1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 #include <linux/stop_machine.h> 22 #include <linux/pvclock_gtod.h> 23 #include <linux/compiler.h> 24 #include <linux/audit.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 #include "timekeeping_internal.h" 29 30 #define TK_CLEAR_NTP (1 << 0) 31 #define TK_MIRROR (1 << 1) 32 #define TK_CLOCK_WAS_SET (1 << 2) 33 34 enum timekeeping_adv_mode { 35 /* Update timekeeper when a tick has passed */ 36 TK_ADV_TICK, 37 38 /* Update timekeeper on a direct frequency change */ 39 TK_ADV_FREQ 40 }; 41 42 /* 43 * The most important data for readout fits into a single 64 byte 44 * cache line. 45 */ 46 static struct { 47 seqcount_t seq; 48 struct timekeeper timekeeper; 49 } tk_core ____cacheline_aligned = { 50 .seq = SEQCNT_ZERO(tk_core.seq), 51 }; 52 53 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 54 static struct timekeeper shadow_timekeeper; 55 56 /** 57 * struct tk_fast - NMI safe timekeeper 58 * @seq: Sequence counter for protecting updates. The lowest bit 59 * is the index for the tk_read_base array 60 * @base: tk_read_base array. Access is indexed by the lowest bit of 61 * @seq. 62 * 63 * See @update_fast_timekeeper() below. 64 */ 65 struct tk_fast { 66 seqcount_t seq; 67 struct tk_read_base base[2]; 68 }; 69 70 /* Suspend-time cycles value for halted fast timekeeper. */ 71 static u64 cycles_at_suspend; 72 73 static u64 dummy_clock_read(struct clocksource *cs) 74 { 75 return cycles_at_suspend; 76 } 77 78 static struct clocksource dummy_clock = { 79 .read = dummy_clock_read, 80 }; 81 82 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 83 .base[0] = { .clock = &dummy_clock, }, 84 .base[1] = { .clock = &dummy_clock, }, 85 }; 86 87 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 88 .base[0] = { .clock = &dummy_clock, }, 89 .base[1] = { .clock = &dummy_clock, }, 90 }; 91 92 /* flag for if timekeeping is suspended */ 93 int __read_mostly timekeeping_suspended; 94 95 static inline void tk_normalize_xtime(struct timekeeper *tk) 96 { 97 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 98 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 99 tk->xtime_sec++; 100 } 101 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 102 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 103 tk->raw_sec++; 104 } 105 } 106 107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 108 { 109 struct timespec64 ts; 110 111 ts.tv_sec = tk->xtime_sec; 112 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 113 return ts; 114 } 115 116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 117 { 118 tk->xtime_sec = ts->tv_sec; 119 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 120 } 121 122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 123 { 124 tk->xtime_sec += ts->tv_sec; 125 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 126 tk_normalize_xtime(tk); 127 } 128 129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 130 { 131 struct timespec64 tmp; 132 133 /* 134 * Verify consistency of: offset_real = -wall_to_monotonic 135 * before modifying anything 136 */ 137 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 138 -tk->wall_to_monotonic.tv_nsec); 139 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 140 tk->wall_to_monotonic = wtm; 141 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 142 tk->offs_real = timespec64_to_ktime(tmp); 143 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 144 } 145 146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 147 { 148 tk->offs_boot = ktime_add(tk->offs_boot, delta); 149 } 150 151 /* 152 * tk_clock_read - atomic clocksource read() helper 153 * 154 * This helper is necessary to use in the read paths because, while the 155 * seqlock ensures we don't return a bad value while structures are updated, 156 * it doesn't protect from potential crashes. There is the possibility that 157 * the tkr's clocksource may change between the read reference, and the 158 * clock reference passed to the read function. This can cause crashes if 159 * the wrong clocksource is passed to the wrong read function. 160 * This isn't necessary to use when holding the timekeeper_lock or doing 161 * a read of the fast-timekeeper tkrs (which is protected by its own locking 162 * and update logic). 163 */ 164 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 165 { 166 struct clocksource *clock = READ_ONCE(tkr->clock); 167 168 return clock->read(clock); 169 } 170 171 #ifdef CONFIG_DEBUG_TIMEKEEPING 172 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 173 174 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 175 { 176 177 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 178 const char *name = tk->tkr_mono.clock->name; 179 180 if (offset > max_cycles) { 181 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 182 offset, name, max_cycles); 183 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 184 } else { 185 if (offset > (max_cycles >> 1)) { 186 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 187 offset, name, max_cycles >> 1); 188 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 189 } 190 } 191 192 if (tk->underflow_seen) { 193 if (jiffies - tk->last_warning > WARNING_FREQ) { 194 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 195 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 196 printk_deferred(" Your kernel is probably still fine.\n"); 197 tk->last_warning = jiffies; 198 } 199 tk->underflow_seen = 0; 200 } 201 202 if (tk->overflow_seen) { 203 if (jiffies - tk->last_warning > WARNING_FREQ) { 204 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 205 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 206 printk_deferred(" Your kernel is probably still fine.\n"); 207 tk->last_warning = jiffies; 208 } 209 tk->overflow_seen = 0; 210 } 211 } 212 213 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 214 { 215 struct timekeeper *tk = &tk_core.timekeeper; 216 u64 now, last, mask, max, delta; 217 unsigned int seq; 218 219 /* 220 * Since we're called holding a seqlock, the data may shift 221 * under us while we're doing the calculation. This can cause 222 * false positives, since we'd note a problem but throw the 223 * results away. So nest another seqlock here to atomically 224 * grab the points we are checking with. 225 */ 226 do { 227 seq = read_seqcount_begin(&tk_core.seq); 228 now = tk_clock_read(tkr); 229 last = tkr->cycle_last; 230 mask = tkr->mask; 231 max = tkr->clock->max_cycles; 232 } while (read_seqcount_retry(&tk_core.seq, seq)); 233 234 delta = clocksource_delta(now, last, mask); 235 236 /* 237 * Try to catch underflows by checking if we are seeing small 238 * mask-relative negative values. 239 */ 240 if (unlikely((~delta & mask) < (mask >> 3))) { 241 tk->underflow_seen = 1; 242 delta = 0; 243 } 244 245 /* Cap delta value to the max_cycles values to avoid mult overflows */ 246 if (unlikely(delta > max)) { 247 tk->overflow_seen = 1; 248 delta = tkr->clock->max_cycles; 249 } 250 251 return delta; 252 } 253 #else 254 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 255 { 256 } 257 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 258 { 259 u64 cycle_now, delta; 260 261 /* read clocksource */ 262 cycle_now = tk_clock_read(tkr); 263 264 /* calculate the delta since the last update_wall_time */ 265 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 266 267 return delta; 268 } 269 #endif 270 271 /** 272 * tk_setup_internals - Set up internals to use clocksource clock. 273 * 274 * @tk: The target timekeeper to setup. 275 * @clock: Pointer to clocksource. 276 * 277 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 278 * pair and interval request. 279 * 280 * Unless you're the timekeeping code, you should not be using this! 281 */ 282 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 283 { 284 u64 interval; 285 u64 tmp, ntpinterval; 286 struct clocksource *old_clock; 287 288 ++tk->cs_was_changed_seq; 289 old_clock = tk->tkr_mono.clock; 290 tk->tkr_mono.clock = clock; 291 tk->tkr_mono.mask = clock->mask; 292 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 293 294 tk->tkr_raw.clock = clock; 295 tk->tkr_raw.mask = clock->mask; 296 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 297 298 /* Do the ns -> cycle conversion first, using original mult */ 299 tmp = NTP_INTERVAL_LENGTH; 300 tmp <<= clock->shift; 301 ntpinterval = tmp; 302 tmp += clock->mult/2; 303 do_div(tmp, clock->mult); 304 if (tmp == 0) 305 tmp = 1; 306 307 interval = (u64) tmp; 308 tk->cycle_interval = interval; 309 310 /* Go back from cycles -> shifted ns */ 311 tk->xtime_interval = interval * clock->mult; 312 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 313 tk->raw_interval = interval * clock->mult; 314 315 /* if changing clocks, convert xtime_nsec shift units */ 316 if (old_clock) { 317 int shift_change = clock->shift - old_clock->shift; 318 if (shift_change < 0) { 319 tk->tkr_mono.xtime_nsec >>= -shift_change; 320 tk->tkr_raw.xtime_nsec >>= -shift_change; 321 } else { 322 tk->tkr_mono.xtime_nsec <<= shift_change; 323 tk->tkr_raw.xtime_nsec <<= shift_change; 324 } 325 } 326 327 tk->tkr_mono.shift = clock->shift; 328 tk->tkr_raw.shift = clock->shift; 329 330 tk->ntp_error = 0; 331 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 332 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 333 334 /* 335 * The timekeeper keeps its own mult values for the currently 336 * active clocksource. These value will be adjusted via NTP 337 * to counteract clock drifting. 338 */ 339 tk->tkr_mono.mult = clock->mult; 340 tk->tkr_raw.mult = clock->mult; 341 tk->ntp_err_mult = 0; 342 tk->skip_second_overflow = 0; 343 } 344 345 /* Timekeeper helper functions. */ 346 347 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 348 static u32 default_arch_gettimeoffset(void) { return 0; } 349 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 350 #else 351 static inline u32 arch_gettimeoffset(void) { return 0; } 352 #endif 353 354 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 355 { 356 u64 nsec; 357 358 nsec = delta * tkr->mult + tkr->xtime_nsec; 359 nsec >>= tkr->shift; 360 361 /* If arch requires, add in get_arch_timeoffset() */ 362 return nsec + arch_gettimeoffset(); 363 } 364 365 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 366 { 367 u64 delta; 368 369 delta = timekeeping_get_delta(tkr); 370 return timekeeping_delta_to_ns(tkr, delta); 371 } 372 373 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 374 { 375 u64 delta; 376 377 /* calculate the delta since the last update_wall_time */ 378 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 379 return timekeeping_delta_to_ns(tkr, delta); 380 } 381 382 /** 383 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 384 * @tkr: Timekeeping readout base from which we take the update 385 * 386 * We want to use this from any context including NMI and tracing / 387 * instrumenting the timekeeping code itself. 388 * 389 * Employ the latch technique; see @raw_write_seqcount_latch. 390 * 391 * So if a NMI hits the update of base[0] then it will use base[1] 392 * which is still consistent. In the worst case this can result is a 393 * slightly wrong timestamp (a few nanoseconds). See 394 * @ktime_get_mono_fast_ns. 395 */ 396 static void update_fast_timekeeper(const struct tk_read_base *tkr, 397 struct tk_fast *tkf) 398 { 399 struct tk_read_base *base = tkf->base; 400 401 /* Force readers off to base[1] */ 402 raw_write_seqcount_latch(&tkf->seq); 403 404 /* Update base[0] */ 405 memcpy(base, tkr, sizeof(*base)); 406 407 /* Force readers back to base[0] */ 408 raw_write_seqcount_latch(&tkf->seq); 409 410 /* Update base[1] */ 411 memcpy(base + 1, base, sizeof(*base)); 412 } 413 414 /** 415 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 416 * 417 * This timestamp is not guaranteed to be monotonic across an update. 418 * The timestamp is calculated by: 419 * 420 * now = base_mono + clock_delta * slope 421 * 422 * So if the update lowers the slope, readers who are forced to the 423 * not yet updated second array are still using the old steeper slope. 424 * 425 * tmono 426 * ^ 427 * | o n 428 * | o n 429 * | u 430 * | o 431 * |o 432 * |12345678---> reader order 433 * 434 * o = old slope 435 * u = update 436 * n = new slope 437 * 438 * So reader 6 will observe time going backwards versus reader 5. 439 * 440 * While other CPUs are likely to be able observe that, the only way 441 * for a CPU local observation is when an NMI hits in the middle of 442 * the update. Timestamps taken from that NMI context might be ahead 443 * of the following timestamps. Callers need to be aware of that and 444 * deal with it. 445 */ 446 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 447 { 448 struct tk_read_base *tkr; 449 unsigned int seq; 450 u64 now; 451 452 do { 453 seq = raw_read_seqcount_latch(&tkf->seq); 454 tkr = tkf->base + (seq & 0x01); 455 now = ktime_to_ns(tkr->base); 456 457 now += timekeeping_delta_to_ns(tkr, 458 clocksource_delta( 459 tk_clock_read(tkr), 460 tkr->cycle_last, 461 tkr->mask)); 462 } while (read_seqcount_retry(&tkf->seq, seq)); 463 464 return now; 465 } 466 467 u64 ktime_get_mono_fast_ns(void) 468 { 469 return __ktime_get_fast_ns(&tk_fast_mono); 470 } 471 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 472 473 u64 ktime_get_raw_fast_ns(void) 474 { 475 return __ktime_get_fast_ns(&tk_fast_raw); 476 } 477 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 478 479 /** 480 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 481 * 482 * To keep it NMI safe since we're accessing from tracing, we're not using a 483 * separate timekeeper with updates to monotonic clock and boot offset 484 * protected with seqlocks. This has the following minor side effects: 485 * 486 * (1) Its possible that a timestamp be taken after the boot offset is updated 487 * but before the timekeeper is updated. If this happens, the new boot offset 488 * is added to the old timekeeping making the clock appear to update slightly 489 * earlier: 490 * CPU 0 CPU 1 491 * timekeeping_inject_sleeptime64() 492 * __timekeeping_inject_sleeptime(tk, delta); 493 * timestamp(); 494 * timekeeping_update(tk, TK_CLEAR_NTP...); 495 * 496 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 497 * partially updated. Since the tk->offs_boot update is a rare event, this 498 * should be a rare occurrence which postprocessing should be able to handle. 499 */ 500 u64 notrace ktime_get_boot_fast_ns(void) 501 { 502 struct timekeeper *tk = &tk_core.timekeeper; 503 504 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 505 } 506 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 507 508 509 /* 510 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 511 */ 512 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 513 { 514 struct tk_read_base *tkr; 515 unsigned int seq; 516 u64 now; 517 518 do { 519 seq = raw_read_seqcount_latch(&tkf->seq); 520 tkr = tkf->base + (seq & 0x01); 521 now = ktime_to_ns(tkr->base_real); 522 523 now += timekeeping_delta_to_ns(tkr, 524 clocksource_delta( 525 tk_clock_read(tkr), 526 tkr->cycle_last, 527 tkr->mask)); 528 } while (read_seqcount_retry(&tkf->seq, seq)); 529 530 return now; 531 } 532 533 /** 534 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 535 */ 536 u64 ktime_get_real_fast_ns(void) 537 { 538 return __ktime_get_real_fast_ns(&tk_fast_mono); 539 } 540 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 541 542 /** 543 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 544 * @tk: Timekeeper to snapshot. 545 * 546 * It generally is unsafe to access the clocksource after timekeeping has been 547 * suspended, so take a snapshot of the readout base of @tk and use it as the 548 * fast timekeeper's readout base while suspended. It will return the same 549 * number of cycles every time until timekeeping is resumed at which time the 550 * proper readout base for the fast timekeeper will be restored automatically. 551 */ 552 static void halt_fast_timekeeper(const struct timekeeper *tk) 553 { 554 static struct tk_read_base tkr_dummy; 555 const struct tk_read_base *tkr = &tk->tkr_mono; 556 557 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 558 cycles_at_suspend = tk_clock_read(tkr); 559 tkr_dummy.clock = &dummy_clock; 560 tkr_dummy.base_real = tkr->base + tk->offs_real; 561 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 562 563 tkr = &tk->tkr_raw; 564 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 565 tkr_dummy.clock = &dummy_clock; 566 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 567 } 568 569 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 570 571 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 572 { 573 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 574 } 575 576 /** 577 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 578 */ 579 int pvclock_gtod_register_notifier(struct notifier_block *nb) 580 { 581 struct timekeeper *tk = &tk_core.timekeeper; 582 unsigned long flags; 583 int ret; 584 585 raw_spin_lock_irqsave(&timekeeper_lock, flags); 586 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 587 update_pvclock_gtod(tk, true); 588 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 589 590 return ret; 591 } 592 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 593 594 /** 595 * pvclock_gtod_unregister_notifier - unregister a pvclock 596 * timedata update listener 597 */ 598 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 599 { 600 unsigned long flags; 601 int ret; 602 603 raw_spin_lock_irqsave(&timekeeper_lock, flags); 604 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 605 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 606 607 return ret; 608 } 609 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 610 611 /* 612 * tk_update_leap_state - helper to update the next_leap_ktime 613 */ 614 static inline void tk_update_leap_state(struct timekeeper *tk) 615 { 616 tk->next_leap_ktime = ntp_get_next_leap(); 617 if (tk->next_leap_ktime != KTIME_MAX) 618 /* Convert to monotonic time */ 619 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 620 } 621 622 /* 623 * Update the ktime_t based scalar nsec members of the timekeeper 624 */ 625 static inline void tk_update_ktime_data(struct timekeeper *tk) 626 { 627 u64 seconds; 628 u32 nsec; 629 630 /* 631 * The xtime based monotonic readout is: 632 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 633 * The ktime based monotonic readout is: 634 * nsec = base_mono + now(); 635 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 636 */ 637 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 638 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 639 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 640 641 /* 642 * The sum of the nanoseconds portions of xtime and 643 * wall_to_monotonic can be greater/equal one second. Take 644 * this into account before updating tk->ktime_sec. 645 */ 646 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 647 if (nsec >= NSEC_PER_SEC) 648 seconds++; 649 tk->ktime_sec = seconds; 650 651 /* Update the monotonic raw base */ 652 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 653 } 654 655 /* must hold timekeeper_lock */ 656 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 657 { 658 if (action & TK_CLEAR_NTP) { 659 tk->ntp_error = 0; 660 ntp_clear(); 661 } 662 663 tk_update_leap_state(tk); 664 tk_update_ktime_data(tk); 665 666 update_vsyscall(tk); 667 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 668 669 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 670 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 671 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 672 673 if (action & TK_CLOCK_WAS_SET) 674 tk->clock_was_set_seq++; 675 /* 676 * The mirroring of the data to the shadow-timekeeper needs 677 * to happen last here to ensure we don't over-write the 678 * timekeeper structure on the next update with stale data 679 */ 680 if (action & TK_MIRROR) 681 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 682 sizeof(tk_core.timekeeper)); 683 } 684 685 /** 686 * timekeeping_forward_now - update clock to the current time 687 * 688 * Forward the current clock to update its state since the last call to 689 * update_wall_time(). This is useful before significant clock changes, 690 * as it avoids having to deal with this time offset explicitly. 691 */ 692 static void timekeeping_forward_now(struct timekeeper *tk) 693 { 694 u64 cycle_now, delta; 695 696 cycle_now = tk_clock_read(&tk->tkr_mono); 697 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 698 tk->tkr_mono.cycle_last = cycle_now; 699 tk->tkr_raw.cycle_last = cycle_now; 700 701 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 702 703 /* If arch requires, add in get_arch_timeoffset() */ 704 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 705 706 707 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 708 709 /* If arch requires, add in get_arch_timeoffset() */ 710 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 711 712 tk_normalize_xtime(tk); 713 } 714 715 /** 716 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 717 * @ts: pointer to the timespec to be set 718 * 719 * Returns the time of day in a timespec64 (WARN if suspended). 720 */ 721 void ktime_get_real_ts64(struct timespec64 *ts) 722 { 723 struct timekeeper *tk = &tk_core.timekeeper; 724 unsigned int seq; 725 u64 nsecs; 726 727 WARN_ON(timekeeping_suspended); 728 729 do { 730 seq = read_seqcount_begin(&tk_core.seq); 731 732 ts->tv_sec = tk->xtime_sec; 733 nsecs = timekeeping_get_ns(&tk->tkr_mono); 734 735 } while (read_seqcount_retry(&tk_core.seq, seq)); 736 737 ts->tv_nsec = 0; 738 timespec64_add_ns(ts, nsecs); 739 } 740 EXPORT_SYMBOL(ktime_get_real_ts64); 741 742 ktime_t ktime_get(void) 743 { 744 struct timekeeper *tk = &tk_core.timekeeper; 745 unsigned int seq; 746 ktime_t base; 747 u64 nsecs; 748 749 WARN_ON(timekeeping_suspended); 750 751 do { 752 seq = read_seqcount_begin(&tk_core.seq); 753 base = tk->tkr_mono.base; 754 nsecs = timekeeping_get_ns(&tk->tkr_mono); 755 756 } while (read_seqcount_retry(&tk_core.seq, seq)); 757 758 return ktime_add_ns(base, nsecs); 759 } 760 EXPORT_SYMBOL_GPL(ktime_get); 761 762 u32 ktime_get_resolution_ns(void) 763 { 764 struct timekeeper *tk = &tk_core.timekeeper; 765 unsigned int seq; 766 u32 nsecs; 767 768 WARN_ON(timekeeping_suspended); 769 770 do { 771 seq = read_seqcount_begin(&tk_core.seq); 772 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 773 } while (read_seqcount_retry(&tk_core.seq, seq)); 774 775 return nsecs; 776 } 777 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 778 779 static ktime_t *offsets[TK_OFFS_MAX] = { 780 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 781 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 782 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 783 }; 784 785 ktime_t ktime_get_with_offset(enum tk_offsets offs) 786 { 787 struct timekeeper *tk = &tk_core.timekeeper; 788 unsigned int seq; 789 ktime_t base, *offset = offsets[offs]; 790 u64 nsecs; 791 792 WARN_ON(timekeeping_suspended); 793 794 do { 795 seq = read_seqcount_begin(&tk_core.seq); 796 base = ktime_add(tk->tkr_mono.base, *offset); 797 nsecs = timekeeping_get_ns(&tk->tkr_mono); 798 799 } while (read_seqcount_retry(&tk_core.seq, seq)); 800 801 return ktime_add_ns(base, nsecs); 802 803 } 804 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 805 806 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 807 { 808 struct timekeeper *tk = &tk_core.timekeeper; 809 unsigned int seq; 810 ktime_t base, *offset = offsets[offs]; 811 u64 nsecs; 812 813 WARN_ON(timekeeping_suspended); 814 815 do { 816 seq = read_seqcount_begin(&tk_core.seq); 817 base = ktime_add(tk->tkr_mono.base, *offset); 818 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 819 820 } while (read_seqcount_retry(&tk_core.seq, seq)); 821 822 return ktime_add_ns(base, nsecs); 823 } 824 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 825 826 /** 827 * ktime_mono_to_any() - convert mononotic time to any other time 828 * @tmono: time to convert. 829 * @offs: which offset to use 830 */ 831 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 832 { 833 ktime_t *offset = offsets[offs]; 834 unsigned int seq; 835 ktime_t tconv; 836 837 do { 838 seq = read_seqcount_begin(&tk_core.seq); 839 tconv = ktime_add(tmono, *offset); 840 } while (read_seqcount_retry(&tk_core.seq, seq)); 841 842 return tconv; 843 } 844 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 845 846 /** 847 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 848 */ 849 ktime_t ktime_get_raw(void) 850 { 851 struct timekeeper *tk = &tk_core.timekeeper; 852 unsigned int seq; 853 ktime_t base; 854 u64 nsecs; 855 856 do { 857 seq = read_seqcount_begin(&tk_core.seq); 858 base = tk->tkr_raw.base; 859 nsecs = timekeeping_get_ns(&tk->tkr_raw); 860 861 } while (read_seqcount_retry(&tk_core.seq, seq)); 862 863 return ktime_add_ns(base, nsecs); 864 } 865 EXPORT_SYMBOL_GPL(ktime_get_raw); 866 867 /** 868 * ktime_get_ts64 - get the monotonic clock in timespec64 format 869 * @ts: pointer to timespec variable 870 * 871 * The function calculates the monotonic clock from the realtime 872 * clock and the wall_to_monotonic offset and stores the result 873 * in normalized timespec64 format in the variable pointed to by @ts. 874 */ 875 void ktime_get_ts64(struct timespec64 *ts) 876 { 877 struct timekeeper *tk = &tk_core.timekeeper; 878 struct timespec64 tomono; 879 unsigned int seq; 880 u64 nsec; 881 882 WARN_ON(timekeeping_suspended); 883 884 do { 885 seq = read_seqcount_begin(&tk_core.seq); 886 ts->tv_sec = tk->xtime_sec; 887 nsec = timekeeping_get_ns(&tk->tkr_mono); 888 tomono = tk->wall_to_monotonic; 889 890 } while (read_seqcount_retry(&tk_core.seq, seq)); 891 892 ts->tv_sec += tomono.tv_sec; 893 ts->tv_nsec = 0; 894 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 895 } 896 EXPORT_SYMBOL_GPL(ktime_get_ts64); 897 898 /** 899 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 900 * 901 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 902 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 903 * works on both 32 and 64 bit systems. On 32 bit systems the readout 904 * covers ~136 years of uptime which should be enough to prevent 905 * premature wrap arounds. 906 */ 907 time64_t ktime_get_seconds(void) 908 { 909 struct timekeeper *tk = &tk_core.timekeeper; 910 911 WARN_ON(timekeeping_suspended); 912 return tk->ktime_sec; 913 } 914 EXPORT_SYMBOL_GPL(ktime_get_seconds); 915 916 /** 917 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 918 * 919 * Returns the wall clock seconds since 1970. This replaces the 920 * get_seconds() interface which is not y2038 safe on 32bit systems. 921 * 922 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 923 * 32bit systems the access must be protected with the sequence 924 * counter to provide "atomic" access to the 64bit tk->xtime_sec 925 * value. 926 */ 927 time64_t ktime_get_real_seconds(void) 928 { 929 struct timekeeper *tk = &tk_core.timekeeper; 930 time64_t seconds; 931 unsigned int seq; 932 933 if (IS_ENABLED(CONFIG_64BIT)) 934 return tk->xtime_sec; 935 936 do { 937 seq = read_seqcount_begin(&tk_core.seq); 938 seconds = tk->xtime_sec; 939 940 } while (read_seqcount_retry(&tk_core.seq, seq)); 941 942 return seconds; 943 } 944 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 945 946 /** 947 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 948 * but without the sequence counter protect. This internal function 949 * is called just when timekeeping lock is already held. 950 */ 951 time64_t __ktime_get_real_seconds(void) 952 { 953 struct timekeeper *tk = &tk_core.timekeeper; 954 955 return tk->xtime_sec; 956 } 957 958 /** 959 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 960 * @systime_snapshot: pointer to struct receiving the system time snapshot 961 */ 962 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 963 { 964 struct timekeeper *tk = &tk_core.timekeeper; 965 unsigned int seq; 966 ktime_t base_raw; 967 ktime_t base_real; 968 u64 nsec_raw; 969 u64 nsec_real; 970 u64 now; 971 972 WARN_ON_ONCE(timekeeping_suspended); 973 974 do { 975 seq = read_seqcount_begin(&tk_core.seq); 976 now = tk_clock_read(&tk->tkr_mono); 977 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 978 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 979 base_real = ktime_add(tk->tkr_mono.base, 980 tk_core.timekeeper.offs_real); 981 base_raw = tk->tkr_raw.base; 982 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 983 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 984 } while (read_seqcount_retry(&tk_core.seq, seq)); 985 986 systime_snapshot->cycles = now; 987 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 988 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 989 } 990 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 991 992 /* Scale base by mult/div checking for overflow */ 993 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 994 { 995 u64 tmp, rem; 996 997 tmp = div64_u64_rem(*base, div, &rem); 998 999 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1000 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1001 return -EOVERFLOW; 1002 tmp *= mult; 1003 rem *= mult; 1004 1005 do_div(rem, div); 1006 *base = tmp + rem; 1007 return 0; 1008 } 1009 1010 /** 1011 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1012 * @history: Snapshot representing start of history 1013 * @partial_history_cycles: Cycle offset into history (fractional part) 1014 * @total_history_cycles: Total history length in cycles 1015 * @discontinuity: True indicates clock was set on history period 1016 * @ts: Cross timestamp that should be adjusted using 1017 * partial/total ratio 1018 * 1019 * Helper function used by get_device_system_crosststamp() to correct the 1020 * crosstimestamp corresponding to the start of the current interval to the 1021 * system counter value (timestamp point) provided by the driver. The 1022 * total_history_* quantities are the total history starting at the provided 1023 * reference point and ending at the start of the current interval. The cycle 1024 * count between the driver timestamp point and the start of the current 1025 * interval is partial_history_cycles. 1026 */ 1027 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1028 u64 partial_history_cycles, 1029 u64 total_history_cycles, 1030 bool discontinuity, 1031 struct system_device_crosststamp *ts) 1032 { 1033 struct timekeeper *tk = &tk_core.timekeeper; 1034 u64 corr_raw, corr_real; 1035 bool interp_forward; 1036 int ret; 1037 1038 if (total_history_cycles == 0 || partial_history_cycles == 0) 1039 return 0; 1040 1041 /* Interpolate shortest distance from beginning or end of history */ 1042 interp_forward = partial_history_cycles > total_history_cycles / 2; 1043 partial_history_cycles = interp_forward ? 1044 total_history_cycles - partial_history_cycles : 1045 partial_history_cycles; 1046 1047 /* 1048 * Scale the monotonic raw time delta by: 1049 * partial_history_cycles / total_history_cycles 1050 */ 1051 corr_raw = (u64)ktime_to_ns( 1052 ktime_sub(ts->sys_monoraw, history->raw)); 1053 ret = scale64_check_overflow(partial_history_cycles, 1054 total_history_cycles, &corr_raw); 1055 if (ret) 1056 return ret; 1057 1058 /* 1059 * If there is a discontinuity in the history, scale monotonic raw 1060 * correction by: 1061 * mult(real)/mult(raw) yielding the realtime correction 1062 * Otherwise, calculate the realtime correction similar to monotonic 1063 * raw calculation 1064 */ 1065 if (discontinuity) { 1066 corr_real = mul_u64_u32_div 1067 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1068 } else { 1069 corr_real = (u64)ktime_to_ns( 1070 ktime_sub(ts->sys_realtime, history->real)); 1071 ret = scale64_check_overflow(partial_history_cycles, 1072 total_history_cycles, &corr_real); 1073 if (ret) 1074 return ret; 1075 } 1076 1077 /* Fixup monotonic raw and real time time values */ 1078 if (interp_forward) { 1079 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1080 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1081 } else { 1082 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1083 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1084 } 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * cycle_between - true if test occurs chronologically between before and after 1091 */ 1092 static bool cycle_between(u64 before, u64 test, u64 after) 1093 { 1094 if (test > before && test < after) 1095 return true; 1096 if (test < before && before > after) 1097 return true; 1098 return false; 1099 } 1100 1101 /** 1102 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1103 * @get_time_fn: Callback to get simultaneous device time and 1104 * system counter from the device driver 1105 * @ctx: Context passed to get_time_fn() 1106 * @history_begin: Historical reference point used to interpolate system 1107 * time when counter provided by the driver is before the current interval 1108 * @xtstamp: Receives simultaneously captured system and device time 1109 * 1110 * Reads a timestamp from a device and correlates it to system time 1111 */ 1112 int get_device_system_crosststamp(int (*get_time_fn) 1113 (ktime_t *device_time, 1114 struct system_counterval_t *sys_counterval, 1115 void *ctx), 1116 void *ctx, 1117 struct system_time_snapshot *history_begin, 1118 struct system_device_crosststamp *xtstamp) 1119 { 1120 struct system_counterval_t system_counterval; 1121 struct timekeeper *tk = &tk_core.timekeeper; 1122 u64 cycles, now, interval_start; 1123 unsigned int clock_was_set_seq = 0; 1124 ktime_t base_real, base_raw; 1125 u64 nsec_real, nsec_raw; 1126 u8 cs_was_changed_seq; 1127 unsigned int seq; 1128 bool do_interp; 1129 int ret; 1130 1131 do { 1132 seq = read_seqcount_begin(&tk_core.seq); 1133 /* 1134 * Try to synchronously capture device time and a system 1135 * counter value calling back into the device driver 1136 */ 1137 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1138 if (ret) 1139 return ret; 1140 1141 /* 1142 * Verify that the clocksource associated with the captured 1143 * system counter value is the same as the currently installed 1144 * timekeeper clocksource 1145 */ 1146 if (tk->tkr_mono.clock != system_counterval.cs) 1147 return -ENODEV; 1148 cycles = system_counterval.cycles; 1149 1150 /* 1151 * Check whether the system counter value provided by the 1152 * device driver is on the current timekeeping interval. 1153 */ 1154 now = tk_clock_read(&tk->tkr_mono); 1155 interval_start = tk->tkr_mono.cycle_last; 1156 if (!cycle_between(interval_start, cycles, now)) { 1157 clock_was_set_seq = tk->clock_was_set_seq; 1158 cs_was_changed_seq = tk->cs_was_changed_seq; 1159 cycles = interval_start; 1160 do_interp = true; 1161 } else { 1162 do_interp = false; 1163 } 1164 1165 base_real = ktime_add(tk->tkr_mono.base, 1166 tk_core.timekeeper.offs_real); 1167 base_raw = tk->tkr_raw.base; 1168 1169 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1170 system_counterval.cycles); 1171 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1172 system_counterval.cycles); 1173 } while (read_seqcount_retry(&tk_core.seq, seq)); 1174 1175 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1176 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1177 1178 /* 1179 * Interpolate if necessary, adjusting back from the start of the 1180 * current interval 1181 */ 1182 if (do_interp) { 1183 u64 partial_history_cycles, total_history_cycles; 1184 bool discontinuity; 1185 1186 /* 1187 * Check that the counter value occurs after the provided 1188 * history reference and that the history doesn't cross a 1189 * clocksource change 1190 */ 1191 if (!history_begin || 1192 !cycle_between(history_begin->cycles, 1193 system_counterval.cycles, cycles) || 1194 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1195 return -EINVAL; 1196 partial_history_cycles = cycles - system_counterval.cycles; 1197 total_history_cycles = cycles - history_begin->cycles; 1198 discontinuity = 1199 history_begin->clock_was_set_seq != clock_was_set_seq; 1200 1201 ret = adjust_historical_crosststamp(history_begin, 1202 partial_history_cycles, 1203 total_history_cycles, 1204 discontinuity, xtstamp); 1205 if (ret) 1206 return ret; 1207 } 1208 1209 return 0; 1210 } 1211 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1212 1213 /** 1214 * do_settimeofday64 - Sets the time of day. 1215 * @ts: pointer to the timespec64 variable containing the new time 1216 * 1217 * Sets the time of day to the new time and update NTP and notify hrtimers 1218 */ 1219 int do_settimeofday64(const struct timespec64 *ts) 1220 { 1221 struct timekeeper *tk = &tk_core.timekeeper; 1222 struct timespec64 ts_delta, xt; 1223 unsigned long flags; 1224 int ret = 0; 1225 1226 if (!timespec64_valid_settod(ts)) 1227 return -EINVAL; 1228 1229 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1230 write_seqcount_begin(&tk_core.seq); 1231 1232 timekeeping_forward_now(tk); 1233 1234 xt = tk_xtime(tk); 1235 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1236 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1237 1238 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1239 ret = -EINVAL; 1240 goto out; 1241 } 1242 1243 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1244 1245 tk_set_xtime(tk, ts); 1246 out: 1247 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1248 1249 write_seqcount_end(&tk_core.seq); 1250 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1251 1252 /* signal hrtimers about time change */ 1253 clock_was_set(); 1254 1255 if (!ret) 1256 audit_tk_injoffset(ts_delta); 1257 1258 return ret; 1259 } 1260 EXPORT_SYMBOL(do_settimeofday64); 1261 1262 /** 1263 * timekeeping_inject_offset - Adds or subtracts from the current time. 1264 * @tv: pointer to the timespec variable containing the offset 1265 * 1266 * Adds or subtracts an offset value from the current time. 1267 */ 1268 static int timekeeping_inject_offset(const struct timespec64 *ts) 1269 { 1270 struct timekeeper *tk = &tk_core.timekeeper; 1271 unsigned long flags; 1272 struct timespec64 tmp; 1273 int ret = 0; 1274 1275 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1276 return -EINVAL; 1277 1278 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1279 write_seqcount_begin(&tk_core.seq); 1280 1281 timekeeping_forward_now(tk); 1282 1283 /* Make sure the proposed value is valid */ 1284 tmp = timespec64_add(tk_xtime(tk), *ts); 1285 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1286 !timespec64_valid_settod(&tmp)) { 1287 ret = -EINVAL; 1288 goto error; 1289 } 1290 1291 tk_xtime_add(tk, ts); 1292 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1293 1294 error: /* even if we error out, we forwarded the time, so call update */ 1295 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1296 1297 write_seqcount_end(&tk_core.seq); 1298 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1299 1300 /* signal hrtimers about time change */ 1301 clock_was_set(); 1302 1303 return ret; 1304 } 1305 1306 /* 1307 * Indicates if there is an offset between the system clock and the hardware 1308 * clock/persistent clock/rtc. 1309 */ 1310 int persistent_clock_is_local; 1311 1312 /* 1313 * Adjust the time obtained from the CMOS to be UTC time instead of 1314 * local time. 1315 * 1316 * This is ugly, but preferable to the alternatives. Otherwise we 1317 * would either need to write a program to do it in /etc/rc (and risk 1318 * confusion if the program gets run more than once; it would also be 1319 * hard to make the program warp the clock precisely n hours) or 1320 * compile in the timezone information into the kernel. Bad, bad.... 1321 * 1322 * - TYT, 1992-01-01 1323 * 1324 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1325 * as real UNIX machines always do it. This avoids all headaches about 1326 * daylight saving times and warping kernel clocks. 1327 */ 1328 void timekeeping_warp_clock(void) 1329 { 1330 if (sys_tz.tz_minuteswest != 0) { 1331 struct timespec64 adjust; 1332 1333 persistent_clock_is_local = 1; 1334 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1335 adjust.tv_nsec = 0; 1336 timekeeping_inject_offset(&adjust); 1337 } 1338 } 1339 1340 /** 1341 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1342 * 1343 */ 1344 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1345 { 1346 tk->tai_offset = tai_offset; 1347 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1348 } 1349 1350 /** 1351 * change_clocksource - Swaps clocksources if a new one is available 1352 * 1353 * Accumulates current time interval and initializes new clocksource 1354 */ 1355 static int change_clocksource(void *data) 1356 { 1357 struct timekeeper *tk = &tk_core.timekeeper; 1358 struct clocksource *new, *old; 1359 unsigned long flags; 1360 1361 new = (struct clocksource *) data; 1362 1363 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1364 write_seqcount_begin(&tk_core.seq); 1365 1366 timekeeping_forward_now(tk); 1367 /* 1368 * If the cs is in module, get a module reference. Succeeds 1369 * for built-in code (owner == NULL) as well. 1370 */ 1371 if (try_module_get(new->owner)) { 1372 if (!new->enable || new->enable(new) == 0) { 1373 old = tk->tkr_mono.clock; 1374 tk_setup_internals(tk, new); 1375 if (old->disable) 1376 old->disable(old); 1377 module_put(old->owner); 1378 } else { 1379 module_put(new->owner); 1380 } 1381 } 1382 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1383 1384 write_seqcount_end(&tk_core.seq); 1385 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1386 1387 return 0; 1388 } 1389 1390 /** 1391 * timekeeping_notify - Install a new clock source 1392 * @clock: pointer to the clock source 1393 * 1394 * This function is called from clocksource.c after a new, better clock 1395 * source has been registered. The caller holds the clocksource_mutex. 1396 */ 1397 int timekeeping_notify(struct clocksource *clock) 1398 { 1399 struct timekeeper *tk = &tk_core.timekeeper; 1400 1401 if (tk->tkr_mono.clock == clock) 1402 return 0; 1403 stop_machine(change_clocksource, clock, NULL); 1404 tick_clock_notify(); 1405 return tk->tkr_mono.clock == clock ? 0 : -1; 1406 } 1407 1408 /** 1409 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1410 * @ts: pointer to the timespec64 to be set 1411 * 1412 * Returns the raw monotonic time (completely un-modified by ntp) 1413 */ 1414 void ktime_get_raw_ts64(struct timespec64 *ts) 1415 { 1416 struct timekeeper *tk = &tk_core.timekeeper; 1417 unsigned int seq; 1418 u64 nsecs; 1419 1420 do { 1421 seq = read_seqcount_begin(&tk_core.seq); 1422 ts->tv_sec = tk->raw_sec; 1423 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1424 1425 } while (read_seqcount_retry(&tk_core.seq, seq)); 1426 1427 ts->tv_nsec = 0; 1428 timespec64_add_ns(ts, nsecs); 1429 } 1430 EXPORT_SYMBOL(ktime_get_raw_ts64); 1431 1432 1433 /** 1434 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1435 */ 1436 int timekeeping_valid_for_hres(void) 1437 { 1438 struct timekeeper *tk = &tk_core.timekeeper; 1439 unsigned int seq; 1440 int ret; 1441 1442 do { 1443 seq = read_seqcount_begin(&tk_core.seq); 1444 1445 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1446 1447 } while (read_seqcount_retry(&tk_core.seq, seq)); 1448 1449 return ret; 1450 } 1451 1452 /** 1453 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1454 */ 1455 u64 timekeeping_max_deferment(void) 1456 { 1457 struct timekeeper *tk = &tk_core.timekeeper; 1458 unsigned int seq; 1459 u64 ret; 1460 1461 do { 1462 seq = read_seqcount_begin(&tk_core.seq); 1463 1464 ret = tk->tkr_mono.clock->max_idle_ns; 1465 1466 } while (read_seqcount_retry(&tk_core.seq, seq)); 1467 1468 return ret; 1469 } 1470 1471 /** 1472 * read_persistent_clock64 - Return time from the persistent clock. 1473 * 1474 * Weak dummy function for arches that do not yet support it. 1475 * Reads the time from the battery backed persistent clock. 1476 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1477 * 1478 * XXX - Do be sure to remove it once all arches implement it. 1479 */ 1480 void __weak read_persistent_clock64(struct timespec64 *ts) 1481 { 1482 ts->tv_sec = 0; 1483 ts->tv_nsec = 0; 1484 } 1485 1486 /** 1487 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1488 * from the boot. 1489 * 1490 * Weak dummy function for arches that do not yet support it. 1491 * wall_time - current time as returned by persistent clock 1492 * boot_offset - offset that is defined as wall_time - boot_time 1493 * The default function calculates offset based on the current value of 1494 * local_clock(). This way architectures that support sched_clock() but don't 1495 * support dedicated boot time clock will provide the best estimate of the 1496 * boot time. 1497 */ 1498 void __weak __init 1499 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1500 struct timespec64 *boot_offset) 1501 { 1502 read_persistent_clock64(wall_time); 1503 *boot_offset = ns_to_timespec64(local_clock()); 1504 } 1505 1506 /* 1507 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1508 * 1509 * The flag starts of false and is only set when a suspend reaches 1510 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1511 * timekeeper clocksource is not stopping across suspend and has been 1512 * used to update sleep time. If the timekeeper clocksource has stopped 1513 * then the flag stays true and is used by the RTC resume code to decide 1514 * whether sleeptime must be injected and if so the flag gets false then. 1515 * 1516 * If a suspend fails before reaching timekeeping_resume() then the flag 1517 * stays false and prevents erroneous sleeptime injection. 1518 */ 1519 static bool suspend_timing_needed; 1520 1521 /* Flag for if there is a persistent clock on this platform */ 1522 static bool persistent_clock_exists; 1523 1524 /* 1525 * timekeeping_init - Initializes the clocksource and common timekeeping values 1526 */ 1527 void __init timekeeping_init(void) 1528 { 1529 struct timespec64 wall_time, boot_offset, wall_to_mono; 1530 struct timekeeper *tk = &tk_core.timekeeper; 1531 struct clocksource *clock; 1532 unsigned long flags; 1533 1534 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1535 if (timespec64_valid_settod(&wall_time) && 1536 timespec64_to_ns(&wall_time) > 0) { 1537 persistent_clock_exists = true; 1538 } else if (timespec64_to_ns(&wall_time) != 0) { 1539 pr_warn("Persistent clock returned invalid value"); 1540 wall_time = (struct timespec64){0}; 1541 } 1542 1543 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1544 boot_offset = (struct timespec64){0}; 1545 1546 /* 1547 * We want set wall_to_mono, so the following is true: 1548 * wall time + wall_to_mono = boot time 1549 */ 1550 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1551 1552 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1553 write_seqcount_begin(&tk_core.seq); 1554 ntp_init(); 1555 1556 clock = clocksource_default_clock(); 1557 if (clock->enable) 1558 clock->enable(clock); 1559 tk_setup_internals(tk, clock); 1560 1561 tk_set_xtime(tk, &wall_time); 1562 tk->raw_sec = 0; 1563 1564 tk_set_wall_to_mono(tk, wall_to_mono); 1565 1566 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1567 1568 write_seqcount_end(&tk_core.seq); 1569 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1570 } 1571 1572 /* time in seconds when suspend began for persistent clock */ 1573 static struct timespec64 timekeeping_suspend_time; 1574 1575 /** 1576 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1577 * @delta: pointer to a timespec delta value 1578 * 1579 * Takes a timespec offset measuring a suspend interval and properly 1580 * adds the sleep offset to the timekeeping variables. 1581 */ 1582 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1583 const struct timespec64 *delta) 1584 { 1585 if (!timespec64_valid_strict(delta)) { 1586 printk_deferred(KERN_WARNING 1587 "__timekeeping_inject_sleeptime: Invalid " 1588 "sleep delta value!\n"); 1589 return; 1590 } 1591 tk_xtime_add(tk, delta); 1592 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1593 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1594 tk_debug_account_sleep_time(delta); 1595 } 1596 1597 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1598 /** 1599 * We have three kinds of time sources to use for sleep time 1600 * injection, the preference order is: 1601 * 1) non-stop clocksource 1602 * 2) persistent clock (ie: RTC accessible when irqs are off) 1603 * 3) RTC 1604 * 1605 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1606 * If system has neither 1) nor 2), 3) will be used finally. 1607 * 1608 * 1609 * If timekeeping has injected sleeptime via either 1) or 2), 1610 * 3) becomes needless, so in this case we don't need to call 1611 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1612 * means. 1613 */ 1614 bool timekeeping_rtc_skipresume(void) 1615 { 1616 return !suspend_timing_needed; 1617 } 1618 1619 /** 1620 * 1) can be determined whether to use or not only when doing 1621 * timekeeping_resume() which is invoked after rtc_suspend(), 1622 * so we can't skip rtc_suspend() surely if system has 1). 1623 * 1624 * But if system has 2), 2) will definitely be used, so in this 1625 * case we don't need to call rtc_suspend(), and this is what 1626 * timekeeping_rtc_skipsuspend() means. 1627 */ 1628 bool timekeeping_rtc_skipsuspend(void) 1629 { 1630 return persistent_clock_exists; 1631 } 1632 1633 /** 1634 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1635 * @delta: pointer to a timespec64 delta value 1636 * 1637 * This hook is for architectures that cannot support read_persistent_clock64 1638 * because their RTC/persistent clock is only accessible when irqs are enabled. 1639 * and also don't have an effective nonstop clocksource. 1640 * 1641 * This function should only be called by rtc_resume(), and allows 1642 * a suspend offset to be injected into the timekeeping values. 1643 */ 1644 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1645 { 1646 struct timekeeper *tk = &tk_core.timekeeper; 1647 unsigned long flags; 1648 1649 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1650 write_seqcount_begin(&tk_core.seq); 1651 1652 suspend_timing_needed = false; 1653 1654 timekeeping_forward_now(tk); 1655 1656 __timekeeping_inject_sleeptime(tk, delta); 1657 1658 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1659 1660 write_seqcount_end(&tk_core.seq); 1661 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1662 1663 /* signal hrtimers about time change */ 1664 clock_was_set(); 1665 } 1666 #endif 1667 1668 /** 1669 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1670 */ 1671 void timekeeping_resume(void) 1672 { 1673 struct timekeeper *tk = &tk_core.timekeeper; 1674 struct clocksource *clock = tk->tkr_mono.clock; 1675 unsigned long flags; 1676 struct timespec64 ts_new, ts_delta; 1677 u64 cycle_now, nsec; 1678 bool inject_sleeptime = false; 1679 1680 read_persistent_clock64(&ts_new); 1681 1682 clockevents_resume(); 1683 clocksource_resume(); 1684 1685 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1686 write_seqcount_begin(&tk_core.seq); 1687 1688 /* 1689 * After system resumes, we need to calculate the suspended time and 1690 * compensate it for the OS time. There are 3 sources that could be 1691 * used: Nonstop clocksource during suspend, persistent clock and rtc 1692 * device. 1693 * 1694 * One specific platform may have 1 or 2 or all of them, and the 1695 * preference will be: 1696 * suspend-nonstop clocksource -> persistent clock -> rtc 1697 * The less preferred source will only be tried if there is no better 1698 * usable source. The rtc part is handled separately in rtc core code. 1699 */ 1700 cycle_now = tk_clock_read(&tk->tkr_mono); 1701 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1702 if (nsec > 0) { 1703 ts_delta = ns_to_timespec64(nsec); 1704 inject_sleeptime = true; 1705 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1706 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1707 inject_sleeptime = true; 1708 } 1709 1710 if (inject_sleeptime) { 1711 suspend_timing_needed = false; 1712 __timekeeping_inject_sleeptime(tk, &ts_delta); 1713 } 1714 1715 /* Re-base the last cycle value */ 1716 tk->tkr_mono.cycle_last = cycle_now; 1717 tk->tkr_raw.cycle_last = cycle_now; 1718 1719 tk->ntp_error = 0; 1720 timekeeping_suspended = 0; 1721 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1722 write_seqcount_end(&tk_core.seq); 1723 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1724 1725 touch_softlockup_watchdog(); 1726 1727 tick_resume(); 1728 hrtimers_resume(); 1729 } 1730 1731 int timekeeping_suspend(void) 1732 { 1733 struct timekeeper *tk = &tk_core.timekeeper; 1734 unsigned long flags; 1735 struct timespec64 delta, delta_delta; 1736 static struct timespec64 old_delta; 1737 struct clocksource *curr_clock; 1738 u64 cycle_now; 1739 1740 read_persistent_clock64(&timekeeping_suspend_time); 1741 1742 /* 1743 * On some systems the persistent_clock can not be detected at 1744 * timekeeping_init by its return value, so if we see a valid 1745 * value returned, update the persistent_clock_exists flag. 1746 */ 1747 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1748 persistent_clock_exists = true; 1749 1750 suspend_timing_needed = true; 1751 1752 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1753 write_seqcount_begin(&tk_core.seq); 1754 timekeeping_forward_now(tk); 1755 timekeeping_suspended = 1; 1756 1757 /* 1758 * Since we've called forward_now, cycle_last stores the value 1759 * just read from the current clocksource. Save this to potentially 1760 * use in suspend timing. 1761 */ 1762 curr_clock = tk->tkr_mono.clock; 1763 cycle_now = tk->tkr_mono.cycle_last; 1764 clocksource_start_suspend_timing(curr_clock, cycle_now); 1765 1766 if (persistent_clock_exists) { 1767 /* 1768 * To avoid drift caused by repeated suspend/resumes, 1769 * which each can add ~1 second drift error, 1770 * try to compensate so the difference in system time 1771 * and persistent_clock time stays close to constant. 1772 */ 1773 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1774 delta_delta = timespec64_sub(delta, old_delta); 1775 if (abs(delta_delta.tv_sec) >= 2) { 1776 /* 1777 * if delta_delta is too large, assume time correction 1778 * has occurred and set old_delta to the current delta. 1779 */ 1780 old_delta = delta; 1781 } else { 1782 /* Otherwise try to adjust old_system to compensate */ 1783 timekeeping_suspend_time = 1784 timespec64_add(timekeeping_suspend_time, delta_delta); 1785 } 1786 } 1787 1788 timekeeping_update(tk, TK_MIRROR); 1789 halt_fast_timekeeper(tk); 1790 write_seqcount_end(&tk_core.seq); 1791 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1792 1793 tick_suspend(); 1794 clocksource_suspend(); 1795 clockevents_suspend(); 1796 1797 return 0; 1798 } 1799 1800 /* sysfs resume/suspend bits for timekeeping */ 1801 static struct syscore_ops timekeeping_syscore_ops = { 1802 .resume = timekeeping_resume, 1803 .suspend = timekeeping_suspend, 1804 }; 1805 1806 static int __init timekeeping_init_ops(void) 1807 { 1808 register_syscore_ops(&timekeeping_syscore_ops); 1809 return 0; 1810 } 1811 device_initcall(timekeeping_init_ops); 1812 1813 /* 1814 * Apply a multiplier adjustment to the timekeeper 1815 */ 1816 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1817 s64 offset, 1818 s32 mult_adj) 1819 { 1820 s64 interval = tk->cycle_interval; 1821 1822 if (mult_adj == 0) { 1823 return; 1824 } else if (mult_adj == -1) { 1825 interval = -interval; 1826 offset = -offset; 1827 } else if (mult_adj != 1) { 1828 interval *= mult_adj; 1829 offset *= mult_adj; 1830 } 1831 1832 /* 1833 * So the following can be confusing. 1834 * 1835 * To keep things simple, lets assume mult_adj == 1 for now. 1836 * 1837 * When mult_adj != 1, remember that the interval and offset values 1838 * have been appropriately scaled so the math is the same. 1839 * 1840 * The basic idea here is that we're increasing the multiplier 1841 * by one, this causes the xtime_interval to be incremented by 1842 * one cycle_interval. This is because: 1843 * xtime_interval = cycle_interval * mult 1844 * So if mult is being incremented by one: 1845 * xtime_interval = cycle_interval * (mult + 1) 1846 * Its the same as: 1847 * xtime_interval = (cycle_interval * mult) + cycle_interval 1848 * Which can be shortened to: 1849 * xtime_interval += cycle_interval 1850 * 1851 * So offset stores the non-accumulated cycles. Thus the current 1852 * time (in shifted nanoseconds) is: 1853 * now = (offset * adj) + xtime_nsec 1854 * Now, even though we're adjusting the clock frequency, we have 1855 * to keep time consistent. In other words, we can't jump back 1856 * in time, and we also want to avoid jumping forward in time. 1857 * 1858 * So given the same offset value, we need the time to be the same 1859 * both before and after the freq adjustment. 1860 * now = (offset * adj_1) + xtime_nsec_1 1861 * now = (offset * adj_2) + xtime_nsec_2 1862 * So: 1863 * (offset * adj_1) + xtime_nsec_1 = 1864 * (offset * adj_2) + xtime_nsec_2 1865 * And we know: 1866 * adj_2 = adj_1 + 1 1867 * So: 1868 * (offset * adj_1) + xtime_nsec_1 = 1869 * (offset * (adj_1+1)) + xtime_nsec_2 1870 * (offset * adj_1) + xtime_nsec_1 = 1871 * (offset * adj_1) + offset + xtime_nsec_2 1872 * Canceling the sides: 1873 * xtime_nsec_1 = offset + xtime_nsec_2 1874 * Which gives us: 1875 * xtime_nsec_2 = xtime_nsec_1 - offset 1876 * Which simplfies to: 1877 * xtime_nsec -= offset 1878 */ 1879 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1880 /* NTP adjustment caused clocksource mult overflow */ 1881 WARN_ON_ONCE(1); 1882 return; 1883 } 1884 1885 tk->tkr_mono.mult += mult_adj; 1886 tk->xtime_interval += interval; 1887 tk->tkr_mono.xtime_nsec -= offset; 1888 } 1889 1890 /* 1891 * Adjust the timekeeper's multiplier to the correct frequency 1892 * and also to reduce the accumulated error value. 1893 */ 1894 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1895 { 1896 u32 mult; 1897 1898 /* 1899 * Determine the multiplier from the current NTP tick length. 1900 * Avoid expensive division when the tick length doesn't change. 1901 */ 1902 if (likely(tk->ntp_tick == ntp_tick_length())) { 1903 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1904 } else { 1905 tk->ntp_tick = ntp_tick_length(); 1906 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1907 tk->xtime_remainder, tk->cycle_interval); 1908 } 1909 1910 /* 1911 * If the clock is behind the NTP time, increase the multiplier by 1 1912 * to catch up with it. If it's ahead and there was a remainder in the 1913 * tick division, the clock will slow down. Otherwise it will stay 1914 * ahead until the tick length changes to a non-divisible value. 1915 */ 1916 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1917 mult += tk->ntp_err_mult; 1918 1919 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1920 1921 if (unlikely(tk->tkr_mono.clock->maxadj && 1922 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1923 > tk->tkr_mono.clock->maxadj))) { 1924 printk_once(KERN_WARNING 1925 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1926 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1927 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1928 } 1929 1930 /* 1931 * It may be possible that when we entered this function, xtime_nsec 1932 * was very small. Further, if we're slightly speeding the clocksource 1933 * in the code above, its possible the required corrective factor to 1934 * xtime_nsec could cause it to underflow. 1935 * 1936 * Now, since we have already accumulated the second and the NTP 1937 * subsystem has been notified via second_overflow(), we need to skip 1938 * the next update. 1939 */ 1940 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1941 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 1942 tk->tkr_mono.shift; 1943 tk->xtime_sec--; 1944 tk->skip_second_overflow = 1; 1945 } 1946 } 1947 1948 /** 1949 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1950 * 1951 * Helper function that accumulates the nsecs greater than a second 1952 * from the xtime_nsec field to the xtime_secs field. 1953 * It also calls into the NTP code to handle leapsecond processing. 1954 * 1955 */ 1956 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1957 { 1958 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1959 unsigned int clock_set = 0; 1960 1961 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1962 int leap; 1963 1964 tk->tkr_mono.xtime_nsec -= nsecps; 1965 tk->xtime_sec++; 1966 1967 /* 1968 * Skip NTP update if this second was accumulated before, 1969 * i.e. xtime_nsec underflowed in timekeeping_adjust() 1970 */ 1971 if (unlikely(tk->skip_second_overflow)) { 1972 tk->skip_second_overflow = 0; 1973 continue; 1974 } 1975 1976 /* Figure out if its a leap sec and apply if needed */ 1977 leap = second_overflow(tk->xtime_sec); 1978 if (unlikely(leap)) { 1979 struct timespec64 ts; 1980 1981 tk->xtime_sec += leap; 1982 1983 ts.tv_sec = leap; 1984 ts.tv_nsec = 0; 1985 tk_set_wall_to_mono(tk, 1986 timespec64_sub(tk->wall_to_monotonic, ts)); 1987 1988 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1989 1990 clock_set = TK_CLOCK_WAS_SET; 1991 } 1992 } 1993 return clock_set; 1994 } 1995 1996 /** 1997 * logarithmic_accumulation - shifted accumulation of cycles 1998 * 1999 * This functions accumulates a shifted interval of cycles into 2000 * into a shifted interval nanoseconds. Allows for O(log) accumulation 2001 * loop. 2002 * 2003 * Returns the unconsumed cycles. 2004 */ 2005 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2006 u32 shift, unsigned int *clock_set) 2007 { 2008 u64 interval = tk->cycle_interval << shift; 2009 u64 snsec_per_sec; 2010 2011 /* If the offset is smaller than a shifted interval, do nothing */ 2012 if (offset < interval) 2013 return offset; 2014 2015 /* Accumulate one shifted interval */ 2016 offset -= interval; 2017 tk->tkr_mono.cycle_last += interval; 2018 tk->tkr_raw.cycle_last += interval; 2019 2020 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2021 *clock_set |= accumulate_nsecs_to_secs(tk); 2022 2023 /* Accumulate raw time */ 2024 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2025 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2026 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2027 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2028 tk->raw_sec++; 2029 } 2030 2031 /* Accumulate error between NTP and clock interval */ 2032 tk->ntp_error += tk->ntp_tick << shift; 2033 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2034 (tk->ntp_error_shift + shift); 2035 2036 return offset; 2037 } 2038 2039 /* 2040 * timekeeping_advance - Updates the timekeeper to the current time and 2041 * current NTP tick length 2042 */ 2043 static void timekeeping_advance(enum timekeeping_adv_mode mode) 2044 { 2045 struct timekeeper *real_tk = &tk_core.timekeeper; 2046 struct timekeeper *tk = &shadow_timekeeper; 2047 u64 offset; 2048 int shift = 0, maxshift; 2049 unsigned int clock_set = 0; 2050 unsigned long flags; 2051 2052 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2053 2054 /* Make sure we're fully resumed: */ 2055 if (unlikely(timekeeping_suspended)) 2056 goto out; 2057 2058 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2059 offset = real_tk->cycle_interval; 2060 2061 if (mode != TK_ADV_TICK) 2062 goto out; 2063 #else 2064 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2065 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2066 2067 /* Check if there's really nothing to do */ 2068 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2069 goto out; 2070 #endif 2071 2072 /* Do some additional sanity checking */ 2073 timekeeping_check_update(tk, offset); 2074 2075 /* 2076 * With NO_HZ we may have to accumulate many cycle_intervals 2077 * (think "ticks") worth of time at once. To do this efficiently, 2078 * we calculate the largest doubling multiple of cycle_intervals 2079 * that is smaller than the offset. We then accumulate that 2080 * chunk in one go, and then try to consume the next smaller 2081 * doubled multiple. 2082 */ 2083 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2084 shift = max(0, shift); 2085 /* Bound shift to one less than what overflows tick_length */ 2086 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2087 shift = min(shift, maxshift); 2088 while (offset >= tk->cycle_interval) { 2089 offset = logarithmic_accumulation(tk, offset, shift, 2090 &clock_set); 2091 if (offset < tk->cycle_interval<<shift) 2092 shift--; 2093 } 2094 2095 /* Adjust the multiplier to correct NTP error */ 2096 timekeeping_adjust(tk, offset); 2097 2098 /* 2099 * Finally, make sure that after the rounding 2100 * xtime_nsec isn't larger than NSEC_PER_SEC 2101 */ 2102 clock_set |= accumulate_nsecs_to_secs(tk); 2103 2104 write_seqcount_begin(&tk_core.seq); 2105 /* 2106 * Update the real timekeeper. 2107 * 2108 * We could avoid this memcpy by switching pointers, but that 2109 * requires changes to all other timekeeper usage sites as 2110 * well, i.e. move the timekeeper pointer getter into the 2111 * spinlocked/seqcount protected sections. And we trade this 2112 * memcpy under the tk_core.seq against one before we start 2113 * updating. 2114 */ 2115 timekeeping_update(tk, clock_set); 2116 memcpy(real_tk, tk, sizeof(*tk)); 2117 /* The memcpy must come last. Do not put anything here! */ 2118 write_seqcount_end(&tk_core.seq); 2119 out: 2120 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2121 if (clock_set) 2122 /* Have to call _delayed version, since in irq context*/ 2123 clock_was_set_delayed(); 2124 } 2125 2126 /** 2127 * update_wall_time - Uses the current clocksource to increment the wall time 2128 * 2129 */ 2130 void update_wall_time(void) 2131 { 2132 timekeeping_advance(TK_ADV_TICK); 2133 } 2134 2135 /** 2136 * getboottime64 - Return the real time of system boot. 2137 * @ts: pointer to the timespec64 to be set 2138 * 2139 * Returns the wall-time of boot in a timespec64. 2140 * 2141 * This is based on the wall_to_monotonic offset and the total suspend 2142 * time. Calls to settimeofday will affect the value returned (which 2143 * basically means that however wrong your real time clock is at boot time, 2144 * you get the right time here). 2145 */ 2146 void getboottime64(struct timespec64 *ts) 2147 { 2148 struct timekeeper *tk = &tk_core.timekeeper; 2149 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2150 2151 *ts = ktime_to_timespec64(t); 2152 } 2153 EXPORT_SYMBOL_GPL(getboottime64); 2154 2155 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2156 { 2157 struct timekeeper *tk = &tk_core.timekeeper; 2158 unsigned int seq; 2159 2160 do { 2161 seq = read_seqcount_begin(&tk_core.seq); 2162 2163 *ts = tk_xtime(tk); 2164 } while (read_seqcount_retry(&tk_core.seq, seq)); 2165 } 2166 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2167 2168 void ktime_get_coarse_ts64(struct timespec64 *ts) 2169 { 2170 struct timekeeper *tk = &tk_core.timekeeper; 2171 struct timespec64 now, mono; 2172 unsigned int seq; 2173 2174 do { 2175 seq = read_seqcount_begin(&tk_core.seq); 2176 2177 now = tk_xtime(tk); 2178 mono = tk->wall_to_monotonic; 2179 } while (read_seqcount_retry(&tk_core.seq, seq)); 2180 2181 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2182 now.tv_nsec + mono.tv_nsec); 2183 } 2184 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2185 2186 /* 2187 * Must hold jiffies_lock 2188 */ 2189 void do_timer(unsigned long ticks) 2190 { 2191 jiffies_64 += ticks; 2192 calc_global_load(ticks); 2193 } 2194 2195 /** 2196 * ktime_get_update_offsets_now - hrtimer helper 2197 * @cwsseq: pointer to check and store the clock was set sequence number 2198 * @offs_real: pointer to storage for monotonic -> realtime offset 2199 * @offs_boot: pointer to storage for monotonic -> boottime offset 2200 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2201 * 2202 * Returns current monotonic time and updates the offsets if the 2203 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2204 * different. 2205 * 2206 * Called from hrtimer_interrupt() or retrigger_next_event() 2207 */ 2208 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2209 ktime_t *offs_boot, ktime_t *offs_tai) 2210 { 2211 struct timekeeper *tk = &tk_core.timekeeper; 2212 unsigned int seq; 2213 ktime_t base; 2214 u64 nsecs; 2215 2216 do { 2217 seq = read_seqcount_begin(&tk_core.seq); 2218 2219 base = tk->tkr_mono.base; 2220 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2221 base = ktime_add_ns(base, nsecs); 2222 2223 if (*cwsseq != tk->clock_was_set_seq) { 2224 *cwsseq = tk->clock_was_set_seq; 2225 *offs_real = tk->offs_real; 2226 *offs_boot = tk->offs_boot; 2227 *offs_tai = tk->offs_tai; 2228 } 2229 2230 /* Handle leapsecond insertion adjustments */ 2231 if (unlikely(base >= tk->next_leap_ktime)) 2232 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2233 2234 } while (read_seqcount_retry(&tk_core.seq, seq)); 2235 2236 return base; 2237 } 2238 2239 /** 2240 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2241 */ 2242 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2243 { 2244 if (txc->modes & ADJ_ADJTIME) { 2245 /* singleshot must not be used with any other mode bits */ 2246 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2247 return -EINVAL; 2248 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2249 !capable(CAP_SYS_TIME)) 2250 return -EPERM; 2251 } else { 2252 /* In order to modify anything, you gotta be super-user! */ 2253 if (txc->modes && !capable(CAP_SYS_TIME)) 2254 return -EPERM; 2255 /* 2256 * if the quartz is off by more than 10% then 2257 * something is VERY wrong! 2258 */ 2259 if (txc->modes & ADJ_TICK && 2260 (txc->tick < 900000/USER_HZ || 2261 txc->tick > 1100000/USER_HZ)) 2262 return -EINVAL; 2263 } 2264 2265 if (txc->modes & ADJ_SETOFFSET) { 2266 /* In order to inject time, you gotta be super-user! */ 2267 if (!capable(CAP_SYS_TIME)) 2268 return -EPERM; 2269 2270 /* 2271 * Validate if a timespec/timeval used to inject a time 2272 * offset is valid. Offsets can be postive or negative, so 2273 * we don't check tv_sec. The value of the timeval/timespec 2274 * is the sum of its fields,but *NOTE*: 2275 * The field tv_usec/tv_nsec must always be non-negative and 2276 * we can't have more nanoseconds/microseconds than a second. 2277 */ 2278 if (txc->time.tv_usec < 0) 2279 return -EINVAL; 2280 2281 if (txc->modes & ADJ_NANO) { 2282 if (txc->time.tv_usec >= NSEC_PER_SEC) 2283 return -EINVAL; 2284 } else { 2285 if (txc->time.tv_usec >= USEC_PER_SEC) 2286 return -EINVAL; 2287 } 2288 } 2289 2290 /* 2291 * Check for potential multiplication overflows that can 2292 * only happen on 64-bit systems: 2293 */ 2294 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2295 if (LLONG_MIN / PPM_SCALE > txc->freq) 2296 return -EINVAL; 2297 if (LLONG_MAX / PPM_SCALE < txc->freq) 2298 return -EINVAL; 2299 } 2300 2301 return 0; 2302 } 2303 2304 2305 /** 2306 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2307 */ 2308 int do_adjtimex(struct __kernel_timex *txc) 2309 { 2310 struct timekeeper *tk = &tk_core.timekeeper; 2311 struct audit_ntp_data ad; 2312 unsigned long flags; 2313 struct timespec64 ts; 2314 s32 orig_tai, tai; 2315 int ret; 2316 2317 /* Validate the data before disabling interrupts */ 2318 ret = timekeeping_validate_timex(txc); 2319 if (ret) 2320 return ret; 2321 2322 if (txc->modes & ADJ_SETOFFSET) { 2323 struct timespec64 delta; 2324 delta.tv_sec = txc->time.tv_sec; 2325 delta.tv_nsec = txc->time.tv_usec; 2326 if (!(txc->modes & ADJ_NANO)) 2327 delta.tv_nsec *= 1000; 2328 ret = timekeeping_inject_offset(&delta); 2329 if (ret) 2330 return ret; 2331 2332 audit_tk_injoffset(delta); 2333 } 2334 2335 audit_ntp_init(&ad); 2336 2337 ktime_get_real_ts64(&ts); 2338 2339 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2340 write_seqcount_begin(&tk_core.seq); 2341 2342 orig_tai = tai = tk->tai_offset; 2343 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2344 2345 if (tai != orig_tai) { 2346 __timekeeping_set_tai_offset(tk, tai); 2347 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2348 } 2349 tk_update_leap_state(tk); 2350 2351 write_seqcount_end(&tk_core.seq); 2352 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2353 2354 audit_ntp_log(&ad); 2355 2356 /* Update the multiplier immediately if frequency was set directly */ 2357 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2358 timekeeping_advance(TK_ADV_FREQ); 2359 2360 if (tai != orig_tai) 2361 clock_was_set(); 2362 2363 ntp_notify_cmos_timer(); 2364 2365 return ret; 2366 } 2367 2368 #ifdef CONFIG_NTP_PPS 2369 /** 2370 * hardpps() - Accessor function to NTP __hardpps function 2371 */ 2372 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2373 { 2374 unsigned long flags; 2375 2376 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2377 write_seqcount_begin(&tk_core.seq); 2378 2379 __hardpps(phase_ts, raw_ts); 2380 2381 write_seqcount_end(&tk_core.seq); 2382 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2383 } 2384 EXPORT_SYMBOL(hardpps); 2385 #endif /* CONFIG_NTP_PPS */ 2386 2387 /** 2388 * xtime_update() - advances the timekeeping infrastructure 2389 * @ticks: number of ticks, that have elapsed since the last call. 2390 * 2391 * Must be called with interrupts disabled. 2392 */ 2393 void xtime_update(unsigned long ticks) 2394 { 2395 write_seqlock(&jiffies_lock); 2396 do_timer(ticks); 2397 write_sequnlock(&jiffies_lock); 2398 update_wall_time(); 2399 } 2400