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534 
535 	return ret;
536 }
537 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
538 
539 /*
540  * tk_update_leap_state - helper to update the next_leap_ktime
541  */
542 static inline void tk_update_leap_state(struct timekeeper *tk)
543 {
544 	tk->next_leap_ktime = ntp_get_next_leap();
545 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
546 		/* Convert to monotonic time */
547 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
548 }
549 
550 /*
551  * Update the ktime_t based scalar nsec members of the timekeeper
552  */
553 static inline void tk_update_ktime_data(struct timekeeper *tk)
554 {
555 	u64 seconds;
556 	u32 nsec;
557 
558 	/*
559 	 * The xtime based monotonic readout is:
560 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
561 	 * The ktime based monotonic readout is:
562 	 *	nsec = base_mono + now();
563 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
564 	 */
565 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
566 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
567 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
568 
569 	/* Update the monotonic raw base */
570 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
571 
572 	/*
573 	 * The sum of the nanoseconds portions of xtime and
574 	 * wall_to_monotonic can be greater/equal one second. Take
575 	 * this into account before updating tk->ktime_sec.
576 	 */
577 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
578 	if (nsec >= NSEC_PER_SEC)
579 		seconds++;
580 	tk->ktime_sec = seconds;
581 }
582 
583 /* must hold timekeeper_lock */
584 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
585 {
586 	if (action & TK_CLEAR_NTP) {
587 		tk->ntp_error = 0;
588 		ntp_clear();
589 	}
590 
591 	tk_update_leap_state(tk);
592 	tk_update_ktime_data(tk);
593 
594 	update_vsyscall(tk);
595 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
596 
597 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
598 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
599 
600 	if (action & TK_CLOCK_WAS_SET)
601 		tk->clock_was_set_seq++;
602 	/*
603 	 * The mirroring of the data to the shadow-timekeeper needs
604 	 * to happen last here to ensure we don't over-write the
605 	 * timekeeper structure on the next update with stale data
606 	 */
607 	if (action & TK_MIRROR)
608 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
609 		       sizeof(tk_core.timekeeper));
610 }
611 
612 /**
613  * timekeeping_forward_now - update clock to the current time
614  *
615  * Forward the current clock to update its state since the last call to
616  * update_wall_time(). This is useful before significant clock changes,
617  * as it avoids having to deal with this time offset explicitly.
618  */
619 static void timekeeping_forward_now(struct timekeeper *tk)
620 {
621 	struct clocksource *clock = tk->tkr_mono.clock;
622 	cycle_t cycle_now, delta;
623 	s64 nsec;
624 
625 	cycle_now = tk->tkr_mono.read(clock);
626 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
627 	tk->tkr_mono.cycle_last = cycle_now;
628 	tk->tkr_raw.cycle_last  = cycle_now;
629 
630 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
631 
632 	/* If arch requires, add in get_arch_timeoffset() */
633 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
634 
635 	tk_normalize_xtime(tk);
636 
637 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
638 	timespec64_add_ns(&tk->raw_time, nsec);
639 }
640 
641 /**
642  * __getnstimeofday64 - Returns the time of day in a timespec64.
643  * @ts:		pointer to the timespec to be set
644  *
645  * Updates the time of day in the timespec.
646  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
647  */
648 int __getnstimeofday64(struct timespec64 *ts)
649 {
650 	struct timekeeper *tk = &tk_core.timekeeper;
651 	unsigned long seq;
652 	s64 nsecs = 0;
653 
654 	do {
655 		seq = read_seqcount_begin(&tk_core.seq);
656 
657 		ts->tv_sec = tk->xtime_sec;
658 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
659 
660 	} while (read_seqcount_retry(&tk_core.seq, seq));
661 
662 	ts->tv_nsec = 0;
663 	timespec64_add_ns(ts, nsecs);
664 
665 	/*
666 	 * Do not bail out early, in case there were callers still using
667 	 * the value, even in the face of the WARN_ON.
668 	 */
669 	if (unlikely(timekeeping_suspended))
670 		return -EAGAIN;
671 	return 0;
672 }
673 EXPORT_SYMBOL(__getnstimeofday64);
674 
675 /**
676  * getnstimeofday64 - Returns the time of day in a timespec64.
677  * @ts:		pointer to the timespec64 to be set
678  *
679  * Returns the time of day in a timespec64 (WARN if suspended).
680  */
681 void getnstimeofday64(struct timespec64 *ts)
682 {
683 	WARN_ON(__getnstimeofday64(ts));
684 }
685 EXPORT_SYMBOL(getnstimeofday64);
686 
687 ktime_t ktime_get(void)
688 {
689 	struct timekeeper *tk = &tk_core.timekeeper;
690 	unsigned int seq;
691 	ktime_t base;
692 	s64 nsecs;
693 
694 	WARN_ON(timekeeping_suspended);
695 
696 	do {
697 		seq = read_seqcount_begin(&tk_core.seq);
698 		base = tk->tkr_mono.base;
699 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
700 
701 	} while (read_seqcount_retry(&tk_core.seq, seq));
702 
703 	return ktime_add_ns(base, nsecs);
704 }
705 EXPORT_SYMBOL_GPL(ktime_get);
706 
707 u32 ktime_get_resolution_ns(void)
708 {
709 	struct timekeeper *tk = &tk_core.timekeeper;
710 	unsigned int seq;
711 	u32 nsecs;
712 
713 	WARN_ON(timekeeping_suspended);
714 
715 	do {
716 		seq = read_seqcount_begin(&tk_core.seq);
717 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
718 	} while (read_seqcount_retry(&tk_core.seq, seq));
719 
720 	return nsecs;
721 }
722 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
723 
724 static ktime_t *offsets[TK_OFFS_MAX] = {
725 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
726 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
727 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
728 };
729 
730 ktime_t ktime_get_with_offset(enum tk_offsets offs)
731 {
732 	struct timekeeper *tk = &tk_core.timekeeper;
733 	unsigned int seq;
734 	ktime_t base, *offset = offsets[offs];
735 	s64 nsecs;
736 
737 	WARN_ON(timekeeping_suspended);
738 
739 	do {
740 		seq = read_seqcount_begin(&tk_core.seq);
741 		base = ktime_add(tk->tkr_mono.base, *offset);
742 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
743 
744 	} while (read_seqcount_retry(&tk_core.seq, seq));
745 
746 	return ktime_add_ns(base, nsecs);
747 
748 }
749 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
750 
751 /**
752  * ktime_mono_to_any() - convert mononotic time to any other time
753  * @tmono:	time to convert.
754  * @offs:	which offset to use
755  */
756 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
757 {
758 	ktime_t *offset = offsets[offs];
759 	unsigned long seq;
760 	ktime_t tconv;
761 
762 	do {
763 		seq = read_seqcount_begin(&tk_core.seq);
764 		tconv = ktime_add(tmono, *offset);
765 	} while (read_seqcount_retry(&tk_core.seq, seq));
766 
767 	return tconv;
768 }
769 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
770 
771 /**
772  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
773  */
774 ktime_t ktime_get_raw(void)
775 {
776 	struct timekeeper *tk = &tk_core.timekeeper;
777 	unsigned int seq;
778 	ktime_t base;
779 	s64 nsecs;
780 
781 	do {
782 		seq = read_seqcount_begin(&tk_core.seq);
783 		base = tk->tkr_raw.base;
784 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
785 
786 	} while (read_seqcount_retry(&tk_core.seq, seq));
787 
788 	return ktime_add_ns(base, nsecs);
789 }
790 EXPORT_SYMBOL_GPL(ktime_get_raw);
791 
792 /**
793  * ktime_get_ts64 - get the monotonic clock in timespec64 format
794  * @ts:		pointer to timespec variable
795  *
796  * The function calculates the monotonic clock from the realtime
797  * clock and the wall_to_monotonic offset and stores the result
798  * in normalized timespec64 format in the variable pointed to by @ts.
799  */
800 void ktime_get_ts64(struct timespec64 *ts)
801 {
802 	struct timekeeper *tk = &tk_core.timekeeper;
803 	struct timespec64 tomono;
804 	s64 nsec;
805 	unsigned int seq;
806 
807 	WARN_ON(timekeeping_suspended);
808 
809 	do {
810 		seq = read_seqcount_begin(&tk_core.seq);
811 		ts->tv_sec = tk->xtime_sec;
812 		nsec = timekeeping_get_ns(&tk->tkr_mono);
813 		tomono = tk->wall_to_monotonic;
814 
815 	} while (read_seqcount_retry(&tk_core.seq, seq));
816 
817 	ts->tv_sec += tomono.tv_sec;
818 	ts->tv_nsec = 0;
819 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
820 }
821 EXPORT_SYMBOL_GPL(ktime_get_ts64);
822 
823 /**
824  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
825  *
826  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
827  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
828  * works on both 32 and 64 bit systems. On 32 bit systems the readout
829  * covers ~136 years of uptime which should be enough to prevent
830  * premature wrap arounds.
831  */
832 time64_t ktime_get_seconds(void)
833 {
834 	struct timekeeper *tk = &tk_core.timekeeper;
835 
836 	WARN_ON(timekeeping_suspended);
837 	return tk->ktime_sec;
838 }
839 EXPORT_SYMBOL_GPL(ktime_get_seconds);
840 
841 /**
842  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
843  *
844  * Returns the wall clock seconds since 1970. This replaces the
845  * get_seconds() interface which is not y2038 safe on 32bit systems.
846  *
847  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
848  * 32bit systems the access must be protected with the sequence
849  * counter to provide "atomic" access to the 64bit tk->xtime_sec
850  * value.
851  */
852 time64_t ktime_get_real_seconds(void)
853 {
854 	struct timekeeper *tk = &tk_core.timekeeper;
855 	time64_t seconds;
856 	unsigned int seq;
857 
858 	if (IS_ENABLED(CONFIG_64BIT))
859 		return tk->xtime_sec;
860 
861 	do {
862 		seq = read_seqcount_begin(&tk_core.seq);
863 		seconds = tk->xtime_sec;
864 
865 	} while (read_seqcount_retry(&tk_core.seq, seq));
866 
867 	return seconds;
868 }
869 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
870 
871 /**
872  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
873  * but without the sequence counter protect. This internal function
874  * is called just when timekeeping lock is already held.
875  */
876 time64_t __ktime_get_real_seconds(void)
877 {
878 	struct timekeeper *tk = &tk_core.timekeeper;
879 
880 	return tk->xtime_sec;
881 }
882 
883 /**
884  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
885  * @systime_snapshot:	pointer to struct receiving the system time snapshot
886  */
887 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
888 {
889 	struct timekeeper *tk = &tk_core.timekeeper;
890 	unsigned long seq;
891 	ktime_t base_raw;
892 	ktime_t base_real;
893 	s64 nsec_raw;
894 	s64 nsec_real;
895 	cycle_t now;
896 
897 	WARN_ON_ONCE(timekeeping_suspended);
898 
899 	do {
900 		seq = read_seqcount_begin(&tk_core.seq);
901 
902 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
903 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
904 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
905 		base_real = ktime_add(tk->tkr_mono.base,
906 				      tk_core.timekeeper.offs_real);
907 		base_raw = tk->tkr_raw.base;
908 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
909 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
910 	} while (read_seqcount_retry(&tk_core.seq, seq));
911 
912 	systime_snapshot->cycles = now;
913 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
914 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
915 }
916 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
917 
918 /* Scale base by mult/div checking for overflow */
919 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
920 {
921 	u64 tmp, rem;
922 
923 	tmp = div64_u64_rem(*base, div, &rem);
924 
925 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
926 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
927 		return -EOVERFLOW;
928 	tmp *= mult;
929 	rem *= mult;
930 
931 	do_div(rem, div);
932 	*base = tmp + rem;
933 	return 0;
934 }
935 
936 /**
937  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
938  * @history:			Snapshot representing start of history
939  * @partial_history_cycles:	Cycle offset into history (fractional part)
940  * @total_history_cycles:	Total history length in cycles
941  * @discontinuity:		True indicates clock was set on history period
942  * @ts:				Cross timestamp that should be adjusted using
943  *	partial/total ratio
944  *
945  * Helper function used by get_device_system_crosststamp() to correct the
946  * crosstimestamp corresponding to the start of the current interval to the
947  * system counter value (timestamp point) provided by the driver. The
948  * total_history_* quantities are the total history starting at the provided
949  * reference point and ending at the start of the current interval. The cycle
950  * count between the driver timestamp point and the start of the current
951  * interval is partial_history_cycles.
952  */
953 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
954 					 cycle_t partial_history_cycles,
955 					 cycle_t total_history_cycles,
956 					 bool discontinuity,
957 					 struct system_device_crosststamp *ts)
958 {
959 	struct timekeeper *tk = &tk_core.timekeeper;
960 	u64 corr_raw, corr_real;
961 	bool interp_forward;
962 	int ret;
963 
964 	if (total_history_cycles == 0 || partial_history_cycles == 0)
965 		return 0;
966 
967 	/* Interpolate shortest distance from beginning or end of history */
968 	interp_forward = partial_history_cycles > total_history_cycles/2 ?
969 		true : false;
970 	partial_history_cycles = interp_forward ?
971 		total_history_cycles - partial_history_cycles :
972 		partial_history_cycles;
973 
974 	/*
975 	 * Scale the monotonic raw time delta by:
976 	 *	partial_history_cycles / total_history_cycles
977 	 */
978 	corr_raw = (u64)ktime_to_ns(
979 		ktime_sub(ts->sys_monoraw, history->raw));
980 	ret = scale64_check_overflow(partial_history_cycles,
981 				     total_history_cycles, &corr_raw);
982 	if (ret)
983 		return ret;
984 
985 	/*
986 	 * If there is a discontinuity in the history, scale monotonic raw
987 	 *	correction by:
988 	 *	mult(real)/mult(raw) yielding the realtime correction
989 	 * Otherwise, calculate the realtime correction similar to monotonic
990 	 *	raw calculation
991 	 */
992 	if (discontinuity) {
993 		corr_real = mul_u64_u32_div
994 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
995 	} else {
996 		corr_real = (u64)ktime_to_ns(
997 			ktime_sub(ts->sys_realtime, history->real));
998 		ret = scale64_check_overflow(partial_history_cycles,
999 					     total_history_cycles, &corr_real);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	/* Fixup monotonic raw and real time time values */
1005 	if (interp_forward) {
1006 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1007 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1008 	} else {
1009 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1010 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 /*
1017  * cycle_between - true if test occurs chronologically between before and after
1018  */
1019 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1020 {
1021 	if (test > before && test < after)
1022 		return true;
1023 	if (test < before && before > after)
1024 		return true;
1025 	return false;
1026 }
1027 
1028 /**
1029  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1030  * @get_time_fn:	Callback to get simultaneous device time and
1031  *	system counter from the device driver
1032  * @ctx:		Context passed to get_time_fn()
1033  * @history_begin:	Historical reference point used to interpolate system
1034  *	time when counter provided by the driver is before the current interval
1035  * @xtstamp:		Receives simultaneously captured system and device time
1036  *
1037  * Reads a timestamp from a device and correlates it to system time
1038  */
1039 int get_device_system_crosststamp(int (*get_time_fn)
1040 				  (ktime_t *device_time,
1041 				   struct system_counterval_t *sys_counterval,
1042 				   void *ctx),
1043 				  void *ctx,
1044 				  struct system_time_snapshot *history_begin,
1045 				  struct system_device_crosststamp *xtstamp)
1046 {
1047 	struct system_counterval_t system_counterval;
1048 	struct timekeeper *tk = &tk_core.timekeeper;
1049 	cycle_t cycles, now, interval_start;
1050 	unsigned int clock_was_set_seq = 0;
1051 	ktime_t base_real, base_raw;
1052 	s64 nsec_real, nsec_raw;
1053 	u8 cs_was_changed_seq;
1054 	unsigned long seq;
1055 	bool do_interp;
1056 	int ret;
1057 
1058 	do {
1059 		seq = read_seqcount_begin(&tk_core.seq);
1060 		/*
1061 		 * Try to synchronously capture device time and a system
1062 		 * counter value calling back into the device driver
1063 		 */
1064 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1065 		if (ret)
1066 			return ret;
1067 
1068 		/*
1069 		 * Verify that the clocksource associated with the captured
1070 		 * system counter value is the same as the currently installed
1071 		 * timekeeper clocksource
1072 		 */
1073 		if (tk->tkr_mono.clock != system_counterval.cs)
1074 			return -ENODEV;
1075 		cycles = system_counterval.cycles;
1076 
1077 		/*
1078 		 * Check whether the system counter value provided by the
1079 		 * device driver is on the current timekeeping interval.
1080 		 */
1081 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
1082 		interval_start = tk->tkr_mono.cycle_last;
1083 		if (!cycle_between(interval_start, cycles, now)) {
1084 			clock_was_set_seq = tk->clock_was_set_seq;
1085 			cs_was_changed_seq = tk->cs_was_changed_seq;
1086 			cycles = interval_start;
1087 			do_interp = true;
1088 		} else {
1089 			do_interp = false;
1090 		}
1091 
1092 		base_real = ktime_add(tk->tkr_mono.base,
1093 				      tk_core.timekeeper.offs_real);
1094 		base_raw = tk->tkr_raw.base;
1095 
1096 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1097 						     system_counterval.cycles);
1098 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1099 						    system_counterval.cycles);
1100 	} while (read_seqcount_retry(&tk_core.seq, seq));
1101 
1102 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1103 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1104 
1105 	/*
1106 	 * Interpolate if necessary, adjusting back from the start of the
1107 	 * current interval
1108 	 */
1109 	if (do_interp) {
1110 		cycle_t partial_history_cycles, total_history_cycles;
1111 		bool discontinuity;
1112 
1113 		/*
1114 		 * Check that the counter value occurs after the provided
1115 		 * history reference and that the history doesn't cross a
1116 		 * clocksource change
1117 		 */
1118 		if (!history_begin ||
1119 		    !cycle_between(history_begin->cycles,
1120 				   system_counterval.cycles, cycles) ||
1121 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1122 			return -EINVAL;
1123 		partial_history_cycles = cycles - system_counterval.cycles;
1124 		total_history_cycles = cycles - history_begin->cycles;
1125 		discontinuity =
1126 			history_begin->clock_was_set_seq != clock_was_set_seq;
1127 
1128 		ret = adjust_historical_crosststamp(history_begin,
1129 						    partial_history_cycles,
1130 						    total_history_cycles,
1131 						    discontinuity, xtstamp);
1132 		if (ret)
1133 			return ret;
1134 	}
1135 
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1139 
1140 /**
1141  * do_gettimeofday - Returns the time of day in a timeval
1142  * @tv:		pointer to the timeval to be set
1143  *
1144  * NOTE: Users should be converted to using getnstimeofday()
1145  */
1146 void do_gettimeofday(struct timeval *tv)
1147 {
1148 	struct timespec64 now;
1149 
1150 	getnstimeofday64(&now);
1151 	tv->tv_sec = now.tv_sec;
1152 	tv->tv_usec = now.tv_nsec/1000;
1153 }
1154 EXPORT_SYMBOL(do_gettimeofday);
1155 
1156 /**
1157  * do_settimeofday64 - Sets the time of day.
1158  * @ts:     pointer to the timespec64 variable containing the new time
1159  *
1160  * Sets the time of day to the new time and update NTP and notify hrtimers
1161  */
1162 int do_settimeofday64(const struct timespec64 *ts)
1163 {
1164 	struct timekeeper *tk = &tk_core.timekeeper;
1165 	struct timespec64 ts_delta, xt;
1166 	unsigned long flags;
1167 	int ret = 0;
1168 
1169 	if (!timespec64_valid_strict(ts))
1170 		return -EINVAL;
1171 
1172 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1173 	write_seqcount_begin(&tk_core.seq);
1174 
1175 	timekeeping_forward_now(tk);
1176 
1177 	xt = tk_xtime(tk);
1178 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1179 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1180 
1181 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1182 		ret = -EINVAL;
1183 		goto out;
1184 	}
1185 
1186 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1187 
1188 	tk_set_xtime(tk, ts);
1189 out:
1190 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1191 
1192 	write_seqcount_end(&tk_core.seq);
1193 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1194 
1195 	/* signal hrtimers about time change */
1196 	clock_was_set();
1197 
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL(do_settimeofday64);
1201 
1202 /**
1203  * timekeeping_inject_offset - Adds or subtracts from the current time.
1204  * @tv:		pointer to the timespec variable containing the offset
1205  *
1206  * Adds or subtracts an offset value from the current time.
1207  */
1208 int timekeeping_inject_offset(struct timespec *ts)
1209 {
1210 	struct timekeeper *tk = &tk_core.timekeeper;
1211 	unsigned long flags;
1212 	struct timespec64 ts64, tmp;
1213 	int ret = 0;
1214 
1215 	if (!timespec_inject_offset_valid(ts))
1216 		return -EINVAL;
1217 
1218 	ts64 = timespec_to_timespec64(*ts);
1219 
1220 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1221 	write_seqcount_begin(&tk_core.seq);
1222 
1223 	timekeeping_forward_now(tk);
1224 
1225 	/* Make sure the proposed value is valid */
1226 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1227 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1228 	    !timespec64_valid_strict(&tmp)) {
1229 		ret = -EINVAL;
1230 		goto error;
1231 	}
1232 
1233 	tk_xtime_add(tk, &ts64);
1234 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1235 
1236 error: /* even if we error out, we forwarded the time, so call update */
1237 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1238 
1239 	write_seqcount_end(&tk_core.seq);
1240 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241 
1242 	/* signal hrtimers about time change */
1243 	clock_was_set();
1244 
1245 	return ret;
1246 }
1247 EXPORT_SYMBOL(timekeeping_inject_offset);
1248 
1249 
1250 /**
1251  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1252  *
1253  */
1254 s32 timekeeping_get_tai_offset(void)
1255 {
1256 	struct timekeeper *tk = &tk_core.timekeeper;
1257 	unsigned int seq;
1258 	s32 ret;
1259 
1260 	do {
1261 		seq = read_seqcount_begin(&tk_core.seq);
1262 		ret = tk->tai_offset;
1263 	} while (read_seqcount_retry(&tk_core.seq, seq));
1264 
1265 	return ret;
1266 }
1267 
1268 /**
1269  * __timekeeping_set_tai_offset - Lock free worker function
1270  *
1271  */
1272 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1273 {
1274 	tk->tai_offset = tai_offset;
1275 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1276 }
1277 
1278 /**
1279  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1280  *
1281  */
1282 void timekeeping_set_tai_offset(s32 tai_offset)
1283 {
1284 	struct timekeeper *tk = &tk_core.timekeeper;
1285 	unsigned long flags;
1286 
1287 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1288 	write_seqcount_begin(&tk_core.seq);
1289 	__timekeeping_set_tai_offset(tk, tai_offset);
1290 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1291 	write_seqcount_end(&tk_core.seq);
1292 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1293 	clock_was_set();
1294 }
1295 
1296 /**
1297  * change_clocksource - Swaps clocksources if a new one is available
1298  *
1299  * Accumulates current time interval and initializes new clocksource
1300  */
1301 static int change_clocksource(void *data)
1302 {
1303 	struct timekeeper *tk = &tk_core.timekeeper;
1304 	struct clocksource *new, *old;
1305 	unsigned long flags;
1306 
1307 	new = (struct clocksource *) data;
1308 
1309 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1310 	write_seqcount_begin(&tk_core.seq);
1311 
1312 	timekeeping_forward_now(tk);
1313 	/*
1314 	 * If the cs is in module, get a module reference. Succeeds
1315 	 * for built-in code (owner == NULL) as well.
1316 	 */
1317 	if (try_module_get(new->owner)) {
1318 		if (!new->enable || new->enable(new) == 0) {
1319 			old = tk->tkr_mono.clock;
1320 			tk_setup_internals(tk, new);
1321 			if (old->disable)
1322 				old->disable(old);
1323 			module_put(old->owner);
1324 		} else {
1325 			module_put(new->owner);
1326 		}
1327 	}
1328 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1329 
1330 	write_seqcount_end(&tk_core.seq);
1331 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1332 
1333 	return 0;
1334 }
1335 
1336 /**
1337  * timekeeping_notify - Install a new clock source
1338  * @clock:		pointer to the clock source
1339  *
1340  * This function is called from clocksource.c after a new, better clock
1341  * source has been registered. The caller holds the clocksource_mutex.
1342  */
1343 int timekeeping_notify(struct clocksource *clock)
1344 {
1345 	struct timekeeper *tk = &tk_core.timekeeper;
1346 
1347 	if (tk->tkr_mono.clock == clock)
1348 		return 0;
1349 	stop_machine(change_clocksource, clock, NULL);
1350 	tick_clock_notify();
1351 	return tk->tkr_mono.clock == clock ? 0 : -1;
1352 }
1353 
1354 /**
1355  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1356  * @ts:		pointer to the timespec64 to be set
1357  *
1358  * Returns the raw monotonic time (completely un-modified by ntp)
1359  */
1360 void getrawmonotonic64(struct timespec64 *ts)
1361 {
1362 	struct timekeeper *tk = &tk_core.timekeeper;
1363 	struct timespec64 ts64;
1364 	unsigned long seq;
1365 	s64 nsecs;
1366 
1367 	do {
1368 		seq = read_seqcount_begin(&tk_core.seq);
1369 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1370 		ts64 = tk->raw_time;
1371 
1372 	} while (read_seqcount_retry(&tk_core.seq, seq));
1373 
1374 	timespec64_add_ns(&ts64, nsecs);
1375 	*ts = ts64;
1376 }
1377 EXPORT_SYMBOL(getrawmonotonic64);
1378 
1379 
1380 /**
1381  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1382  */
1383 int timekeeping_valid_for_hres(void)
1384 {
1385 	struct timekeeper *tk = &tk_core.timekeeper;
1386 	unsigned long seq;
1387 	int ret;
1388 
1389 	do {
1390 		seq = read_seqcount_begin(&tk_core.seq);
1391 
1392 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1393 
1394 	} while (read_seqcount_retry(&tk_core.seq, seq));
1395 
1396 	return ret;
1397 }
1398 
1399 /**
1400  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1401  */
1402 u64 timekeeping_max_deferment(void)
1403 {
1404 	struct timekeeper *tk = &tk_core.timekeeper;
1405 	unsigned long seq;
1406 	u64 ret;
1407 
1408 	do {
1409 		seq = read_seqcount_begin(&tk_core.seq);
1410 
1411 		ret = tk->tkr_mono.clock->max_idle_ns;
1412 
1413 	} while (read_seqcount_retry(&tk_core.seq, seq));
1414 
1415 	return ret;
1416 }
1417 
1418 /**
1419  * read_persistent_clock -  Return time from the persistent clock.
1420  *
1421  * Weak dummy function for arches that do not yet support it.
1422  * Reads the time from the battery backed persistent clock.
1423  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1424  *
1425  *  XXX - Do be sure to remove it once all arches implement it.
1426  */
1427 void __weak read_persistent_clock(struct timespec *ts)
1428 {
1429 	ts->tv_sec = 0;
1430 	ts->tv_nsec = 0;
1431 }
1432 
1433 void __weak read_persistent_clock64(struct timespec64 *ts64)
1434 {
1435 	struct timespec ts;
1436 
1437 	read_persistent_clock(&ts);
1438 	*ts64 = timespec_to_timespec64(ts);
1439 }
1440 
1441 /**
1442  * read_boot_clock64 -  Return time of the system start.
1443  *
1444  * Weak dummy function for arches that do not yet support it.
1445  * Function to read the exact time the system has been started.
1446  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1447  *
1448  *  XXX - Do be sure to remove it once all arches implement it.
1449  */
1450 void __weak read_boot_clock64(struct timespec64 *ts)
1451 {
1452 	ts->tv_sec = 0;
1453 	ts->tv_nsec = 0;
1454 }
1455 
1456 /* Flag for if timekeeping_resume() has injected sleeptime */
1457 static bool sleeptime_injected;
1458 
1459 /* Flag for if there is a persistent clock on this platform */
1460 static bool persistent_clock_exists;
1461 
1462 /*
1463  * timekeeping_init - Initializes the clocksource and common timekeeping values
1464  */
1465 void __init timekeeping_init(void)
1466 {
1467 	struct timekeeper *tk = &tk_core.timekeeper;
1468 	struct clocksource *clock;
1469 	unsigned long flags;
1470 	struct timespec64 now, boot, tmp;
1471 
1472 	read_persistent_clock64(&now);
1473 	if (!timespec64_valid_strict(&now)) {
1474 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1475 			"         Check your CMOS/BIOS settings.\n");
1476 		now.tv_sec = 0;
1477 		now.tv_nsec = 0;
1478 	} else if (now.tv_sec || now.tv_nsec)
1479 		persistent_clock_exists = true;
1480 
1481 	read_boot_clock64(&boot);
1482 	if (!timespec64_valid_strict(&boot)) {
1483 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1484 			"         Check your CMOS/BIOS settings.\n");
1485 		boot.tv_sec = 0;
1486 		boot.tv_nsec = 0;
1487 	}
1488 
1489 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1490 	write_seqcount_begin(&tk_core.seq);
1491 	ntp_init();
1492 
1493 	clock = clocksource_default_clock();
1494 	if (clock->enable)
1495 		clock->enable(clock);
1496 	tk_setup_internals(tk, clock);
1497 
1498 	tk_set_xtime(tk, &now);
1499 	tk->raw_time.tv_sec = 0;
1500 	tk->raw_time.tv_nsec = 0;
1501 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1502 		boot = tk_xtime(tk);
1503 
1504 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1505 	tk_set_wall_to_mono(tk, tmp);
1506 
1507 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1508 
1509 	write_seqcount_end(&tk_core.seq);
1510 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1511 }
1512 
1513 /* time in seconds when suspend began for persistent clock */
1514 static struct timespec64 timekeeping_suspend_time;
1515 
1516 /**
1517  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1518  * @delta: pointer to a timespec delta value
1519  *
1520  * Takes a timespec offset measuring a suspend interval and properly
1521  * adds the sleep offset to the timekeeping variables.
1522  */
1523 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1524 					   struct timespec64 *delta)
1525 {
1526 	if (!timespec64_valid_strict(delta)) {
1527 		printk_deferred(KERN_WARNING
1528 				"__timekeeping_inject_sleeptime: Invalid "
1529 				"sleep delta value!\n");
1530 		return;
1531 	}
1532 	tk_xtime_add(tk, delta);
1533 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1534 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1535 	tk_debug_account_sleep_time(delta);
1536 }
1537 
1538 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1539 /**
1540  * We have three kinds of time sources to use for sleep time
1541  * injection, the preference order is:
1542  * 1) non-stop clocksource
1543  * 2) persistent clock (ie: RTC accessible when irqs are off)
1544  * 3) RTC
1545  *
1546  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1547  * If system has neither 1) nor 2), 3) will be used finally.
1548  *
1549  *
1550  * If timekeeping has injected sleeptime via either 1) or 2),
1551  * 3) becomes needless, so in this case we don't need to call
1552  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1553  * means.
1554  */
1555 bool timekeeping_rtc_skipresume(void)
1556 {
1557 	return sleeptime_injected;
1558 }
1559 
1560 /**
1561  * 1) can be determined whether to use or not only when doing
1562  * timekeeping_resume() which is invoked after rtc_suspend(),
1563  * so we can't skip rtc_suspend() surely if system has 1).
1564  *
1565  * But if system has 2), 2) will definitely be used, so in this
1566  * case we don't need to call rtc_suspend(), and this is what
1567  * timekeeping_rtc_skipsuspend() means.
1568  */
1569 bool timekeeping_rtc_skipsuspend(void)
1570 {
1571 	return persistent_clock_exists;
1572 }
1573 
1574 /**
1575  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1576  * @delta: pointer to a timespec64 delta value
1577  *
1578  * This hook is for architectures that cannot support read_persistent_clock64
1579  * because their RTC/persistent clock is only accessible when irqs are enabled.
1580  * and also don't have an effective nonstop clocksource.
1581  *
1582  * This function should only be called by rtc_resume(), and allows
1583  * a suspend offset to be injected into the timekeeping values.
1584  */
1585 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1586 {
1587 	struct timekeeper *tk = &tk_core.timekeeper;
1588 	unsigned long flags;
1589 
1590 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1591 	write_seqcount_begin(&tk_core.seq);
1592 
1593 	timekeeping_forward_now(tk);
1594 
1595 	__timekeeping_inject_sleeptime(tk, delta);
1596 
1597 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1598 
1599 	write_seqcount_end(&tk_core.seq);
1600 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1601 
1602 	/* signal hrtimers about time change */
1603 	clock_was_set();
1604 }
1605 #endif
1606 
1607 /**
1608  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1609  */
1610 void timekeeping_resume(void)
1611 {
1612 	struct timekeeper *tk = &tk_core.timekeeper;
1613 	struct clocksource *clock = tk->tkr_mono.clock;
1614 	unsigned long flags;
1615 	struct timespec64 ts_new, ts_delta;
1616 	cycle_t cycle_now, cycle_delta;
1617 
1618 	sleeptime_injected = false;
1619 	read_persistent_clock64(&ts_new);
1620 
1621 	clockevents_resume();
1622 	clocksource_resume();
1623 
1624 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1625 	write_seqcount_begin(&tk_core.seq);
1626 
1627 	/*
1628 	 * After system resumes, we need to calculate the suspended time and
1629 	 * compensate it for the OS time. There are 3 sources that could be
1630 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1631 	 * device.
1632 	 *
1633 	 * One specific platform may have 1 or 2 or all of them, and the
1634 	 * preference will be:
1635 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1636 	 * The less preferred source will only be tried if there is no better
1637 	 * usable source. The rtc part is handled separately in rtc core code.
1638 	 */
1639 	cycle_now = tk->tkr_mono.read(clock);
1640 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1641 		cycle_now > tk->tkr_mono.cycle_last) {
1642 		u64 num, max = ULLONG_MAX;
1643 		u32 mult = clock->mult;
1644 		u32 shift = clock->shift;
1645 		s64 nsec = 0;
1646 
1647 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1648 						tk->tkr_mono.mask);
1649 
1650 		/*
1651 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1652 		 * suspended time is too long. In that case we need do the
1653 		 * 64 bits math carefully
1654 		 */
1655 		do_div(max, mult);
1656 		if (cycle_delta > max) {
1657 			num = div64_u64(cycle_delta, max);
1658 			nsec = (((u64) max * mult) >> shift) * num;
1659 			cycle_delta -= num * max;
1660 		}
1661 		nsec += ((u64) cycle_delta * mult) >> shift;
1662 
1663 		ts_delta = ns_to_timespec64(nsec);
1664 		sleeptime_injected = true;
1665 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1666 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1667 		sleeptime_injected = true;
1668 	}
1669 
1670 	if (sleeptime_injected)
1671 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1672 
1673 	/* Re-base the last cycle value */
1674 	tk->tkr_mono.cycle_last = cycle_now;
1675 	tk->tkr_raw.cycle_last  = cycle_now;
1676 
1677 	tk->ntp_error = 0;
1678 	timekeeping_suspended = 0;
1679 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1680 	write_seqcount_end(&tk_core.seq);
1681 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1682 
1683 	touch_softlockup_watchdog();
1684 
1685 	tick_resume();
1686 	hrtimers_resume();
1687 }
1688 
1689 int timekeeping_suspend(void)
1690 {
1691 	struct timekeeper *tk = &tk_core.timekeeper;
1692 	unsigned long flags;
1693 	struct timespec64		delta, delta_delta;
1694 	static struct timespec64	old_delta;
1695 
1696 	read_persistent_clock64(&timekeeping_suspend_time);
1697 
1698 	/*
1699 	 * On some systems the persistent_clock can not be detected at
1700 	 * timekeeping_init by its return value, so if we see a valid
1701 	 * value returned, update the persistent_clock_exists flag.
1702 	 */
1703 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1704 		persistent_clock_exists = true;
1705 
1706 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1707 	write_seqcount_begin(&tk_core.seq);
1708 	timekeeping_forward_now(tk);
1709 	timekeeping_suspended = 1;
1710 
1711 	if (persistent_clock_exists) {
1712 		/*
1713 		 * To avoid drift caused by repeated suspend/resumes,
1714 		 * which each can add ~1 second drift error,
1715 		 * try to compensate so the difference in system time
1716 		 * and persistent_clock time stays close to constant.
1717 		 */
1718 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1719 		delta_delta = timespec64_sub(delta, old_delta);
1720 		if (abs(delta_delta.tv_sec) >= 2) {
1721 			/*
1722 			 * if delta_delta is too large, assume time correction
1723 			 * has occurred and set old_delta to the current delta.
1724 			 */
1725 			old_delta = delta;
1726 		} else {
1727 			/* Otherwise try to adjust old_system to compensate */
1728 			timekeeping_suspend_time =
1729 				timespec64_add(timekeeping_suspend_time, delta_delta);
1730 		}
1731 	}
1732 
1733 	timekeeping_update(tk, TK_MIRROR);
1734 	halt_fast_timekeeper(tk);
1735 	write_seqcount_end(&tk_core.seq);
1736 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1737 
1738 	tick_suspend();
1739 	clocksource_suspend();
1740 	clockevents_suspend();
1741 
1742 	return 0;
1743 }
1744 
1745 /* sysfs resume/suspend bits for timekeeping */
1746 static struct syscore_ops timekeeping_syscore_ops = {
1747 	.resume		= timekeeping_resume,
1748 	.suspend	= timekeeping_suspend,
1749 };
1750 
1751 static int __init timekeeping_init_ops(void)
1752 {
1753 	register_syscore_ops(&timekeeping_syscore_ops);
1754 	return 0;
1755 }
1756 device_initcall(timekeeping_init_ops);
1757 
1758 /*
1759  * Apply a multiplier adjustment to the timekeeper
1760  */
1761 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1762 							 s64 offset,
1763 							 bool negative,
1764 							 int adj_scale)
1765 {
1766 	s64 interval = tk->cycle_interval;
1767 	s32 mult_adj = 1;
1768 
1769 	if (negative) {
1770 		mult_adj = -mult_adj;
1771 		interval = -interval;
1772 		offset  = -offset;
1773 	}
1774 	mult_adj <<= adj_scale;
1775 	interval <<= adj_scale;
1776 	offset <<= adj_scale;
1777 
1778 	/*
1779 	 * So the following can be confusing.
1780 	 *
1781 	 * To keep things simple, lets assume mult_adj == 1 for now.
1782 	 *
1783 	 * When mult_adj != 1, remember that the interval and offset values
1784 	 * have been appropriately scaled so the math is the same.
1785 	 *
1786 	 * The basic idea here is that we're increasing the multiplier
1787 	 * by one, this causes the xtime_interval to be incremented by
1788 	 * one cycle_interval. This is because:
1789 	 *	xtime_interval = cycle_interval * mult
1790 	 * So if mult is being incremented by one:
1791 	 *	xtime_interval = cycle_interval * (mult + 1)
1792 	 * Its the same as:
1793 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1794 	 * Which can be shortened to:
1795 	 *	xtime_interval += cycle_interval
1796 	 *
1797 	 * So offset stores the non-accumulated cycles. Thus the current
1798 	 * time (in shifted nanoseconds) is:
1799 	 *	now = (offset * adj) + xtime_nsec
1800 	 * Now, even though we're adjusting the clock frequency, we have
1801 	 * to keep time consistent. In other words, we can't jump back
1802 	 * in time, and we also want to avoid jumping forward in time.
1803 	 *
1804 	 * So given the same offset value, we need the time to be the same
1805 	 * both before and after the freq adjustment.
1806 	 *	now = (offset * adj_1) + xtime_nsec_1
1807 	 *	now = (offset * adj_2) + xtime_nsec_2
1808 	 * So:
1809 	 *	(offset * adj_1) + xtime_nsec_1 =
1810 	 *		(offset * adj_2) + xtime_nsec_2
1811 	 * And we know:
1812 	 *	adj_2 = adj_1 + 1
1813 	 * So:
1814 	 *	(offset * adj_1) + xtime_nsec_1 =
1815 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1816 	 *	(offset * adj_1) + xtime_nsec_1 =
1817 	 *		(offset * adj_1) + offset + xtime_nsec_2
1818 	 * Canceling the sides:
1819 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1820 	 * Which gives us:
1821 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1822 	 * Which simplfies to:
1823 	 *	xtime_nsec -= offset
1824 	 *
1825 	 * XXX - TODO: Doc ntp_error calculation.
1826 	 */
1827 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1828 		/* NTP adjustment caused clocksource mult overflow */
1829 		WARN_ON_ONCE(1);
1830 		return;
1831 	}
1832 
1833 	tk->tkr_mono.mult += mult_adj;
1834 	tk->xtime_interval += interval;
1835 	tk->tkr_mono.xtime_nsec -= offset;
1836 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1837 }
1838 
1839 /*
1840  * Calculate the multiplier adjustment needed to match the frequency
1841  * specified by NTP
1842  */
1843 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1844 							s64 offset)
1845 {
1846 	s64 interval = tk->cycle_interval;
1847 	s64 xinterval = tk->xtime_interval;
1848 	u32 base = tk->tkr_mono.clock->mult;
1849 	u32 max = tk->tkr_mono.clock->maxadj;
1850 	u32 cur_adj = tk->tkr_mono.mult;
1851 	s64 tick_error;
1852 	bool negative;
1853 	u32 adj_scale;
1854 
1855 	/* Remove any current error adj from freq calculation */
1856 	if (tk->ntp_err_mult)
1857 		xinterval -= tk->cycle_interval;
1858 
1859 	tk->ntp_tick = ntp_tick_length();
1860 
1861 	/* Calculate current error per tick */
1862 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1863 	tick_error -= (xinterval + tk->xtime_remainder);
1864 
1865 	/* Don't worry about correcting it if its small */
1866 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1867 		return;
1868 
1869 	/* preserve the direction of correction */
1870 	negative = (tick_error < 0);
1871 
1872 	/* If any adjustment would pass the max, just return */
1873 	if (negative && (cur_adj - 1) <= (base - max))
1874 		return;
1875 	if (!negative && (cur_adj + 1) >= (base + max))
1876 		return;
1877 	/*
1878 	 * Sort out the magnitude of the correction, but
1879 	 * avoid making so large a correction that we go
1880 	 * over the max adjustment.
1881 	 */
1882 	adj_scale = 0;
1883 	tick_error = abs(tick_error);
1884 	while (tick_error > interval) {
1885 		u32 adj = 1 << (adj_scale + 1);
1886 
1887 		/* Check if adjustment gets us within 1 unit from the max */
1888 		if (negative && (cur_adj - adj) <= (base - max))
1889 			break;
1890 		if (!negative && (cur_adj + adj) >= (base + max))
1891 			break;
1892 
1893 		adj_scale++;
1894 		tick_error >>= 1;
1895 	}
1896 
1897 	/* scale the corrections */
1898 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1899 }
1900 
1901 /*
1902  * Adjust the timekeeper's multiplier to the correct frequency
1903  * and also to reduce the accumulated error value.
1904  */
1905 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1906 {
1907 	/* Correct for the current frequency error */
1908 	timekeeping_freqadjust(tk, offset);
1909 
1910 	/* Next make a small adjustment to fix any cumulative error */
1911 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1912 		tk->ntp_err_mult = 1;
1913 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1914 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1915 		/* Undo any existing error adjustment */
1916 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1917 		tk->ntp_err_mult = 0;
1918 	}
1919 
1920 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1921 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1922 			> tk->tkr_mono.clock->maxadj))) {
1923 		printk_once(KERN_WARNING
1924 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1925 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1926 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1927 	}
1928 
1929 	/*
1930 	 * It may be possible that when we entered this function, xtime_nsec
1931 	 * was very small.  Further, if we're slightly speeding the clocksource
1932 	 * in the code above, its possible the required corrective factor to
1933 	 * xtime_nsec could cause it to underflow.
1934 	 *
1935 	 * Now, since we already accumulated the second, cannot simply roll
1936 	 * the accumulated second back, since the NTP subsystem has been
1937 	 * notified via second_overflow. So instead we push xtime_nsec forward
1938 	 * by the amount we underflowed, and add that amount into the error.
1939 	 *
1940 	 * We'll correct this error next time through this function, when
1941 	 * xtime_nsec is not as small.
1942 	 */
1943 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1944 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1945 		tk->tkr_mono.xtime_nsec = 0;
1946 		tk->ntp_error += neg << tk->ntp_error_shift;
1947 	}
1948 }
1949 
1950 /**
1951  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1952  *
1953  * Helper function that accumulates the nsecs greater than a second
1954  * from the xtime_nsec field to the xtime_secs field.
1955  * It also calls into the NTP code to handle leapsecond processing.
1956  *
1957  */
1958 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1959 {
1960 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1961 	unsigned int clock_set = 0;
1962 
1963 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1964 		int leap;
1965 
1966 		tk->tkr_mono.xtime_nsec -= nsecps;
1967 		tk->xtime_sec++;
1968 
1969 		/* Figure out if its a leap sec and apply if needed */
1970 		leap = second_overflow(tk->xtime_sec);
1971 		if (unlikely(leap)) {
1972 			struct timespec64 ts;
1973 
1974 			tk->xtime_sec += leap;
1975 
1976 			ts.tv_sec = leap;
1977 			ts.tv_nsec = 0;
1978 			tk_set_wall_to_mono(tk,
1979 				timespec64_sub(tk->wall_to_monotonic, ts));
1980 
1981 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1982 
1983 			clock_set = TK_CLOCK_WAS_SET;
1984 		}
1985 	}
1986 	return clock_set;
1987 }
1988 
1989 /**
1990  * logarithmic_accumulation - shifted accumulation of cycles
1991  *
1992  * This functions accumulates a shifted interval of cycles into
1993  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1994  * loop.
1995  *
1996  * Returns the unconsumed cycles.
1997  */
1998 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1999 						u32 shift,
2000 						unsigned int *clock_set)
2001 {
2002 	cycle_t interval = tk->cycle_interval << shift;
2003 	u64 raw_nsecs;
2004 
2005 	/* If the offset is smaller than a shifted interval, do nothing */
2006 	if (offset < interval)
2007 		return offset;
2008 
2009 	/* Accumulate one shifted interval */
2010 	offset -= interval;
2011 	tk->tkr_mono.cycle_last += interval;
2012 	tk->tkr_raw.cycle_last  += interval;
2013 
2014 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2015 	*clock_set |= accumulate_nsecs_to_secs(tk);
2016 
2017 	/* Accumulate raw time */
2018 	raw_nsecs = (u64)tk->raw_interval << shift;
2019 	raw_nsecs += tk->raw_time.tv_nsec;
2020 	if (raw_nsecs >= NSEC_PER_SEC) {
2021 		u64 raw_secs = raw_nsecs;
2022 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2023 		tk->raw_time.tv_sec += raw_secs;
2024 	}
2025 	tk->raw_time.tv_nsec = raw_nsecs;
2026 
2027 	/* Accumulate error between NTP and clock interval */
2028 	tk->ntp_error += tk->ntp_tick << shift;
2029 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2030 						(tk->ntp_error_shift + shift);
2031 
2032 	return offset;
2033 }
2034 
2035 /**
2036  * update_wall_time - Uses the current clocksource to increment the wall time
2037  *
2038  */
2039 void update_wall_time(void)
2040 {
2041 	struct timekeeper *real_tk = &tk_core.timekeeper;
2042 	struct timekeeper *tk = &shadow_timekeeper;
2043 	cycle_t offset;
2044 	int shift = 0, maxshift;
2045 	unsigned int clock_set = 0;
2046 	unsigned long flags;
2047 
2048 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049 
2050 	/* Make sure we're fully resumed: */
2051 	if (unlikely(timekeeping_suspended))
2052 		goto out;
2053 
2054 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2055 	offset = real_tk->cycle_interval;
2056 #else
2057 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2058 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2059 #endif
2060 
2061 	/* Check if there's really nothing to do */
2062 	if (offset < real_tk->cycle_interval)
2063 		goto out;
2064 
2065 	/* Do some additional sanity checking */
2066 	timekeeping_check_update(real_tk, offset);
2067 
2068 	/*
2069 	 * With NO_HZ we may have to accumulate many cycle_intervals
2070 	 * (think "ticks") worth of time at once. To do this efficiently,
2071 	 * we calculate the largest doubling multiple of cycle_intervals
2072 	 * that is smaller than the offset.  We then accumulate that
2073 	 * chunk in one go, and then try to consume the next smaller
2074 	 * doubled multiple.
2075 	 */
2076 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2077 	shift = max(0, shift);
2078 	/* Bound shift to one less than what overflows tick_length */
2079 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2080 	shift = min(shift, maxshift);
2081 	while (offset >= tk->cycle_interval) {
2082 		offset = logarithmic_accumulation(tk, offset, shift,
2083 							&clock_set);
2084 		if (offset < tk->cycle_interval<<shift)
2085 			shift--;
2086 	}
2087 
2088 	/* correct the clock when NTP error is too big */
2089 	timekeeping_adjust(tk, offset);
2090 
2091 	/*
2092 	 * XXX This can be killed once everyone converts
2093 	 * to the new update_vsyscall.
2094 	 */
2095 	old_vsyscall_fixup(tk);
2096 
2097 	/*
2098 	 * Finally, make sure that after the rounding
2099 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2100 	 */
2101 	clock_set |= accumulate_nsecs_to_secs(tk);
2102 
2103 	write_seqcount_begin(&tk_core.seq);
2104 	/*
2105 	 * Update the real timekeeper.
2106 	 *
2107 	 * We could avoid this memcpy by switching pointers, but that
2108 	 * requires changes to all other timekeeper usage sites as
2109 	 * well, i.e. move the timekeeper pointer getter into the
2110 	 * spinlocked/seqcount protected sections. And we trade this
2111 	 * memcpy under the tk_core.seq against one before we start
2112 	 * updating.
2113 	 */
2114 	timekeeping_update(tk, clock_set);
2115 	memcpy(real_tk, tk, sizeof(*tk));
2116 	/* The memcpy must come last. Do not put anything here! */
2117 	write_seqcount_end(&tk_core.seq);
2118 out:
2119 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2120 	if (clock_set)
2121 		/* Have to call _delayed version, since in irq context*/
2122 		clock_was_set_delayed();
2123 }
2124 
2125 /**
2126  * getboottime64 - Return the real time of system boot.
2127  * @ts:		pointer to the timespec64 to be set
2128  *
2129  * Returns the wall-time of boot in a timespec64.
2130  *
2131  * This is based on the wall_to_monotonic offset and the total suspend
2132  * time. Calls to settimeofday will affect the value returned (which
2133  * basically means that however wrong your real time clock is at boot time,
2134  * you get the right time here).
2135  */
2136 void getboottime64(struct timespec64 *ts)
2137 {
2138 	struct timekeeper *tk = &tk_core.timekeeper;
2139 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2140 
2141 	*ts = ktime_to_timespec64(t);
2142 }
2143 EXPORT_SYMBOL_GPL(getboottime64);
2144 
2145 unsigned long get_seconds(void)
2146 {
2147 	struct timekeeper *tk = &tk_core.timekeeper;
2148 
2149 	return tk->xtime_sec;
2150 }
2151 EXPORT_SYMBOL(get_seconds);
2152 
2153 struct timespec __current_kernel_time(void)
2154 {
2155 	struct timekeeper *tk = &tk_core.timekeeper;
2156 
2157 	return timespec64_to_timespec(tk_xtime(tk));
2158 }
2159 
2160 struct timespec64 current_kernel_time64(void)
2161 {
2162 	struct timekeeper *tk = &tk_core.timekeeper;
2163 	struct timespec64 now;
2164 	unsigned long seq;
2165 
2166 	do {
2167 		seq = read_seqcount_begin(&tk_core.seq);
2168 
2169 		now = tk_xtime(tk);
2170 	} while (read_seqcount_retry(&tk_core.seq, seq));
2171 
2172 	return now;
2173 }
2174 EXPORT_SYMBOL(current_kernel_time64);
2175 
2176 struct timespec64 get_monotonic_coarse64(void)
2177 {
2178 	struct timekeeper *tk = &tk_core.timekeeper;
2179 	struct timespec64 now, mono;
2180 	unsigned long seq;
2181 
2182 	do {
2183 		seq = read_seqcount_begin(&tk_core.seq);
2184 
2185 		now = tk_xtime(tk);
2186 		mono = tk->wall_to_monotonic;
2187 	} while (read_seqcount_retry(&tk_core.seq, seq));
2188 
2189 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2190 				now.tv_nsec + mono.tv_nsec);
2191 
2192 	return now;
2193 }
2194 EXPORT_SYMBOL(get_monotonic_coarse64);
2195 
2196 /*
2197  * Must hold jiffies_lock
2198  */
2199 void do_timer(unsigned long ticks)
2200 {
2201 	jiffies_64 += ticks;
2202 	calc_global_load(ticks);
2203 }
2204 
2205 /**
2206  * ktime_get_update_offsets_now - hrtimer helper
2207  * @cwsseq:	pointer to check and store the clock was set sequence number
2208  * @offs_real:	pointer to storage for monotonic -> realtime offset
2209  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2210  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2211  *
2212  * Returns current monotonic time and updates the offsets if the
2213  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2214  * different.
2215  *
2216  * Called from hrtimer_interrupt() or retrigger_next_event()
2217  */
2218 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2219 				     ktime_t *offs_boot, ktime_t *offs_tai)
2220 {
2221 	struct timekeeper *tk = &tk_core.timekeeper;
2222 	unsigned int seq;
2223 	ktime_t base;
2224 	u64 nsecs;
2225 
2226 	do {
2227 		seq = read_seqcount_begin(&tk_core.seq);
2228 
2229 		base = tk->tkr_mono.base;
2230 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2231 		base = ktime_add_ns(base, nsecs);
2232 
2233 		if (*cwsseq != tk->clock_was_set_seq) {
2234 			*cwsseq = tk->clock_was_set_seq;
2235 			*offs_real = tk->offs_real;
2236 			*offs_boot = tk->offs_boot;
2237 			*offs_tai = tk->offs_tai;
2238 		}
2239 
2240 		/* Handle leapsecond insertion adjustments */
2241 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2242 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2243 
2244 	} while (read_seqcount_retry(&tk_core.seq, seq));
2245 
2246 	return base;
2247 }
2248 
2249 /**
2250  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2251  */
2252 int do_adjtimex(struct timex *txc)
2253 {
2254 	struct timekeeper *tk = &tk_core.timekeeper;
2255 	unsigned long flags;
2256 	struct timespec64 ts;
2257 	s32 orig_tai, tai;
2258 	int ret;
2259 
2260 	/* Validate the data before disabling interrupts */
2261 	ret = ntp_validate_timex(txc);
2262 	if (ret)
2263 		return ret;
2264 
2265 	if (txc->modes & ADJ_SETOFFSET) {
2266 		struct timespec delta;
2267 		delta.tv_sec  = txc->time.tv_sec;
2268 		delta.tv_nsec = txc->time.tv_usec;
2269 		if (!(txc->modes & ADJ_NANO))
2270 			delta.tv_nsec *= 1000;
2271 		ret = timekeeping_inject_offset(&delta);
2272 		if (ret)
2273 			return ret;
2274 	}
2275 
2276 	getnstimeofday64(&ts);
2277 
2278 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2279 	write_seqcount_begin(&tk_core.seq);
2280 
2281 	orig_tai = tai = tk->tai_offset;
2282 	ret = __do_adjtimex(txc, &ts, &tai);
2283 
2284 	if (tai != orig_tai) {
2285 		__timekeeping_set_tai_offset(tk, tai);
2286 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2287 	}
2288 	tk_update_leap_state(tk);
2289 
2290 	write_seqcount_end(&tk_core.seq);
2291 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2292 
2293 	if (tai != orig_tai)
2294 		clock_was_set();
2295 
2296 	ntp_notify_cmos_timer();
2297 
2298 	return ret;
2299 }
2300 
2301 #ifdef CONFIG_NTP_PPS
2302 /**
2303  * hardpps() - Accessor function to NTP __hardpps function
2304  */
2305 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2306 {
2307 	unsigned long flags;
2308 
2309 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2310 	write_seqcount_begin(&tk_core.seq);
2311 
2312 	__hardpps(phase_ts, raw_ts);
2313 
2314 	write_seqcount_end(&tk_core.seq);
2315 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2316 }
2317 EXPORT_SYMBOL(hardpps);
2318 #endif
2319 
2320 /**
2321  * xtime_update() - advances the timekeeping infrastructure
2322  * @ticks:	number of ticks, that have elapsed since the last call.
2323  *
2324  * Must be called with interrupts disabled.
2325  */
2326 void xtime_update(unsigned long ticks)
2327 {
2328 	write_seqlock(&jiffies_lock);
2329 	do_timer(ticks);
2330 	write_sequnlock(&jiffies_lock);
2331 	update_wall_time();
2332 }
2333