xref: /openbmc/linux/kernel/time/timekeeping.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/sysdev.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* The shift value of the current clocksource. */
29 	int	shift;
30 
31 	/* Number of clock cycles in one NTP interval. */
32 	cycle_t cycle_interval;
33 	/* Number of clock shifted nano seconds in one NTP interval. */
34 	u64	xtime_interval;
35 	/* shifted nano seconds left over when rounding cycle_interval */
36 	s64	xtime_remainder;
37 	/* Raw nano seconds accumulated per NTP interval. */
38 	u32	raw_interval;
39 
40 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 	u64	xtime_nsec;
42 	/* Difference between accumulated time and NTP time in ntp
43 	 * shifted nano seconds. */
44 	s64	ntp_error;
45 	/* Shift conversion between clock shifted nano seconds and
46 	 * ntp shifted nano seconds. */
47 	int	ntp_error_shift;
48 	/* NTP adjusted clock multiplier */
49 	u32	mult;
50 };
51 
52 struct timekeeper timekeeper;
53 
54 /**
55  * timekeeper_setup_internals - Set up internals to use clocksource clock.
56  *
57  * @clock:		Pointer to clocksource.
58  *
59  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60  * pair and interval request.
61  *
62  * Unless you're the timekeeping code, you should not be using this!
63  */
64 static void timekeeper_setup_internals(struct clocksource *clock)
65 {
66 	cycle_t interval;
67 	u64 tmp, ntpinterval;
68 
69 	timekeeper.clock = clock;
70 	clock->cycle_last = clock->read(clock);
71 
72 	/* Do the ns -> cycle conversion first, using original mult */
73 	tmp = NTP_INTERVAL_LENGTH;
74 	tmp <<= clock->shift;
75 	ntpinterval = tmp;
76 	tmp += clock->mult/2;
77 	do_div(tmp, clock->mult);
78 	if (tmp == 0)
79 		tmp = 1;
80 
81 	interval = (cycle_t) tmp;
82 	timekeeper.cycle_interval = interval;
83 
84 	/* Go back from cycles -> shifted ns */
85 	timekeeper.xtime_interval = (u64) interval * clock->mult;
86 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 	timekeeper.raw_interval =
88 		((u64) interval * clock->mult) >> clock->shift;
89 
90 	timekeeper.xtime_nsec = 0;
91 	timekeeper.shift = clock->shift;
92 
93 	timekeeper.ntp_error = 0;
94 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 
96 	/*
97 	 * The timekeeper keeps its own mult values for the currently
98 	 * active clocksource. These value will be adjusted via NTP
99 	 * to counteract clock drifting.
100 	 */
101 	timekeeper.mult = clock->mult;
102 }
103 
104 /* Timekeeper helper functions. */
105 static inline s64 timekeeping_get_ns(void)
106 {
107 	cycle_t cycle_now, cycle_delta;
108 	struct clocksource *clock;
109 
110 	/* read clocksource: */
111 	clock = timekeeper.clock;
112 	cycle_now = clock->read(clock);
113 
114 	/* calculate the delta since the last update_wall_time: */
115 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
116 
117 	/* return delta convert to nanoseconds using ntp adjusted mult. */
118 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 				  timekeeper.shift);
120 }
121 
122 static inline s64 timekeeping_get_ns_raw(void)
123 {
124 	cycle_t cycle_now, cycle_delta;
125 	struct clocksource *clock;
126 
127 	/* read clocksource: */
128 	clock = timekeeper.clock;
129 	cycle_now = clock->read(clock);
130 
131 	/* calculate the delta since the last update_wall_time: */
132 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
133 
134 	/* return delta convert to nanoseconds using ntp adjusted mult. */
135 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
136 }
137 
138 /*
139  * This read-write spinlock protects us from races in SMP while
140  * playing with xtime.
141  */
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 
144 
145 /*
146  * The current time
147  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
149  * at zero at system boot time, so wall_to_monotonic will be negative,
150  * however, we will ALWAYS keep the tv_nsec part positive so we can use
151  * the usual normalization.
152  *
153  * wall_to_monotonic is moved after resume from suspend for the monotonic
154  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155  * to get the real boot based time offset.
156  *
157  * - wall_to_monotonic is no longer the boot time, getboottime must be
158  * used instead.
159  */
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
163 
164 /*
165  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
166  */
167 struct timespec raw_time;
168 
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
171 
172 /* must hold xtime_lock */
173 void timekeeping_leap_insert(int leapsecond)
174 {
175 	xtime.tv_sec += leapsecond;
176 	wall_to_monotonic.tv_sec -= leapsecond;
177 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 			timekeeper.mult);
179 }
180 
181 /**
182  * timekeeping_forward_now - update clock to the current time
183  *
184  * Forward the current clock to update its state since the last call to
185  * update_wall_time(). This is useful before significant clock changes,
186  * as it avoids having to deal with this time offset explicitly.
187  */
188 static void timekeeping_forward_now(void)
189 {
190 	cycle_t cycle_now, cycle_delta;
191 	struct clocksource *clock;
192 	s64 nsec;
193 
194 	clock = timekeeper.clock;
195 	cycle_now = clock->read(clock);
196 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 	clock->cycle_last = cycle_now;
198 
199 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 				  timekeeper.shift);
201 
202 	/* If arch requires, add in gettimeoffset() */
203 	nsec += arch_gettimeoffset();
204 
205 	timespec_add_ns(&xtime, nsec);
206 
207 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 	timespec_add_ns(&raw_time, nsec);
209 }
210 
211 /**
212  * getnstimeofday - Returns the time of day in a timespec
213  * @ts:		pointer to the timespec to be set
214  *
215  * Returns the time of day in a timespec.
216  */
217 void getnstimeofday(struct timespec *ts)
218 {
219 	unsigned long seq;
220 	s64 nsecs;
221 
222 	WARN_ON(timekeeping_suspended);
223 
224 	do {
225 		seq = read_seqbegin(&xtime_lock);
226 
227 		*ts = xtime;
228 		nsecs = timekeeping_get_ns();
229 
230 		/* If arch requires, add in gettimeoffset() */
231 		nsecs += arch_gettimeoffset();
232 
233 	} while (read_seqretry(&xtime_lock, seq));
234 
235 	timespec_add_ns(ts, nsecs);
236 }
237 
238 EXPORT_SYMBOL(getnstimeofday);
239 
240 ktime_t ktime_get(void)
241 {
242 	unsigned int seq;
243 	s64 secs, nsecs;
244 
245 	WARN_ON(timekeeping_suspended);
246 
247 	do {
248 		seq = read_seqbegin(&xtime_lock);
249 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 		nsecs += timekeeping_get_ns();
252 
253 	} while (read_seqretry(&xtime_lock, seq));
254 	/*
255 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
256 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
257 	 */
258 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
259 }
260 EXPORT_SYMBOL_GPL(ktime_get);
261 
262 /**
263  * ktime_get_ts - get the monotonic clock in timespec format
264  * @ts:		pointer to timespec variable
265  *
266  * The function calculates the monotonic clock from the realtime
267  * clock and the wall_to_monotonic offset and stores the result
268  * in normalized timespec format in the variable pointed to by @ts.
269  */
270 void ktime_get_ts(struct timespec *ts)
271 {
272 	struct timespec tomono;
273 	unsigned int seq;
274 	s64 nsecs;
275 
276 	WARN_ON(timekeeping_suspended);
277 
278 	do {
279 		seq = read_seqbegin(&xtime_lock);
280 		*ts = xtime;
281 		tomono = wall_to_monotonic;
282 		nsecs = timekeeping_get_ns();
283 
284 	} while (read_seqretry(&xtime_lock, seq));
285 
286 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
287 				ts->tv_nsec + tomono.tv_nsec + nsecs);
288 }
289 EXPORT_SYMBOL_GPL(ktime_get_ts);
290 
291 /**
292  * do_gettimeofday - Returns the time of day in a timeval
293  * @tv:		pointer to the timeval to be set
294  *
295  * NOTE: Users should be converted to using getnstimeofday()
296  */
297 void do_gettimeofday(struct timeval *tv)
298 {
299 	struct timespec now;
300 
301 	getnstimeofday(&now);
302 	tv->tv_sec = now.tv_sec;
303 	tv->tv_usec = now.tv_nsec/1000;
304 }
305 
306 EXPORT_SYMBOL(do_gettimeofday);
307 /**
308  * do_settimeofday - Sets the time of day
309  * @tv:		pointer to the timespec variable containing the new time
310  *
311  * Sets the time of day to the new time and update NTP and notify hrtimers
312  */
313 int do_settimeofday(struct timespec *tv)
314 {
315 	struct timespec ts_delta;
316 	unsigned long flags;
317 
318 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
319 		return -EINVAL;
320 
321 	write_seqlock_irqsave(&xtime_lock, flags);
322 
323 	timekeeping_forward_now();
324 
325 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
326 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
327 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
328 
329 	xtime = *tv;
330 
331 	timekeeper.ntp_error = 0;
332 	ntp_clear();
333 
334 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
335 				timekeeper.mult);
336 
337 	write_sequnlock_irqrestore(&xtime_lock, flags);
338 
339 	/* signal hrtimers about time change */
340 	clock_was_set();
341 
342 	return 0;
343 }
344 
345 EXPORT_SYMBOL(do_settimeofday);
346 
347 /**
348  * change_clocksource - Swaps clocksources if a new one is available
349  *
350  * Accumulates current time interval and initializes new clocksource
351  */
352 static int change_clocksource(void *data)
353 {
354 	struct clocksource *new, *old;
355 
356 	new = (struct clocksource *) data;
357 
358 	timekeeping_forward_now();
359 	if (!new->enable || new->enable(new) == 0) {
360 		old = timekeeper.clock;
361 		timekeeper_setup_internals(new);
362 		if (old->disable)
363 			old->disable(old);
364 	}
365 	return 0;
366 }
367 
368 /**
369  * timekeeping_notify - Install a new clock source
370  * @clock:		pointer to the clock source
371  *
372  * This function is called from clocksource.c after a new, better clock
373  * source has been registered. The caller holds the clocksource_mutex.
374  */
375 void timekeeping_notify(struct clocksource *clock)
376 {
377 	if (timekeeper.clock == clock)
378 		return;
379 	stop_machine(change_clocksource, clock, NULL);
380 	tick_clock_notify();
381 }
382 
383 /**
384  * ktime_get_real - get the real (wall-) time in ktime_t format
385  *
386  * returns the time in ktime_t format
387  */
388 ktime_t ktime_get_real(void)
389 {
390 	struct timespec now;
391 
392 	getnstimeofday(&now);
393 
394 	return timespec_to_ktime(now);
395 }
396 EXPORT_SYMBOL_GPL(ktime_get_real);
397 
398 /**
399  * getrawmonotonic - Returns the raw monotonic time in a timespec
400  * @ts:		pointer to the timespec to be set
401  *
402  * Returns the raw monotonic time (completely un-modified by ntp)
403  */
404 void getrawmonotonic(struct timespec *ts)
405 {
406 	unsigned long seq;
407 	s64 nsecs;
408 
409 	do {
410 		seq = read_seqbegin(&xtime_lock);
411 		nsecs = timekeeping_get_ns_raw();
412 		*ts = raw_time;
413 
414 	} while (read_seqretry(&xtime_lock, seq));
415 
416 	timespec_add_ns(ts, nsecs);
417 }
418 EXPORT_SYMBOL(getrawmonotonic);
419 
420 
421 /**
422  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
423  */
424 int timekeeping_valid_for_hres(void)
425 {
426 	unsigned long seq;
427 	int ret;
428 
429 	do {
430 		seq = read_seqbegin(&xtime_lock);
431 
432 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
433 
434 	} while (read_seqretry(&xtime_lock, seq));
435 
436 	return ret;
437 }
438 
439 /**
440  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
441  *
442  * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
443  * ensure that the clocksource does not change!
444  */
445 u64 timekeeping_max_deferment(void)
446 {
447 	return timekeeper.clock->max_idle_ns;
448 }
449 
450 /**
451  * read_persistent_clock -  Return time from the persistent clock.
452  *
453  * Weak dummy function for arches that do not yet support it.
454  * Reads the time from the battery backed persistent clock.
455  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
456  *
457  *  XXX - Do be sure to remove it once all arches implement it.
458  */
459 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
460 {
461 	ts->tv_sec = 0;
462 	ts->tv_nsec = 0;
463 }
464 
465 /**
466  * read_boot_clock -  Return time of the system start.
467  *
468  * Weak dummy function for arches that do not yet support it.
469  * Function to read the exact time the system has been started.
470  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
471  *
472  *  XXX - Do be sure to remove it once all arches implement it.
473  */
474 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
475 {
476 	ts->tv_sec = 0;
477 	ts->tv_nsec = 0;
478 }
479 
480 /*
481  * timekeeping_init - Initializes the clocksource and common timekeeping values
482  */
483 void __init timekeeping_init(void)
484 {
485 	struct clocksource *clock;
486 	unsigned long flags;
487 	struct timespec now, boot;
488 
489 	read_persistent_clock(&now);
490 	read_boot_clock(&boot);
491 
492 	write_seqlock_irqsave(&xtime_lock, flags);
493 
494 	ntp_init();
495 
496 	clock = clocksource_default_clock();
497 	if (clock->enable)
498 		clock->enable(clock);
499 	timekeeper_setup_internals(clock);
500 
501 	xtime.tv_sec = now.tv_sec;
502 	xtime.tv_nsec = now.tv_nsec;
503 	raw_time.tv_sec = 0;
504 	raw_time.tv_nsec = 0;
505 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
506 		boot.tv_sec = xtime.tv_sec;
507 		boot.tv_nsec = xtime.tv_nsec;
508 	}
509 	set_normalized_timespec(&wall_to_monotonic,
510 				-boot.tv_sec, -boot.tv_nsec);
511 	total_sleep_time.tv_sec = 0;
512 	total_sleep_time.tv_nsec = 0;
513 	write_sequnlock_irqrestore(&xtime_lock, flags);
514 }
515 
516 /* time in seconds when suspend began */
517 static struct timespec timekeeping_suspend_time;
518 
519 /**
520  * timekeeping_resume - Resumes the generic timekeeping subsystem.
521  * @dev:	unused
522  *
523  * This is for the generic clocksource timekeeping.
524  * xtime/wall_to_monotonic/jiffies/etc are
525  * still managed by arch specific suspend/resume code.
526  */
527 static int timekeeping_resume(struct sys_device *dev)
528 {
529 	unsigned long flags;
530 	struct timespec ts;
531 
532 	read_persistent_clock(&ts);
533 
534 	clocksource_resume();
535 
536 	write_seqlock_irqsave(&xtime_lock, flags);
537 
538 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
539 		ts = timespec_sub(ts, timekeeping_suspend_time);
540 		xtime = timespec_add(xtime, ts);
541 		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
542 		total_sleep_time = timespec_add(total_sleep_time, ts);
543 	}
544 	/* re-base the last cycle value */
545 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
546 	timekeeper.ntp_error = 0;
547 	timekeeping_suspended = 0;
548 	write_sequnlock_irqrestore(&xtime_lock, flags);
549 
550 	touch_softlockup_watchdog();
551 
552 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
553 
554 	/* Resume hrtimers */
555 	hres_timers_resume();
556 
557 	return 0;
558 }
559 
560 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
561 {
562 	unsigned long flags;
563 
564 	read_persistent_clock(&timekeeping_suspend_time);
565 
566 	write_seqlock_irqsave(&xtime_lock, flags);
567 	timekeeping_forward_now();
568 	timekeeping_suspended = 1;
569 	write_sequnlock_irqrestore(&xtime_lock, flags);
570 
571 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
572 	clocksource_suspend();
573 
574 	return 0;
575 }
576 
577 /* sysfs resume/suspend bits for timekeeping */
578 static struct sysdev_class timekeeping_sysclass = {
579 	.name		= "timekeeping",
580 	.resume		= timekeeping_resume,
581 	.suspend	= timekeeping_suspend,
582 };
583 
584 static struct sys_device device_timer = {
585 	.id		= 0,
586 	.cls		= &timekeeping_sysclass,
587 };
588 
589 static int __init timekeeping_init_device(void)
590 {
591 	int error = sysdev_class_register(&timekeeping_sysclass);
592 	if (!error)
593 		error = sysdev_register(&device_timer);
594 	return error;
595 }
596 
597 device_initcall(timekeeping_init_device);
598 
599 /*
600  * If the error is already larger, we look ahead even further
601  * to compensate for late or lost adjustments.
602  */
603 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
604 						 s64 *offset)
605 {
606 	s64 tick_error, i;
607 	u32 look_ahead, adj;
608 	s32 error2, mult;
609 
610 	/*
611 	 * Use the current error value to determine how much to look ahead.
612 	 * The larger the error the slower we adjust for it to avoid problems
613 	 * with losing too many ticks, otherwise we would overadjust and
614 	 * produce an even larger error.  The smaller the adjustment the
615 	 * faster we try to adjust for it, as lost ticks can do less harm
616 	 * here.  This is tuned so that an error of about 1 msec is adjusted
617 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
618 	 */
619 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
620 	error2 = abs(error2);
621 	for (look_ahead = 0; error2 > 0; look_ahead++)
622 		error2 >>= 2;
623 
624 	/*
625 	 * Now calculate the error in (1 << look_ahead) ticks, but first
626 	 * remove the single look ahead already included in the error.
627 	 */
628 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
629 	tick_error -= timekeeper.xtime_interval >> 1;
630 	error = ((error - tick_error) >> look_ahead) + tick_error;
631 
632 	/* Finally calculate the adjustment shift value.  */
633 	i = *interval;
634 	mult = 1;
635 	if (error < 0) {
636 		error = -error;
637 		*interval = -*interval;
638 		*offset = -*offset;
639 		mult = -1;
640 	}
641 	for (adj = 0; error > i; adj++)
642 		error >>= 1;
643 
644 	*interval <<= adj;
645 	*offset <<= adj;
646 	return mult << adj;
647 }
648 
649 /*
650  * Adjust the multiplier to reduce the error value,
651  * this is optimized for the most common adjustments of -1,0,1,
652  * for other values we can do a bit more work.
653  */
654 static void timekeeping_adjust(s64 offset)
655 {
656 	s64 error, interval = timekeeper.cycle_interval;
657 	int adj;
658 
659 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
660 	if (error > interval) {
661 		error >>= 2;
662 		if (likely(error <= interval))
663 			adj = 1;
664 		else
665 			adj = timekeeping_bigadjust(error, &interval, &offset);
666 	} else if (error < -interval) {
667 		error >>= 2;
668 		if (likely(error >= -interval)) {
669 			adj = -1;
670 			interval = -interval;
671 			offset = -offset;
672 		} else
673 			adj = timekeeping_bigadjust(error, &interval, &offset);
674 	} else
675 		return;
676 
677 	timekeeper.mult += adj;
678 	timekeeper.xtime_interval += interval;
679 	timekeeper.xtime_nsec -= offset;
680 	timekeeper.ntp_error -= (interval - offset) <<
681 				timekeeper.ntp_error_shift;
682 }
683 
684 
685 /**
686  * logarithmic_accumulation - shifted accumulation of cycles
687  *
688  * This functions accumulates a shifted interval of cycles into
689  * into a shifted interval nanoseconds. Allows for O(log) accumulation
690  * loop.
691  *
692  * Returns the unconsumed cycles.
693  */
694 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
695 {
696 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
697 	u64 raw_nsecs;
698 
699 	/* If the offset is smaller then a shifted interval, do nothing */
700 	if (offset < timekeeper.cycle_interval<<shift)
701 		return offset;
702 
703 	/* Accumulate one shifted interval */
704 	offset -= timekeeper.cycle_interval << shift;
705 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
706 
707 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
708 	while (timekeeper.xtime_nsec >= nsecps) {
709 		timekeeper.xtime_nsec -= nsecps;
710 		xtime.tv_sec++;
711 		second_overflow();
712 	}
713 
714 	/* Accumulate raw time */
715 	raw_nsecs = timekeeper.raw_interval << shift;
716 	raw_nsecs += raw_time.tv_nsec;
717 	if (raw_nsecs >= NSEC_PER_SEC) {
718 		u64 raw_secs = raw_nsecs;
719 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
720 		raw_time.tv_sec += raw_secs;
721 	}
722 	raw_time.tv_nsec = raw_nsecs;
723 
724 	/* Accumulate error between NTP and clock interval */
725 	timekeeper.ntp_error += tick_length << shift;
726 	timekeeper.ntp_error -=
727 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
728 				(timekeeper.ntp_error_shift + shift);
729 
730 	return offset;
731 }
732 
733 
734 /**
735  * update_wall_time - Uses the current clocksource to increment the wall time
736  *
737  * Called from the timer interrupt, must hold a write on xtime_lock.
738  */
739 void update_wall_time(void)
740 {
741 	struct clocksource *clock;
742 	cycle_t offset;
743 	int shift = 0, maxshift;
744 
745 	/* Make sure we're fully resumed: */
746 	if (unlikely(timekeeping_suspended))
747 		return;
748 
749 	clock = timekeeper.clock;
750 
751 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
752 	offset = timekeeper.cycle_interval;
753 #else
754 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
755 #endif
756 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
757 
758 	/*
759 	 * With NO_HZ we may have to accumulate many cycle_intervals
760 	 * (think "ticks") worth of time at once. To do this efficiently,
761 	 * we calculate the largest doubling multiple of cycle_intervals
762 	 * that is smaller then the offset. We then accumulate that
763 	 * chunk in one go, and then try to consume the next smaller
764 	 * doubled multiple.
765 	 */
766 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
767 	shift = max(0, shift);
768 	/* Bound shift to one less then what overflows tick_length */
769 	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
770 	shift = min(shift, maxshift);
771 	while (offset >= timekeeper.cycle_interval) {
772 		offset = logarithmic_accumulation(offset, shift);
773 		if(offset < timekeeper.cycle_interval<<shift)
774 			shift--;
775 	}
776 
777 	/* correct the clock when NTP error is too big */
778 	timekeeping_adjust(offset);
779 
780 	/*
781 	 * Since in the loop above, we accumulate any amount of time
782 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
783 	 * xtime_nsec to be fairly small after the loop. Further, if we're
784 	 * slightly speeding the clocksource up in timekeeping_adjust(),
785 	 * its possible the required corrective factor to xtime_nsec could
786 	 * cause it to underflow.
787 	 *
788 	 * Now, we cannot simply roll the accumulated second back, since
789 	 * the NTP subsystem has been notified via second_overflow. So
790 	 * instead we push xtime_nsec forward by the amount we underflowed,
791 	 * and add that amount into the error.
792 	 *
793 	 * We'll correct this error next time through this function, when
794 	 * xtime_nsec is not as small.
795 	 */
796 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
797 		s64 neg = -(s64)timekeeper.xtime_nsec;
798 		timekeeper.xtime_nsec = 0;
799 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
800 	}
801 
802 
803 	/*
804 	 * Store full nanoseconds into xtime after rounding it up and
805 	 * add the remainder to the error difference.
806 	 */
807 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
808 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
809 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
810 				timekeeper.ntp_error_shift;
811 
812 	/*
813 	 * Finally, make sure that after the rounding
814 	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
815 	 */
816 	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
817 		xtime.tv_nsec -= NSEC_PER_SEC;
818 		xtime.tv_sec++;
819 		second_overflow();
820 	}
821 
822 	/* check to see if there is a new clocksource to use */
823 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
824 				timekeeper.mult);
825 }
826 
827 /**
828  * getboottime - Return the real time of system boot.
829  * @ts:		pointer to the timespec to be set
830  *
831  * Returns the time of day in a timespec.
832  *
833  * This is based on the wall_to_monotonic offset and the total suspend
834  * time. Calls to settimeofday will affect the value returned (which
835  * basically means that however wrong your real time clock is at boot time,
836  * you get the right time here).
837  */
838 void getboottime(struct timespec *ts)
839 {
840 	struct timespec boottime = {
841 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
842 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
843 	};
844 
845 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
846 }
847 EXPORT_SYMBOL_GPL(getboottime);
848 
849 /**
850  * monotonic_to_bootbased - Convert the monotonic time to boot based.
851  * @ts:		pointer to the timespec to be converted
852  */
853 void monotonic_to_bootbased(struct timespec *ts)
854 {
855 	*ts = timespec_add(*ts, total_sleep_time);
856 }
857 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
858 
859 unsigned long get_seconds(void)
860 {
861 	return xtime.tv_sec;
862 }
863 EXPORT_SYMBOL(get_seconds);
864 
865 struct timespec __current_kernel_time(void)
866 {
867 	return xtime;
868 }
869 
870 struct timespec __get_wall_to_monotonic(void)
871 {
872 	return wall_to_monotonic;
873 }
874 
875 struct timespec current_kernel_time(void)
876 {
877 	struct timespec now;
878 	unsigned long seq;
879 
880 	do {
881 		seq = read_seqbegin(&xtime_lock);
882 
883 		now = xtime;
884 	} while (read_seqretry(&xtime_lock, seq));
885 
886 	return now;
887 }
888 EXPORT_SYMBOL(current_kernel_time);
889 
890 struct timespec get_monotonic_coarse(void)
891 {
892 	struct timespec now, mono;
893 	unsigned long seq;
894 
895 	do {
896 		seq = read_seqbegin(&xtime_lock);
897 
898 		now = xtime;
899 		mono = wall_to_monotonic;
900 	} while (read_seqretry(&xtime_lock, seq));
901 
902 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
903 				now.tv_nsec + mono.tv_nsec);
904 	return now;
905 }
906