xref: /openbmc/linux/kernel/time/timekeeping.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124 
125 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 	const char *name = tk->tkr_mono.clock->name;
127 
128 	if (offset > max_cycles) {
129 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 				offset, name, max_cycles);
131 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 	} else {
133 		if (offset > (max_cycles >> 1)) {
134 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 					offset, name, max_cycles >> 1);
136 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 		}
138 	}
139 
140 	if (tk->underflow_seen) {
141 		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144 			printk_deferred("         Your kernel is probably still fine.\n");
145 			tk->last_warning = jiffies;
146 		}
147 		tk->underflow_seen = 0;
148 	}
149 
150 	if (tk->overflow_seen) {
151 		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154 			printk_deferred("         Your kernel is probably still fine.\n");
155 			tk->last_warning = jiffies;
156 		}
157 		tk->overflow_seen = 0;
158 	}
159 }
160 
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 	struct timekeeper *tk = &tk_core.timekeeper;
164 	cycle_t now, last, mask, max, delta;
165 	unsigned int seq;
166 
167 	/*
168 	 * Since we're called holding a seqlock, the data may shift
169 	 * under us while we're doing the calculation. This can cause
170 	 * false positives, since we'd note a problem but throw the
171 	 * results away. So nest another seqlock here to atomically
172 	 * grab the points we are checking with.
173 	 */
174 	do {
175 		seq = read_seqcount_begin(&tk_core.seq);
176 		now = tkr->read(tkr->clock);
177 		last = tkr->cycle_last;
178 		mask = tkr->mask;
179 		max = tkr->clock->max_cycles;
180 	} while (read_seqcount_retry(&tk_core.seq, seq));
181 
182 	delta = clocksource_delta(now, last, mask);
183 
184 	/*
185 	 * Try to catch underflows by checking if we are seeing small
186 	 * mask-relative negative values.
187 	 */
188 	if (unlikely((~delta & mask) < (mask >> 3))) {
189 		tk->underflow_seen = 1;
190 		delta = 0;
191 	}
192 
193 	/* Cap delta value to the max_cycles values to avoid mult overflows */
194 	if (unlikely(delta > max)) {
195 		tk->overflow_seen = 1;
196 		delta = tkr->clock->max_cycles;
197 	}
198 
199 	return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 	cycle_t cycle_now, delta;
208 
209 	/* read clocksource */
210 	cycle_now = tkr->read(tkr->clock);
211 
212 	/* calculate the delta since the last update_wall_time */
213 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214 
215 	return delta;
216 }
217 #endif
218 
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:		The target timekeeper to setup.
223  * @clock:		Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 	cycle_t interval;
233 	u64 tmp, ntpinterval;
234 	struct clocksource *old_clock;
235 
236 	old_clock = tk->tkr_mono.clock;
237 	tk->tkr_mono.clock = clock;
238 	tk->tkr_mono.read = clock->read;
239 	tk->tkr_mono.mask = clock->mask;
240 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241 
242 	tk->tkr_raw.clock = clock;
243 	tk->tkr_raw.read = clock->read;
244 	tk->tkr_raw.mask = clock->mask;
245 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246 
247 	/* Do the ns -> cycle conversion first, using original mult */
248 	tmp = NTP_INTERVAL_LENGTH;
249 	tmp <<= clock->shift;
250 	ntpinterval = tmp;
251 	tmp += clock->mult/2;
252 	do_div(tmp, clock->mult);
253 	if (tmp == 0)
254 		tmp = 1;
255 
256 	interval = (cycle_t) tmp;
257 	tk->cycle_interval = interval;
258 
259 	/* Go back from cycles -> shifted ns */
260 	tk->xtime_interval = (u64) interval * clock->mult;
261 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262 	tk->raw_interval =
263 		((u64) interval * clock->mult) >> clock->shift;
264 
265 	 /* if changing clocks, convert xtime_nsec shift units */
266 	if (old_clock) {
267 		int shift_change = clock->shift - old_clock->shift;
268 		if (shift_change < 0)
269 			tk->tkr_mono.xtime_nsec >>= -shift_change;
270 		else
271 			tk->tkr_mono.xtime_nsec <<= shift_change;
272 	}
273 	tk->tkr_raw.xtime_nsec = 0;
274 
275 	tk->tkr_mono.shift = clock->shift;
276 	tk->tkr_raw.shift = clock->shift;
277 
278 	tk->ntp_error = 0;
279 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 
282 	/*
283 	 * The timekeeper keeps its own mult values for the currently
284 	 * active clocksource. These value will be adjusted via NTP
285 	 * to counteract clock drifting.
286 	 */
287 	tk->tkr_mono.mult = clock->mult;
288 	tk->tkr_raw.mult = clock->mult;
289 	tk->ntp_err_mult = 0;
290 }
291 
292 /* Timekeeper helper functions. */
293 
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300 
301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302 {
303 	cycle_t delta;
304 	s64 nsec;
305 
306 	delta = timekeeping_get_delta(tkr);
307 
308 	nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
309 
310 	/* If arch requires, add in get_arch_timeoffset() */
311 	return nsec + arch_gettimeoffset();
312 }
313 
314 /**
315  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
316  * @tkr: Timekeeping readout base from which we take the update
317  *
318  * We want to use this from any context including NMI and tracing /
319  * instrumenting the timekeeping code itself.
320  *
321  * Employ the latch technique; see @raw_write_seqcount_latch.
322  *
323  * So if a NMI hits the update of base[0] then it will use base[1]
324  * which is still consistent. In the worst case this can result is a
325  * slightly wrong timestamp (a few nanoseconds). See
326  * @ktime_get_mono_fast_ns.
327  */
328 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
329 {
330 	struct tk_read_base *base = tkf->base;
331 
332 	/* Force readers off to base[1] */
333 	raw_write_seqcount_latch(&tkf->seq);
334 
335 	/* Update base[0] */
336 	memcpy(base, tkr, sizeof(*base));
337 
338 	/* Force readers back to base[0] */
339 	raw_write_seqcount_latch(&tkf->seq);
340 
341 	/* Update base[1] */
342 	memcpy(base + 1, base, sizeof(*base));
343 }
344 
345 /**
346  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
347  *
348  * This timestamp is not guaranteed to be monotonic across an update.
349  * The timestamp is calculated by:
350  *
351  *	now = base_mono + clock_delta * slope
352  *
353  * So if the update lowers the slope, readers who are forced to the
354  * not yet updated second array are still using the old steeper slope.
355  *
356  * tmono
357  * ^
358  * |    o  n
359  * |   o n
360  * |  u
361  * | o
362  * |o
363  * |12345678---> reader order
364  *
365  * o = old slope
366  * u = update
367  * n = new slope
368  *
369  * So reader 6 will observe time going backwards versus reader 5.
370  *
371  * While other CPUs are likely to be able observe that, the only way
372  * for a CPU local observation is when an NMI hits in the middle of
373  * the update. Timestamps taken from that NMI context might be ahead
374  * of the following timestamps. Callers need to be aware of that and
375  * deal with it.
376  */
377 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
378 {
379 	struct tk_read_base *tkr;
380 	unsigned int seq;
381 	u64 now;
382 
383 	do {
384 		seq = raw_read_seqcount_latch(&tkf->seq);
385 		tkr = tkf->base + (seq & 0x01);
386 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
387 	} while (read_seqcount_retry(&tkf->seq, seq));
388 
389 	return now;
390 }
391 
392 u64 ktime_get_mono_fast_ns(void)
393 {
394 	return __ktime_get_fast_ns(&tk_fast_mono);
395 }
396 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
397 
398 u64 ktime_get_raw_fast_ns(void)
399 {
400 	return __ktime_get_fast_ns(&tk_fast_raw);
401 }
402 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
403 
404 /* Suspend-time cycles value for halted fast timekeeper. */
405 static cycle_t cycles_at_suspend;
406 
407 static cycle_t dummy_clock_read(struct clocksource *cs)
408 {
409 	return cycles_at_suspend;
410 }
411 
412 /**
413  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
414  * @tk: Timekeeper to snapshot.
415  *
416  * It generally is unsafe to access the clocksource after timekeeping has been
417  * suspended, so take a snapshot of the readout base of @tk and use it as the
418  * fast timekeeper's readout base while suspended.  It will return the same
419  * number of cycles every time until timekeeping is resumed at which time the
420  * proper readout base for the fast timekeeper will be restored automatically.
421  */
422 static void halt_fast_timekeeper(struct timekeeper *tk)
423 {
424 	static struct tk_read_base tkr_dummy;
425 	struct tk_read_base *tkr = &tk->tkr_mono;
426 
427 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
428 	cycles_at_suspend = tkr->read(tkr->clock);
429 	tkr_dummy.read = dummy_clock_read;
430 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
431 
432 	tkr = &tk->tkr_raw;
433 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
434 	tkr_dummy.read = dummy_clock_read;
435 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
436 }
437 
438 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
439 
440 static inline void update_vsyscall(struct timekeeper *tk)
441 {
442 	struct timespec xt, wm;
443 
444 	xt = timespec64_to_timespec(tk_xtime(tk));
445 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
446 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
447 			    tk->tkr_mono.cycle_last);
448 }
449 
450 static inline void old_vsyscall_fixup(struct timekeeper *tk)
451 {
452 	s64 remainder;
453 
454 	/*
455 	* Store only full nanoseconds into xtime_nsec after rounding
456 	* it up and add the remainder to the error difference.
457 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
458 	* by truncating the remainder in vsyscalls. However, it causes
459 	* additional work to be done in timekeeping_adjust(). Once
460 	* the vsyscall implementations are converted to use xtime_nsec
461 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
462 	* users are removed, this can be killed.
463 	*/
464 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
465 	tk->tkr_mono.xtime_nsec -= remainder;
466 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
467 	tk->ntp_error += remainder << tk->ntp_error_shift;
468 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
469 }
470 #else
471 #define old_vsyscall_fixup(tk)
472 #endif
473 
474 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
475 
476 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
477 {
478 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
479 }
480 
481 /**
482  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
483  */
484 int pvclock_gtod_register_notifier(struct notifier_block *nb)
485 {
486 	struct timekeeper *tk = &tk_core.timekeeper;
487 	unsigned long flags;
488 	int ret;
489 
490 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
491 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
492 	update_pvclock_gtod(tk, true);
493 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
494 
495 	return ret;
496 }
497 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
498 
499 /**
500  * pvclock_gtod_unregister_notifier - unregister a pvclock
501  * timedata update listener
502  */
503 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
504 {
505 	unsigned long flags;
506 	int ret;
507 
508 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
509 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
510 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
511 
512 	return ret;
513 }
514 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
515 
516 /*
517  * tk_update_leap_state - helper to update the next_leap_ktime
518  */
519 static inline void tk_update_leap_state(struct timekeeper *tk)
520 {
521 	tk->next_leap_ktime = ntp_get_next_leap();
522 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
523 		/* Convert to monotonic time */
524 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
525 }
526 
527 /*
528  * Update the ktime_t based scalar nsec members of the timekeeper
529  */
530 static inline void tk_update_ktime_data(struct timekeeper *tk)
531 {
532 	u64 seconds;
533 	u32 nsec;
534 
535 	/*
536 	 * The xtime based monotonic readout is:
537 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
538 	 * The ktime based monotonic readout is:
539 	 *	nsec = base_mono + now();
540 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
541 	 */
542 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
543 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
544 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
545 
546 	/* Update the monotonic raw base */
547 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
548 
549 	/*
550 	 * The sum of the nanoseconds portions of xtime and
551 	 * wall_to_monotonic can be greater/equal one second. Take
552 	 * this into account before updating tk->ktime_sec.
553 	 */
554 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
555 	if (nsec >= NSEC_PER_SEC)
556 		seconds++;
557 	tk->ktime_sec = seconds;
558 }
559 
560 /* must hold timekeeper_lock */
561 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
562 {
563 	if (action & TK_CLEAR_NTP) {
564 		tk->ntp_error = 0;
565 		ntp_clear();
566 	}
567 
568 	tk_update_leap_state(tk);
569 	tk_update_ktime_data(tk);
570 
571 	update_vsyscall(tk);
572 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
573 
574 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
575 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
576 
577 	if (action & TK_CLOCK_WAS_SET)
578 		tk->clock_was_set_seq++;
579 	/*
580 	 * The mirroring of the data to the shadow-timekeeper needs
581 	 * to happen last here to ensure we don't over-write the
582 	 * timekeeper structure on the next update with stale data
583 	 */
584 	if (action & TK_MIRROR)
585 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
586 		       sizeof(tk_core.timekeeper));
587 }
588 
589 /**
590  * timekeeping_forward_now - update clock to the current time
591  *
592  * Forward the current clock to update its state since the last call to
593  * update_wall_time(). This is useful before significant clock changes,
594  * as it avoids having to deal with this time offset explicitly.
595  */
596 static void timekeeping_forward_now(struct timekeeper *tk)
597 {
598 	struct clocksource *clock = tk->tkr_mono.clock;
599 	cycle_t cycle_now, delta;
600 	s64 nsec;
601 
602 	cycle_now = tk->tkr_mono.read(clock);
603 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
604 	tk->tkr_mono.cycle_last = cycle_now;
605 	tk->tkr_raw.cycle_last  = cycle_now;
606 
607 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
608 
609 	/* If arch requires, add in get_arch_timeoffset() */
610 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
611 
612 	tk_normalize_xtime(tk);
613 
614 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
615 	timespec64_add_ns(&tk->raw_time, nsec);
616 }
617 
618 /**
619  * __getnstimeofday64 - Returns the time of day in a timespec64.
620  * @ts:		pointer to the timespec to be set
621  *
622  * Updates the time of day in the timespec.
623  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
624  */
625 int __getnstimeofday64(struct timespec64 *ts)
626 {
627 	struct timekeeper *tk = &tk_core.timekeeper;
628 	unsigned long seq;
629 	s64 nsecs = 0;
630 
631 	do {
632 		seq = read_seqcount_begin(&tk_core.seq);
633 
634 		ts->tv_sec = tk->xtime_sec;
635 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
636 
637 	} while (read_seqcount_retry(&tk_core.seq, seq));
638 
639 	ts->tv_nsec = 0;
640 	timespec64_add_ns(ts, nsecs);
641 
642 	/*
643 	 * Do not bail out early, in case there were callers still using
644 	 * the value, even in the face of the WARN_ON.
645 	 */
646 	if (unlikely(timekeeping_suspended))
647 		return -EAGAIN;
648 	return 0;
649 }
650 EXPORT_SYMBOL(__getnstimeofday64);
651 
652 /**
653  * getnstimeofday64 - Returns the time of day in a timespec64.
654  * @ts:		pointer to the timespec64 to be set
655  *
656  * Returns the time of day in a timespec64 (WARN if suspended).
657  */
658 void getnstimeofday64(struct timespec64 *ts)
659 {
660 	WARN_ON(__getnstimeofday64(ts));
661 }
662 EXPORT_SYMBOL(getnstimeofday64);
663 
664 ktime_t ktime_get(void)
665 {
666 	struct timekeeper *tk = &tk_core.timekeeper;
667 	unsigned int seq;
668 	ktime_t base;
669 	s64 nsecs;
670 
671 	WARN_ON(timekeeping_suspended);
672 
673 	do {
674 		seq = read_seqcount_begin(&tk_core.seq);
675 		base = tk->tkr_mono.base;
676 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
677 
678 	} while (read_seqcount_retry(&tk_core.seq, seq));
679 
680 	return ktime_add_ns(base, nsecs);
681 }
682 EXPORT_SYMBOL_GPL(ktime_get);
683 
684 u32 ktime_get_resolution_ns(void)
685 {
686 	struct timekeeper *tk = &tk_core.timekeeper;
687 	unsigned int seq;
688 	u32 nsecs;
689 
690 	WARN_ON(timekeeping_suspended);
691 
692 	do {
693 		seq = read_seqcount_begin(&tk_core.seq);
694 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
695 	} while (read_seqcount_retry(&tk_core.seq, seq));
696 
697 	return nsecs;
698 }
699 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
700 
701 static ktime_t *offsets[TK_OFFS_MAX] = {
702 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
703 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
704 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
705 };
706 
707 ktime_t ktime_get_with_offset(enum tk_offsets offs)
708 {
709 	struct timekeeper *tk = &tk_core.timekeeper;
710 	unsigned int seq;
711 	ktime_t base, *offset = offsets[offs];
712 	s64 nsecs;
713 
714 	WARN_ON(timekeeping_suspended);
715 
716 	do {
717 		seq = read_seqcount_begin(&tk_core.seq);
718 		base = ktime_add(tk->tkr_mono.base, *offset);
719 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
720 
721 	} while (read_seqcount_retry(&tk_core.seq, seq));
722 
723 	return ktime_add_ns(base, nsecs);
724 
725 }
726 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
727 
728 /**
729  * ktime_mono_to_any() - convert mononotic time to any other time
730  * @tmono:	time to convert.
731  * @offs:	which offset to use
732  */
733 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
734 {
735 	ktime_t *offset = offsets[offs];
736 	unsigned long seq;
737 	ktime_t tconv;
738 
739 	do {
740 		seq = read_seqcount_begin(&tk_core.seq);
741 		tconv = ktime_add(tmono, *offset);
742 	} while (read_seqcount_retry(&tk_core.seq, seq));
743 
744 	return tconv;
745 }
746 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
747 
748 /**
749  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
750  */
751 ktime_t ktime_get_raw(void)
752 {
753 	struct timekeeper *tk = &tk_core.timekeeper;
754 	unsigned int seq;
755 	ktime_t base;
756 	s64 nsecs;
757 
758 	do {
759 		seq = read_seqcount_begin(&tk_core.seq);
760 		base = tk->tkr_raw.base;
761 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
762 
763 	} while (read_seqcount_retry(&tk_core.seq, seq));
764 
765 	return ktime_add_ns(base, nsecs);
766 }
767 EXPORT_SYMBOL_GPL(ktime_get_raw);
768 
769 /**
770  * ktime_get_ts64 - get the monotonic clock in timespec64 format
771  * @ts:		pointer to timespec variable
772  *
773  * The function calculates the monotonic clock from the realtime
774  * clock and the wall_to_monotonic offset and stores the result
775  * in normalized timespec64 format in the variable pointed to by @ts.
776  */
777 void ktime_get_ts64(struct timespec64 *ts)
778 {
779 	struct timekeeper *tk = &tk_core.timekeeper;
780 	struct timespec64 tomono;
781 	s64 nsec;
782 	unsigned int seq;
783 
784 	WARN_ON(timekeeping_suspended);
785 
786 	do {
787 		seq = read_seqcount_begin(&tk_core.seq);
788 		ts->tv_sec = tk->xtime_sec;
789 		nsec = timekeeping_get_ns(&tk->tkr_mono);
790 		tomono = tk->wall_to_monotonic;
791 
792 	} while (read_seqcount_retry(&tk_core.seq, seq));
793 
794 	ts->tv_sec += tomono.tv_sec;
795 	ts->tv_nsec = 0;
796 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
797 }
798 EXPORT_SYMBOL_GPL(ktime_get_ts64);
799 
800 /**
801  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
802  *
803  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
804  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
805  * works on both 32 and 64 bit systems. On 32 bit systems the readout
806  * covers ~136 years of uptime which should be enough to prevent
807  * premature wrap arounds.
808  */
809 time64_t ktime_get_seconds(void)
810 {
811 	struct timekeeper *tk = &tk_core.timekeeper;
812 
813 	WARN_ON(timekeeping_suspended);
814 	return tk->ktime_sec;
815 }
816 EXPORT_SYMBOL_GPL(ktime_get_seconds);
817 
818 /**
819  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
820  *
821  * Returns the wall clock seconds since 1970. This replaces the
822  * get_seconds() interface which is not y2038 safe on 32bit systems.
823  *
824  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
825  * 32bit systems the access must be protected with the sequence
826  * counter to provide "atomic" access to the 64bit tk->xtime_sec
827  * value.
828  */
829 time64_t ktime_get_real_seconds(void)
830 {
831 	struct timekeeper *tk = &tk_core.timekeeper;
832 	time64_t seconds;
833 	unsigned int seq;
834 
835 	if (IS_ENABLED(CONFIG_64BIT))
836 		return tk->xtime_sec;
837 
838 	do {
839 		seq = read_seqcount_begin(&tk_core.seq);
840 		seconds = tk->xtime_sec;
841 
842 	} while (read_seqcount_retry(&tk_core.seq, seq));
843 
844 	return seconds;
845 }
846 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
847 
848 /**
849  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
850  * but without the sequence counter protect. This internal function
851  * is called just when timekeeping lock is already held.
852  */
853 time64_t __ktime_get_real_seconds(void)
854 {
855 	struct timekeeper *tk = &tk_core.timekeeper;
856 
857 	return tk->xtime_sec;
858 }
859 
860 
861 #ifdef CONFIG_NTP_PPS
862 
863 /**
864  * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
865  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
866  * @ts_real:	pointer to the timespec to be set to the time of day
867  *
868  * This function reads both the time of day and raw monotonic time at the
869  * same time atomically and stores the resulting timestamps in timespec
870  * format.
871  */
872 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
873 {
874 	struct timekeeper *tk = &tk_core.timekeeper;
875 	unsigned long seq;
876 	s64 nsecs_raw, nsecs_real;
877 
878 	WARN_ON_ONCE(timekeeping_suspended);
879 
880 	do {
881 		seq = read_seqcount_begin(&tk_core.seq);
882 
883 		*ts_raw = tk->raw_time;
884 		ts_real->tv_sec = tk->xtime_sec;
885 		ts_real->tv_nsec = 0;
886 
887 		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
888 		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
889 
890 	} while (read_seqcount_retry(&tk_core.seq, seq));
891 
892 	timespec64_add_ns(ts_raw, nsecs_raw);
893 	timespec64_add_ns(ts_real, nsecs_real);
894 }
895 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
896 
897 #endif /* CONFIG_NTP_PPS */
898 
899 /**
900  * do_gettimeofday - Returns the time of day in a timeval
901  * @tv:		pointer to the timeval to be set
902  *
903  * NOTE: Users should be converted to using getnstimeofday()
904  */
905 void do_gettimeofday(struct timeval *tv)
906 {
907 	struct timespec64 now;
908 
909 	getnstimeofday64(&now);
910 	tv->tv_sec = now.tv_sec;
911 	tv->tv_usec = now.tv_nsec/1000;
912 }
913 EXPORT_SYMBOL(do_gettimeofday);
914 
915 /**
916  * do_settimeofday64 - Sets the time of day.
917  * @ts:     pointer to the timespec64 variable containing the new time
918  *
919  * Sets the time of day to the new time and update NTP and notify hrtimers
920  */
921 int do_settimeofday64(const struct timespec64 *ts)
922 {
923 	struct timekeeper *tk = &tk_core.timekeeper;
924 	struct timespec64 ts_delta, xt;
925 	unsigned long flags;
926 	int ret = 0;
927 
928 	if (!timespec64_valid_strict(ts))
929 		return -EINVAL;
930 
931 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
932 	write_seqcount_begin(&tk_core.seq);
933 
934 	timekeeping_forward_now(tk);
935 
936 	xt = tk_xtime(tk);
937 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
938 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
939 
940 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
941 		ret = -EINVAL;
942 		goto out;
943 	}
944 
945 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
946 
947 	tk_set_xtime(tk, ts);
948 out:
949 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
950 
951 	write_seqcount_end(&tk_core.seq);
952 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
953 
954 	/* signal hrtimers about time change */
955 	clock_was_set();
956 
957 	return ret;
958 }
959 EXPORT_SYMBOL(do_settimeofday64);
960 
961 /**
962  * timekeeping_inject_offset - Adds or subtracts from the current time.
963  * @tv:		pointer to the timespec variable containing the offset
964  *
965  * Adds or subtracts an offset value from the current time.
966  */
967 int timekeeping_inject_offset(struct timespec *ts)
968 {
969 	struct timekeeper *tk = &tk_core.timekeeper;
970 	unsigned long flags;
971 	struct timespec64 ts64, tmp;
972 	int ret = 0;
973 
974 	if (!timespec_inject_offset_valid(ts))
975 		return -EINVAL;
976 
977 	ts64 = timespec_to_timespec64(*ts);
978 
979 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
980 	write_seqcount_begin(&tk_core.seq);
981 
982 	timekeeping_forward_now(tk);
983 
984 	/* Make sure the proposed value is valid */
985 	tmp = timespec64_add(tk_xtime(tk),  ts64);
986 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
987 	    !timespec64_valid_strict(&tmp)) {
988 		ret = -EINVAL;
989 		goto error;
990 	}
991 
992 	tk_xtime_add(tk, &ts64);
993 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
994 
995 error: /* even if we error out, we forwarded the time, so call update */
996 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
997 
998 	write_seqcount_end(&tk_core.seq);
999 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1000 
1001 	/* signal hrtimers about time change */
1002 	clock_was_set();
1003 
1004 	return ret;
1005 }
1006 EXPORT_SYMBOL(timekeeping_inject_offset);
1007 
1008 
1009 /**
1010  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1011  *
1012  */
1013 s32 timekeeping_get_tai_offset(void)
1014 {
1015 	struct timekeeper *tk = &tk_core.timekeeper;
1016 	unsigned int seq;
1017 	s32 ret;
1018 
1019 	do {
1020 		seq = read_seqcount_begin(&tk_core.seq);
1021 		ret = tk->tai_offset;
1022 	} while (read_seqcount_retry(&tk_core.seq, seq));
1023 
1024 	return ret;
1025 }
1026 
1027 /**
1028  * __timekeeping_set_tai_offset - Lock free worker function
1029  *
1030  */
1031 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1032 {
1033 	tk->tai_offset = tai_offset;
1034 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1035 }
1036 
1037 /**
1038  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1039  *
1040  */
1041 void timekeeping_set_tai_offset(s32 tai_offset)
1042 {
1043 	struct timekeeper *tk = &tk_core.timekeeper;
1044 	unsigned long flags;
1045 
1046 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1047 	write_seqcount_begin(&tk_core.seq);
1048 	__timekeeping_set_tai_offset(tk, tai_offset);
1049 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1050 	write_seqcount_end(&tk_core.seq);
1051 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1052 	clock_was_set();
1053 }
1054 
1055 /**
1056  * change_clocksource - Swaps clocksources if a new one is available
1057  *
1058  * Accumulates current time interval and initializes new clocksource
1059  */
1060 static int change_clocksource(void *data)
1061 {
1062 	struct timekeeper *tk = &tk_core.timekeeper;
1063 	struct clocksource *new, *old;
1064 	unsigned long flags;
1065 
1066 	new = (struct clocksource *) data;
1067 
1068 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1069 	write_seqcount_begin(&tk_core.seq);
1070 
1071 	timekeeping_forward_now(tk);
1072 	/*
1073 	 * If the cs is in module, get a module reference. Succeeds
1074 	 * for built-in code (owner == NULL) as well.
1075 	 */
1076 	if (try_module_get(new->owner)) {
1077 		if (!new->enable || new->enable(new) == 0) {
1078 			old = tk->tkr_mono.clock;
1079 			tk_setup_internals(tk, new);
1080 			if (old->disable)
1081 				old->disable(old);
1082 			module_put(old->owner);
1083 		} else {
1084 			module_put(new->owner);
1085 		}
1086 	}
1087 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1088 
1089 	write_seqcount_end(&tk_core.seq);
1090 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1091 
1092 	return 0;
1093 }
1094 
1095 /**
1096  * timekeeping_notify - Install a new clock source
1097  * @clock:		pointer to the clock source
1098  *
1099  * This function is called from clocksource.c after a new, better clock
1100  * source has been registered. The caller holds the clocksource_mutex.
1101  */
1102 int timekeeping_notify(struct clocksource *clock)
1103 {
1104 	struct timekeeper *tk = &tk_core.timekeeper;
1105 
1106 	if (tk->tkr_mono.clock == clock)
1107 		return 0;
1108 	stop_machine(change_clocksource, clock, NULL);
1109 	tick_clock_notify();
1110 	return tk->tkr_mono.clock == clock ? 0 : -1;
1111 }
1112 
1113 /**
1114  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1115  * @ts:		pointer to the timespec64 to be set
1116  *
1117  * Returns the raw monotonic time (completely un-modified by ntp)
1118  */
1119 void getrawmonotonic64(struct timespec64 *ts)
1120 {
1121 	struct timekeeper *tk = &tk_core.timekeeper;
1122 	struct timespec64 ts64;
1123 	unsigned long seq;
1124 	s64 nsecs;
1125 
1126 	do {
1127 		seq = read_seqcount_begin(&tk_core.seq);
1128 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1129 		ts64 = tk->raw_time;
1130 
1131 	} while (read_seqcount_retry(&tk_core.seq, seq));
1132 
1133 	timespec64_add_ns(&ts64, nsecs);
1134 	*ts = ts64;
1135 }
1136 EXPORT_SYMBOL(getrawmonotonic64);
1137 
1138 
1139 /**
1140  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1141  */
1142 int timekeeping_valid_for_hres(void)
1143 {
1144 	struct timekeeper *tk = &tk_core.timekeeper;
1145 	unsigned long seq;
1146 	int ret;
1147 
1148 	do {
1149 		seq = read_seqcount_begin(&tk_core.seq);
1150 
1151 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1152 
1153 	} while (read_seqcount_retry(&tk_core.seq, seq));
1154 
1155 	return ret;
1156 }
1157 
1158 /**
1159  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1160  */
1161 u64 timekeeping_max_deferment(void)
1162 {
1163 	struct timekeeper *tk = &tk_core.timekeeper;
1164 	unsigned long seq;
1165 	u64 ret;
1166 
1167 	do {
1168 		seq = read_seqcount_begin(&tk_core.seq);
1169 
1170 		ret = tk->tkr_mono.clock->max_idle_ns;
1171 
1172 	} while (read_seqcount_retry(&tk_core.seq, seq));
1173 
1174 	return ret;
1175 }
1176 
1177 /**
1178  * read_persistent_clock -  Return time from the persistent clock.
1179  *
1180  * Weak dummy function for arches that do not yet support it.
1181  * Reads the time from the battery backed persistent clock.
1182  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1183  *
1184  *  XXX - Do be sure to remove it once all arches implement it.
1185  */
1186 void __weak read_persistent_clock(struct timespec *ts)
1187 {
1188 	ts->tv_sec = 0;
1189 	ts->tv_nsec = 0;
1190 }
1191 
1192 void __weak read_persistent_clock64(struct timespec64 *ts64)
1193 {
1194 	struct timespec ts;
1195 
1196 	read_persistent_clock(&ts);
1197 	*ts64 = timespec_to_timespec64(ts);
1198 }
1199 
1200 /**
1201  * read_boot_clock64 -  Return time of the system start.
1202  *
1203  * Weak dummy function for arches that do not yet support it.
1204  * Function to read the exact time the system has been started.
1205  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1206  *
1207  *  XXX - Do be sure to remove it once all arches implement it.
1208  */
1209 void __weak read_boot_clock64(struct timespec64 *ts)
1210 {
1211 	ts->tv_sec = 0;
1212 	ts->tv_nsec = 0;
1213 }
1214 
1215 /* Flag for if timekeeping_resume() has injected sleeptime */
1216 static bool sleeptime_injected;
1217 
1218 /* Flag for if there is a persistent clock on this platform */
1219 static bool persistent_clock_exists;
1220 
1221 /*
1222  * timekeeping_init - Initializes the clocksource and common timekeeping values
1223  */
1224 void __init timekeeping_init(void)
1225 {
1226 	struct timekeeper *tk = &tk_core.timekeeper;
1227 	struct clocksource *clock;
1228 	unsigned long flags;
1229 	struct timespec64 now, boot, tmp;
1230 
1231 	read_persistent_clock64(&now);
1232 	if (!timespec64_valid_strict(&now)) {
1233 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1234 			"         Check your CMOS/BIOS settings.\n");
1235 		now.tv_sec = 0;
1236 		now.tv_nsec = 0;
1237 	} else if (now.tv_sec || now.tv_nsec)
1238 		persistent_clock_exists = true;
1239 
1240 	read_boot_clock64(&boot);
1241 	if (!timespec64_valid_strict(&boot)) {
1242 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1243 			"         Check your CMOS/BIOS settings.\n");
1244 		boot.tv_sec = 0;
1245 		boot.tv_nsec = 0;
1246 	}
1247 
1248 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1249 	write_seqcount_begin(&tk_core.seq);
1250 	ntp_init();
1251 
1252 	clock = clocksource_default_clock();
1253 	if (clock->enable)
1254 		clock->enable(clock);
1255 	tk_setup_internals(tk, clock);
1256 
1257 	tk_set_xtime(tk, &now);
1258 	tk->raw_time.tv_sec = 0;
1259 	tk->raw_time.tv_nsec = 0;
1260 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1261 		boot = tk_xtime(tk);
1262 
1263 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1264 	tk_set_wall_to_mono(tk, tmp);
1265 
1266 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1267 
1268 	write_seqcount_end(&tk_core.seq);
1269 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270 }
1271 
1272 /* time in seconds when suspend began for persistent clock */
1273 static struct timespec64 timekeeping_suspend_time;
1274 
1275 /**
1276  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1277  * @delta: pointer to a timespec delta value
1278  *
1279  * Takes a timespec offset measuring a suspend interval and properly
1280  * adds the sleep offset to the timekeeping variables.
1281  */
1282 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1283 					   struct timespec64 *delta)
1284 {
1285 	if (!timespec64_valid_strict(delta)) {
1286 		printk_deferred(KERN_WARNING
1287 				"__timekeeping_inject_sleeptime: Invalid "
1288 				"sleep delta value!\n");
1289 		return;
1290 	}
1291 	tk_xtime_add(tk, delta);
1292 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1293 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1294 	tk_debug_account_sleep_time(delta);
1295 }
1296 
1297 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1298 /**
1299  * We have three kinds of time sources to use for sleep time
1300  * injection, the preference order is:
1301  * 1) non-stop clocksource
1302  * 2) persistent clock (ie: RTC accessible when irqs are off)
1303  * 3) RTC
1304  *
1305  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1306  * If system has neither 1) nor 2), 3) will be used finally.
1307  *
1308  *
1309  * If timekeeping has injected sleeptime via either 1) or 2),
1310  * 3) becomes needless, so in this case we don't need to call
1311  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1312  * means.
1313  */
1314 bool timekeeping_rtc_skipresume(void)
1315 {
1316 	return sleeptime_injected;
1317 }
1318 
1319 /**
1320  * 1) can be determined whether to use or not only when doing
1321  * timekeeping_resume() which is invoked after rtc_suspend(),
1322  * so we can't skip rtc_suspend() surely if system has 1).
1323  *
1324  * But if system has 2), 2) will definitely be used, so in this
1325  * case we don't need to call rtc_suspend(), and this is what
1326  * timekeeping_rtc_skipsuspend() means.
1327  */
1328 bool timekeeping_rtc_skipsuspend(void)
1329 {
1330 	return persistent_clock_exists;
1331 }
1332 
1333 /**
1334  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1335  * @delta: pointer to a timespec64 delta value
1336  *
1337  * This hook is for architectures that cannot support read_persistent_clock64
1338  * because their RTC/persistent clock is only accessible when irqs are enabled.
1339  * and also don't have an effective nonstop clocksource.
1340  *
1341  * This function should only be called by rtc_resume(), and allows
1342  * a suspend offset to be injected into the timekeeping values.
1343  */
1344 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1345 {
1346 	struct timekeeper *tk = &tk_core.timekeeper;
1347 	unsigned long flags;
1348 
1349 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1350 	write_seqcount_begin(&tk_core.seq);
1351 
1352 	timekeeping_forward_now(tk);
1353 
1354 	__timekeeping_inject_sleeptime(tk, delta);
1355 
1356 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1357 
1358 	write_seqcount_end(&tk_core.seq);
1359 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1360 
1361 	/* signal hrtimers about time change */
1362 	clock_was_set();
1363 }
1364 #endif
1365 
1366 /**
1367  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1368  */
1369 void timekeeping_resume(void)
1370 {
1371 	struct timekeeper *tk = &tk_core.timekeeper;
1372 	struct clocksource *clock = tk->tkr_mono.clock;
1373 	unsigned long flags;
1374 	struct timespec64 ts_new, ts_delta;
1375 	cycle_t cycle_now, cycle_delta;
1376 
1377 	sleeptime_injected = false;
1378 	read_persistent_clock64(&ts_new);
1379 
1380 	clockevents_resume();
1381 	clocksource_resume();
1382 
1383 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1384 	write_seqcount_begin(&tk_core.seq);
1385 
1386 	/*
1387 	 * After system resumes, we need to calculate the suspended time and
1388 	 * compensate it for the OS time. There are 3 sources that could be
1389 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1390 	 * device.
1391 	 *
1392 	 * One specific platform may have 1 or 2 or all of them, and the
1393 	 * preference will be:
1394 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1395 	 * The less preferred source will only be tried if there is no better
1396 	 * usable source. The rtc part is handled separately in rtc core code.
1397 	 */
1398 	cycle_now = tk->tkr_mono.read(clock);
1399 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1400 		cycle_now > tk->tkr_mono.cycle_last) {
1401 		u64 num, max = ULLONG_MAX;
1402 		u32 mult = clock->mult;
1403 		u32 shift = clock->shift;
1404 		s64 nsec = 0;
1405 
1406 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1407 						tk->tkr_mono.mask);
1408 
1409 		/*
1410 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1411 		 * suspended time is too long. In that case we need do the
1412 		 * 64 bits math carefully
1413 		 */
1414 		do_div(max, mult);
1415 		if (cycle_delta > max) {
1416 			num = div64_u64(cycle_delta, max);
1417 			nsec = (((u64) max * mult) >> shift) * num;
1418 			cycle_delta -= num * max;
1419 		}
1420 		nsec += ((u64) cycle_delta * mult) >> shift;
1421 
1422 		ts_delta = ns_to_timespec64(nsec);
1423 		sleeptime_injected = true;
1424 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1425 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1426 		sleeptime_injected = true;
1427 	}
1428 
1429 	if (sleeptime_injected)
1430 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1431 
1432 	/* Re-base the last cycle value */
1433 	tk->tkr_mono.cycle_last = cycle_now;
1434 	tk->tkr_raw.cycle_last  = cycle_now;
1435 
1436 	tk->ntp_error = 0;
1437 	timekeeping_suspended = 0;
1438 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1439 	write_seqcount_end(&tk_core.seq);
1440 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1441 
1442 	touch_softlockup_watchdog();
1443 
1444 	tick_resume();
1445 	hrtimers_resume();
1446 }
1447 
1448 int timekeeping_suspend(void)
1449 {
1450 	struct timekeeper *tk = &tk_core.timekeeper;
1451 	unsigned long flags;
1452 	struct timespec64		delta, delta_delta;
1453 	static struct timespec64	old_delta;
1454 
1455 	read_persistent_clock64(&timekeeping_suspend_time);
1456 
1457 	/*
1458 	 * On some systems the persistent_clock can not be detected at
1459 	 * timekeeping_init by its return value, so if we see a valid
1460 	 * value returned, update the persistent_clock_exists flag.
1461 	 */
1462 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1463 		persistent_clock_exists = true;
1464 
1465 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1466 	write_seqcount_begin(&tk_core.seq);
1467 	timekeeping_forward_now(tk);
1468 	timekeeping_suspended = 1;
1469 
1470 	if (persistent_clock_exists) {
1471 		/*
1472 		 * To avoid drift caused by repeated suspend/resumes,
1473 		 * which each can add ~1 second drift error,
1474 		 * try to compensate so the difference in system time
1475 		 * and persistent_clock time stays close to constant.
1476 		 */
1477 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1478 		delta_delta = timespec64_sub(delta, old_delta);
1479 		if (abs(delta_delta.tv_sec) >= 2) {
1480 			/*
1481 			 * if delta_delta is too large, assume time correction
1482 			 * has occurred and set old_delta to the current delta.
1483 			 */
1484 			old_delta = delta;
1485 		} else {
1486 			/* Otherwise try to adjust old_system to compensate */
1487 			timekeeping_suspend_time =
1488 				timespec64_add(timekeeping_suspend_time, delta_delta);
1489 		}
1490 	}
1491 
1492 	timekeeping_update(tk, TK_MIRROR);
1493 	halt_fast_timekeeper(tk);
1494 	write_seqcount_end(&tk_core.seq);
1495 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1496 
1497 	tick_suspend();
1498 	clocksource_suspend();
1499 	clockevents_suspend();
1500 
1501 	return 0;
1502 }
1503 
1504 /* sysfs resume/suspend bits for timekeeping */
1505 static struct syscore_ops timekeeping_syscore_ops = {
1506 	.resume		= timekeeping_resume,
1507 	.suspend	= timekeeping_suspend,
1508 };
1509 
1510 static int __init timekeeping_init_ops(void)
1511 {
1512 	register_syscore_ops(&timekeeping_syscore_ops);
1513 	return 0;
1514 }
1515 device_initcall(timekeeping_init_ops);
1516 
1517 /*
1518  * Apply a multiplier adjustment to the timekeeper
1519  */
1520 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1521 							 s64 offset,
1522 							 bool negative,
1523 							 int adj_scale)
1524 {
1525 	s64 interval = tk->cycle_interval;
1526 	s32 mult_adj = 1;
1527 
1528 	if (negative) {
1529 		mult_adj = -mult_adj;
1530 		interval = -interval;
1531 		offset  = -offset;
1532 	}
1533 	mult_adj <<= adj_scale;
1534 	interval <<= adj_scale;
1535 	offset <<= adj_scale;
1536 
1537 	/*
1538 	 * So the following can be confusing.
1539 	 *
1540 	 * To keep things simple, lets assume mult_adj == 1 for now.
1541 	 *
1542 	 * When mult_adj != 1, remember that the interval and offset values
1543 	 * have been appropriately scaled so the math is the same.
1544 	 *
1545 	 * The basic idea here is that we're increasing the multiplier
1546 	 * by one, this causes the xtime_interval to be incremented by
1547 	 * one cycle_interval. This is because:
1548 	 *	xtime_interval = cycle_interval * mult
1549 	 * So if mult is being incremented by one:
1550 	 *	xtime_interval = cycle_interval * (mult + 1)
1551 	 * Its the same as:
1552 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1553 	 * Which can be shortened to:
1554 	 *	xtime_interval += cycle_interval
1555 	 *
1556 	 * So offset stores the non-accumulated cycles. Thus the current
1557 	 * time (in shifted nanoseconds) is:
1558 	 *	now = (offset * adj) + xtime_nsec
1559 	 * Now, even though we're adjusting the clock frequency, we have
1560 	 * to keep time consistent. In other words, we can't jump back
1561 	 * in time, and we also want to avoid jumping forward in time.
1562 	 *
1563 	 * So given the same offset value, we need the time to be the same
1564 	 * both before and after the freq adjustment.
1565 	 *	now = (offset * adj_1) + xtime_nsec_1
1566 	 *	now = (offset * adj_2) + xtime_nsec_2
1567 	 * So:
1568 	 *	(offset * adj_1) + xtime_nsec_1 =
1569 	 *		(offset * adj_2) + xtime_nsec_2
1570 	 * And we know:
1571 	 *	adj_2 = adj_1 + 1
1572 	 * So:
1573 	 *	(offset * adj_1) + xtime_nsec_1 =
1574 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1575 	 *	(offset * adj_1) + xtime_nsec_1 =
1576 	 *		(offset * adj_1) + offset + xtime_nsec_2
1577 	 * Canceling the sides:
1578 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1579 	 * Which gives us:
1580 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1581 	 * Which simplfies to:
1582 	 *	xtime_nsec -= offset
1583 	 *
1584 	 * XXX - TODO: Doc ntp_error calculation.
1585 	 */
1586 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1587 		/* NTP adjustment caused clocksource mult overflow */
1588 		WARN_ON_ONCE(1);
1589 		return;
1590 	}
1591 
1592 	tk->tkr_mono.mult += mult_adj;
1593 	tk->xtime_interval += interval;
1594 	tk->tkr_mono.xtime_nsec -= offset;
1595 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1596 }
1597 
1598 /*
1599  * Calculate the multiplier adjustment needed to match the frequency
1600  * specified by NTP
1601  */
1602 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1603 							s64 offset)
1604 {
1605 	s64 interval = tk->cycle_interval;
1606 	s64 xinterval = tk->xtime_interval;
1607 	u32 base = tk->tkr_mono.clock->mult;
1608 	u32 max = tk->tkr_mono.clock->maxadj;
1609 	u32 cur_adj = tk->tkr_mono.mult;
1610 	s64 tick_error;
1611 	bool negative;
1612 	u32 adj_scale;
1613 
1614 	/* Remove any current error adj from freq calculation */
1615 	if (tk->ntp_err_mult)
1616 		xinterval -= tk->cycle_interval;
1617 
1618 	tk->ntp_tick = ntp_tick_length();
1619 
1620 	/* Calculate current error per tick */
1621 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1622 	tick_error -= (xinterval + tk->xtime_remainder);
1623 
1624 	/* Don't worry about correcting it if its small */
1625 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1626 		return;
1627 
1628 	/* preserve the direction of correction */
1629 	negative = (tick_error < 0);
1630 
1631 	/* If any adjustment would pass the max, just return */
1632 	if (negative && (cur_adj - 1) <= (base - max))
1633 		return;
1634 	if (!negative && (cur_adj + 1) >= (base + max))
1635 		return;
1636 	/*
1637 	 * Sort out the magnitude of the correction, but
1638 	 * avoid making so large a correction that we go
1639 	 * over the max adjustment.
1640 	 */
1641 	adj_scale = 0;
1642 	tick_error = abs(tick_error);
1643 	while (tick_error > interval) {
1644 		u32 adj = 1 << (adj_scale + 1);
1645 
1646 		/* Check if adjustment gets us within 1 unit from the max */
1647 		if (negative && (cur_adj - adj) <= (base - max))
1648 			break;
1649 		if (!negative && (cur_adj + adj) >= (base + max))
1650 			break;
1651 
1652 		adj_scale++;
1653 		tick_error >>= 1;
1654 	}
1655 
1656 	/* scale the corrections */
1657 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1658 }
1659 
1660 /*
1661  * Adjust the timekeeper's multiplier to the correct frequency
1662  * and also to reduce the accumulated error value.
1663  */
1664 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1665 {
1666 	/* Correct for the current frequency error */
1667 	timekeeping_freqadjust(tk, offset);
1668 
1669 	/* Next make a small adjustment to fix any cumulative error */
1670 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1671 		tk->ntp_err_mult = 1;
1672 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1673 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1674 		/* Undo any existing error adjustment */
1675 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1676 		tk->ntp_err_mult = 0;
1677 	}
1678 
1679 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1680 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1681 			> tk->tkr_mono.clock->maxadj))) {
1682 		printk_once(KERN_WARNING
1683 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1684 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1685 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1686 	}
1687 
1688 	/*
1689 	 * It may be possible that when we entered this function, xtime_nsec
1690 	 * was very small.  Further, if we're slightly speeding the clocksource
1691 	 * in the code above, its possible the required corrective factor to
1692 	 * xtime_nsec could cause it to underflow.
1693 	 *
1694 	 * Now, since we already accumulated the second, cannot simply roll
1695 	 * the accumulated second back, since the NTP subsystem has been
1696 	 * notified via second_overflow. So instead we push xtime_nsec forward
1697 	 * by the amount we underflowed, and add that amount into the error.
1698 	 *
1699 	 * We'll correct this error next time through this function, when
1700 	 * xtime_nsec is not as small.
1701 	 */
1702 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1703 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1704 		tk->tkr_mono.xtime_nsec = 0;
1705 		tk->ntp_error += neg << tk->ntp_error_shift;
1706 	}
1707 }
1708 
1709 /**
1710  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1711  *
1712  * Helper function that accumulates the nsecs greater than a second
1713  * from the xtime_nsec field to the xtime_secs field.
1714  * It also calls into the NTP code to handle leapsecond processing.
1715  *
1716  */
1717 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1718 {
1719 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1720 	unsigned int clock_set = 0;
1721 
1722 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1723 		int leap;
1724 
1725 		tk->tkr_mono.xtime_nsec -= nsecps;
1726 		tk->xtime_sec++;
1727 
1728 		/* Figure out if its a leap sec and apply if needed */
1729 		leap = second_overflow(tk->xtime_sec);
1730 		if (unlikely(leap)) {
1731 			struct timespec64 ts;
1732 
1733 			tk->xtime_sec += leap;
1734 
1735 			ts.tv_sec = leap;
1736 			ts.tv_nsec = 0;
1737 			tk_set_wall_to_mono(tk,
1738 				timespec64_sub(tk->wall_to_monotonic, ts));
1739 
1740 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1741 
1742 			clock_set = TK_CLOCK_WAS_SET;
1743 		}
1744 	}
1745 	return clock_set;
1746 }
1747 
1748 /**
1749  * logarithmic_accumulation - shifted accumulation of cycles
1750  *
1751  * This functions accumulates a shifted interval of cycles into
1752  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1753  * loop.
1754  *
1755  * Returns the unconsumed cycles.
1756  */
1757 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1758 						u32 shift,
1759 						unsigned int *clock_set)
1760 {
1761 	cycle_t interval = tk->cycle_interval << shift;
1762 	u64 raw_nsecs;
1763 
1764 	/* If the offset is smaller than a shifted interval, do nothing */
1765 	if (offset < interval)
1766 		return offset;
1767 
1768 	/* Accumulate one shifted interval */
1769 	offset -= interval;
1770 	tk->tkr_mono.cycle_last += interval;
1771 	tk->tkr_raw.cycle_last  += interval;
1772 
1773 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1774 	*clock_set |= accumulate_nsecs_to_secs(tk);
1775 
1776 	/* Accumulate raw time */
1777 	raw_nsecs = (u64)tk->raw_interval << shift;
1778 	raw_nsecs += tk->raw_time.tv_nsec;
1779 	if (raw_nsecs >= NSEC_PER_SEC) {
1780 		u64 raw_secs = raw_nsecs;
1781 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1782 		tk->raw_time.tv_sec += raw_secs;
1783 	}
1784 	tk->raw_time.tv_nsec = raw_nsecs;
1785 
1786 	/* Accumulate error between NTP and clock interval */
1787 	tk->ntp_error += tk->ntp_tick << shift;
1788 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1789 						(tk->ntp_error_shift + shift);
1790 
1791 	return offset;
1792 }
1793 
1794 /**
1795  * update_wall_time - Uses the current clocksource to increment the wall time
1796  *
1797  */
1798 void update_wall_time(void)
1799 {
1800 	struct timekeeper *real_tk = &tk_core.timekeeper;
1801 	struct timekeeper *tk = &shadow_timekeeper;
1802 	cycle_t offset;
1803 	int shift = 0, maxshift;
1804 	unsigned int clock_set = 0;
1805 	unsigned long flags;
1806 
1807 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1808 
1809 	/* Make sure we're fully resumed: */
1810 	if (unlikely(timekeeping_suspended))
1811 		goto out;
1812 
1813 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1814 	offset = real_tk->cycle_interval;
1815 #else
1816 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1817 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1818 #endif
1819 
1820 	/* Check if there's really nothing to do */
1821 	if (offset < real_tk->cycle_interval)
1822 		goto out;
1823 
1824 	/* Do some additional sanity checking */
1825 	timekeeping_check_update(real_tk, offset);
1826 
1827 	/*
1828 	 * With NO_HZ we may have to accumulate many cycle_intervals
1829 	 * (think "ticks") worth of time at once. To do this efficiently,
1830 	 * we calculate the largest doubling multiple of cycle_intervals
1831 	 * that is smaller than the offset.  We then accumulate that
1832 	 * chunk in one go, and then try to consume the next smaller
1833 	 * doubled multiple.
1834 	 */
1835 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1836 	shift = max(0, shift);
1837 	/* Bound shift to one less than what overflows tick_length */
1838 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1839 	shift = min(shift, maxshift);
1840 	while (offset >= tk->cycle_interval) {
1841 		offset = logarithmic_accumulation(tk, offset, shift,
1842 							&clock_set);
1843 		if (offset < tk->cycle_interval<<shift)
1844 			shift--;
1845 	}
1846 
1847 	/* correct the clock when NTP error is too big */
1848 	timekeeping_adjust(tk, offset);
1849 
1850 	/*
1851 	 * XXX This can be killed once everyone converts
1852 	 * to the new update_vsyscall.
1853 	 */
1854 	old_vsyscall_fixup(tk);
1855 
1856 	/*
1857 	 * Finally, make sure that after the rounding
1858 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1859 	 */
1860 	clock_set |= accumulate_nsecs_to_secs(tk);
1861 
1862 	write_seqcount_begin(&tk_core.seq);
1863 	/*
1864 	 * Update the real timekeeper.
1865 	 *
1866 	 * We could avoid this memcpy by switching pointers, but that
1867 	 * requires changes to all other timekeeper usage sites as
1868 	 * well, i.e. move the timekeeper pointer getter into the
1869 	 * spinlocked/seqcount protected sections. And we trade this
1870 	 * memcpy under the tk_core.seq against one before we start
1871 	 * updating.
1872 	 */
1873 	timekeeping_update(tk, clock_set);
1874 	memcpy(real_tk, tk, sizeof(*tk));
1875 	/* The memcpy must come last. Do not put anything here! */
1876 	write_seqcount_end(&tk_core.seq);
1877 out:
1878 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1879 	if (clock_set)
1880 		/* Have to call _delayed version, since in irq context*/
1881 		clock_was_set_delayed();
1882 }
1883 
1884 /**
1885  * getboottime64 - Return the real time of system boot.
1886  * @ts:		pointer to the timespec64 to be set
1887  *
1888  * Returns the wall-time of boot in a timespec64.
1889  *
1890  * This is based on the wall_to_monotonic offset and the total suspend
1891  * time. Calls to settimeofday will affect the value returned (which
1892  * basically means that however wrong your real time clock is at boot time,
1893  * you get the right time here).
1894  */
1895 void getboottime64(struct timespec64 *ts)
1896 {
1897 	struct timekeeper *tk = &tk_core.timekeeper;
1898 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1899 
1900 	*ts = ktime_to_timespec64(t);
1901 }
1902 EXPORT_SYMBOL_GPL(getboottime64);
1903 
1904 unsigned long get_seconds(void)
1905 {
1906 	struct timekeeper *tk = &tk_core.timekeeper;
1907 
1908 	return tk->xtime_sec;
1909 }
1910 EXPORT_SYMBOL(get_seconds);
1911 
1912 struct timespec __current_kernel_time(void)
1913 {
1914 	struct timekeeper *tk = &tk_core.timekeeper;
1915 
1916 	return timespec64_to_timespec(tk_xtime(tk));
1917 }
1918 
1919 struct timespec64 current_kernel_time64(void)
1920 {
1921 	struct timekeeper *tk = &tk_core.timekeeper;
1922 	struct timespec64 now;
1923 	unsigned long seq;
1924 
1925 	do {
1926 		seq = read_seqcount_begin(&tk_core.seq);
1927 
1928 		now = tk_xtime(tk);
1929 	} while (read_seqcount_retry(&tk_core.seq, seq));
1930 
1931 	return now;
1932 }
1933 EXPORT_SYMBOL(current_kernel_time64);
1934 
1935 struct timespec64 get_monotonic_coarse64(void)
1936 {
1937 	struct timekeeper *tk = &tk_core.timekeeper;
1938 	struct timespec64 now, mono;
1939 	unsigned long seq;
1940 
1941 	do {
1942 		seq = read_seqcount_begin(&tk_core.seq);
1943 
1944 		now = tk_xtime(tk);
1945 		mono = tk->wall_to_monotonic;
1946 	} while (read_seqcount_retry(&tk_core.seq, seq));
1947 
1948 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1949 				now.tv_nsec + mono.tv_nsec);
1950 
1951 	return now;
1952 }
1953 
1954 /*
1955  * Must hold jiffies_lock
1956  */
1957 void do_timer(unsigned long ticks)
1958 {
1959 	jiffies_64 += ticks;
1960 	calc_global_load(ticks);
1961 }
1962 
1963 /**
1964  * ktime_get_update_offsets_now - hrtimer helper
1965  * @cwsseq:	pointer to check and store the clock was set sequence number
1966  * @offs_real:	pointer to storage for monotonic -> realtime offset
1967  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1968  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1969  *
1970  * Returns current monotonic time and updates the offsets if the
1971  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1972  * different.
1973  *
1974  * Called from hrtimer_interrupt() or retrigger_next_event()
1975  */
1976 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1977 				     ktime_t *offs_boot, ktime_t *offs_tai)
1978 {
1979 	struct timekeeper *tk = &tk_core.timekeeper;
1980 	unsigned int seq;
1981 	ktime_t base;
1982 	u64 nsecs;
1983 
1984 	do {
1985 		seq = read_seqcount_begin(&tk_core.seq);
1986 
1987 		base = tk->tkr_mono.base;
1988 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1989 		base = ktime_add_ns(base, nsecs);
1990 
1991 		if (*cwsseq != tk->clock_was_set_seq) {
1992 			*cwsseq = tk->clock_was_set_seq;
1993 			*offs_real = tk->offs_real;
1994 			*offs_boot = tk->offs_boot;
1995 			*offs_tai = tk->offs_tai;
1996 		}
1997 
1998 		/* Handle leapsecond insertion adjustments */
1999 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2000 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2001 
2002 	} while (read_seqcount_retry(&tk_core.seq, seq));
2003 
2004 	return base;
2005 }
2006 
2007 /**
2008  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2009  */
2010 int do_adjtimex(struct timex *txc)
2011 {
2012 	struct timekeeper *tk = &tk_core.timekeeper;
2013 	unsigned long flags;
2014 	struct timespec64 ts;
2015 	s32 orig_tai, tai;
2016 	int ret;
2017 
2018 	/* Validate the data before disabling interrupts */
2019 	ret = ntp_validate_timex(txc);
2020 	if (ret)
2021 		return ret;
2022 
2023 	if (txc->modes & ADJ_SETOFFSET) {
2024 		struct timespec delta;
2025 		delta.tv_sec  = txc->time.tv_sec;
2026 		delta.tv_nsec = txc->time.tv_usec;
2027 		if (!(txc->modes & ADJ_NANO))
2028 			delta.tv_nsec *= 1000;
2029 		ret = timekeeping_inject_offset(&delta);
2030 		if (ret)
2031 			return ret;
2032 	}
2033 
2034 	getnstimeofday64(&ts);
2035 
2036 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2037 	write_seqcount_begin(&tk_core.seq);
2038 
2039 	orig_tai = tai = tk->tai_offset;
2040 	ret = __do_adjtimex(txc, &ts, &tai);
2041 
2042 	if (tai != orig_tai) {
2043 		__timekeeping_set_tai_offset(tk, tai);
2044 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2045 	}
2046 	tk_update_leap_state(tk);
2047 
2048 	write_seqcount_end(&tk_core.seq);
2049 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2050 
2051 	if (tai != orig_tai)
2052 		clock_was_set();
2053 
2054 	ntp_notify_cmos_timer();
2055 
2056 	return ret;
2057 }
2058 
2059 #ifdef CONFIG_NTP_PPS
2060 /**
2061  * hardpps() - Accessor function to NTP __hardpps function
2062  */
2063 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2064 {
2065 	unsigned long flags;
2066 
2067 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2068 	write_seqcount_begin(&tk_core.seq);
2069 
2070 	__hardpps(phase_ts, raw_ts);
2071 
2072 	write_seqcount_end(&tk_core.seq);
2073 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2074 }
2075 EXPORT_SYMBOL(hardpps);
2076 #endif
2077 
2078 /**
2079  * xtime_update() - advances the timekeeping infrastructure
2080  * @ticks:	number of ticks, that have elapsed since the last call.
2081  *
2082  * Must be called with interrupts disabled.
2083  */
2084 void xtime_update(unsigned long ticks)
2085 {
2086 	write_seqlock(&jiffies_lock);
2087 	do_timer(ticks);
2088 	write_sequnlock(&jiffies_lock);
2089 	update_wall_time();
2090 }
2091