1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 ++tk->cs_was_changed_seq; 237 old_clock = tk->tkr_mono.clock; 238 tk->tkr_mono.clock = clock; 239 tk->tkr_mono.read = clock->read; 240 tk->tkr_mono.mask = clock->mask; 241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 242 243 tk->tkr_raw.clock = clock; 244 tk->tkr_raw.read = clock->read; 245 tk->tkr_raw.mask = clock->mask; 246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 247 248 /* Do the ns -> cycle conversion first, using original mult */ 249 tmp = NTP_INTERVAL_LENGTH; 250 tmp <<= clock->shift; 251 ntpinterval = tmp; 252 tmp += clock->mult/2; 253 do_div(tmp, clock->mult); 254 if (tmp == 0) 255 tmp = 1; 256 257 interval = (cycle_t) tmp; 258 tk->cycle_interval = interval; 259 260 /* Go back from cycles -> shifted ns */ 261 tk->xtime_interval = (u64) interval * clock->mult; 262 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 263 tk->raw_interval = 264 ((u64) interval * clock->mult) >> clock->shift; 265 266 /* if changing clocks, convert xtime_nsec shift units */ 267 if (old_clock) { 268 int shift_change = clock->shift - old_clock->shift; 269 if (shift_change < 0) 270 tk->tkr_mono.xtime_nsec >>= -shift_change; 271 else 272 tk->tkr_mono.xtime_nsec <<= shift_change; 273 } 274 tk->tkr_raw.xtime_nsec = 0; 275 276 tk->tkr_mono.shift = clock->shift; 277 tk->tkr_raw.shift = clock->shift; 278 279 tk->ntp_error = 0; 280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 282 283 /* 284 * The timekeeper keeps its own mult values for the currently 285 * active clocksource. These value will be adjusted via NTP 286 * to counteract clock drifting. 287 */ 288 tk->tkr_mono.mult = clock->mult; 289 tk->tkr_raw.mult = clock->mult; 290 tk->ntp_err_mult = 0; 291 } 292 293 /* Timekeeper helper functions. */ 294 295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 296 static u32 default_arch_gettimeoffset(void) { return 0; } 297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 298 #else 299 static inline u32 arch_gettimeoffset(void) { return 0; } 300 #endif 301 302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr, 303 cycle_t delta) 304 { 305 s64 nsec; 306 307 nsec = delta * tkr->mult + tkr->xtime_nsec; 308 nsec >>= tkr->shift; 309 310 /* If arch requires, add in get_arch_timeoffset() */ 311 return nsec + arch_gettimeoffset(); 312 } 313 314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 315 { 316 cycle_t delta; 317 318 delta = timekeeping_get_delta(tkr); 319 return timekeeping_delta_to_ns(tkr, delta); 320 } 321 322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, 323 cycle_t cycles) 324 { 325 cycle_t delta; 326 327 /* calculate the delta since the last update_wall_time */ 328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 329 return timekeeping_delta_to_ns(tkr, delta); 330 } 331 332 /** 333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 334 * @tkr: Timekeeping readout base from which we take the update 335 * 336 * We want to use this from any context including NMI and tracing / 337 * instrumenting the timekeeping code itself. 338 * 339 * Employ the latch technique; see @raw_write_seqcount_latch. 340 * 341 * So if a NMI hits the update of base[0] then it will use base[1] 342 * which is still consistent. In the worst case this can result is a 343 * slightly wrong timestamp (a few nanoseconds). See 344 * @ktime_get_mono_fast_ns. 345 */ 346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 347 { 348 struct tk_read_base *base = tkf->base; 349 350 /* Force readers off to base[1] */ 351 raw_write_seqcount_latch(&tkf->seq); 352 353 /* Update base[0] */ 354 memcpy(base, tkr, sizeof(*base)); 355 356 /* Force readers back to base[0] */ 357 raw_write_seqcount_latch(&tkf->seq); 358 359 /* Update base[1] */ 360 memcpy(base + 1, base, sizeof(*base)); 361 } 362 363 /** 364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 365 * 366 * This timestamp is not guaranteed to be monotonic across an update. 367 * The timestamp is calculated by: 368 * 369 * now = base_mono + clock_delta * slope 370 * 371 * So if the update lowers the slope, readers who are forced to the 372 * not yet updated second array are still using the old steeper slope. 373 * 374 * tmono 375 * ^ 376 * | o n 377 * | o n 378 * | u 379 * | o 380 * |o 381 * |12345678---> reader order 382 * 383 * o = old slope 384 * u = update 385 * n = new slope 386 * 387 * So reader 6 will observe time going backwards versus reader 5. 388 * 389 * While other CPUs are likely to be able observe that, the only way 390 * for a CPU local observation is when an NMI hits in the middle of 391 * the update. Timestamps taken from that NMI context might be ahead 392 * of the following timestamps. Callers need to be aware of that and 393 * deal with it. 394 */ 395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 396 { 397 struct tk_read_base *tkr; 398 unsigned int seq; 399 u64 now; 400 401 do { 402 seq = raw_read_seqcount_latch(&tkf->seq); 403 tkr = tkf->base + (seq & 0x01); 404 now = ktime_to_ns(tkr->base); 405 406 now += clocksource_delta(tkr->read(tkr->clock), 407 tkr->cycle_last, tkr->mask); 408 } while (read_seqcount_retry(&tkf->seq, seq)); 409 410 return now; 411 } 412 413 u64 ktime_get_mono_fast_ns(void) 414 { 415 return __ktime_get_fast_ns(&tk_fast_mono); 416 } 417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 418 419 u64 ktime_get_raw_fast_ns(void) 420 { 421 return __ktime_get_fast_ns(&tk_fast_raw); 422 } 423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 424 425 /* Suspend-time cycles value for halted fast timekeeper. */ 426 static cycle_t cycles_at_suspend; 427 428 static cycle_t dummy_clock_read(struct clocksource *cs) 429 { 430 return cycles_at_suspend; 431 } 432 433 /** 434 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 435 * @tk: Timekeeper to snapshot. 436 * 437 * It generally is unsafe to access the clocksource after timekeeping has been 438 * suspended, so take a snapshot of the readout base of @tk and use it as the 439 * fast timekeeper's readout base while suspended. It will return the same 440 * number of cycles every time until timekeeping is resumed at which time the 441 * proper readout base for the fast timekeeper will be restored automatically. 442 */ 443 static void halt_fast_timekeeper(struct timekeeper *tk) 444 { 445 static struct tk_read_base tkr_dummy; 446 struct tk_read_base *tkr = &tk->tkr_mono; 447 448 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 449 cycles_at_suspend = tkr->read(tkr->clock); 450 tkr_dummy.read = dummy_clock_read; 451 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 452 453 tkr = &tk->tkr_raw; 454 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 455 tkr_dummy.read = dummy_clock_read; 456 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 457 } 458 459 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 460 461 static inline void update_vsyscall(struct timekeeper *tk) 462 { 463 struct timespec xt, wm; 464 465 xt = timespec64_to_timespec(tk_xtime(tk)); 466 wm = timespec64_to_timespec(tk->wall_to_monotonic); 467 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 468 tk->tkr_mono.cycle_last); 469 } 470 471 static inline void old_vsyscall_fixup(struct timekeeper *tk) 472 { 473 s64 remainder; 474 475 /* 476 * Store only full nanoseconds into xtime_nsec after rounding 477 * it up and add the remainder to the error difference. 478 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 479 * by truncating the remainder in vsyscalls. However, it causes 480 * additional work to be done in timekeeping_adjust(). Once 481 * the vsyscall implementations are converted to use xtime_nsec 482 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 483 * users are removed, this can be killed. 484 */ 485 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 486 if (remainder != 0) { 487 tk->tkr_mono.xtime_nsec -= remainder; 488 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 489 tk->ntp_error += remainder << tk->ntp_error_shift; 490 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 491 } 492 } 493 #else 494 #define old_vsyscall_fixup(tk) 495 #endif 496 497 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 498 499 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 500 { 501 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 502 } 503 504 /** 505 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 506 */ 507 int pvclock_gtod_register_notifier(struct notifier_block *nb) 508 { 509 struct timekeeper *tk = &tk_core.timekeeper; 510 unsigned long flags; 511 int ret; 512 513 raw_spin_lock_irqsave(&timekeeper_lock, flags); 514 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 515 update_pvclock_gtod(tk, true); 516 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 517 518 return ret; 519 } 520 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 521 522 /** 523 * pvclock_gtod_unregister_notifier - unregister a pvclock 524 * timedata update listener 525 */ 526 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 527 { 528 unsigned long flags; 529 int ret; 530 531 raw_spin_lock_irqsave(&timekeeper_lock, flags); 532 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 533 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 534 535 return ret; 536 } 537 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 538 539 /* 540 * tk_update_leap_state - helper to update the next_leap_ktime 541 */ 542 static inline void tk_update_leap_state(struct timekeeper *tk) 543 { 544 tk->next_leap_ktime = ntp_get_next_leap(); 545 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 546 /* Convert to monotonic time */ 547 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 548 } 549 550 /* 551 * Update the ktime_t based scalar nsec members of the timekeeper 552 */ 553 static inline void tk_update_ktime_data(struct timekeeper *tk) 554 { 555 u64 seconds; 556 u32 nsec; 557 558 /* 559 * The xtime based monotonic readout is: 560 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 561 * The ktime based monotonic readout is: 562 * nsec = base_mono + now(); 563 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 564 */ 565 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 566 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 567 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 568 569 /* Update the monotonic raw base */ 570 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 571 572 /* 573 * The sum of the nanoseconds portions of xtime and 574 * wall_to_monotonic can be greater/equal one second. Take 575 * this into account before updating tk->ktime_sec. 576 */ 577 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 578 if (nsec >= NSEC_PER_SEC) 579 seconds++; 580 tk->ktime_sec = seconds; 581 } 582 583 /* must hold timekeeper_lock */ 584 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 585 { 586 if (action & TK_CLEAR_NTP) { 587 tk->ntp_error = 0; 588 ntp_clear(); 589 } 590 591 tk_update_leap_state(tk); 592 tk_update_ktime_data(tk); 593 594 update_vsyscall(tk); 595 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 596 597 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 598 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 599 600 if (action & TK_CLOCK_WAS_SET) 601 tk->clock_was_set_seq++; 602 /* 603 * The mirroring of the data to the shadow-timekeeper needs 604 * to happen last here to ensure we don't over-write the 605 * timekeeper structure on the next update with stale data 606 */ 607 if (action & TK_MIRROR) 608 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 609 sizeof(tk_core.timekeeper)); 610 } 611 612 /** 613 * timekeeping_forward_now - update clock to the current time 614 * 615 * Forward the current clock to update its state since the last call to 616 * update_wall_time(). This is useful before significant clock changes, 617 * as it avoids having to deal with this time offset explicitly. 618 */ 619 static void timekeeping_forward_now(struct timekeeper *tk) 620 { 621 struct clocksource *clock = tk->tkr_mono.clock; 622 cycle_t cycle_now, delta; 623 s64 nsec; 624 625 cycle_now = tk->tkr_mono.read(clock); 626 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 627 tk->tkr_mono.cycle_last = cycle_now; 628 tk->tkr_raw.cycle_last = cycle_now; 629 630 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 631 632 /* If arch requires, add in get_arch_timeoffset() */ 633 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 634 635 tk_normalize_xtime(tk); 636 637 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 638 timespec64_add_ns(&tk->raw_time, nsec); 639 } 640 641 /** 642 * __getnstimeofday64 - Returns the time of day in a timespec64. 643 * @ts: pointer to the timespec to be set 644 * 645 * Updates the time of day in the timespec. 646 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 647 */ 648 int __getnstimeofday64(struct timespec64 *ts) 649 { 650 struct timekeeper *tk = &tk_core.timekeeper; 651 unsigned long seq; 652 s64 nsecs = 0; 653 654 do { 655 seq = read_seqcount_begin(&tk_core.seq); 656 657 ts->tv_sec = tk->xtime_sec; 658 nsecs = timekeeping_get_ns(&tk->tkr_mono); 659 660 } while (read_seqcount_retry(&tk_core.seq, seq)); 661 662 ts->tv_nsec = 0; 663 timespec64_add_ns(ts, nsecs); 664 665 /* 666 * Do not bail out early, in case there were callers still using 667 * the value, even in the face of the WARN_ON. 668 */ 669 if (unlikely(timekeeping_suspended)) 670 return -EAGAIN; 671 return 0; 672 } 673 EXPORT_SYMBOL(__getnstimeofday64); 674 675 /** 676 * getnstimeofday64 - Returns the time of day in a timespec64. 677 * @ts: pointer to the timespec64 to be set 678 * 679 * Returns the time of day in a timespec64 (WARN if suspended). 680 */ 681 void getnstimeofday64(struct timespec64 *ts) 682 { 683 WARN_ON(__getnstimeofday64(ts)); 684 } 685 EXPORT_SYMBOL(getnstimeofday64); 686 687 ktime_t ktime_get(void) 688 { 689 struct timekeeper *tk = &tk_core.timekeeper; 690 unsigned int seq; 691 ktime_t base; 692 s64 nsecs; 693 694 WARN_ON(timekeeping_suspended); 695 696 do { 697 seq = read_seqcount_begin(&tk_core.seq); 698 base = tk->tkr_mono.base; 699 nsecs = timekeeping_get_ns(&tk->tkr_mono); 700 701 } while (read_seqcount_retry(&tk_core.seq, seq)); 702 703 return ktime_add_ns(base, nsecs); 704 } 705 EXPORT_SYMBOL_GPL(ktime_get); 706 707 u32 ktime_get_resolution_ns(void) 708 { 709 struct timekeeper *tk = &tk_core.timekeeper; 710 unsigned int seq; 711 u32 nsecs; 712 713 WARN_ON(timekeeping_suspended); 714 715 do { 716 seq = read_seqcount_begin(&tk_core.seq); 717 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 718 } while (read_seqcount_retry(&tk_core.seq, seq)); 719 720 return nsecs; 721 } 722 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 723 724 static ktime_t *offsets[TK_OFFS_MAX] = { 725 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 726 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 727 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 728 }; 729 730 ktime_t ktime_get_with_offset(enum tk_offsets offs) 731 { 732 struct timekeeper *tk = &tk_core.timekeeper; 733 unsigned int seq; 734 ktime_t base, *offset = offsets[offs]; 735 s64 nsecs; 736 737 WARN_ON(timekeeping_suspended); 738 739 do { 740 seq = read_seqcount_begin(&tk_core.seq); 741 base = ktime_add(tk->tkr_mono.base, *offset); 742 nsecs = timekeeping_get_ns(&tk->tkr_mono); 743 744 } while (read_seqcount_retry(&tk_core.seq, seq)); 745 746 return ktime_add_ns(base, nsecs); 747 748 } 749 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 750 751 /** 752 * ktime_mono_to_any() - convert mononotic time to any other time 753 * @tmono: time to convert. 754 * @offs: which offset to use 755 */ 756 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 757 { 758 ktime_t *offset = offsets[offs]; 759 unsigned long seq; 760 ktime_t tconv; 761 762 do { 763 seq = read_seqcount_begin(&tk_core.seq); 764 tconv = ktime_add(tmono, *offset); 765 } while (read_seqcount_retry(&tk_core.seq, seq)); 766 767 return tconv; 768 } 769 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 770 771 /** 772 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 773 */ 774 ktime_t ktime_get_raw(void) 775 { 776 struct timekeeper *tk = &tk_core.timekeeper; 777 unsigned int seq; 778 ktime_t base; 779 s64 nsecs; 780 781 do { 782 seq = read_seqcount_begin(&tk_core.seq); 783 base = tk->tkr_raw.base; 784 nsecs = timekeeping_get_ns(&tk->tkr_raw); 785 786 } while (read_seqcount_retry(&tk_core.seq, seq)); 787 788 return ktime_add_ns(base, nsecs); 789 } 790 EXPORT_SYMBOL_GPL(ktime_get_raw); 791 792 /** 793 * ktime_get_ts64 - get the monotonic clock in timespec64 format 794 * @ts: pointer to timespec variable 795 * 796 * The function calculates the monotonic clock from the realtime 797 * clock and the wall_to_monotonic offset and stores the result 798 * in normalized timespec64 format in the variable pointed to by @ts. 799 */ 800 void ktime_get_ts64(struct timespec64 *ts) 801 { 802 struct timekeeper *tk = &tk_core.timekeeper; 803 struct timespec64 tomono; 804 s64 nsec; 805 unsigned int seq; 806 807 WARN_ON(timekeeping_suspended); 808 809 do { 810 seq = read_seqcount_begin(&tk_core.seq); 811 ts->tv_sec = tk->xtime_sec; 812 nsec = timekeeping_get_ns(&tk->tkr_mono); 813 tomono = tk->wall_to_monotonic; 814 815 } while (read_seqcount_retry(&tk_core.seq, seq)); 816 817 ts->tv_sec += tomono.tv_sec; 818 ts->tv_nsec = 0; 819 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 820 } 821 EXPORT_SYMBOL_GPL(ktime_get_ts64); 822 823 /** 824 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 825 * 826 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 827 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 828 * works on both 32 and 64 bit systems. On 32 bit systems the readout 829 * covers ~136 years of uptime which should be enough to prevent 830 * premature wrap arounds. 831 */ 832 time64_t ktime_get_seconds(void) 833 { 834 struct timekeeper *tk = &tk_core.timekeeper; 835 836 WARN_ON(timekeeping_suspended); 837 return tk->ktime_sec; 838 } 839 EXPORT_SYMBOL_GPL(ktime_get_seconds); 840 841 /** 842 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 843 * 844 * Returns the wall clock seconds since 1970. This replaces the 845 * get_seconds() interface which is not y2038 safe on 32bit systems. 846 * 847 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 848 * 32bit systems the access must be protected with the sequence 849 * counter to provide "atomic" access to the 64bit tk->xtime_sec 850 * value. 851 */ 852 time64_t ktime_get_real_seconds(void) 853 { 854 struct timekeeper *tk = &tk_core.timekeeper; 855 time64_t seconds; 856 unsigned int seq; 857 858 if (IS_ENABLED(CONFIG_64BIT)) 859 return tk->xtime_sec; 860 861 do { 862 seq = read_seqcount_begin(&tk_core.seq); 863 seconds = tk->xtime_sec; 864 865 } while (read_seqcount_retry(&tk_core.seq, seq)); 866 867 return seconds; 868 } 869 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 870 871 /** 872 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 873 * but without the sequence counter protect. This internal function 874 * is called just when timekeeping lock is already held. 875 */ 876 time64_t __ktime_get_real_seconds(void) 877 { 878 struct timekeeper *tk = &tk_core.timekeeper; 879 880 return tk->xtime_sec; 881 } 882 883 /** 884 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 885 * @systime_snapshot: pointer to struct receiving the system time snapshot 886 */ 887 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 888 { 889 struct timekeeper *tk = &tk_core.timekeeper; 890 unsigned long seq; 891 ktime_t base_raw; 892 ktime_t base_real; 893 s64 nsec_raw; 894 s64 nsec_real; 895 cycle_t now; 896 897 WARN_ON_ONCE(timekeeping_suspended); 898 899 do { 900 seq = read_seqcount_begin(&tk_core.seq); 901 902 now = tk->tkr_mono.read(tk->tkr_mono.clock); 903 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 904 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 905 base_real = ktime_add(tk->tkr_mono.base, 906 tk_core.timekeeper.offs_real); 907 base_raw = tk->tkr_raw.base; 908 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 909 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 910 } while (read_seqcount_retry(&tk_core.seq, seq)); 911 912 systime_snapshot->cycles = now; 913 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 914 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 915 } 916 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 917 918 /* Scale base by mult/div checking for overflow */ 919 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 920 { 921 u64 tmp, rem; 922 923 tmp = div64_u64_rem(*base, div, &rem); 924 925 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 926 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 927 return -EOVERFLOW; 928 tmp *= mult; 929 rem *= mult; 930 931 do_div(rem, div); 932 *base = tmp + rem; 933 return 0; 934 } 935 936 /** 937 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 938 * @history: Snapshot representing start of history 939 * @partial_history_cycles: Cycle offset into history (fractional part) 940 * @total_history_cycles: Total history length in cycles 941 * @discontinuity: True indicates clock was set on history period 942 * @ts: Cross timestamp that should be adjusted using 943 * partial/total ratio 944 * 945 * Helper function used by get_device_system_crosststamp() to correct the 946 * crosstimestamp corresponding to the start of the current interval to the 947 * system counter value (timestamp point) provided by the driver. The 948 * total_history_* quantities are the total history starting at the provided 949 * reference point and ending at the start of the current interval. The cycle 950 * count between the driver timestamp point and the start of the current 951 * interval is partial_history_cycles. 952 */ 953 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 954 cycle_t partial_history_cycles, 955 cycle_t total_history_cycles, 956 bool discontinuity, 957 struct system_device_crosststamp *ts) 958 { 959 struct timekeeper *tk = &tk_core.timekeeper; 960 u64 corr_raw, corr_real; 961 bool interp_forward; 962 int ret; 963 964 if (total_history_cycles == 0 || partial_history_cycles == 0) 965 return 0; 966 967 /* Interpolate shortest distance from beginning or end of history */ 968 interp_forward = partial_history_cycles > total_history_cycles/2 ? 969 true : false; 970 partial_history_cycles = interp_forward ? 971 total_history_cycles - partial_history_cycles : 972 partial_history_cycles; 973 974 /* 975 * Scale the monotonic raw time delta by: 976 * partial_history_cycles / total_history_cycles 977 */ 978 corr_raw = (u64)ktime_to_ns( 979 ktime_sub(ts->sys_monoraw, history->raw)); 980 ret = scale64_check_overflow(partial_history_cycles, 981 total_history_cycles, &corr_raw); 982 if (ret) 983 return ret; 984 985 /* 986 * If there is a discontinuity in the history, scale monotonic raw 987 * correction by: 988 * mult(real)/mult(raw) yielding the realtime correction 989 * Otherwise, calculate the realtime correction similar to monotonic 990 * raw calculation 991 */ 992 if (discontinuity) { 993 corr_real = mul_u64_u32_div 994 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 995 } else { 996 corr_real = (u64)ktime_to_ns( 997 ktime_sub(ts->sys_realtime, history->real)); 998 ret = scale64_check_overflow(partial_history_cycles, 999 total_history_cycles, &corr_real); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 /* Fixup monotonic raw and real time time values */ 1005 if (interp_forward) { 1006 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1007 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1008 } else { 1009 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1010 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1011 } 1012 1013 return 0; 1014 } 1015 1016 /* 1017 * cycle_between - true if test occurs chronologically between before and after 1018 */ 1019 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after) 1020 { 1021 if (test > before && test < after) 1022 return true; 1023 if (test < before && before > after) 1024 return true; 1025 return false; 1026 } 1027 1028 /** 1029 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1030 * @get_time_fn: Callback to get simultaneous device time and 1031 * system counter from the device driver 1032 * @ctx: Context passed to get_time_fn() 1033 * @history_begin: Historical reference point used to interpolate system 1034 * time when counter provided by the driver is before the current interval 1035 * @xtstamp: Receives simultaneously captured system and device time 1036 * 1037 * Reads a timestamp from a device and correlates it to system time 1038 */ 1039 int get_device_system_crosststamp(int (*get_time_fn) 1040 (ktime_t *device_time, 1041 struct system_counterval_t *sys_counterval, 1042 void *ctx), 1043 void *ctx, 1044 struct system_time_snapshot *history_begin, 1045 struct system_device_crosststamp *xtstamp) 1046 { 1047 struct system_counterval_t system_counterval; 1048 struct timekeeper *tk = &tk_core.timekeeper; 1049 cycle_t cycles, now, interval_start; 1050 unsigned int clock_was_set_seq = 0; 1051 ktime_t base_real, base_raw; 1052 s64 nsec_real, nsec_raw; 1053 u8 cs_was_changed_seq; 1054 unsigned long seq; 1055 bool do_interp; 1056 int ret; 1057 1058 do { 1059 seq = read_seqcount_begin(&tk_core.seq); 1060 /* 1061 * Try to synchronously capture device time and a system 1062 * counter value calling back into the device driver 1063 */ 1064 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1065 if (ret) 1066 return ret; 1067 1068 /* 1069 * Verify that the clocksource associated with the captured 1070 * system counter value is the same as the currently installed 1071 * timekeeper clocksource 1072 */ 1073 if (tk->tkr_mono.clock != system_counterval.cs) 1074 return -ENODEV; 1075 cycles = system_counterval.cycles; 1076 1077 /* 1078 * Check whether the system counter value provided by the 1079 * device driver is on the current timekeeping interval. 1080 */ 1081 now = tk->tkr_mono.read(tk->tkr_mono.clock); 1082 interval_start = tk->tkr_mono.cycle_last; 1083 if (!cycle_between(interval_start, cycles, now)) { 1084 clock_was_set_seq = tk->clock_was_set_seq; 1085 cs_was_changed_seq = tk->cs_was_changed_seq; 1086 cycles = interval_start; 1087 do_interp = true; 1088 } else { 1089 do_interp = false; 1090 } 1091 1092 base_real = ktime_add(tk->tkr_mono.base, 1093 tk_core.timekeeper.offs_real); 1094 base_raw = tk->tkr_raw.base; 1095 1096 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1097 system_counterval.cycles); 1098 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1099 system_counterval.cycles); 1100 } while (read_seqcount_retry(&tk_core.seq, seq)); 1101 1102 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1103 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1104 1105 /* 1106 * Interpolate if necessary, adjusting back from the start of the 1107 * current interval 1108 */ 1109 if (do_interp) { 1110 cycle_t partial_history_cycles, total_history_cycles; 1111 bool discontinuity; 1112 1113 /* 1114 * Check that the counter value occurs after the provided 1115 * history reference and that the history doesn't cross a 1116 * clocksource change 1117 */ 1118 if (!history_begin || 1119 !cycle_between(history_begin->cycles, 1120 system_counterval.cycles, cycles) || 1121 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1122 return -EINVAL; 1123 partial_history_cycles = cycles - system_counterval.cycles; 1124 total_history_cycles = cycles - history_begin->cycles; 1125 discontinuity = 1126 history_begin->clock_was_set_seq != clock_was_set_seq; 1127 1128 ret = adjust_historical_crosststamp(history_begin, 1129 partial_history_cycles, 1130 total_history_cycles, 1131 discontinuity, xtstamp); 1132 if (ret) 1133 return ret; 1134 } 1135 1136 return 0; 1137 } 1138 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1139 1140 /** 1141 * do_gettimeofday - Returns the time of day in a timeval 1142 * @tv: pointer to the timeval to be set 1143 * 1144 * NOTE: Users should be converted to using getnstimeofday() 1145 */ 1146 void do_gettimeofday(struct timeval *tv) 1147 { 1148 struct timespec64 now; 1149 1150 getnstimeofday64(&now); 1151 tv->tv_sec = now.tv_sec; 1152 tv->tv_usec = now.tv_nsec/1000; 1153 } 1154 EXPORT_SYMBOL(do_gettimeofday); 1155 1156 /** 1157 * do_settimeofday64 - Sets the time of day. 1158 * @ts: pointer to the timespec64 variable containing the new time 1159 * 1160 * Sets the time of day to the new time and update NTP and notify hrtimers 1161 */ 1162 int do_settimeofday64(const struct timespec64 *ts) 1163 { 1164 struct timekeeper *tk = &tk_core.timekeeper; 1165 struct timespec64 ts_delta, xt; 1166 unsigned long flags; 1167 int ret = 0; 1168 1169 if (!timespec64_valid_strict(ts)) 1170 return -EINVAL; 1171 1172 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1173 write_seqcount_begin(&tk_core.seq); 1174 1175 timekeeping_forward_now(tk); 1176 1177 xt = tk_xtime(tk); 1178 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1179 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1180 1181 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1182 ret = -EINVAL; 1183 goto out; 1184 } 1185 1186 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1187 1188 tk_set_xtime(tk, ts); 1189 out: 1190 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1191 1192 write_seqcount_end(&tk_core.seq); 1193 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1194 1195 /* signal hrtimers about time change */ 1196 clock_was_set(); 1197 1198 return ret; 1199 } 1200 EXPORT_SYMBOL(do_settimeofday64); 1201 1202 /** 1203 * timekeeping_inject_offset - Adds or subtracts from the current time. 1204 * @tv: pointer to the timespec variable containing the offset 1205 * 1206 * Adds or subtracts an offset value from the current time. 1207 */ 1208 int timekeeping_inject_offset(struct timespec *ts) 1209 { 1210 struct timekeeper *tk = &tk_core.timekeeper; 1211 unsigned long flags; 1212 struct timespec64 ts64, tmp; 1213 int ret = 0; 1214 1215 if (!timespec_inject_offset_valid(ts)) 1216 return -EINVAL; 1217 1218 ts64 = timespec_to_timespec64(*ts); 1219 1220 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1221 write_seqcount_begin(&tk_core.seq); 1222 1223 timekeeping_forward_now(tk); 1224 1225 /* Make sure the proposed value is valid */ 1226 tmp = timespec64_add(tk_xtime(tk), ts64); 1227 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1228 !timespec64_valid_strict(&tmp)) { 1229 ret = -EINVAL; 1230 goto error; 1231 } 1232 1233 tk_xtime_add(tk, &ts64); 1234 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1235 1236 error: /* even if we error out, we forwarded the time, so call update */ 1237 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1238 1239 write_seqcount_end(&tk_core.seq); 1240 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1241 1242 /* signal hrtimers about time change */ 1243 clock_was_set(); 1244 1245 return ret; 1246 } 1247 EXPORT_SYMBOL(timekeeping_inject_offset); 1248 1249 1250 /** 1251 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 1252 * 1253 */ 1254 s32 timekeeping_get_tai_offset(void) 1255 { 1256 struct timekeeper *tk = &tk_core.timekeeper; 1257 unsigned int seq; 1258 s32 ret; 1259 1260 do { 1261 seq = read_seqcount_begin(&tk_core.seq); 1262 ret = tk->tai_offset; 1263 } while (read_seqcount_retry(&tk_core.seq, seq)); 1264 1265 return ret; 1266 } 1267 1268 /** 1269 * __timekeeping_set_tai_offset - Lock free worker function 1270 * 1271 */ 1272 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1273 { 1274 tk->tai_offset = tai_offset; 1275 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1276 } 1277 1278 /** 1279 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1280 * 1281 */ 1282 void timekeeping_set_tai_offset(s32 tai_offset) 1283 { 1284 struct timekeeper *tk = &tk_core.timekeeper; 1285 unsigned long flags; 1286 1287 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1288 write_seqcount_begin(&tk_core.seq); 1289 __timekeeping_set_tai_offset(tk, tai_offset); 1290 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1291 write_seqcount_end(&tk_core.seq); 1292 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1293 clock_was_set(); 1294 } 1295 1296 /** 1297 * change_clocksource - Swaps clocksources if a new one is available 1298 * 1299 * Accumulates current time interval and initializes new clocksource 1300 */ 1301 static int change_clocksource(void *data) 1302 { 1303 struct timekeeper *tk = &tk_core.timekeeper; 1304 struct clocksource *new, *old; 1305 unsigned long flags; 1306 1307 new = (struct clocksource *) data; 1308 1309 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1310 write_seqcount_begin(&tk_core.seq); 1311 1312 timekeeping_forward_now(tk); 1313 /* 1314 * If the cs is in module, get a module reference. Succeeds 1315 * for built-in code (owner == NULL) as well. 1316 */ 1317 if (try_module_get(new->owner)) { 1318 if (!new->enable || new->enable(new) == 0) { 1319 old = tk->tkr_mono.clock; 1320 tk_setup_internals(tk, new); 1321 if (old->disable) 1322 old->disable(old); 1323 module_put(old->owner); 1324 } else { 1325 module_put(new->owner); 1326 } 1327 } 1328 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1329 1330 write_seqcount_end(&tk_core.seq); 1331 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1332 1333 return 0; 1334 } 1335 1336 /** 1337 * timekeeping_notify - Install a new clock source 1338 * @clock: pointer to the clock source 1339 * 1340 * This function is called from clocksource.c after a new, better clock 1341 * source has been registered. The caller holds the clocksource_mutex. 1342 */ 1343 int timekeeping_notify(struct clocksource *clock) 1344 { 1345 struct timekeeper *tk = &tk_core.timekeeper; 1346 1347 if (tk->tkr_mono.clock == clock) 1348 return 0; 1349 stop_machine(change_clocksource, clock, NULL); 1350 tick_clock_notify(); 1351 return tk->tkr_mono.clock == clock ? 0 : -1; 1352 } 1353 1354 /** 1355 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1356 * @ts: pointer to the timespec64 to be set 1357 * 1358 * Returns the raw monotonic time (completely un-modified by ntp) 1359 */ 1360 void getrawmonotonic64(struct timespec64 *ts) 1361 { 1362 struct timekeeper *tk = &tk_core.timekeeper; 1363 struct timespec64 ts64; 1364 unsigned long seq; 1365 s64 nsecs; 1366 1367 do { 1368 seq = read_seqcount_begin(&tk_core.seq); 1369 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1370 ts64 = tk->raw_time; 1371 1372 } while (read_seqcount_retry(&tk_core.seq, seq)); 1373 1374 timespec64_add_ns(&ts64, nsecs); 1375 *ts = ts64; 1376 } 1377 EXPORT_SYMBOL(getrawmonotonic64); 1378 1379 1380 /** 1381 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1382 */ 1383 int timekeeping_valid_for_hres(void) 1384 { 1385 struct timekeeper *tk = &tk_core.timekeeper; 1386 unsigned long seq; 1387 int ret; 1388 1389 do { 1390 seq = read_seqcount_begin(&tk_core.seq); 1391 1392 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1393 1394 } while (read_seqcount_retry(&tk_core.seq, seq)); 1395 1396 return ret; 1397 } 1398 1399 /** 1400 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1401 */ 1402 u64 timekeeping_max_deferment(void) 1403 { 1404 struct timekeeper *tk = &tk_core.timekeeper; 1405 unsigned long seq; 1406 u64 ret; 1407 1408 do { 1409 seq = read_seqcount_begin(&tk_core.seq); 1410 1411 ret = tk->tkr_mono.clock->max_idle_ns; 1412 1413 } while (read_seqcount_retry(&tk_core.seq, seq)); 1414 1415 return ret; 1416 } 1417 1418 /** 1419 * read_persistent_clock - Return time from the persistent clock. 1420 * 1421 * Weak dummy function for arches that do not yet support it. 1422 * Reads the time from the battery backed persistent clock. 1423 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1424 * 1425 * XXX - Do be sure to remove it once all arches implement it. 1426 */ 1427 void __weak read_persistent_clock(struct timespec *ts) 1428 { 1429 ts->tv_sec = 0; 1430 ts->tv_nsec = 0; 1431 } 1432 1433 void __weak read_persistent_clock64(struct timespec64 *ts64) 1434 { 1435 struct timespec ts; 1436 1437 read_persistent_clock(&ts); 1438 *ts64 = timespec_to_timespec64(ts); 1439 } 1440 1441 /** 1442 * read_boot_clock64 - Return time of the system start. 1443 * 1444 * Weak dummy function for arches that do not yet support it. 1445 * Function to read the exact time the system has been started. 1446 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1447 * 1448 * XXX - Do be sure to remove it once all arches implement it. 1449 */ 1450 void __weak read_boot_clock64(struct timespec64 *ts) 1451 { 1452 ts->tv_sec = 0; 1453 ts->tv_nsec = 0; 1454 } 1455 1456 /* Flag for if timekeeping_resume() has injected sleeptime */ 1457 static bool sleeptime_injected; 1458 1459 /* Flag for if there is a persistent clock on this platform */ 1460 static bool persistent_clock_exists; 1461 1462 /* 1463 * timekeeping_init - Initializes the clocksource and common timekeeping values 1464 */ 1465 void __init timekeeping_init(void) 1466 { 1467 struct timekeeper *tk = &tk_core.timekeeper; 1468 struct clocksource *clock; 1469 unsigned long flags; 1470 struct timespec64 now, boot, tmp; 1471 1472 read_persistent_clock64(&now); 1473 if (!timespec64_valid_strict(&now)) { 1474 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1475 " Check your CMOS/BIOS settings.\n"); 1476 now.tv_sec = 0; 1477 now.tv_nsec = 0; 1478 } else if (now.tv_sec || now.tv_nsec) 1479 persistent_clock_exists = true; 1480 1481 read_boot_clock64(&boot); 1482 if (!timespec64_valid_strict(&boot)) { 1483 pr_warn("WARNING: Boot clock returned invalid value!\n" 1484 " Check your CMOS/BIOS settings.\n"); 1485 boot.tv_sec = 0; 1486 boot.tv_nsec = 0; 1487 } 1488 1489 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1490 write_seqcount_begin(&tk_core.seq); 1491 ntp_init(); 1492 1493 clock = clocksource_default_clock(); 1494 if (clock->enable) 1495 clock->enable(clock); 1496 tk_setup_internals(tk, clock); 1497 1498 tk_set_xtime(tk, &now); 1499 tk->raw_time.tv_sec = 0; 1500 tk->raw_time.tv_nsec = 0; 1501 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1502 boot = tk_xtime(tk); 1503 1504 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1505 tk_set_wall_to_mono(tk, tmp); 1506 1507 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1508 1509 write_seqcount_end(&tk_core.seq); 1510 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1511 } 1512 1513 /* time in seconds when suspend began for persistent clock */ 1514 static struct timespec64 timekeeping_suspend_time; 1515 1516 /** 1517 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1518 * @delta: pointer to a timespec delta value 1519 * 1520 * Takes a timespec offset measuring a suspend interval and properly 1521 * adds the sleep offset to the timekeeping variables. 1522 */ 1523 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1524 struct timespec64 *delta) 1525 { 1526 if (!timespec64_valid_strict(delta)) { 1527 printk_deferred(KERN_WARNING 1528 "__timekeeping_inject_sleeptime: Invalid " 1529 "sleep delta value!\n"); 1530 return; 1531 } 1532 tk_xtime_add(tk, delta); 1533 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1534 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1535 tk_debug_account_sleep_time(delta); 1536 } 1537 1538 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1539 /** 1540 * We have three kinds of time sources to use for sleep time 1541 * injection, the preference order is: 1542 * 1) non-stop clocksource 1543 * 2) persistent clock (ie: RTC accessible when irqs are off) 1544 * 3) RTC 1545 * 1546 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1547 * If system has neither 1) nor 2), 3) will be used finally. 1548 * 1549 * 1550 * If timekeeping has injected sleeptime via either 1) or 2), 1551 * 3) becomes needless, so in this case we don't need to call 1552 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1553 * means. 1554 */ 1555 bool timekeeping_rtc_skipresume(void) 1556 { 1557 return sleeptime_injected; 1558 } 1559 1560 /** 1561 * 1) can be determined whether to use or not only when doing 1562 * timekeeping_resume() which is invoked after rtc_suspend(), 1563 * so we can't skip rtc_suspend() surely if system has 1). 1564 * 1565 * But if system has 2), 2) will definitely be used, so in this 1566 * case we don't need to call rtc_suspend(), and this is what 1567 * timekeeping_rtc_skipsuspend() means. 1568 */ 1569 bool timekeeping_rtc_skipsuspend(void) 1570 { 1571 return persistent_clock_exists; 1572 } 1573 1574 /** 1575 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1576 * @delta: pointer to a timespec64 delta value 1577 * 1578 * This hook is for architectures that cannot support read_persistent_clock64 1579 * because their RTC/persistent clock is only accessible when irqs are enabled. 1580 * and also don't have an effective nonstop clocksource. 1581 * 1582 * This function should only be called by rtc_resume(), and allows 1583 * a suspend offset to be injected into the timekeeping values. 1584 */ 1585 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1586 { 1587 struct timekeeper *tk = &tk_core.timekeeper; 1588 unsigned long flags; 1589 1590 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1591 write_seqcount_begin(&tk_core.seq); 1592 1593 timekeeping_forward_now(tk); 1594 1595 __timekeeping_inject_sleeptime(tk, delta); 1596 1597 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1598 1599 write_seqcount_end(&tk_core.seq); 1600 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1601 1602 /* signal hrtimers about time change */ 1603 clock_was_set(); 1604 } 1605 #endif 1606 1607 /** 1608 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1609 */ 1610 void timekeeping_resume(void) 1611 { 1612 struct timekeeper *tk = &tk_core.timekeeper; 1613 struct clocksource *clock = tk->tkr_mono.clock; 1614 unsigned long flags; 1615 struct timespec64 ts_new, ts_delta; 1616 cycle_t cycle_now, cycle_delta; 1617 1618 sleeptime_injected = false; 1619 read_persistent_clock64(&ts_new); 1620 1621 clockevents_resume(); 1622 clocksource_resume(); 1623 1624 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1625 write_seqcount_begin(&tk_core.seq); 1626 1627 /* 1628 * After system resumes, we need to calculate the suspended time and 1629 * compensate it for the OS time. There are 3 sources that could be 1630 * used: Nonstop clocksource during suspend, persistent clock and rtc 1631 * device. 1632 * 1633 * One specific platform may have 1 or 2 or all of them, and the 1634 * preference will be: 1635 * suspend-nonstop clocksource -> persistent clock -> rtc 1636 * The less preferred source will only be tried if there is no better 1637 * usable source. The rtc part is handled separately in rtc core code. 1638 */ 1639 cycle_now = tk->tkr_mono.read(clock); 1640 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1641 cycle_now > tk->tkr_mono.cycle_last) { 1642 u64 num, max = ULLONG_MAX; 1643 u32 mult = clock->mult; 1644 u32 shift = clock->shift; 1645 s64 nsec = 0; 1646 1647 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1648 tk->tkr_mono.mask); 1649 1650 /* 1651 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1652 * suspended time is too long. In that case we need do the 1653 * 64 bits math carefully 1654 */ 1655 do_div(max, mult); 1656 if (cycle_delta > max) { 1657 num = div64_u64(cycle_delta, max); 1658 nsec = (((u64) max * mult) >> shift) * num; 1659 cycle_delta -= num * max; 1660 } 1661 nsec += ((u64) cycle_delta * mult) >> shift; 1662 1663 ts_delta = ns_to_timespec64(nsec); 1664 sleeptime_injected = true; 1665 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1666 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1667 sleeptime_injected = true; 1668 } 1669 1670 if (sleeptime_injected) 1671 __timekeeping_inject_sleeptime(tk, &ts_delta); 1672 1673 /* Re-base the last cycle value */ 1674 tk->tkr_mono.cycle_last = cycle_now; 1675 tk->tkr_raw.cycle_last = cycle_now; 1676 1677 tk->ntp_error = 0; 1678 timekeeping_suspended = 0; 1679 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1680 write_seqcount_end(&tk_core.seq); 1681 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1682 1683 touch_softlockup_watchdog(); 1684 1685 tick_resume(); 1686 hrtimers_resume(); 1687 } 1688 1689 int timekeeping_suspend(void) 1690 { 1691 struct timekeeper *tk = &tk_core.timekeeper; 1692 unsigned long flags; 1693 struct timespec64 delta, delta_delta; 1694 static struct timespec64 old_delta; 1695 1696 read_persistent_clock64(&timekeeping_suspend_time); 1697 1698 /* 1699 * On some systems the persistent_clock can not be detected at 1700 * timekeeping_init by its return value, so if we see a valid 1701 * value returned, update the persistent_clock_exists flag. 1702 */ 1703 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1704 persistent_clock_exists = true; 1705 1706 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1707 write_seqcount_begin(&tk_core.seq); 1708 timekeeping_forward_now(tk); 1709 timekeeping_suspended = 1; 1710 1711 if (persistent_clock_exists) { 1712 /* 1713 * To avoid drift caused by repeated suspend/resumes, 1714 * which each can add ~1 second drift error, 1715 * try to compensate so the difference in system time 1716 * and persistent_clock time stays close to constant. 1717 */ 1718 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1719 delta_delta = timespec64_sub(delta, old_delta); 1720 if (abs(delta_delta.tv_sec) >= 2) { 1721 /* 1722 * if delta_delta is too large, assume time correction 1723 * has occurred and set old_delta to the current delta. 1724 */ 1725 old_delta = delta; 1726 } else { 1727 /* Otherwise try to adjust old_system to compensate */ 1728 timekeeping_suspend_time = 1729 timespec64_add(timekeeping_suspend_time, delta_delta); 1730 } 1731 } 1732 1733 timekeeping_update(tk, TK_MIRROR); 1734 halt_fast_timekeeper(tk); 1735 write_seqcount_end(&tk_core.seq); 1736 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1737 1738 tick_suspend(); 1739 clocksource_suspend(); 1740 clockevents_suspend(); 1741 1742 return 0; 1743 } 1744 1745 /* sysfs resume/suspend bits for timekeeping */ 1746 static struct syscore_ops timekeeping_syscore_ops = { 1747 .resume = timekeeping_resume, 1748 .suspend = timekeeping_suspend, 1749 }; 1750 1751 static int __init timekeeping_init_ops(void) 1752 { 1753 register_syscore_ops(&timekeeping_syscore_ops); 1754 return 0; 1755 } 1756 device_initcall(timekeeping_init_ops); 1757 1758 /* 1759 * Apply a multiplier adjustment to the timekeeper 1760 */ 1761 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1762 s64 offset, 1763 bool negative, 1764 int adj_scale) 1765 { 1766 s64 interval = tk->cycle_interval; 1767 s32 mult_adj = 1; 1768 1769 if (negative) { 1770 mult_adj = -mult_adj; 1771 interval = -interval; 1772 offset = -offset; 1773 } 1774 mult_adj <<= adj_scale; 1775 interval <<= adj_scale; 1776 offset <<= adj_scale; 1777 1778 /* 1779 * So the following can be confusing. 1780 * 1781 * To keep things simple, lets assume mult_adj == 1 for now. 1782 * 1783 * When mult_adj != 1, remember that the interval and offset values 1784 * have been appropriately scaled so the math is the same. 1785 * 1786 * The basic idea here is that we're increasing the multiplier 1787 * by one, this causes the xtime_interval to be incremented by 1788 * one cycle_interval. This is because: 1789 * xtime_interval = cycle_interval * mult 1790 * So if mult is being incremented by one: 1791 * xtime_interval = cycle_interval * (mult + 1) 1792 * Its the same as: 1793 * xtime_interval = (cycle_interval * mult) + cycle_interval 1794 * Which can be shortened to: 1795 * xtime_interval += cycle_interval 1796 * 1797 * So offset stores the non-accumulated cycles. Thus the current 1798 * time (in shifted nanoseconds) is: 1799 * now = (offset * adj) + xtime_nsec 1800 * Now, even though we're adjusting the clock frequency, we have 1801 * to keep time consistent. In other words, we can't jump back 1802 * in time, and we also want to avoid jumping forward in time. 1803 * 1804 * So given the same offset value, we need the time to be the same 1805 * both before and after the freq adjustment. 1806 * now = (offset * adj_1) + xtime_nsec_1 1807 * now = (offset * adj_2) + xtime_nsec_2 1808 * So: 1809 * (offset * adj_1) + xtime_nsec_1 = 1810 * (offset * adj_2) + xtime_nsec_2 1811 * And we know: 1812 * adj_2 = adj_1 + 1 1813 * So: 1814 * (offset * adj_1) + xtime_nsec_1 = 1815 * (offset * (adj_1+1)) + xtime_nsec_2 1816 * (offset * adj_1) + xtime_nsec_1 = 1817 * (offset * adj_1) + offset + xtime_nsec_2 1818 * Canceling the sides: 1819 * xtime_nsec_1 = offset + xtime_nsec_2 1820 * Which gives us: 1821 * xtime_nsec_2 = xtime_nsec_1 - offset 1822 * Which simplfies to: 1823 * xtime_nsec -= offset 1824 * 1825 * XXX - TODO: Doc ntp_error calculation. 1826 */ 1827 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1828 /* NTP adjustment caused clocksource mult overflow */ 1829 WARN_ON_ONCE(1); 1830 return; 1831 } 1832 1833 tk->tkr_mono.mult += mult_adj; 1834 tk->xtime_interval += interval; 1835 tk->tkr_mono.xtime_nsec -= offset; 1836 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1837 } 1838 1839 /* 1840 * Calculate the multiplier adjustment needed to match the frequency 1841 * specified by NTP 1842 */ 1843 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1844 s64 offset) 1845 { 1846 s64 interval = tk->cycle_interval; 1847 s64 xinterval = tk->xtime_interval; 1848 u32 base = tk->tkr_mono.clock->mult; 1849 u32 max = tk->tkr_mono.clock->maxadj; 1850 u32 cur_adj = tk->tkr_mono.mult; 1851 s64 tick_error; 1852 bool negative; 1853 u32 adj_scale; 1854 1855 /* Remove any current error adj from freq calculation */ 1856 if (tk->ntp_err_mult) 1857 xinterval -= tk->cycle_interval; 1858 1859 tk->ntp_tick = ntp_tick_length(); 1860 1861 /* Calculate current error per tick */ 1862 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1863 tick_error -= (xinterval + tk->xtime_remainder); 1864 1865 /* Don't worry about correcting it if its small */ 1866 if (likely((tick_error >= 0) && (tick_error <= interval))) 1867 return; 1868 1869 /* preserve the direction of correction */ 1870 negative = (tick_error < 0); 1871 1872 /* If any adjustment would pass the max, just return */ 1873 if (negative && (cur_adj - 1) <= (base - max)) 1874 return; 1875 if (!negative && (cur_adj + 1) >= (base + max)) 1876 return; 1877 /* 1878 * Sort out the magnitude of the correction, but 1879 * avoid making so large a correction that we go 1880 * over the max adjustment. 1881 */ 1882 adj_scale = 0; 1883 tick_error = abs(tick_error); 1884 while (tick_error > interval) { 1885 u32 adj = 1 << (adj_scale + 1); 1886 1887 /* Check if adjustment gets us within 1 unit from the max */ 1888 if (negative && (cur_adj - adj) <= (base - max)) 1889 break; 1890 if (!negative && (cur_adj + adj) >= (base + max)) 1891 break; 1892 1893 adj_scale++; 1894 tick_error >>= 1; 1895 } 1896 1897 /* scale the corrections */ 1898 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1899 } 1900 1901 /* 1902 * Adjust the timekeeper's multiplier to the correct frequency 1903 * and also to reduce the accumulated error value. 1904 */ 1905 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1906 { 1907 /* Correct for the current frequency error */ 1908 timekeeping_freqadjust(tk, offset); 1909 1910 /* Next make a small adjustment to fix any cumulative error */ 1911 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1912 tk->ntp_err_mult = 1; 1913 timekeeping_apply_adjustment(tk, offset, 0, 0); 1914 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1915 /* Undo any existing error adjustment */ 1916 timekeeping_apply_adjustment(tk, offset, 1, 0); 1917 tk->ntp_err_mult = 0; 1918 } 1919 1920 if (unlikely(tk->tkr_mono.clock->maxadj && 1921 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1922 > tk->tkr_mono.clock->maxadj))) { 1923 printk_once(KERN_WARNING 1924 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1925 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1926 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1927 } 1928 1929 /* 1930 * It may be possible that when we entered this function, xtime_nsec 1931 * was very small. Further, if we're slightly speeding the clocksource 1932 * in the code above, its possible the required corrective factor to 1933 * xtime_nsec could cause it to underflow. 1934 * 1935 * Now, since we already accumulated the second, cannot simply roll 1936 * the accumulated second back, since the NTP subsystem has been 1937 * notified via second_overflow. So instead we push xtime_nsec forward 1938 * by the amount we underflowed, and add that amount into the error. 1939 * 1940 * We'll correct this error next time through this function, when 1941 * xtime_nsec is not as small. 1942 */ 1943 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1944 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1945 tk->tkr_mono.xtime_nsec = 0; 1946 tk->ntp_error += neg << tk->ntp_error_shift; 1947 } 1948 } 1949 1950 /** 1951 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1952 * 1953 * Helper function that accumulates the nsecs greater than a second 1954 * from the xtime_nsec field to the xtime_secs field. 1955 * It also calls into the NTP code to handle leapsecond processing. 1956 * 1957 */ 1958 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1959 { 1960 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1961 unsigned int clock_set = 0; 1962 1963 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1964 int leap; 1965 1966 tk->tkr_mono.xtime_nsec -= nsecps; 1967 tk->xtime_sec++; 1968 1969 /* Figure out if its a leap sec and apply if needed */ 1970 leap = second_overflow(tk->xtime_sec); 1971 if (unlikely(leap)) { 1972 struct timespec64 ts; 1973 1974 tk->xtime_sec += leap; 1975 1976 ts.tv_sec = leap; 1977 ts.tv_nsec = 0; 1978 tk_set_wall_to_mono(tk, 1979 timespec64_sub(tk->wall_to_monotonic, ts)); 1980 1981 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1982 1983 clock_set = TK_CLOCK_WAS_SET; 1984 } 1985 } 1986 return clock_set; 1987 } 1988 1989 /** 1990 * logarithmic_accumulation - shifted accumulation of cycles 1991 * 1992 * This functions accumulates a shifted interval of cycles into 1993 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1994 * loop. 1995 * 1996 * Returns the unconsumed cycles. 1997 */ 1998 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1999 u32 shift, 2000 unsigned int *clock_set) 2001 { 2002 cycle_t interval = tk->cycle_interval << shift; 2003 u64 raw_nsecs; 2004 2005 /* If the offset is smaller than a shifted interval, do nothing */ 2006 if (offset < interval) 2007 return offset; 2008 2009 /* Accumulate one shifted interval */ 2010 offset -= interval; 2011 tk->tkr_mono.cycle_last += interval; 2012 tk->tkr_raw.cycle_last += interval; 2013 2014 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2015 *clock_set |= accumulate_nsecs_to_secs(tk); 2016 2017 /* Accumulate raw time */ 2018 raw_nsecs = (u64)tk->raw_interval << shift; 2019 raw_nsecs += tk->raw_time.tv_nsec; 2020 if (raw_nsecs >= NSEC_PER_SEC) { 2021 u64 raw_secs = raw_nsecs; 2022 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 2023 tk->raw_time.tv_sec += raw_secs; 2024 } 2025 tk->raw_time.tv_nsec = raw_nsecs; 2026 2027 /* Accumulate error between NTP and clock interval */ 2028 tk->ntp_error += tk->ntp_tick << shift; 2029 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2030 (tk->ntp_error_shift + shift); 2031 2032 return offset; 2033 } 2034 2035 /** 2036 * update_wall_time - Uses the current clocksource to increment the wall time 2037 * 2038 */ 2039 void update_wall_time(void) 2040 { 2041 struct timekeeper *real_tk = &tk_core.timekeeper; 2042 struct timekeeper *tk = &shadow_timekeeper; 2043 cycle_t offset; 2044 int shift = 0, maxshift; 2045 unsigned int clock_set = 0; 2046 unsigned long flags; 2047 2048 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2049 2050 /* Make sure we're fully resumed: */ 2051 if (unlikely(timekeeping_suspended)) 2052 goto out; 2053 2054 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2055 offset = real_tk->cycle_interval; 2056 #else 2057 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 2058 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2059 #endif 2060 2061 /* Check if there's really nothing to do */ 2062 if (offset < real_tk->cycle_interval) 2063 goto out; 2064 2065 /* Do some additional sanity checking */ 2066 timekeeping_check_update(real_tk, offset); 2067 2068 /* 2069 * With NO_HZ we may have to accumulate many cycle_intervals 2070 * (think "ticks") worth of time at once. To do this efficiently, 2071 * we calculate the largest doubling multiple of cycle_intervals 2072 * that is smaller than the offset. We then accumulate that 2073 * chunk in one go, and then try to consume the next smaller 2074 * doubled multiple. 2075 */ 2076 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2077 shift = max(0, shift); 2078 /* Bound shift to one less than what overflows tick_length */ 2079 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2080 shift = min(shift, maxshift); 2081 while (offset >= tk->cycle_interval) { 2082 offset = logarithmic_accumulation(tk, offset, shift, 2083 &clock_set); 2084 if (offset < tk->cycle_interval<<shift) 2085 shift--; 2086 } 2087 2088 /* correct the clock when NTP error is too big */ 2089 timekeeping_adjust(tk, offset); 2090 2091 /* 2092 * XXX This can be killed once everyone converts 2093 * to the new update_vsyscall. 2094 */ 2095 old_vsyscall_fixup(tk); 2096 2097 /* 2098 * Finally, make sure that after the rounding 2099 * xtime_nsec isn't larger than NSEC_PER_SEC 2100 */ 2101 clock_set |= accumulate_nsecs_to_secs(tk); 2102 2103 write_seqcount_begin(&tk_core.seq); 2104 /* 2105 * Update the real timekeeper. 2106 * 2107 * We could avoid this memcpy by switching pointers, but that 2108 * requires changes to all other timekeeper usage sites as 2109 * well, i.e. move the timekeeper pointer getter into the 2110 * spinlocked/seqcount protected sections. And we trade this 2111 * memcpy under the tk_core.seq against one before we start 2112 * updating. 2113 */ 2114 timekeeping_update(tk, clock_set); 2115 memcpy(real_tk, tk, sizeof(*tk)); 2116 /* The memcpy must come last. Do not put anything here! */ 2117 write_seqcount_end(&tk_core.seq); 2118 out: 2119 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2120 if (clock_set) 2121 /* Have to call _delayed version, since in irq context*/ 2122 clock_was_set_delayed(); 2123 } 2124 2125 /** 2126 * getboottime64 - Return the real time of system boot. 2127 * @ts: pointer to the timespec64 to be set 2128 * 2129 * Returns the wall-time of boot in a timespec64. 2130 * 2131 * This is based on the wall_to_monotonic offset and the total suspend 2132 * time. Calls to settimeofday will affect the value returned (which 2133 * basically means that however wrong your real time clock is at boot time, 2134 * you get the right time here). 2135 */ 2136 void getboottime64(struct timespec64 *ts) 2137 { 2138 struct timekeeper *tk = &tk_core.timekeeper; 2139 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2140 2141 *ts = ktime_to_timespec64(t); 2142 } 2143 EXPORT_SYMBOL_GPL(getboottime64); 2144 2145 unsigned long get_seconds(void) 2146 { 2147 struct timekeeper *tk = &tk_core.timekeeper; 2148 2149 return tk->xtime_sec; 2150 } 2151 EXPORT_SYMBOL(get_seconds); 2152 2153 struct timespec __current_kernel_time(void) 2154 { 2155 struct timekeeper *tk = &tk_core.timekeeper; 2156 2157 return timespec64_to_timespec(tk_xtime(tk)); 2158 } 2159 2160 struct timespec64 current_kernel_time64(void) 2161 { 2162 struct timekeeper *tk = &tk_core.timekeeper; 2163 struct timespec64 now; 2164 unsigned long seq; 2165 2166 do { 2167 seq = read_seqcount_begin(&tk_core.seq); 2168 2169 now = tk_xtime(tk); 2170 } while (read_seqcount_retry(&tk_core.seq, seq)); 2171 2172 return now; 2173 } 2174 EXPORT_SYMBOL(current_kernel_time64); 2175 2176 struct timespec64 get_monotonic_coarse64(void) 2177 { 2178 struct timekeeper *tk = &tk_core.timekeeper; 2179 struct timespec64 now, mono; 2180 unsigned long seq; 2181 2182 do { 2183 seq = read_seqcount_begin(&tk_core.seq); 2184 2185 now = tk_xtime(tk); 2186 mono = tk->wall_to_monotonic; 2187 } while (read_seqcount_retry(&tk_core.seq, seq)); 2188 2189 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2190 now.tv_nsec + mono.tv_nsec); 2191 2192 return now; 2193 } 2194 EXPORT_SYMBOL(get_monotonic_coarse64); 2195 2196 /* 2197 * Must hold jiffies_lock 2198 */ 2199 void do_timer(unsigned long ticks) 2200 { 2201 jiffies_64 += ticks; 2202 calc_global_load(ticks); 2203 } 2204 2205 /** 2206 * ktime_get_update_offsets_now - hrtimer helper 2207 * @cwsseq: pointer to check and store the clock was set sequence number 2208 * @offs_real: pointer to storage for monotonic -> realtime offset 2209 * @offs_boot: pointer to storage for monotonic -> boottime offset 2210 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2211 * 2212 * Returns current monotonic time and updates the offsets if the 2213 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2214 * different. 2215 * 2216 * Called from hrtimer_interrupt() or retrigger_next_event() 2217 */ 2218 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2219 ktime_t *offs_boot, ktime_t *offs_tai) 2220 { 2221 struct timekeeper *tk = &tk_core.timekeeper; 2222 unsigned int seq; 2223 ktime_t base; 2224 u64 nsecs; 2225 2226 do { 2227 seq = read_seqcount_begin(&tk_core.seq); 2228 2229 base = tk->tkr_mono.base; 2230 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2231 base = ktime_add_ns(base, nsecs); 2232 2233 if (*cwsseq != tk->clock_was_set_seq) { 2234 *cwsseq = tk->clock_was_set_seq; 2235 *offs_real = tk->offs_real; 2236 *offs_boot = tk->offs_boot; 2237 *offs_tai = tk->offs_tai; 2238 } 2239 2240 /* Handle leapsecond insertion adjustments */ 2241 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 2242 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2243 2244 } while (read_seqcount_retry(&tk_core.seq, seq)); 2245 2246 return base; 2247 } 2248 2249 /** 2250 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2251 */ 2252 int do_adjtimex(struct timex *txc) 2253 { 2254 struct timekeeper *tk = &tk_core.timekeeper; 2255 unsigned long flags; 2256 struct timespec64 ts; 2257 s32 orig_tai, tai; 2258 int ret; 2259 2260 /* Validate the data before disabling interrupts */ 2261 ret = ntp_validate_timex(txc); 2262 if (ret) 2263 return ret; 2264 2265 if (txc->modes & ADJ_SETOFFSET) { 2266 struct timespec delta; 2267 delta.tv_sec = txc->time.tv_sec; 2268 delta.tv_nsec = txc->time.tv_usec; 2269 if (!(txc->modes & ADJ_NANO)) 2270 delta.tv_nsec *= 1000; 2271 ret = timekeeping_inject_offset(&delta); 2272 if (ret) 2273 return ret; 2274 } 2275 2276 getnstimeofday64(&ts); 2277 2278 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2279 write_seqcount_begin(&tk_core.seq); 2280 2281 orig_tai = tai = tk->tai_offset; 2282 ret = __do_adjtimex(txc, &ts, &tai); 2283 2284 if (tai != orig_tai) { 2285 __timekeeping_set_tai_offset(tk, tai); 2286 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2287 } 2288 tk_update_leap_state(tk); 2289 2290 write_seqcount_end(&tk_core.seq); 2291 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2292 2293 if (tai != orig_tai) 2294 clock_was_set(); 2295 2296 ntp_notify_cmos_timer(); 2297 2298 return ret; 2299 } 2300 2301 #ifdef CONFIG_NTP_PPS 2302 /** 2303 * hardpps() - Accessor function to NTP __hardpps function 2304 */ 2305 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2306 { 2307 unsigned long flags; 2308 2309 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2310 write_seqcount_begin(&tk_core.seq); 2311 2312 __hardpps(phase_ts, raw_ts); 2313 2314 write_seqcount_end(&tk_core.seq); 2315 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2316 } 2317 EXPORT_SYMBOL(hardpps); 2318 #endif 2319 2320 /** 2321 * xtime_update() - advances the timekeeping infrastructure 2322 * @ticks: number of ticks, that have elapsed since the last call. 2323 * 2324 * Must be called with interrupts disabled. 2325 */ 2326 void xtime_update(unsigned long ticks) 2327 { 2328 write_seqlock(&jiffies_lock); 2329 do_timer(ticks); 2330 write_sequnlock(&jiffies_lock); 2331 update_wall_time(); 2332 } 2333