xref: /openbmc/linux/kernel/time/timekeeping.c (revision b48dbb99)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 enum timekeeping_adv_mode {
36 	/* Update timekeeper when a tick has passed */
37 	TK_ADV_TICK,
38 
39 	/* Update timekeeper on a direct frequency change */
40 	TK_ADV_FREQ
41 };
42 
43 DEFINE_RAW_SPINLOCK(timekeeper_lock);
44 
45 /*
46  * The most important data for readout fits into a single 64 byte
47  * cache line.
48  */
49 static struct {
50 	seqcount_raw_spinlock_t	seq;
51 	struct timekeeper	timekeeper;
52 } tk_core ____cacheline_aligned = {
53 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
54 };
55 
56 static struct timekeeper shadow_timekeeper;
57 
58 /* flag for if timekeeping is suspended */
59 int __read_mostly timekeeping_suspended;
60 
61 /**
62  * struct tk_fast - NMI safe timekeeper
63  * @seq:	Sequence counter for protecting updates. The lowest bit
64  *		is the index for the tk_read_base array
65  * @base:	tk_read_base array. Access is indexed by the lowest bit of
66  *		@seq.
67  *
68  * See @update_fast_timekeeper() below.
69  */
70 struct tk_fast {
71 	seqcount_latch_t	seq;
72 	struct tk_read_base	base[2];
73 };
74 
75 /* Suspend-time cycles value for halted fast timekeeper. */
76 static u64 cycles_at_suspend;
77 
78 static u64 dummy_clock_read(struct clocksource *cs)
79 {
80 	if (timekeeping_suspended)
81 		return cycles_at_suspend;
82 	return local_clock();
83 }
84 
85 static struct clocksource dummy_clock = {
86 	.read = dummy_clock_read,
87 };
88 
89 /*
90  * Boot time initialization which allows local_clock() to be utilized
91  * during early boot when clocksources are not available. local_clock()
92  * returns nanoseconds already so no conversion is required, hence mult=1
93  * and shift=0. When the first proper clocksource is installed then
94  * the fast time keepers are updated with the correct values.
95  */
96 #define FAST_TK_INIT						\
97 	{							\
98 		.clock		= &dummy_clock,			\
99 		.mask		= CLOCKSOURCE_MASK(64),		\
100 		.mult		= 1,				\
101 		.shift		= 0,				\
102 	}
103 
104 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
105 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
106 	.base[0] = FAST_TK_INIT,
107 	.base[1] = FAST_TK_INIT,
108 };
109 
110 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
111 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
112 	.base[0] = FAST_TK_INIT,
113 	.base[1] = FAST_TK_INIT,
114 };
115 
116 static inline void tk_normalize_xtime(struct timekeeper *tk)
117 {
118 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
119 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
120 		tk->xtime_sec++;
121 	}
122 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
123 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
124 		tk->raw_sec++;
125 	}
126 }
127 
128 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
129 {
130 	struct timespec64 ts;
131 
132 	ts.tv_sec = tk->xtime_sec;
133 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
134 	return ts;
135 }
136 
137 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
138 {
139 	tk->xtime_sec = ts->tv_sec;
140 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
141 }
142 
143 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
144 {
145 	tk->xtime_sec += ts->tv_sec;
146 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
147 	tk_normalize_xtime(tk);
148 }
149 
150 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
151 {
152 	struct timespec64 tmp;
153 
154 	/*
155 	 * Verify consistency of: offset_real = -wall_to_monotonic
156 	 * before modifying anything
157 	 */
158 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
159 					-tk->wall_to_monotonic.tv_nsec);
160 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
161 	tk->wall_to_monotonic = wtm;
162 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
163 	tk->offs_real = timespec64_to_ktime(tmp);
164 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
165 }
166 
167 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
168 {
169 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
170 	/*
171 	 * Timespec representation for VDSO update to avoid 64bit division
172 	 * on every update.
173 	 */
174 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
175 }
176 
177 /*
178  * tk_clock_read - atomic clocksource read() helper
179  *
180  * This helper is necessary to use in the read paths because, while the
181  * seqcount ensures we don't return a bad value while structures are updated,
182  * it doesn't protect from potential crashes. There is the possibility that
183  * the tkr's clocksource may change between the read reference, and the
184  * clock reference passed to the read function.  This can cause crashes if
185  * the wrong clocksource is passed to the wrong read function.
186  * This isn't necessary to use when holding the timekeeper_lock or doing
187  * a read of the fast-timekeeper tkrs (which is protected by its own locking
188  * and update logic).
189  */
190 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
191 {
192 	struct clocksource *clock = READ_ONCE(tkr->clock);
193 
194 	return clock->read(clock);
195 }
196 
197 #ifdef CONFIG_DEBUG_TIMEKEEPING
198 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
199 
200 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
201 {
202 
203 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
204 	const char *name = tk->tkr_mono.clock->name;
205 
206 	if (offset > max_cycles) {
207 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
208 				offset, name, max_cycles);
209 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
210 	} else {
211 		if (offset > (max_cycles >> 1)) {
212 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
213 					offset, name, max_cycles >> 1);
214 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
215 		}
216 	}
217 
218 	if (tk->underflow_seen) {
219 		if (jiffies - tk->last_warning > WARNING_FREQ) {
220 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
221 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
222 			printk_deferred("         Your kernel is probably still fine.\n");
223 			tk->last_warning = jiffies;
224 		}
225 		tk->underflow_seen = 0;
226 	}
227 
228 	if (tk->overflow_seen) {
229 		if (jiffies - tk->last_warning > WARNING_FREQ) {
230 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
231 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
232 			printk_deferred("         Your kernel is probably still fine.\n");
233 			tk->last_warning = jiffies;
234 		}
235 		tk->overflow_seen = 0;
236 	}
237 }
238 
239 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
240 {
241 	struct timekeeper *tk = &tk_core.timekeeper;
242 	u64 now, last, mask, max, delta;
243 	unsigned int seq;
244 
245 	/*
246 	 * Since we're called holding a seqcount, the data may shift
247 	 * under us while we're doing the calculation. This can cause
248 	 * false positives, since we'd note a problem but throw the
249 	 * results away. So nest another seqcount here to atomically
250 	 * grab the points we are checking with.
251 	 */
252 	do {
253 		seq = read_seqcount_begin(&tk_core.seq);
254 		now = tk_clock_read(tkr);
255 		last = tkr->cycle_last;
256 		mask = tkr->mask;
257 		max = tkr->clock->max_cycles;
258 	} while (read_seqcount_retry(&tk_core.seq, seq));
259 
260 	delta = clocksource_delta(now, last, mask);
261 
262 	/*
263 	 * Try to catch underflows by checking if we are seeing small
264 	 * mask-relative negative values.
265 	 */
266 	if (unlikely((~delta & mask) < (mask >> 3))) {
267 		tk->underflow_seen = 1;
268 		delta = 0;
269 	}
270 
271 	/* Cap delta value to the max_cycles values to avoid mult overflows */
272 	if (unlikely(delta > max)) {
273 		tk->overflow_seen = 1;
274 		delta = tkr->clock->max_cycles;
275 	}
276 
277 	return delta;
278 }
279 #else
280 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
281 {
282 }
283 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
284 {
285 	u64 cycle_now, delta;
286 
287 	/* read clocksource */
288 	cycle_now = tk_clock_read(tkr);
289 
290 	/* calculate the delta since the last update_wall_time */
291 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
292 
293 	return delta;
294 }
295 #endif
296 
297 /**
298  * tk_setup_internals - Set up internals to use clocksource clock.
299  *
300  * @tk:		The target timekeeper to setup.
301  * @clock:		Pointer to clocksource.
302  *
303  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
304  * pair and interval request.
305  *
306  * Unless you're the timekeeping code, you should not be using this!
307  */
308 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
309 {
310 	u64 interval;
311 	u64 tmp, ntpinterval;
312 	struct clocksource *old_clock;
313 
314 	++tk->cs_was_changed_seq;
315 	old_clock = tk->tkr_mono.clock;
316 	tk->tkr_mono.clock = clock;
317 	tk->tkr_mono.mask = clock->mask;
318 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
319 
320 	tk->tkr_raw.clock = clock;
321 	tk->tkr_raw.mask = clock->mask;
322 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
323 
324 	/* Do the ns -> cycle conversion first, using original mult */
325 	tmp = NTP_INTERVAL_LENGTH;
326 	tmp <<= clock->shift;
327 	ntpinterval = tmp;
328 	tmp += clock->mult/2;
329 	do_div(tmp, clock->mult);
330 	if (tmp == 0)
331 		tmp = 1;
332 
333 	interval = (u64) tmp;
334 	tk->cycle_interval = interval;
335 
336 	/* Go back from cycles -> shifted ns */
337 	tk->xtime_interval = interval * clock->mult;
338 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
339 	tk->raw_interval = interval * clock->mult;
340 
341 	 /* if changing clocks, convert xtime_nsec shift units */
342 	if (old_clock) {
343 		int shift_change = clock->shift - old_clock->shift;
344 		if (shift_change < 0) {
345 			tk->tkr_mono.xtime_nsec >>= -shift_change;
346 			tk->tkr_raw.xtime_nsec >>= -shift_change;
347 		} else {
348 			tk->tkr_mono.xtime_nsec <<= shift_change;
349 			tk->tkr_raw.xtime_nsec <<= shift_change;
350 		}
351 	}
352 
353 	tk->tkr_mono.shift = clock->shift;
354 	tk->tkr_raw.shift = clock->shift;
355 
356 	tk->ntp_error = 0;
357 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
358 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
359 
360 	/*
361 	 * The timekeeper keeps its own mult values for the currently
362 	 * active clocksource. These value will be adjusted via NTP
363 	 * to counteract clock drifting.
364 	 */
365 	tk->tkr_mono.mult = clock->mult;
366 	tk->tkr_raw.mult = clock->mult;
367 	tk->ntp_err_mult = 0;
368 	tk->skip_second_overflow = 0;
369 }
370 
371 /* Timekeeper helper functions. */
372 
373 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
374 {
375 	u64 nsec;
376 
377 	nsec = delta * tkr->mult + tkr->xtime_nsec;
378 	nsec >>= tkr->shift;
379 
380 	return nsec;
381 }
382 
383 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
384 {
385 	u64 delta;
386 
387 	delta = timekeeping_get_delta(tkr);
388 	return timekeeping_delta_to_ns(tkr, delta);
389 }
390 
391 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
392 {
393 	u64 delta;
394 
395 	/* calculate the delta since the last update_wall_time */
396 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
397 	return timekeeping_delta_to_ns(tkr, delta);
398 }
399 
400 /**
401  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
402  * @tkr: Timekeeping readout base from which we take the update
403  * @tkf: Pointer to NMI safe timekeeper
404  *
405  * We want to use this from any context including NMI and tracing /
406  * instrumenting the timekeeping code itself.
407  *
408  * Employ the latch technique; see @raw_write_seqcount_latch.
409  *
410  * So if a NMI hits the update of base[0] then it will use base[1]
411  * which is still consistent. In the worst case this can result is a
412  * slightly wrong timestamp (a few nanoseconds). See
413  * @ktime_get_mono_fast_ns.
414  */
415 static void update_fast_timekeeper(const struct tk_read_base *tkr,
416 				   struct tk_fast *tkf)
417 {
418 	struct tk_read_base *base = tkf->base;
419 
420 	/* Force readers off to base[1] */
421 	raw_write_seqcount_latch(&tkf->seq);
422 
423 	/* Update base[0] */
424 	memcpy(base, tkr, sizeof(*base));
425 
426 	/* Force readers back to base[0] */
427 	raw_write_seqcount_latch(&tkf->seq);
428 
429 	/* Update base[1] */
430 	memcpy(base + 1, base, sizeof(*base));
431 }
432 
433 static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
434 {
435 	u64 delta, cycles = tk_clock_read(tkr);
436 
437 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
438 	return timekeeping_delta_to_ns(tkr, delta);
439 }
440 
441 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
442 {
443 	struct tk_read_base *tkr;
444 	unsigned int seq;
445 	u64 now;
446 
447 	do {
448 		seq = raw_read_seqcount_latch(&tkf->seq);
449 		tkr = tkf->base + (seq & 0x01);
450 		now = ktime_to_ns(tkr->base);
451 		now += fast_tk_get_delta_ns(tkr);
452 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
453 
454 	return now;
455 }
456 
457 /**
458  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
459  *
460  * This timestamp is not guaranteed to be monotonic across an update.
461  * The timestamp is calculated by:
462  *
463  *	now = base_mono + clock_delta * slope
464  *
465  * So if the update lowers the slope, readers who are forced to the
466  * not yet updated second array are still using the old steeper slope.
467  *
468  * tmono
469  * ^
470  * |    o  n
471  * |   o n
472  * |  u
473  * | o
474  * |o
475  * |12345678---> reader order
476  *
477  * o = old slope
478  * u = update
479  * n = new slope
480  *
481  * So reader 6 will observe time going backwards versus reader 5.
482  *
483  * While other CPUs are likely to be able to observe that, the only way
484  * for a CPU local observation is when an NMI hits in the middle of
485  * the update. Timestamps taken from that NMI context might be ahead
486  * of the following timestamps. Callers need to be aware of that and
487  * deal with it.
488  */
489 u64 notrace ktime_get_mono_fast_ns(void)
490 {
491 	return __ktime_get_fast_ns(&tk_fast_mono);
492 }
493 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
494 
495 /**
496  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
497  *
498  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
499  * conversion factor is not affected by NTP/PTP correction.
500  */
501 u64 notrace ktime_get_raw_fast_ns(void)
502 {
503 	return __ktime_get_fast_ns(&tk_fast_raw);
504 }
505 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
506 
507 /**
508  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
509  *
510  * To keep it NMI safe since we're accessing from tracing, we're not using a
511  * separate timekeeper with updates to monotonic clock and boot offset
512  * protected with seqcounts. This has the following minor side effects:
513  *
514  * (1) Its possible that a timestamp be taken after the boot offset is updated
515  * but before the timekeeper is updated. If this happens, the new boot offset
516  * is added to the old timekeeping making the clock appear to update slightly
517  * earlier:
518  *    CPU 0                                        CPU 1
519  *    timekeeping_inject_sleeptime64()
520  *    __timekeeping_inject_sleeptime(tk, delta);
521  *                                                 timestamp();
522  *    timekeeping_update(tk, TK_CLEAR_NTP...);
523  *
524  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
525  * partially updated.  Since the tk->offs_boot update is a rare event, this
526  * should be a rare occurrence which postprocessing should be able to handle.
527  *
528  * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
529  * apply as well.
530  */
531 u64 notrace ktime_get_boot_fast_ns(void)
532 {
533 	struct timekeeper *tk = &tk_core.timekeeper;
534 
535 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
536 }
537 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
538 
539 /**
540  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
541  *
542  * The same limitations as described for ktime_get_boot_fast_ns() apply. The
543  * mono time and the TAI offset are not read atomically which may yield wrong
544  * readouts. However, an update of the TAI offset is an rare event e.g., caused
545  * by settime or adjtimex with an offset. The user of this function has to deal
546  * with the possibility of wrong timestamps in post processing.
547  */
548 u64 notrace ktime_get_tai_fast_ns(void)
549 {
550 	struct timekeeper *tk = &tk_core.timekeeper;
551 
552 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
553 }
554 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
555 
556 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
557 {
558 	struct tk_read_base *tkr;
559 	u64 basem, baser, delta;
560 	unsigned int seq;
561 
562 	do {
563 		seq = raw_read_seqcount_latch(&tkf->seq);
564 		tkr = tkf->base + (seq & 0x01);
565 		basem = ktime_to_ns(tkr->base);
566 		baser = ktime_to_ns(tkr->base_real);
567 		delta = fast_tk_get_delta_ns(tkr);
568 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
569 
570 	if (mono)
571 		*mono = basem + delta;
572 	return baser + delta;
573 }
574 
575 /**
576  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
577  *
578  * See ktime_get_fast_ns() for documentation of the time stamp ordering.
579  */
580 u64 ktime_get_real_fast_ns(void)
581 {
582 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
583 }
584 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
585 
586 /**
587  * ktime_get_fast_timestamps: - NMI safe timestamps
588  * @snapshot:	Pointer to timestamp storage
589  *
590  * Stores clock monotonic, boottime and realtime timestamps.
591  *
592  * Boot time is a racy access on 32bit systems if the sleep time injection
593  * happens late during resume and not in timekeeping_resume(). That could
594  * be avoided by expanding struct tk_read_base with boot offset for 32bit
595  * and adding more overhead to the update. As this is a hard to observe
596  * once per resume event which can be filtered with reasonable effort using
597  * the accurate mono/real timestamps, it's probably not worth the trouble.
598  *
599  * Aside of that it might be possible on 32 and 64 bit to observe the
600  * following when the sleep time injection happens late:
601  *
602  * CPU 0				CPU 1
603  * timekeeping_resume()
604  * ktime_get_fast_timestamps()
605  *	mono, real = __ktime_get_real_fast()
606  *					inject_sleep_time()
607  *					   update boot offset
608  *	boot = mono + bootoffset;
609  *
610  * That means that boot time already has the sleep time adjustment, but
611  * real time does not. On the next readout both are in sync again.
612  *
613  * Preventing this for 64bit is not really feasible without destroying the
614  * careful cache layout of the timekeeper because the sequence count and
615  * struct tk_read_base would then need two cache lines instead of one.
616  *
617  * Access to the time keeper clock source is disabled across the innermost
618  * steps of suspend/resume. The accessors still work, but the timestamps
619  * are frozen until time keeping is resumed which happens very early.
620  *
621  * For regular suspend/resume there is no observable difference vs. sched
622  * clock, but it might affect some of the nasty low level debug printks.
623  *
624  * OTOH, access to sched clock is not guaranteed across suspend/resume on
625  * all systems either so it depends on the hardware in use.
626  *
627  * If that turns out to be a real problem then this could be mitigated by
628  * using sched clock in a similar way as during early boot. But it's not as
629  * trivial as on early boot because it needs some careful protection
630  * against the clock monotonic timestamp jumping backwards on resume.
631  */
632 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
633 {
634 	struct timekeeper *tk = &tk_core.timekeeper;
635 
636 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
637 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
638 }
639 
640 /**
641  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
642  * @tk: Timekeeper to snapshot.
643  *
644  * It generally is unsafe to access the clocksource after timekeeping has been
645  * suspended, so take a snapshot of the readout base of @tk and use it as the
646  * fast timekeeper's readout base while suspended.  It will return the same
647  * number of cycles every time until timekeeping is resumed at which time the
648  * proper readout base for the fast timekeeper will be restored automatically.
649  */
650 static void halt_fast_timekeeper(const struct timekeeper *tk)
651 {
652 	static struct tk_read_base tkr_dummy;
653 	const struct tk_read_base *tkr = &tk->tkr_mono;
654 
655 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
656 	cycles_at_suspend = tk_clock_read(tkr);
657 	tkr_dummy.clock = &dummy_clock;
658 	tkr_dummy.base_real = tkr->base + tk->offs_real;
659 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
660 
661 	tkr = &tk->tkr_raw;
662 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
663 	tkr_dummy.clock = &dummy_clock;
664 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
665 }
666 
667 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
668 
669 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
670 {
671 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
672 }
673 
674 /**
675  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
676  * @nb: Pointer to the notifier block to register
677  */
678 int pvclock_gtod_register_notifier(struct notifier_block *nb)
679 {
680 	struct timekeeper *tk = &tk_core.timekeeper;
681 	unsigned long flags;
682 	int ret;
683 
684 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
685 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
686 	update_pvclock_gtod(tk, true);
687 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
688 
689 	return ret;
690 }
691 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
692 
693 /**
694  * pvclock_gtod_unregister_notifier - unregister a pvclock
695  * timedata update listener
696  * @nb: Pointer to the notifier block to unregister
697  */
698 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
699 {
700 	unsigned long flags;
701 	int ret;
702 
703 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
704 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
705 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
706 
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
710 
711 /*
712  * tk_update_leap_state - helper to update the next_leap_ktime
713  */
714 static inline void tk_update_leap_state(struct timekeeper *tk)
715 {
716 	tk->next_leap_ktime = ntp_get_next_leap();
717 	if (tk->next_leap_ktime != KTIME_MAX)
718 		/* Convert to monotonic time */
719 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
720 }
721 
722 /*
723  * Update the ktime_t based scalar nsec members of the timekeeper
724  */
725 static inline void tk_update_ktime_data(struct timekeeper *tk)
726 {
727 	u64 seconds;
728 	u32 nsec;
729 
730 	/*
731 	 * The xtime based monotonic readout is:
732 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
733 	 * The ktime based monotonic readout is:
734 	 *	nsec = base_mono + now();
735 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
736 	 */
737 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
738 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
739 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
740 
741 	/*
742 	 * The sum of the nanoseconds portions of xtime and
743 	 * wall_to_monotonic can be greater/equal one second. Take
744 	 * this into account before updating tk->ktime_sec.
745 	 */
746 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
747 	if (nsec >= NSEC_PER_SEC)
748 		seconds++;
749 	tk->ktime_sec = seconds;
750 
751 	/* Update the monotonic raw base */
752 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
753 }
754 
755 /* must hold timekeeper_lock */
756 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
757 {
758 	if (action & TK_CLEAR_NTP) {
759 		tk->ntp_error = 0;
760 		ntp_clear();
761 	}
762 
763 	tk_update_leap_state(tk);
764 	tk_update_ktime_data(tk);
765 
766 	update_vsyscall(tk);
767 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
768 
769 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
770 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
771 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
772 
773 	if (action & TK_CLOCK_WAS_SET)
774 		tk->clock_was_set_seq++;
775 	/*
776 	 * The mirroring of the data to the shadow-timekeeper needs
777 	 * to happen last here to ensure we don't over-write the
778 	 * timekeeper structure on the next update with stale data
779 	 */
780 	if (action & TK_MIRROR)
781 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
782 		       sizeof(tk_core.timekeeper));
783 }
784 
785 /**
786  * timekeeping_forward_now - update clock to the current time
787  * @tk:		Pointer to the timekeeper to update
788  *
789  * Forward the current clock to update its state since the last call to
790  * update_wall_time(). This is useful before significant clock changes,
791  * as it avoids having to deal with this time offset explicitly.
792  */
793 static void timekeeping_forward_now(struct timekeeper *tk)
794 {
795 	u64 cycle_now, delta;
796 
797 	cycle_now = tk_clock_read(&tk->tkr_mono);
798 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
799 	tk->tkr_mono.cycle_last = cycle_now;
800 	tk->tkr_raw.cycle_last  = cycle_now;
801 
802 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
803 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
804 
805 	tk_normalize_xtime(tk);
806 }
807 
808 /**
809  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
810  * @ts:		pointer to the timespec to be set
811  *
812  * Returns the time of day in a timespec64 (WARN if suspended).
813  */
814 void ktime_get_real_ts64(struct timespec64 *ts)
815 {
816 	struct timekeeper *tk = &tk_core.timekeeper;
817 	unsigned int seq;
818 	u64 nsecs;
819 
820 	WARN_ON(timekeeping_suspended);
821 
822 	do {
823 		seq = read_seqcount_begin(&tk_core.seq);
824 
825 		ts->tv_sec = tk->xtime_sec;
826 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
827 
828 	} while (read_seqcount_retry(&tk_core.seq, seq));
829 
830 	ts->tv_nsec = 0;
831 	timespec64_add_ns(ts, nsecs);
832 }
833 EXPORT_SYMBOL(ktime_get_real_ts64);
834 
835 ktime_t ktime_get(void)
836 {
837 	struct timekeeper *tk = &tk_core.timekeeper;
838 	unsigned int seq;
839 	ktime_t base;
840 	u64 nsecs;
841 
842 	WARN_ON(timekeeping_suspended);
843 
844 	do {
845 		seq = read_seqcount_begin(&tk_core.seq);
846 		base = tk->tkr_mono.base;
847 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
848 
849 	} while (read_seqcount_retry(&tk_core.seq, seq));
850 
851 	return ktime_add_ns(base, nsecs);
852 }
853 EXPORT_SYMBOL_GPL(ktime_get);
854 
855 u32 ktime_get_resolution_ns(void)
856 {
857 	struct timekeeper *tk = &tk_core.timekeeper;
858 	unsigned int seq;
859 	u32 nsecs;
860 
861 	WARN_ON(timekeeping_suspended);
862 
863 	do {
864 		seq = read_seqcount_begin(&tk_core.seq);
865 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
866 	} while (read_seqcount_retry(&tk_core.seq, seq));
867 
868 	return nsecs;
869 }
870 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
871 
872 static ktime_t *offsets[TK_OFFS_MAX] = {
873 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
874 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
875 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
876 };
877 
878 ktime_t ktime_get_with_offset(enum tk_offsets offs)
879 {
880 	struct timekeeper *tk = &tk_core.timekeeper;
881 	unsigned int seq;
882 	ktime_t base, *offset = offsets[offs];
883 	u64 nsecs;
884 
885 	WARN_ON(timekeeping_suspended);
886 
887 	do {
888 		seq = read_seqcount_begin(&tk_core.seq);
889 		base = ktime_add(tk->tkr_mono.base, *offset);
890 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
891 
892 	} while (read_seqcount_retry(&tk_core.seq, seq));
893 
894 	return ktime_add_ns(base, nsecs);
895 
896 }
897 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
898 
899 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
900 {
901 	struct timekeeper *tk = &tk_core.timekeeper;
902 	unsigned int seq;
903 	ktime_t base, *offset = offsets[offs];
904 	u64 nsecs;
905 
906 	WARN_ON(timekeeping_suspended);
907 
908 	do {
909 		seq = read_seqcount_begin(&tk_core.seq);
910 		base = ktime_add(tk->tkr_mono.base, *offset);
911 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
912 
913 	} while (read_seqcount_retry(&tk_core.seq, seq));
914 
915 	return ktime_add_ns(base, nsecs);
916 }
917 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
918 
919 /**
920  * ktime_mono_to_any() - convert monotonic time to any other time
921  * @tmono:	time to convert.
922  * @offs:	which offset to use
923  */
924 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
925 {
926 	ktime_t *offset = offsets[offs];
927 	unsigned int seq;
928 	ktime_t tconv;
929 
930 	do {
931 		seq = read_seqcount_begin(&tk_core.seq);
932 		tconv = ktime_add(tmono, *offset);
933 	} while (read_seqcount_retry(&tk_core.seq, seq));
934 
935 	return tconv;
936 }
937 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
938 
939 /**
940  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
941  */
942 ktime_t ktime_get_raw(void)
943 {
944 	struct timekeeper *tk = &tk_core.timekeeper;
945 	unsigned int seq;
946 	ktime_t base;
947 	u64 nsecs;
948 
949 	do {
950 		seq = read_seqcount_begin(&tk_core.seq);
951 		base = tk->tkr_raw.base;
952 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
953 
954 	} while (read_seqcount_retry(&tk_core.seq, seq));
955 
956 	return ktime_add_ns(base, nsecs);
957 }
958 EXPORT_SYMBOL_GPL(ktime_get_raw);
959 
960 /**
961  * ktime_get_ts64 - get the monotonic clock in timespec64 format
962  * @ts:		pointer to timespec variable
963  *
964  * The function calculates the monotonic clock from the realtime
965  * clock and the wall_to_monotonic offset and stores the result
966  * in normalized timespec64 format in the variable pointed to by @ts.
967  */
968 void ktime_get_ts64(struct timespec64 *ts)
969 {
970 	struct timekeeper *tk = &tk_core.timekeeper;
971 	struct timespec64 tomono;
972 	unsigned int seq;
973 	u64 nsec;
974 
975 	WARN_ON(timekeeping_suspended);
976 
977 	do {
978 		seq = read_seqcount_begin(&tk_core.seq);
979 		ts->tv_sec = tk->xtime_sec;
980 		nsec = timekeeping_get_ns(&tk->tkr_mono);
981 		tomono = tk->wall_to_monotonic;
982 
983 	} while (read_seqcount_retry(&tk_core.seq, seq));
984 
985 	ts->tv_sec += tomono.tv_sec;
986 	ts->tv_nsec = 0;
987 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
988 }
989 EXPORT_SYMBOL_GPL(ktime_get_ts64);
990 
991 /**
992  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
993  *
994  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
995  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
996  * works on both 32 and 64 bit systems. On 32 bit systems the readout
997  * covers ~136 years of uptime which should be enough to prevent
998  * premature wrap arounds.
999  */
1000 time64_t ktime_get_seconds(void)
1001 {
1002 	struct timekeeper *tk = &tk_core.timekeeper;
1003 
1004 	WARN_ON(timekeeping_suspended);
1005 	return tk->ktime_sec;
1006 }
1007 EXPORT_SYMBOL_GPL(ktime_get_seconds);
1008 
1009 /**
1010  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1011  *
1012  * Returns the wall clock seconds since 1970.
1013  *
1014  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1015  * 32bit systems the access must be protected with the sequence
1016  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1017  * value.
1018  */
1019 time64_t ktime_get_real_seconds(void)
1020 {
1021 	struct timekeeper *tk = &tk_core.timekeeper;
1022 	time64_t seconds;
1023 	unsigned int seq;
1024 
1025 	if (IS_ENABLED(CONFIG_64BIT))
1026 		return tk->xtime_sec;
1027 
1028 	do {
1029 		seq = read_seqcount_begin(&tk_core.seq);
1030 		seconds = tk->xtime_sec;
1031 
1032 	} while (read_seqcount_retry(&tk_core.seq, seq));
1033 
1034 	return seconds;
1035 }
1036 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1037 
1038 /**
1039  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1040  * but without the sequence counter protect. This internal function
1041  * is called just when timekeeping lock is already held.
1042  */
1043 noinstr time64_t __ktime_get_real_seconds(void)
1044 {
1045 	struct timekeeper *tk = &tk_core.timekeeper;
1046 
1047 	return tk->xtime_sec;
1048 }
1049 
1050 /**
1051  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1052  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1053  */
1054 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1055 {
1056 	struct timekeeper *tk = &tk_core.timekeeper;
1057 	unsigned int seq;
1058 	ktime_t base_raw;
1059 	ktime_t base_real;
1060 	u64 nsec_raw;
1061 	u64 nsec_real;
1062 	u64 now;
1063 
1064 	WARN_ON_ONCE(timekeeping_suspended);
1065 
1066 	do {
1067 		seq = read_seqcount_begin(&tk_core.seq);
1068 		now = tk_clock_read(&tk->tkr_mono);
1069 		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1070 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1071 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1072 		base_real = ktime_add(tk->tkr_mono.base,
1073 				      tk_core.timekeeper.offs_real);
1074 		base_raw = tk->tkr_raw.base;
1075 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1076 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1077 	} while (read_seqcount_retry(&tk_core.seq, seq));
1078 
1079 	systime_snapshot->cycles = now;
1080 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1081 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1082 }
1083 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1084 
1085 /* Scale base by mult/div checking for overflow */
1086 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1087 {
1088 	u64 tmp, rem;
1089 
1090 	tmp = div64_u64_rem(*base, div, &rem);
1091 
1092 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1093 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1094 		return -EOVERFLOW;
1095 	tmp *= mult;
1096 
1097 	rem = div64_u64(rem * mult, div);
1098 	*base = tmp + rem;
1099 	return 0;
1100 }
1101 
1102 /**
1103  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1104  * @history:			Snapshot representing start of history
1105  * @partial_history_cycles:	Cycle offset into history (fractional part)
1106  * @total_history_cycles:	Total history length in cycles
1107  * @discontinuity:		True indicates clock was set on history period
1108  * @ts:				Cross timestamp that should be adjusted using
1109  *	partial/total ratio
1110  *
1111  * Helper function used by get_device_system_crosststamp() to correct the
1112  * crosstimestamp corresponding to the start of the current interval to the
1113  * system counter value (timestamp point) provided by the driver. The
1114  * total_history_* quantities are the total history starting at the provided
1115  * reference point and ending at the start of the current interval. The cycle
1116  * count between the driver timestamp point and the start of the current
1117  * interval is partial_history_cycles.
1118  */
1119 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1120 					 u64 partial_history_cycles,
1121 					 u64 total_history_cycles,
1122 					 bool discontinuity,
1123 					 struct system_device_crosststamp *ts)
1124 {
1125 	struct timekeeper *tk = &tk_core.timekeeper;
1126 	u64 corr_raw, corr_real;
1127 	bool interp_forward;
1128 	int ret;
1129 
1130 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1131 		return 0;
1132 
1133 	/* Interpolate shortest distance from beginning or end of history */
1134 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1135 	partial_history_cycles = interp_forward ?
1136 		total_history_cycles - partial_history_cycles :
1137 		partial_history_cycles;
1138 
1139 	/*
1140 	 * Scale the monotonic raw time delta by:
1141 	 *	partial_history_cycles / total_history_cycles
1142 	 */
1143 	corr_raw = (u64)ktime_to_ns(
1144 		ktime_sub(ts->sys_monoraw, history->raw));
1145 	ret = scale64_check_overflow(partial_history_cycles,
1146 				     total_history_cycles, &corr_raw);
1147 	if (ret)
1148 		return ret;
1149 
1150 	/*
1151 	 * If there is a discontinuity in the history, scale monotonic raw
1152 	 *	correction by:
1153 	 *	mult(real)/mult(raw) yielding the realtime correction
1154 	 * Otherwise, calculate the realtime correction similar to monotonic
1155 	 *	raw calculation
1156 	 */
1157 	if (discontinuity) {
1158 		corr_real = mul_u64_u32_div
1159 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1160 	} else {
1161 		corr_real = (u64)ktime_to_ns(
1162 			ktime_sub(ts->sys_realtime, history->real));
1163 		ret = scale64_check_overflow(partial_history_cycles,
1164 					     total_history_cycles, &corr_real);
1165 		if (ret)
1166 			return ret;
1167 	}
1168 
1169 	/* Fixup monotonic raw and real time time values */
1170 	if (interp_forward) {
1171 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1172 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1173 	} else {
1174 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1175 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 /*
1182  * cycle_between - true if test occurs chronologically between before and after
1183  */
1184 static bool cycle_between(u64 before, u64 test, u64 after)
1185 {
1186 	if (test > before && test < after)
1187 		return true;
1188 	if (test < before && before > after)
1189 		return true;
1190 	return false;
1191 }
1192 
1193 /**
1194  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1195  * @get_time_fn:	Callback to get simultaneous device time and
1196  *	system counter from the device driver
1197  * @ctx:		Context passed to get_time_fn()
1198  * @history_begin:	Historical reference point used to interpolate system
1199  *	time when counter provided by the driver is before the current interval
1200  * @xtstamp:		Receives simultaneously captured system and device time
1201  *
1202  * Reads a timestamp from a device and correlates it to system time
1203  */
1204 int get_device_system_crosststamp(int (*get_time_fn)
1205 				  (ktime_t *device_time,
1206 				   struct system_counterval_t *sys_counterval,
1207 				   void *ctx),
1208 				  void *ctx,
1209 				  struct system_time_snapshot *history_begin,
1210 				  struct system_device_crosststamp *xtstamp)
1211 {
1212 	struct system_counterval_t system_counterval;
1213 	struct timekeeper *tk = &tk_core.timekeeper;
1214 	u64 cycles, now, interval_start;
1215 	unsigned int clock_was_set_seq = 0;
1216 	ktime_t base_real, base_raw;
1217 	u64 nsec_real, nsec_raw;
1218 	u8 cs_was_changed_seq;
1219 	unsigned int seq;
1220 	bool do_interp;
1221 	int ret;
1222 
1223 	do {
1224 		seq = read_seqcount_begin(&tk_core.seq);
1225 		/*
1226 		 * Try to synchronously capture device time and a system
1227 		 * counter value calling back into the device driver
1228 		 */
1229 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1230 		if (ret)
1231 			return ret;
1232 
1233 		/*
1234 		 * Verify that the clocksource associated with the captured
1235 		 * system counter value is the same as the currently installed
1236 		 * timekeeper clocksource
1237 		 */
1238 		if (tk->tkr_mono.clock != system_counterval.cs)
1239 			return -ENODEV;
1240 		cycles = system_counterval.cycles;
1241 
1242 		/*
1243 		 * Check whether the system counter value provided by the
1244 		 * device driver is on the current timekeeping interval.
1245 		 */
1246 		now = tk_clock_read(&tk->tkr_mono);
1247 		interval_start = tk->tkr_mono.cycle_last;
1248 		if (!cycle_between(interval_start, cycles, now)) {
1249 			clock_was_set_seq = tk->clock_was_set_seq;
1250 			cs_was_changed_seq = tk->cs_was_changed_seq;
1251 			cycles = interval_start;
1252 			do_interp = true;
1253 		} else {
1254 			do_interp = false;
1255 		}
1256 
1257 		base_real = ktime_add(tk->tkr_mono.base,
1258 				      tk_core.timekeeper.offs_real);
1259 		base_raw = tk->tkr_raw.base;
1260 
1261 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1262 						     system_counterval.cycles);
1263 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1264 						    system_counterval.cycles);
1265 	} while (read_seqcount_retry(&tk_core.seq, seq));
1266 
1267 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1268 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1269 
1270 	/*
1271 	 * Interpolate if necessary, adjusting back from the start of the
1272 	 * current interval
1273 	 */
1274 	if (do_interp) {
1275 		u64 partial_history_cycles, total_history_cycles;
1276 		bool discontinuity;
1277 
1278 		/*
1279 		 * Check that the counter value occurs after the provided
1280 		 * history reference and that the history doesn't cross a
1281 		 * clocksource change
1282 		 */
1283 		if (!history_begin ||
1284 		    !cycle_between(history_begin->cycles,
1285 				   system_counterval.cycles, cycles) ||
1286 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1287 			return -EINVAL;
1288 		partial_history_cycles = cycles - system_counterval.cycles;
1289 		total_history_cycles = cycles - history_begin->cycles;
1290 		discontinuity =
1291 			history_begin->clock_was_set_seq != clock_was_set_seq;
1292 
1293 		ret = adjust_historical_crosststamp(history_begin,
1294 						    partial_history_cycles,
1295 						    total_history_cycles,
1296 						    discontinuity, xtstamp);
1297 		if (ret)
1298 			return ret;
1299 	}
1300 
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1304 
1305 /**
1306  * do_settimeofday64 - Sets the time of day.
1307  * @ts:     pointer to the timespec64 variable containing the new time
1308  *
1309  * Sets the time of day to the new time and update NTP and notify hrtimers
1310  */
1311 int do_settimeofday64(const struct timespec64 *ts)
1312 {
1313 	struct timekeeper *tk = &tk_core.timekeeper;
1314 	struct timespec64 ts_delta, xt;
1315 	unsigned long flags;
1316 	int ret = 0;
1317 
1318 	if (!timespec64_valid_settod(ts))
1319 		return -EINVAL;
1320 
1321 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1322 	write_seqcount_begin(&tk_core.seq);
1323 
1324 	timekeeping_forward_now(tk);
1325 
1326 	xt = tk_xtime(tk);
1327 	ts_delta = timespec64_sub(*ts, xt);
1328 
1329 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1330 		ret = -EINVAL;
1331 		goto out;
1332 	}
1333 
1334 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1335 
1336 	tk_set_xtime(tk, ts);
1337 out:
1338 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1339 
1340 	write_seqcount_end(&tk_core.seq);
1341 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1342 
1343 	/* Signal hrtimers about time change */
1344 	clock_was_set(CLOCK_SET_WALL);
1345 
1346 	if (!ret)
1347 		audit_tk_injoffset(ts_delta);
1348 
1349 	return ret;
1350 }
1351 EXPORT_SYMBOL(do_settimeofday64);
1352 
1353 /**
1354  * timekeeping_inject_offset - Adds or subtracts from the current time.
1355  * @ts:		Pointer to the timespec variable containing the offset
1356  *
1357  * Adds or subtracts an offset value from the current time.
1358  */
1359 static int timekeeping_inject_offset(const struct timespec64 *ts)
1360 {
1361 	struct timekeeper *tk = &tk_core.timekeeper;
1362 	unsigned long flags;
1363 	struct timespec64 tmp;
1364 	int ret = 0;
1365 
1366 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1367 		return -EINVAL;
1368 
1369 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1370 	write_seqcount_begin(&tk_core.seq);
1371 
1372 	timekeeping_forward_now(tk);
1373 
1374 	/* Make sure the proposed value is valid */
1375 	tmp = timespec64_add(tk_xtime(tk), *ts);
1376 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1377 	    !timespec64_valid_settod(&tmp)) {
1378 		ret = -EINVAL;
1379 		goto error;
1380 	}
1381 
1382 	tk_xtime_add(tk, ts);
1383 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1384 
1385 error: /* even if we error out, we forwarded the time, so call update */
1386 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1387 
1388 	write_seqcount_end(&tk_core.seq);
1389 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1390 
1391 	/* Signal hrtimers about time change */
1392 	clock_was_set(CLOCK_SET_WALL);
1393 
1394 	return ret;
1395 }
1396 
1397 /*
1398  * Indicates if there is an offset between the system clock and the hardware
1399  * clock/persistent clock/rtc.
1400  */
1401 int persistent_clock_is_local;
1402 
1403 /*
1404  * Adjust the time obtained from the CMOS to be UTC time instead of
1405  * local time.
1406  *
1407  * This is ugly, but preferable to the alternatives.  Otherwise we
1408  * would either need to write a program to do it in /etc/rc (and risk
1409  * confusion if the program gets run more than once; it would also be
1410  * hard to make the program warp the clock precisely n hours)  or
1411  * compile in the timezone information into the kernel.  Bad, bad....
1412  *
1413  *						- TYT, 1992-01-01
1414  *
1415  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1416  * as real UNIX machines always do it. This avoids all headaches about
1417  * daylight saving times and warping kernel clocks.
1418  */
1419 void timekeeping_warp_clock(void)
1420 {
1421 	if (sys_tz.tz_minuteswest != 0) {
1422 		struct timespec64 adjust;
1423 
1424 		persistent_clock_is_local = 1;
1425 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1426 		adjust.tv_nsec = 0;
1427 		timekeeping_inject_offset(&adjust);
1428 	}
1429 }
1430 
1431 /*
1432  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1433  */
1434 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1435 {
1436 	tk->tai_offset = tai_offset;
1437 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1438 }
1439 
1440 /*
1441  * change_clocksource - Swaps clocksources if a new one is available
1442  *
1443  * Accumulates current time interval and initializes new clocksource
1444  */
1445 static int change_clocksource(void *data)
1446 {
1447 	struct timekeeper *tk = &tk_core.timekeeper;
1448 	struct clocksource *new, *old = NULL;
1449 	unsigned long flags;
1450 	bool change = false;
1451 
1452 	new = (struct clocksource *) data;
1453 
1454 	/*
1455 	 * If the cs is in module, get a module reference. Succeeds
1456 	 * for built-in code (owner == NULL) as well.
1457 	 */
1458 	if (try_module_get(new->owner)) {
1459 		if (!new->enable || new->enable(new) == 0)
1460 			change = true;
1461 		else
1462 			module_put(new->owner);
1463 	}
1464 
1465 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1466 	write_seqcount_begin(&tk_core.seq);
1467 
1468 	timekeeping_forward_now(tk);
1469 
1470 	if (change) {
1471 		old = tk->tkr_mono.clock;
1472 		tk_setup_internals(tk, new);
1473 	}
1474 
1475 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1476 
1477 	write_seqcount_end(&tk_core.seq);
1478 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1479 
1480 	if (old) {
1481 		if (old->disable)
1482 			old->disable(old);
1483 
1484 		module_put(old->owner);
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 /**
1491  * timekeeping_notify - Install a new clock source
1492  * @clock:		pointer to the clock source
1493  *
1494  * This function is called from clocksource.c after a new, better clock
1495  * source has been registered. The caller holds the clocksource_mutex.
1496  */
1497 int timekeeping_notify(struct clocksource *clock)
1498 {
1499 	struct timekeeper *tk = &tk_core.timekeeper;
1500 
1501 	if (tk->tkr_mono.clock == clock)
1502 		return 0;
1503 	stop_machine(change_clocksource, clock, NULL);
1504 	tick_clock_notify();
1505 	return tk->tkr_mono.clock == clock ? 0 : -1;
1506 }
1507 
1508 /**
1509  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1510  * @ts:		pointer to the timespec64 to be set
1511  *
1512  * Returns the raw monotonic time (completely un-modified by ntp)
1513  */
1514 void ktime_get_raw_ts64(struct timespec64 *ts)
1515 {
1516 	struct timekeeper *tk = &tk_core.timekeeper;
1517 	unsigned int seq;
1518 	u64 nsecs;
1519 
1520 	do {
1521 		seq = read_seqcount_begin(&tk_core.seq);
1522 		ts->tv_sec = tk->raw_sec;
1523 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1524 
1525 	} while (read_seqcount_retry(&tk_core.seq, seq));
1526 
1527 	ts->tv_nsec = 0;
1528 	timespec64_add_ns(ts, nsecs);
1529 }
1530 EXPORT_SYMBOL(ktime_get_raw_ts64);
1531 
1532 
1533 /**
1534  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1535  */
1536 int timekeeping_valid_for_hres(void)
1537 {
1538 	struct timekeeper *tk = &tk_core.timekeeper;
1539 	unsigned int seq;
1540 	int ret;
1541 
1542 	do {
1543 		seq = read_seqcount_begin(&tk_core.seq);
1544 
1545 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1546 
1547 	} while (read_seqcount_retry(&tk_core.seq, seq));
1548 
1549 	return ret;
1550 }
1551 
1552 /**
1553  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1554  */
1555 u64 timekeeping_max_deferment(void)
1556 {
1557 	struct timekeeper *tk = &tk_core.timekeeper;
1558 	unsigned int seq;
1559 	u64 ret;
1560 
1561 	do {
1562 		seq = read_seqcount_begin(&tk_core.seq);
1563 
1564 		ret = tk->tkr_mono.clock->max_idle_ns;
1565 
1566 	} while (read_seqcount_retry(&tk_core.seq, seq));
1567 
1568 	return ret;
1569 }
1570 
1571 /**
1572  * read_persistent_clock64 -  Return time from the persistent clock.
1573  * @ts: Pointer to the storage for the readout value
1574  *
1575  * Weak dummy function for arches that do not yet support it.
1576  * Reads the time from the battery backed persistent clock.
1577  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1578  *
1579  *  XXX - Do be sure to remove it once all arches implement it.
1580  */
1581 void __weak read_persistent_clock64(struct timespec64 *ts)
1582 {
1583 	ts->tv_sec = 0;
1584 	ts->tv_nsec = 0;
1585 }
1586 
1587 /**
1588  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1589  *                                        from the boot.
1590  *
1591  * Weak dummy function for arches that do not yet support it.
1592  * @wall_time:	- current time as returned by persistent clock
1593  * @boot_offset: - offset that is defined as wall_time - boot_time
1594  *
1595  * The default function calculates offset based on the current value of
1596  * local_clock(). This way architectures that support sched_clock() but don't
1597  * support dedicated boot time clock will provide the best estimate of the
1598  * boot time.
1599  */
1600 void __weak __init
1601 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1602 				     struct timespec64 *boot_offset)
1603 {
1604 	read_persistent_clock64(wall_time);
1605 	*boot_offset = ns_to_timespec64(local_clock());
1606 }
1607 
1608 /*
1609  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1610  *
1611  * The flag starts of false and is only set when a suspend reaches
1612  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1613  * timekeeper clocksource is not stopping across suspend and has been
1614  * used to update sleep time. If the timekeeper clocksource has stopped
1615  * then the flag stays true and is used by the RTC resume code to decide
1616  * whether sleeptime must be injected and if so the flag gets false then.
1617  *
1618  * If a suspend fails before reaching timekeeping_resume() then the flag
1619  * stays false and prevents erroneous sleeptime injection.
1620  */
1621 static bool suspend_timing_needed;
1622 
1623 /* Flag for if there is a persistent clock on this platform */
1624 static bool persistent_clock_exists;
1625 
1626 /*
1627  * timekeeping_init - Initializes the clocksource and common timekeeping values
1628  */
1629 void __init timekeeping_init(void)
1630 {
1631 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1632 	struct timekeeper *tk = &tk_core.timekeeper;
1633 	struct clocksource *clock;
1634 	unsigned long flags;
1635 
1636 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1637 	if (timespec64_valid_settod(&wall_time) &&
1638 	    timespec64_to_ns(&wall_time) > 0) {
1639 		persistent_clock_exists = true;
1640 	} else if (timespec64_to_ns(&wall_time) != 0) {
1641 		pr_warn("Persistent clock returned invalid value");
1642 		wall_time = (struct timespec64){0};
1643 	}
1644 
1645 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1646 		boot_offset = (struct timespec64){0};
1647 
1648 	/*
1649 	 * We want set wall_to_mono, so the following is true:
1650 	 * wall time + wall_to_mono = boot time
1651 	 */
1652 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1653 
1654 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1655 	write_seqcount_begin(&tk_core.seq);
1656 	ntp_init();
1657 
1658 	clock = clocksource_default_clock();
1659 	if (clock->enable)
1660 		clock->enable(clock);
1661 	tk_setup_internals(tk, clock);
1662 
1663 	tk_set_xtime(tk, &wall_time);
1664 	tk->raw_sec = 0;
1665 
1666 	tk_set_wall_to_mono(tk, wall_to_mono);
1667 
1668 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1669 
1670 	write_seqcount_end(&tk_core.seq);
1671 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1672 }
1673 
1674 /* time in seconds when suspend began for persistent clock */
1675 static struct timespec64 timekeeping_suspend_time;
1676 
1677 /**
1678  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1679  * @tk:		Pointer to the timekeeper to be updated
1680  * @delta:	Pointer to the delta value in timespec64 format
1681  *
1682  * Takes a timespec offset measuring a suspend interval and properly
1683  * adds the sleep offset to the timekeeping variables.
1684  */
1685 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1686 					   const struct timespec64 *delta)
1687 {
1688 	if (!timespec64_valid_strict(delta)) {
1689 		printk_deferred(KERN_WARNING
1690 				"__timekeeping_inject_sleeptime: Invalid "
1691 				"sleep delta value!\n");
1692 		return;
1693 	}
1694 	tk_xtime_add(tk, delta);
1695 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1696 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1697 	tk_debug_account_sleep_time(delta);
1698 }
1699 
1700 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1701 /**
1702  * We have three kinds of time sources to use for sleep time
1703  * injection, the preference order is:
1704  * 1) non-stop clocksource
1705  * 2) persistent clock (ie: RTC accessible when irqs are off)
1706  * 3) RTC
1707  *
1708  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1709  * If system has neither 1) nor 2), 3) will be used finally.
1710  *
1711  *
1712  * If timekeeping has injected sleeptime via either 1) or 2),
1713  * 3) becomes needless, so in this case we don't need to call
1714  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1715  * means.
1716  */
1717 bool timekeeping_rtc_skipresume(void)
1718 {
1719 	return !suspend_timing_needed;
1720 }
1721 
1722 /**
1723  * 1) can be determined whether to use or not only when doing
1724  * timekeeping_resume() which is invoked after rtc_suspend(),
1725  * so we can't skip rtc_suspend() surely if system has 1).
1726  *
1727  * But if system has 2), 2) will definitely be used, so in this
1728  * case we don't need to call rtc_suspend(), and this is what
1729  * timekeeping_rtc_skipsuspend() means.
1730  */
1731 bool timekeeping_rtc_skipsuspend(void)
1732 {
1733 	return persistent_clock_exists;
1734 }
1735 
1736 /**
1737  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1738  * @delta: pointer to a timespec64 delta value
1739  *
1740  * This hook is for architectures that cannot support read_persistent_clock64
1741  * because their RTC/persistent clock is only accessible when irqs are enabled.
1742  * and also don't have an effective nonstop clocksource.
1743  *
1744  * This function should only be called by rtc_resume(), and allows
1745  * a suspend offset to be injected into the timekeeping values.
1746  */
1747 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1748 {
1749 	struct timekeeper *tk = &tk_core.timekeeper;
1750 	unsigned long flags;
1751 
1752 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1753 	write_seqcount_begin(&tk_core.seq);
1754 
1755 	suspend_timing_needed = false;
1756 
1757 	timekeeping_forward_now(tk);
1758 
1759 	__timekeeping_inject_sleeptime(tk, delta);
1760 
1761 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1762 
1763 	write_seqcount_end(&tk_core.seq);
1764 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1765 
1766 	/* Signal hrtimers about time change */
1767 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1768 }
1769 #endif
1770 
1771 /**
1772  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1773  */
1774 void timekeeping_resume(void)
1775 {
1776 	struct timekeeper *tk = &tk_core.timekeeper;
1777 	struct clocksource *clock = tk->tkr_mono.clock;
1778 	unsigned long flags;
1779 	struct timespec64 ts_new, ts_delta;
1780 	u64 cycle_now, nsec;
1781 	bool inject_sleeptime = false;
1782 
1783 	read_persistent_clock64(&ts_new);
1784 
1785 	clockevents_resume();
1786 	clocksource_resume();
1787 
1788 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1789 	write_seqcount_begin(&tk_core.seq);
1790 
1791 	/*
1792 	 * After system resumes, we need to calculate the suspended time and
1793 	 * compensate it for the OS time. There are 3 sources that could be
1794 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1795 	 * device.
1796 	 *
1797 	 * One specific platform may have 1 or 2 or all of them, and the
1798 	 * preference will be:
1799 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1800 	 * The less preferred source will only be tried if there is no better
1801 	 * usable source. The rtc part is handled separately in rtc core code.
1802 	 */
1803 	cycle_now = tk_clock_read(&tk->tkr_mono);
1804 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1805 	if (nsec > 0) {
1806 		ts_delta = ns_to_timespec64(nsec);
1807 		inject_sleeptime = true;
1808 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1809 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1810 		inject_sleeptime = true;
1811 	}
1812 
1813 	if (inject_sleeptime) {
1814 		suspend_timing_needed = false;
1815 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1816 	}
1817 
1818 	/* Re-base the last cycle value */
1819 	tk->tkr_mono.cycle_last = cycle_now;
1820 	tk->tkr_raw.cycle_last  = cycle_now;
1821 
1822 	tk->ntp_error = 0;
1823 	timekeeping_suspended = 0;
1824 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1825 	write_seqcount_end(&tk_core.seq);
1826 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1827 
1828 	touch_softlockup_watchdog();
1829 
1830 	/* Resume the clockevent device(s) and hrtimers */
1831 	tick_resume();
1832 	/* Notify timerfd as resume is equivalent to clock_was_set() */
1833 	timerfd_resume();
1834 }
1835 
1836 int timekeeping_suspend(void)
1837 {
1838 	struct timekeeper *tk = &tk_core.timekeeper;
1839 	unsigned long flags;
1840 	struct timespec64		delta, delta_delta;
1841 	static struct timespec64	old_delta;
1842 	struct clocksource *curr_clock;
1843 	u64 cycle_now;
1844 
1845 	read_persistent_clock64(&timekeeping_suspend_time);
1846 
1847 	/*
1848 	 * On some systems the persistent_clock can not be detected at
1849 	 * timekeeping_init by its return value, so if we see a valid
1850 	 * value returned, update the persistent_clock_exists flag.
1851 	 */
1852 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1853 		persistent_clock_exists = true;
1854 
1855 	suspend_timing_needed = true;
1856 
1857 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1858 	write_seqcount_begin(&tk_core.seq);
1859 	timekeeping_forward_now(tk);
1860 	timekeeping_suspended = 1;
1861 
1862 	/*
1863 	 * Since we've called forward_now, cycle_last stores the value
1864 	 * just read from the current clocksource. Save this to potentially
1865 	 * use in suspend timing.
1866 	 */
1867 	curr_clock = tk->tkr_mono.clock;
1868 	cycle_now = tk->tkr_mono.cycle_last;
1869 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1870 
1871 	if (persistent_clock_exists) {
1872 		/*
1873 		 * To avoid drift caused by repeated suspend/resumes,
1874 		 * which each can add ~1 second drift error,
1875 		 * try to compensate so the difference in system time
1876 		 * and persistent_clock time stays close to constant.
1877 		 */
1878 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1879 		delta_delta = timespec64_sub(delta, old_delta);
1880 		if (abs(delta_delta.tv_sec) >= 2) {
1881 			/*
1882 			 * if delta_delta is too large, assume time correction
1883 			 * has occurred and set old_delta to the current delta.
1884 			 */
1885 			old_delta = delta;
1886 		} else {
1887 			/* Otherwise try to adjust old_system to compensate */
1888 			timekeeping_suspend_time =
1889 				timespec64_add(timekeeping_suspend_time, delta_delta);
1890 		}
1891 	}
1892 
1893 	timekeeping_update(tk, TK_MIRROR);
1894 	halt_fast_timekeeper(tk);
1895 	write_seqcount_end(&tk_core.seq);
1896 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1897 
1898 	tick_suspend();
1899 	clocksource_suspend();
1900 	clockevents_suspend();
1901 
1902 	return 0;
1903 }
1904 
1905 /* sysfs resume/suspend bits for timekeeping */
1906 static struct syscore_ops timekeeping_syscore_ops = {
1907 	.resume		= timekeeping_resume,
1908 	.suspend	= timekeeping_suspend,
1909 };
1910 
1911 static int __init timekeeping_init_ops(void)
1912 {
1913 	register_syscore_ops(&timekeeping_syscore_ops);
1914 	return 0;
1915 }
1916 device_initcall(timekeeping_init_ops);
1917 
1918 /*
1919  * Apply a multiplier adjustment to the timekeeper
1920  */
1921 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1922 							 s64 offset,
1923 							 s32 mult_adj)
1924 {
1925 	s64 interval = tk->cycle_interval;
1926 
1927 	if (mult_adj == 0) {
1928 		return;
1929 	} else if (mult_adj == -1) {
1930 		interval = -interval;
1931 		offset = -offset;
1932 	} else if (mult_adj != 1) {
1933 		interval *= mult_adj;
1934 		offset *= mult_adj;
1935 	}
1936 
1937 	/*
1938 	 * So the following can be confusing.
1939 	 *
1940 	 * To keep things simple, lets assume mult_adj == 1 for now.
1941 	 *
1942 	 * When mult_adj != 1, remember that the interval and offset values
1943 	 * have been appropriately scaled so the math is the same.
1944 	 *
1945 	 * The basic idea here is that we're increasing the multiplier
1946 	 * by one, this causes the xtime_interval to be incremented by
1947 	 * one cycle_interval. This is because:
1948 	 *	xtime_interval = cycle_interval * mult
1949 	 * So if mult is being incremented by one:
1950 	 *	xtime_interval = cycle_interval * (mult + 1)
1951 	 * Its the same as:
1952 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1953 	 * Which can be shortened to:
1954 	 *	xtime_interval += cycle_interval
1955 	 *
1956 	 * So offset stores the non-accumulated cycles. Thus the current
1957 	 * time (in shifted nanoseconds) is:
1958 	 *	now = (offset * adj) + xtime_nsec
1959 	 * Now, even though we're adjusting the clock frequency, we have
1960 	 * to keep time consistent. In other words, we can't jump back
1961 	 * in time, and we also want to avoid jumping forward in time.
1962 	 *
1963 	 * So given the same offset value, we need the time to be the same
1964 	 * both before and after the freq adjustment.
1965 	 *	now = (offset * adj_1) + xtime_nsec_1
1966 	 *	now = (offset * adj_2) + xtime_nsec_2
1967 	 * So:
1968 	 *	(offset * adj_1) + xtime_nsec_1 =
1969 	 *		(offset * adj_2) + xtime_nsec_2
1970 	 * And we know:
1971 	 *	adj_2 = adj_1 + 1
1972 	 * So:
1973 	 *	(offset * adj_1) + xtime_nsec_1 =
1974 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1975 	 *	(offset * adj_1) + xtime_nsec_1 =
1976 	 *		(offset * adj_1) + offset + xtime_nsec_2
1977 	 * Canceling the sides:
1978 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1979 	 * Which gives us:
1980 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1981 	 * Which simplifies to:
1982 	 *	xtime_nsec -= offset
1983 	 */
1984 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1985 		/* NTP adjustment caused clocksource mult overflow */
1986 		WARN_ON_ONCE(1);
1987 		return;
1988 	}
1989 
1990 	tk->tkr_mono.mult += mult_adj;
1991 	tk->xtime_interval += interval;
1992 	tk->tkr_mono.xtime_nsec -= offset;
1993 }
1994 
1995 /*
1996  * Adjust the timekeeper's multiplier to the correct frequency
1997  * and also to reduce the accumulated error value.
1998  */
1999 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2000 {
2001 	u32 mult;
2002 
2003 	/*
2004 	 * Determine the multiplier from the current NTP tick length.
2005 	 * Avoid expensive division when the tick length doesn't change.
2006 	 */
2007 	if (likely(tk->ntp_tick == ntp_tick_length())) {
2008 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2009 	} else {
2010 		tk->ntp_tick = ntp_tick_length();
2011 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2012 				 tk->xtime_remainder, tk->cycle_interval);
2013 	}
2014 
2015 	/*
2016 	 * If the clock is behind the NTP time, increase the multiplier by 1
2017 	 * to catch up with it. If it's ahead and there was a remainder in the
2018 	 * tick division, the clock will slow down. Otherwise it will stay
2019 	 * ahead until the tick length changes to a non-divisible value.
2020 	 */
2021 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2022 	mult += tk->ntp_err_mult;
2023 
2024 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2025 
2026 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2027 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2028 			> tk->tkr_mono.clock->maxadj))) {
2029 		printk_once(KERN_WARNING
2030 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2031 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2032 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2033 	}
2034 
2035 	/*
2036 	 * It may be possible that when we entered this function, xtime_nsec
2037 	 * was very small.  Further, if we're slightly speeding the clocksource
2038 	 * in the code above, its possible the required corrective factor to
2039 	 * xtime_nsec could cause it to underflow.
2040 	 *
2041 	 * Now, since we have already accumulated the second and the NTP
2042 	 * subsystem has been notified via second_overflow(), we need to skip
2043 	 * the next update.
2044 	 */
2045 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2046 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2047 							tk->tkr_mono.shift;
2048 		tk->xtime_sec--;
2049 		tk->skip_second_overflow = 1;
2050 	}
2051 }
2052 
2053 /*
2054  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2055  *
2056  * Helper function that accumulates the nsecs greater than a second
2057  * from the xtime_nsec field to the xtime_secs field.
2058  * It also calls into the NTP code to handle leapsecond processing.
2059  */
2060 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2061 {
2062 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2063 	unsigned int clock_set = 0;
2064 
2065 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2066 		int leap;
2067 
2068 		tk->tkr_mono.xtime_nsec -= nsecps;
2069 		tk->xtime_sec++;
2070 
2071 		/*
2072 		 * Skip NTP update if this second was accumulated before,
2073 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2074 		 */
2075 		if (unlikely(tk->skip_second_overflow)) {
2076 			tk->skip_second_overflow = 0;
2077 			continue;
2078 		}
2079 
2080 		/* Figure out if its a leap sec and apply if needed */
2081 		leap = second_overflow(tk->xtime_sec);
2082 		if (unlikely(leap)) {
2083 			struct timespec64 ts;
2084 
2085 			tk->xtime_sec += leap;
2086 
2087 			ts.tv_sec = leap;
2088 			ts.tv_nsec = 0;
2089 			tk_set_wall_to_mono(tk,
2090 				timespec64_sub(tk->wall_to_monotonic, ts));
2091 
2092 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2093 
2094 			clock_set = TK_CLOCK_WAS_SET;
2095 		}
2096 	}
2097 	return clock_set;
2098 }
2099 
2100 /*
2101  * logarithmic_accumulation - shifted accumulation of cycles
2102  *
2103  * This functions accumulates a shifted interval of cycles into
2104  * a shifted interval nanoseconds. Allows for O(log) accumulation
2105  * loop.
2106  *
2107  * Returns the unconsumed cycles.
2108  */
2109 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2110 				    u32 shift, unsigned int *clock_set)
2111 {
2112 	u64 interval = tk->cycle_interval << shift;
2113 	u64 snsec_per_sec;
2114 
2115 	/* If the offset is smaller than a shifted interval, do nothing */
2116 	if (offset < interval)
2117 		return offset;
2118 
2119 	/* Accumulate one shifted interval */
2120 	offset -= interval;
2121 	tk->tkr_mono.cycle_last += interval;
2122 	tk->tkr_raw.cycle_last  += interval;
2123 
2124 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2125 	*clock_set |= accumulate_nsecs_to_secs(tk);
2126 
2127 	/* Accumulate raw time */
2128 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2129 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2130 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2131 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2132 		tk->raw_sec++;
2133 	}
2134 
2135 	/* Accumulate error between NTP and clock interval */
2136 	tk->ntp_error += tk->ntp_tick << shift;
2137 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2138 						(tk->ntp_error_shift + shift);
2139 
2140 	return offset;
2141 }
2142 
2143 /*
2144  * timekeeping_advance - Updates the timekeeper to the current time and
2145  * current NTP tick length
2146  */
2147 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2148 {
2149 	struct timekeeper *real_tk = &tk_core.timekeeper;
2150 	struct timekeeper *tk = &shadow_timekeeper;
2151 	u64 offset;
2152 	int shift = 0, maxshift;
2153 	unsigned int clock_set = 0;
2154 	unsigned long flags;
2155 
2156 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2157 
2158 	/* Make sure we're fully resumed: */
2159 	if (unlikely(timekeeping_suspended))
2160 		goto out;
2161 
2162 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2163 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2164 
2165 	/* Check if there's really nothing to do */
2166 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2167 		goto out;
2168 
2169 	/* Do some additional sanity checking */
2170 	timekeeping_check_update(tk, offset);
2171 
2172 	/*
2173 	 * With NO_HZ we may have to accumulate many cycle_intervals
2174 	 * (think "ticks") worth of time at once. To do this efficiently,
2175 	 * we calculate the largest doubling multiple of cycle_intervals
2176 	 * that is smaller than the offset.  We then accumulate that
2177 	 * chunk in one go, and then try to consume the next smaller
2178 	 * doubled multiple.
2179 	 */
2180 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2181 	shift = max(0, shift);
2182 	/* Bound shift to one less than what overflows tick_length */
2183 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2184 	shift = min(shift, maxshift);
2185 	while (offset >= tk->cycle_interval) {
2186 		offset = logarithmic_accumulation(tk, offset, shift,
2187 							&clock_set);
2188 		if (offset < tk->cycle_interval<<shift)
2189 			shift--;
2190 	}
2191 
2192 	/* Adjust the multiplier to correct NTP error */
2193 	timekeeping_adjust(tk, offset);
2194 
2195 	/*
2196 	 * Finally, make sure that after the rounding
2197 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2198 	 */
2199 	clock_set |= accumulate_nsecs_to_secs(tk);
2200 
2201 	write_seqcount_begin(&tk_core.seq);
2202 	/*
2203 	 * Update the real timekeeper.
2204 	 *
2205 	 * We could avoid this memcpy by switching pointers, but that
2206 	 * requires changes to all other timekeeper usage sites as
2207 	 * well, i.e. move the timekeeper pointer getter into the
2208 	 * spinlocked/seqcount protected sections. And we trade this
2209 	 * memcpy under the tk_core.seq against one before we start
2210 	 * updating.
2211 	 */
2212 	timekeeping_update(tk, clock_set);
2213 	memcpy(real_tk, tk, sizeof(*tk));
2214 	/* The memcpy must come last. Do not put anything here! */
2215 	write_seqcount_end(&tk_core.seq);
2216 out:
2217 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2218 
2219 	return !!clock_set;
2220 }
2221 
2222 /**
2223  * update_wall_time - Uses the current clocksource to increment the wall time
2224  *
2225  */
2226 void update_wall_time(void)
2227 {
2228 	if (timekeeping_advance(TK_ADV_TICK))
2229 		clock_was_set_delayed();
2230 }
2231 
2232 /**
2233  * getboottime64 - Return the real time of system boot.
2234  * @ts:		pointer to the timespec64 to be set
2235  *
2236  * Returns the wall-time of boot in a timespec64.
2237  *
2238  * This is based on the wall_to_monotonic offset and the total suspend
2239  * time. Calls to settimeofday will affect the value returned (which
2240  * basically means that however wrong your real time clock is at boot time,
2241  * you get the right time here).
2242  */
2243 void getboottime64(struct timespec64 *ts)
2244 {
2245 	struct timekeeper *tk = &tk_core.timekeeper;
2246 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2247 
2248 	*ts = ktime_to_timespec64(t);
2249 }
2250 EXPORT_SYMBOL_GPL(getboottime64);
2251 
2252 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2253 {
2254 	struct timekeeper *tk = &tk_core.timekeeper;
2255 	unsigned int seq;
2256 
2257 	do {
2258 		seq = read_seqcount_begin(&tk_core.seq);
2259 
2260 		*ts = tk_xtime(tk);
2261 	} while (read_seqcount_retry(&tk_core.seq, seq));
2262 }
2263 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2264 
2265 void ktime_get_coarse_ts64(struct timespec64 *ts)
2266 {
2267 	struct timekeeper *tk = &tk_core.timekeeper;
2268 	struct timespec64 now, mono;
2269 	unsigned int seq;
2270 
2271 	do {
2272 		seq = read_seqcount_begin(&tk_core.seq);
2273 
2274 		now = tk_xtime(tk);
2275 		mono = tk->wall_to_monotonic;
2276 	} while (read_seqcount_retry(&tk_core.seq, seq));
2277 
2278 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2279 				now.tv_nsec + mono.tv_nsec);
2280 }
2281 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2282 
2283 /*
2284  * Must hold jiffies_lock
2285  */
2286 void do_timer(unsigned long ticks)
2287 {
2288 	jiffies_64 += ticks;
2289 	calc_global_load();
2290 }
2291 
2292 /**
2293  * ktime_get_update_offsets_now - hrtimer helper
2294  * @cwsseq:	pointer to check and store the clock was set sequence number
2295  * @offs_real:	pointer to storage for monotonic -> realtime offset
2296  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2297  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2298  *
2299  * Returns current monotonic time and updates the offsets if the
2300  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2301  * different.
2302  *
2303  * Called from hrtimer_interrupt() or retrigger_next_event()
2304  */
2305 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2306 				     ktime_t *offs_boot, ktime_t *offs_tai)
2307 {
2308 	struct timekeeper *tk = &tk_core.timekeeper;
2309 	unsigned int seq;
2310 	ktime_t base;
2311 	u64 nsecs;
2312 
2313 	do {
2314 		seq = read_seqcount_begin(&tk_core.seq);
2315 
2316 		base = tk->tkr_mono.base;
2317 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2318 		base = ktime_add_ns(base, nsecs);
2319 
2320 		if (*cwsseq != tk->clock_was_set_seq) {
2321 			*cwsseq = tk->clock_was_set_seq;
2322 			*offs_real = tk->offs_real;
2323 			*offs_boot = tk->offs_boot;
2324 			*offs_tai = tk->offs_tai;
2325 		}
2326 
2327 		/* Handle leapsecond insertion adjustments */
2328 		if (unlikely(base >= tk->next_leap_ktime))
2329 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2330 
2331 	} while (read_seqcount_retry(&tk_core.seq, seq));
2332 
2333 	return base;
2334 }
2335 
2336 /*
2337  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2338  */
2339 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2340 {
2341 	if (txc->modes & ADJ_ADJTIME) {
2342 		/* singleshot must not be used with any other mode bits */
2343 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2344 			return -EINVAL;
2345 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2346 		    !capable(CAP_SYS_TIME))
2347 			return -EPERM;
2348 	} else {
2349 		/* In order to modify anything, you gotta be super-user! */
2350 		if (txc->modes && !capable(CAP_SYS_TIME))
2351 			return -EPERM;
2352 		/*
2353 		 * if the quartz is off by more than 10% then
2354 		 * something is VERY wrong!
2355 		 */
2356 		if (txc->modes & ADJ_TICK &&
2357 		    (txc->tick <  900000/USER_HZ ||
2358 		     txc->tick > 1100000/USER_HZ))
2359 			return -EINVAL;
2360 	}
2361 
2362 	if (txc->modes & ADJ_SETOFFSET) {
2363 		/* In order to inject time, you gotta be super-user! */
2364 		if (!capable(CAP_SYS_TIME))
2365 			return -EPERM;
2366 
2367 		/*
2368 		 * Validate if a timespec/timeval used to inject a time
2369 		 * offset is valid.  Offsets can be positive or negative, so
2370 		 * we don't check tv_sec. The value of the timeval/timespec
2371 		 * is the sum of its fields,but *NOTE*:
2372 		 * The field tv_usec/tv_nsec must always be non-negative and
2373 		 * we can't have more nanoseconds/microseconds than a second.
2374 		 */
2375 		if (txc->time.tv_usec < 0)
2376 			return -EINVAL;
2377 
2378 		if (txc->modes & ADJ_NANO) {
2379 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2380 				return -EINVAL;
2381 		} else {
2382 			if (txc->time.tv_usec >= USEC_PER_SEC)
2383 				return -EINVAL;
2384 		}
2385 	}
2386 
2387 	/*
2388 	 * Check for potential multiplication overflows that can
2389 	 * only happen on 64-bit systems:
2390 	 */
2391 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2392 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2393 			return -EINVAL;
2394 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2395 			return -EINVAL;
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 /**
2402  * random_get_entropy_fallback - Returns the raw clock source value,
2403  * used by random.c for platforms with no valid random_get_entropy().
2404  */
2405 unsigned long random_get_entropy_fallback(void)
2406 {
2407 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2408 	struct clocksource *clock = READ_ONCE(tkr->clock);
2409 
2410 	if (unlikely(timekeeping_suspended || !clock))
2411 		return 0;
2412 	return clock->read(clock);
2413 }
2414 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2415 
2416 /**
2417  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2418  */
2419 int do_adjtimex(struct __kernel_timex *txc)
2420 {
2421 	struct timekeeper *tk = &tk_core.timekeeper;
2422 	struct audit_ntp_data ad;
2423 	bool clock_set = false;
2424 	struct timespec64 ts;
2425 	unsigned long flags;
2426 	s32 orig_tai, tai;
2427 	int ret;
2428 
2429 	/* Validate the data before disabling interrupts */
2430 	ret = timekeeping_validate_timex(txc);
2431 	if (ret)
2432 		return ret;
2433 
2434 	if (txc->modes & ADJ_SETOFFSET) {
2435 		struct timespec64 delta;
2436 		delta.tv_sec  = txc->time.tv_sec;
2437 		delta.tv_nsec = txc->time.tv_usec;
2438 		if (!(txc->modes & ADJ_NANO))
2439 			delta.tv_nsec *= 1000;
2440 		ret = timekeeping_inject_offset(&delta);
2441 		if (ret)
2442 			return ret;
2443 
2444 		audit_tk_injoffset(delta);
2445 	}
2446 
2447 	audit_ntp_init(&ad);
2448 
2449 	ktime_get_real_ts64(&ts);
2450 
2451 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2452 	write_seqcount_begin(&tk_core.seq);
2453 
2454 	orig_tai = tai = tk->tai_offset;
2455 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2456 
2457 	if (tai != orig_tai) {
2458 		__timekeeping_set_tai_offset(tk, tai);
2459 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2460 		clock_set = true;
2461 	}
2462 	tk_update_leap_state(tk);
2463 
2464 	write_seqcount_end(&tk_core.seq);
2465 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2466 
2467 	audit_ntp_log(&ad);
2468 
2469 	/* Update the multiplier immediately if frequency was set directly */
2470 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2471 		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2472 
2473 	if (clock_set)
2474 		clock_was_set(CLOCK_REALTIME);
2475 
2476 	ntp_notify_cmos_timer();
2477 
2478 	return ret;
2479 }
2480 
2481 #ifdef CONFIG_NTP_PPS
2482 /**
2483  * hardpps() - Accessor function to NTP __hardpps function
2484  */
2485 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2486 {
2487 	unsigned long flags;
2488 
2489 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2490 	write_seqcount_begin(&tk_core.seq);
2491 
2492 	__hardpps(phase_ts, raw_ts);
2493 
2494 	write_seqcount_end(&tk_core.seq);
2495 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2496 }
2497 EXPORT_SYMBOL(hardpps);
2498 #endif /* CONFIG_NTP_PPS */
2499