xref: /openbmc/linux/kernel/time/timekeeping.c (revision b34e08d5)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 static struct timekeeper timekeeper;
36 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
37 static seqcount_t timekeeper_seq;
38 static struct timekeeper shadow_timekeeper;
39 
40 /* flag for if timekeeping is suspended */
41 int __read_mostly timekeeping_suspended;
42 
43 /* Flag for if there is a persistent clock on this platform */
44 bool __read_mostly persistent_clock_exist = false;
45 
46 static inline void tk_normalize_xtime(struct timekeeper *tk)
47 {
48 	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
49 		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
50 		tk->xtime_sec++;
51 	}
52 }
53 
54 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
55 {
56 	tk->xtime_sec = ts->tv_sec;
57 	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
58 }
59 
60 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
61 {
62 	tk->xtime_sec += ts->tv_sec;
63 	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
64 	tk_normalize_xtime(tk);
65 }
66 
67 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
68 {
69 	struct timespec tmp;
70 
71 	/*
72 	 * Verify consistency of: offset_real = -wall_to_monotonic
73 	 * before modifying anything
74 	 */
75 	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
76 					-tk->wall_to_monotonic.tv_nsec);
77 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
78 	tk->wall_to_monotonic = wtm;
79 	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
80 	tk->offs_real = timespec_to_ktime(tmp);
81 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
82 }
83 
84 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
85 {
86 	/* Verify consistency before modifying */
87 	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
88 
89 	tk->total_sleep_time	= t;
90 	tk->offs_boot		= timespec_to_ktime(t);
91 }
92 
93 /**
94  * tk_setup_internals - Set up internals to use clocksource clock.
95  *
96  * @tk:		The target timekeeper to setup.
97  * @clock:		Pointer to clocksource.
98  *
99  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
100  * pair and interval request.
101  *
102  * Unless you're the timekeeping code, you should not be using this!
103  */
104 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
105 {
106 	cycle_t interval;
107 	u64 tmp, ntpinterval;
108 	struct clocksource *old_clock;
109 
110 	old_clock = tk->clock;
111 	tk->clock = clock;
112 	tk->cycle_last = clock->cycle_last = clock->read(clock);
113 
114 	/* Do the ns -> cycle conversion first, using original mult */
115 	tmp = NTP_INTERVAL_LENGTH;
116 	tmp <<= clock->shift;
117 	ntpinterval = tmp;
118 	tmp += clock->mult/2;
119 	do_div(tmp, clock->mult);
120 	if (tmp == 0)
121 		tmp = 1;
122 
123 	interval = (cycle_t) tmp;
124 	tk->cycle_interval = interval;
125 
126 	/* Go back from cycles -> shifted ns */
127 	tk->xtime_interval = (u64) interval * clock->mult;
128 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
129 	tk->raw_interval =
130 		((u64) interval * clock->mult) >> clock->shift;
131 
132 	 /* if changing clocks, convert xtime_nsec shift units */
133 	if (old_clock) {
134 		int shift_change = clock->shift - old_clock->shift;
135 		if (shift_change < 0)
136 			tk->xtime_nsec >>= -shift_change;
137 		else
138 			tk->xtime_nsec <<= shift_change;
139 	}
140 	tk->shift = clock->shift;
141 
142 	tk->ntp_error = 0;
143 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
144 
145 	/*
146 	 * The timekeeper keeps its own mult values for the currently
147 	 * active clocksource. These value will be adjusted via NTP
148 	 * to counteract clock drifting.
149 	 */
150 	tk->mult = clock->mult;
151 }
152 
153 /* Timekeeper helper functions. */
154 
155 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
156 u32 (*arch_gettimeoffset)(void);
157 
158 u32 get_arch_timeoffset(void)
159 {
160 	if (likely(arch_gettimeoffset))
161 		return arch_gettimeoffset();
162 	return 0;
163 }
164 #else
165 static inline u32 get_arch_timeoffset(void) { return 0; }
166 #endif
167 
168 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
169 {
170 	cycle_t cycle_now, cycle_delta;
171 	struct clocksource *clock;
172 	s64 nsec;
173 
174 	/* read clocksource: */
175 	clock = tk->clock;
176 	cycle_now = clock->read(clock);
177 
178 	/* calculate the delta since the last update_wall_time: */
179 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
180 
181 	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
182 	nsec >>= tk->shift;
183 
184 	/* If arch requires, add in get_arch_timeoffset() */
185 	return nsec + get_arch_timeoffset();
186 }
187 
188 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
189 {
190 	cycle_t cycle_now, cycle_delta;
191 	struct clocksource *clock;
192 	s64 nsec;
193 
194 	/* read clocksource: */
195 	clock = tk->clock;
196 	cycle_now = clock->read(clock);
197 
198 	/* calculate the delta since the last update_wall_time: */
199 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
200 
201 	/* convert delta to nanoseconds. */
202 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
203 
204 	/* If arch requires, add in get_arch_timeoffset() */
205 	return nsec + get_arch_timeoffset();
206 }
207 
208 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
209 
210 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
211 {
212 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
213 }
214 
215 /**
216  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
217  */
218 int pvclock_gtod_register_notifier(struct notifier_block *nb)
219 {
220 	struct timekeeper *tk = &timekeeper;
221 	unsigned long flags;
222 	int ret;
223 
224 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
225 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
226 	update_pvclock_gtod(tk, true);
227 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
228 
229 	return ret;
230 }
231 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
232 
233 /**
234  * pvclock_gtod_unregister_notifier - unregister a pvclock
235  * timedata update listener
236  */
237 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
238 {
239 	unsigned long flags;
240 	int ret;
241 
242 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
243 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
244 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
245 
246 	return ret;
247 }
248 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
249 
250 /* must hold timekeeper_lock */
251 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
252 {
253 	if (action & TK_CLEAR_NTP) {
254 		tk->ntp_error = 0;
255 		ntp_clear();
256 	}
257 	update_vsyscall(tk);
258 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
259 
260 	if (action & TK_MIRROR)
261 		memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
262 }
263 
264 /**
265  * timekeeping_forward_now - update clock to the current time
266  *
267  * Forward the current clock to update its state since the last call to
268  * update_wall_time(). This is useful before significant clock changes,
269  * as it avoids having to deal with this time offset explicitly.
270  */
271 static void timekeeping_forward_now(struct timekeeper *tk)
272 {
273 	cycle_t cycle_now, cycle_delta;
274 	struct clocksource *clock;
275 	s64 nsec;
276 
277 	clock = tk->clock;
278 	cycle_now = clock->read(clock);
279 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
280 	tk->cycle_last = clock->cycle_last = cycle_now;
281 
282 	tk->xtime_nsec += cycle_delta * tk->mult;
283 
284 	/* If arch requires, add in get_arch_timeoffset() */
285 	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
286 
287 	tk_normalize_xtime(tk);
288 
289 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
290 	timespec_add_ns(&tk->raw_time, nsec);
291 }
292 
293 /**
294  * __getnstimeofday - Returns the time of day in a timespec.
295  * @ts:		pointer to the timespec to be set
296  *
297  * Updates the time of day in the timespec.
298  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
299  */
300 int __getnstimeofday(struct timespec *ts)
301 {
302 	struct timekeeper *tk = &timekeeper;
303 	unsigned long seq;
304 	s64 nsecs = 0;
305 
306 	do {
307 		seq = read_seqcount_begin(&timekeeper_seq);
308 
309 		ts->tv_sec = tk->xtime_sec;
310 		nsecs = timekeeping_get_ns(tk);
311 
312 	} while (read_seqcount_retry(&timekeeper_seq, seq));
313 
314 	ts->tv_nsec = 0;
315 	timespec_add_ns(ts, nsecs);
316 
317 	/*
318 	 * Do not bail out early, in case there were callers still using
319 	 * the value, even in the face of the WARN_ON.
320 	 */
321 	if (unlikely(timekeeping_suspended))
322 		return -EAGAIN;
323 	return 0;
324 }
325 EXPORT_SYMBOL(__getnstimeofday);
326 
327 /**
328  * getnstimeofday - Returns the time of day in a timespec.
329  * @ts:		pointer to the timespec to be set
330  *
331  * Returns the time of day in a timespec (WARN if suspended).
332  */
333 void getnstimeofday(struct timespec *ts)
334 {
335 	WARN_ON(__getnstimeofday(ts));
336 }
337 EXPORT_SYMBOL(getnstimeofday);
338 
339 ktime_t ktime_get(void)
340 {
341 	struct timekeeper *tk = &timekeeper;
342 	unsigned int seq;
343 	s64 secs, nsecs;
344 
345 	WARN_ON(timekeeping_suspended);
346 
347 	do {
348 		seq = read_seqcount_begin(&timekeeper_seq);
349 		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
350 		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
351 
352 	} while (read_seqcount_retry(&timekeeper_seq, seq));
353 	/*
354 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
355 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
356 	 */
357 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
358 }
359 EXPORT_SYMBOL_GPL(ktime_get);
360 
361 /**
362  * ktime_get_ts - get the monotonic clock in timespec format
363  * @ts:		pointer to timespec variable
364  *
365  * The function calculates the monotonic clock from the realtime
366  * clock and the wall_to_monotonic offset and stores the result
367  * in normalized timespec format in the variable pointed to by @ts.
368  */
369 void ktime_get_ts(struct timespec *ts)
370 {
371 	struct timekeeper *tk = &timekeeper;
372 	struct timespec tomono;
373 	s64 nsec;
374 	unsigned int seq;
375 
376 	WARN_ON(timekeeping_suspended);
377 
378 	do {
379 		seq = read_seqcount_begin(&timekeeper_seq);
380 		ts->tv_sec = tk->xtime_sec;
381 		nsec = timekeeping_get_ns(tk);
382 		tomono = tk->wall_to_monotonic;
383 
384 	} while (read_seqcount_retry(&timekeeper_seq, seq));
385 
386 	ts->tv_sec += tomono.tv_sec;
387 	ts->tv_nsec = 0;
388 	timespec_add_ns(ts, nsec + tomono.tv_nsec);
389 }
390 EXPORT_SYMBOL_GPL(ktime_get_ts);
391 
392 
393 /**
394  * timekeeping_clocktai - Returns the TAI time of day in a timespec
395  * @ts:		pointer to the timespec to be set
396  *
397  * Returns the time of day in a timespec.
398  */
399 void timekeeping_clocktai(struct timespec *ts)
400 {
401 	struct timekeeper *tk = &timekeeper;
402 	unsigned long seq;
403 	u64 nsecs;
404 
405 	WARN_ON(timekeeping_suspended);
406 
407 	do {
408 		seq = read_seqcount_begin(&timekeeper_seq);
409 
410 		ts->tv_sec = tk->xtime_sec + tk->tai_offset;
411 		nsecs = timekeeping_get_ns(tk);
412 
413 	} while (read_seqcount_retry(&timekeeper_seq, seq));
414 
415 	ts->tv_nsec = 0;
416 	timespec_add_ns(ts, nsecs);
417 
418 }
419 EXPORT_SYMBOL(timekeeping_clocktai);
420 
421 
422 /**
423  * ktime_get_clocktai - Returns the TAI time of day in a ktime
424  *
425  * Returns the time of day in a ktime.
426  */
427 ktime_t ktime_get_clocktai(void)
428 {
429 	struct timespec ts;
430 
431 	timekeeping_clocktai(&ts);
432 	return timespec_to_ktime(ts);
433 }
434 EXPORT_SYMBOL(ktime_get_clocktai);
435 
436 #ifdef CONFIG_NTP_PPS
437 
438 /**
439  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
440  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
441  * @ts_real:	pointer to the timespec to be set to the time of day
442  *
443  * This function reads both the time of day and raw monotonic time at the
444  * same time atomically and stores the resulting timestamps in timespec
445  * format.
446  */
447 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
448 {
449 	struct timekeeper *tk = &timekeeper;
450 	unsigned long seq;
451 	s64 nsecs_raw, nsecs_real;
452 
453 	WARN_ON_ONCE(timekeeping_suspended);
454 
455 	do {
456 		seq = read_seqcount_begin(&timekeeper_seq);
457 
458 		*ts_raw = tk->raw_time;
459 		ts_real->tv_sec = tk->xtime_sec;
460 		ts_real->tv_nsec = 0;
461 
462 		nsecs_raw = timekeeping_get_ns_raw(tk);
463 		nsecs_real = timekeeping_get_ns(tk);
464 
465 	} while (read_seqcount_retry(&timekeeper_seq, seq));
466 
467 	timespec_add_ns(ts_raw, nsecs_raw);
468 	timespec_add_ns(ts_real, nsecs_real);
469 }
470 EXPORT_SYMBOL(getnstime_raw_and_real);
471 
472 #endif /* CONFIG_NTP_PPS */
473 
474 /**
475  * do_gettimeofday - Returns the time of day in a timeval
476  * @tv:		pointer to the timeval to be set
477  *
478  * NOTE: Users should be converted to using getnstimeofday()
479  */
480 void do_gettimeofday(struct timeval *tv)
481 {
482 	struct timespec now;
483 
484 	getnstimeofday(&now);
485 	tv->tv_sec = now.tv_sec;
486 	tv->tv_usec = now.tv_nsec/1000;
487 }
488 EXPORT_SYMBOL(do_gettimeofday);
489 
490 /**
491  * do_settimeofday - Sets the time of day
492  * @tv:		pointer to the timespec variable containing the new time
493  *
494  * Sets the time of day to the new time and update NTP and notify hrtimers
495  */
496 int do_settimeofday(const struct timespec *tv)
497 {
498 	struct timekeeper *tk = &timekeeper;
499 	struct timespec ts_delta, xt;
500 	unsigned long flags;
501 
502 	if (!timespec_valid_strict(tv))
503 		return -EINVAL;
504 
505 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
506 	write_seqcount_begin(&timekeeper_seq);
507 
508 	timekeeping_forward_now(tk);
509 
510 	xt = tk_xtime(tk);
511 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
512 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
513 
514 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
515 
516 	tk_set_xtime(tk, tv);
517 
518 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
519 
520 	write_seqcount_end(&timekeeper_seq);
521 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
522 
523 	/* signal hrtimers about time change */
524 	clock_was_set();
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL(do_settimeofday);
529 
530 /**
531  * timekeeping_inject_offset - Adds or subtracts from the current time.
532  * @tv:		pointer to the timespec variable containing the offset
533  *
534  * Adds or subtracts an offset value from the current time.
535  */
536 int timekeeping_inject_offset(struct timespec *ts)
537 {
538 	struct timekeeper *tk = &timekeeper;
539 	unsigned long flags;
540 	struct timespec tmp;
541 	int ret = 0;
542 
543 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
544 		return -EINVAL;
545 
546 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
547 	write_seqcount_begin(&timekeeper_seq);
548 
549 	timekeeping_forward_now(tk);
550 
551 	/* Make sure the proposed value is valid */
552 	tmp = timespec_add(tk_xtime(tk),  *ts);
553 	if (!timespec_valid_strict(&tmp)) {
554 		ret = -EINVAL;
555 		goto error;
556 	}
557 
558 	tk_xtime_add(tk, ts);
559 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
560 
561 error: /* even if we error out, we forwarded the time, so call update */
562 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
563 
564 	write_seqcount_end(&timekeeper_seq);
565 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
566 
567 	/* signal hrtimers about time change */
568 	clock_was_set();
569 
570 	return ret;
571 }
572 EXPORT_SYMBOL(timekeeping_inject_offset);
573 
574 
575 /**
576  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
577  *
578  */
579 s32 timekeeping_get_tai_offset(void)
580 {
581 	struct timekeeper *tk = &timekeeper;
582 	unsigned int seq;
583 	s32 ret;
584 
585 	do {
586 		seq = read_seqcount_begin(&timekeeper_seq);
587 		ret = tk->tai_offset;
588 	} while (read_seqcount_retry(&timekeeper_seq, seq));
589 
590 	return ret;
591 }
592 
593 /**
594  * __timekeeping_set_tai_offset - Lock free worker function
595  *
596  */
597 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
598 {
599 	tk->tai_offset = tai_offset;
600 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
601 }
602 
603 /**
604  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
605  *
606  */
607 void timekeeping_set_tai_offset(s32 tai_offset)
608 {
609 	struct timekeeper *tk = &timekeeper;
610 	unsigned long flags;
611 
612 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
613 	write_seqcount_begin(&timekeeper_seq);
614 	__timekeeping_set_tai_offset(tk, tai_offset);
615 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
616 	write_seqcount_end(&timekeeper_seq);
617 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
618 	clock_was_set();
619 }
620 
621 /**
622  * change_clocksource - Swaps clocksources if a new one is available
623  *
624  * Accumulates current time interval and initializes new clocksource
625  */
626 static int change_clocksource(void *data)
627 {
628 	struct timekeeper *tk = &timekeeper;
629 	struct clocksource *new, *old;
630 	unsigned long flags;
631 
632 	new = (struct clocksource *) data;
633 
634 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
635 	write_seqcount_begin(&timekeeper_seq);
636 
637 	timekeeping_forward_now(tk);
638 	/*
639 	 * If the cs is in module, get a module reference. Succeeds
640 	 * for built-in code (owner == NULL) as well.
641 	 */
642 	if (try_module_get(new->owner)) {
643 		if (!new->enable || new->enable(new) == 0) {
644 			old = tk->clock;
645 			tk_setup_internals(tk, new);
646 			if (old->disable)
647 				old->disable(old);
648 			module_put(old->owner);
649 		} else {
650 			module_put(new->owner);
651 		}
652 	}
653 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
654 
655 	write_seqcount_end(&timekeeper_seq);
656 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
657 
658 	return 0;
659 }
660 
661 /**
662  * timekeeping_notify - Install a new clock source
663  * @clock:		pointer to the clock source
664  *
665  * This function is called from clocksource.c after a new, better clock
666  * source has been registered. The caller holds the clocksource_mutex.
667  */
668 int timekeeping_notify(struct clocksource *clock)
669 {
670 	struct timekeeper *tk = &timekeeper;
671 
672 	if (tk->clock == clock)
673 		return 0;
674 	stop_machine(change_clocksource, clock, NULL);
675 	tick_clock_notify();
676 	return tk->clock == clock ? 0 : -1;
677 }
678 
679 /**
680  * ktime_get_real - get the real (wall-) time in ktime_t format
681  *
682  * returns the time in ktime_t format
683  */
684 ktime_t ktime_get_real(void)
685 {
686 	struct timespec now;
687 
688 	getnstimeofday(&now);
689 
690 	return timespec_to_ktime(now);
691 }
692 EXPORT_SYMBOL_GPL(ktime_get_real);
693 
694 /**
695  * getrawmonotonic - Returns the raw monotonic time in a timespec
696  * @ts:		pointer to the timespec to be set
697  *
698  * Returns the raw monotonic time (completely un-modified by ntp)
699  */
700 void getrawmonotonic(struct timespec *ts)
701 {
702 	struct timekeeper *tk = &timekeeper;
703 	unsigned long seq;
704 	s64 nsecs;
705 
706 	do {
707 		seq = read_seqcount_begin(&timekeeper_seq);
708 		nsecs = timekeeping_get_ns_raw(tk);
709 		*ts = tk->raw_time;
710 
711 	} while (read_seqcount_retry(&timekeeper_seq, seq));
712 
713 	timespec_add_ns(ts, nsecs);
714 }
715 EXPORT_SYMBOL(getrawmonotonic);
716 
717 /**
718  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
719  */
720 int timekeeping_valid_for_hres(void)
721 {
722 	struct timekeeper *tk = &timekeeper;
723 	unsigned long seq;
724 	int ret;
725 
726 	do {
727 		seq = read_seqcount_begin(&timekeeper_seq);
728 
729 		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
730 
731 	} while (read_seqcount_retry(&timekeeper_seq, seq));
732 
733 	return ret;
734 }
735 
736 /**
737  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
738  */
739 u64 timekeeping_max_deferment(void)
740 {
741 	struct timekeeper *tk = &timekeeper;
742 	unsigned long seq;
743 	u64 ret;
744 
745 	do {
746 		seq = read_seqcount_begin(&timekeeper_seq);
747 
748 		ret = tk->clock->max_idle_ns;
749 
750 	} while (read_seqcount_retry(&timekeeper_seq, seq));
751 
752 	return ret;
753 }
754 
755 /**
756  * read_persistent_clock -  Return time from the persistent clock.
757  *
758  * Weak dummy function for arches that do not yet support it.
759  * Reads the time from the battery backed persistent clock.
760  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
761  *
762  *  XXX - Do be sure to remove it once all arches implement it.
763  */
764 void __weak read_persistent_clock(struct timespec *ts)
765 {
766 	ts->tv_sec = 0;
767 	ts->tv_nsec = 0;
768 }
769 
770 /**
771  * read_boot_clock -  Return time of the system start.
772  *
773  * Weak dummy function for arches that do not yet support it.
774  * Function to read the exact time the system has been started.
775  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
776  *
777  *  XXX - Do be sure to remove it once all arches implement it.
778  */
779 void __weak read_boot_clock(struct timespec *ts)
780 {
781 	ts->tv_sec = 0;
782 	ts->tv_nsec = 0;
783 }
784 
785 /*
786  * timekeeping_init - Initializes the clocksource and common timekeeping values
787  */
788 void __init timekeeping_init(void)
789 {
790 	struct timekeeper *tk = &timekeeper;
791 	struct clocksource *clock;
792 	unsigned long flags;
793 	struct timespec now, boot, tmp;
794 
795 	read_persistent_clock(&now);
796 
797 	if (!timespec_valid_strict(&now)) {
798 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
799 			"         Check your CMOS/BIOS settings.\n");
800 		now.tv_sec = 0;
801 		now.tv_nsec = 0;
802 	} else if (now.tv_sec || now.tv_nsec)
803 		persistent_clock_exist = true;
804 
805 	read_boot_clock(&boot);
806 	if (!timespec_valid_strict(&boot)) {
807 		pr_warn("WARNING: Boot clock returned invalid value!\n"
808 			"         Check your CMOS/BIOS settings.\n");
809 		boot.tv_sec = 0;
810 		boot.tv_nsec = 0;
811 	}
812 
813 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
814 	write_seqcount_begin(&timekeeper_seq);
815 	ntp_init();
816 
817 	clock = clocksource_default_clock();
818 	if (clock->enable)
819 		clock->enable(clock);
820 	tk_setup_internals(tk, clock);
821 
822 	tk_set_xtime(tk, &now);
823 	tk->raw_time.tv_sec = 0;
824 	tk->raw_time.tv_nsec = 0;
825 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
826 		boot = tk_xtime(tk);
827 
828 	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
829 	tk_set_wall_to_mono(tk, tmp);
830 
831 	tmp.tv_sec = 0;
832 	tmp.tv_nsec = 0;
833 	tk_set_sleep_time(tk, tmp);
834 
835 	memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
836 
837 	write_seqcount_end(&timekeeper_seq);
838 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
839 }
840 
841 /* time in seconds when suspend began */
842 static struct timespec timekeeping_suspend_time;
843 
844 /**
845  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
846  * @delta: pointer to a timespec delta value
847  *
848  * Takes a timespec offset measuring a suspend interval and properly
849  * adds the sleep offset to the timekeeping variables.
850  */
851 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
852 							struct timespec *delta)
853 {
854 	if (!timespec_valid_strict(delta)) {
855 		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
856 					"sleep delta value!\n");
857 		return;
858 	}
859 	tk_xtime_add(tk, delta);
860 	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
861 	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
862 	tk_debug_account_sleep_time(delta);
863 }
864 
865 /**
866  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
867  * @delta: pointer to a timespec delta value
868  *
869  * This hook is for architectures that cannot support read_persistent_clock
870  * because their RTC/persistent clock is only accessible when irqs are enabled.
871  *
872  * This function should only be called by rtc_resume(), and allows
873  * a suspend offset to be injected into the timekeeping values.
874  */
875 void timekeeping_inject_sleeptime(struct timespec *delta)
876 {
877 	struct timekeeper *tk = &timekeeper;
878 	unsigned long flags;
879 
880 	/*
881 	 * Make sure we don't set the clock twice, as timekeeping_resume()
882 	 * already did it
883 	 */
884 	if (has_persistent_clock())
885 		return;
886 
887 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
888 	write_seqcount_begin(&timekeeper_seq);
889 
890 	timekeeping_forward_now(tk);
891 
892 	__timekeeping_inject_sleeptime(tk, delta);
893 
894 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
895 
896 	write_seqcount_end(&timekeeper_seq);
897 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
898 
899 	/* signal hrtimers about time change */
900 	clock_was_set();
901 }
902 
903 /**
904  * timekeeping_resume - Resumes the generic timekeeping subsystem.
905  *
906  * This is for the generic clocksource timekeeping.
907  * xtime/wall_to_monotonic/jiffies/etc are
908  * still managed by arch specific suspend/resume code.
909  */
910 static void timekeeping_resume(void)
911 {
912 	struct timekeeper *tk = &timekeeper;
913 	struct clocksource *clock = tk->clock;
914 	unsigned long flags;
915 	struct timespec ts_new, ts_delta;
916 	cycle_t cycle_now, cycle_delta;
917 	bool suspendtime_found = false;
918 
919 	read_persistent_clock(&ts_new);
920 
921 	clockevents_resume();
922 	clocksource_resume();
923 
924 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
925 	write_seqcount_begin(&timekeeper_seq);
926 
927 	/*
928 	 * After system resumes, we need to calculate the suspended time and
929 	 * compensate it for the OS time. There are 3 sources that could be
930 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
931 	 * device.
932 	 *
933 	 * One specific platform may have 1 or 2 or all of them, and the
934 	 * preference will be:
935 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
936 	 * The less preferred source will only be tried if there is no better
937 	 * usable source. The rtc part is handled separately in rtc core code.
938 	 */
939 	cycle_now = clock->read(clock);
940 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
941 		cycle_now > clock->cycle_last) {
942 		u64 num, max = ULLONG_MAX;
943 		u32 mult = clock->mult;
944 		u32 shift = clock->shift;
945 		s64 nsec = 0;
946 
947 		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
948 
949 		/*
950 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
951 		 * suspended time is too long. In that case we need do the
952 		 * 64 bits math carefully
953 		 */
954 		do_div(max, mult);
955 		if (cycle_delta > max) {
956 			num = div64_u64(cycle_delta, max);
957 			nsec = (((u64) max * mult) >> shift) * num;
958 			cycle_delta -= num * max;
959 		}
960 		nsec += ((u64) cycle_delta * mult) >> shift;
961 
962 		ts_delta = ns_to_timespec(nsec);
963 		suspendtime_found = true;
964 	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
965 		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
966 		suspendtime_found = true;
967 	}
968 
969 	if (suspendtime_found)
970 		__timekeeping_inject_sleeptime(tk, &ts_delta);
971 
972 	/* Re-base the last cycle value */
973 	tk->cycle_last = clock->cycle_last = cycle_now;
974 	tk->ntp_error = 0;
975 	timekeeping_suspended = 0;
976 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
977 	write_seqcount_end(&timekeeper_seq);
978 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
979 
980 	touch_softlockup_watchdog();
981 
982 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
983 
984 	/* Resume hrtimers */
985 	hrtimers_resume();
986 }
987 
988 static int timekeeping_suspend(void)
989 {
990 	struct timekeeper *tk = &timekeeper;
991 	unsigned long flags;
992 	struct timespec		delta, delta_delta;
993 	static struct timespec	old_delta;
994 
995 	read_persistent_clock(&timekeeping_suspend_time);
996 
997 	/*
998 	 * On some systems the persistent_clock can not be detected at
999 	 * timekeeping_init by its return value, so if we see a valid
1000 	 * value returned, update the persistent_clock_exists flag.
1001 	 */
1002 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1003 		persistent_clock_exist = true;
1004 
1005 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1006 	write_seqcount_begin(&timekeeper_seq);
1007 	timekeeping_forward_now(tk);
1008 	timekeeping_suspended = 1;
1009 
1010 	/*
1011 	 * To avoid drift caused by repeated suspend/resumes,
1012 	 * which each can add ~1 second drift error,
1013 	 * try to compensate so the difference in system time
1014 	 * and persistent_clock time stays close to constant.
1015 	 */
1016 	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
1017 	delta_delta = timespec_sub(delta, old_delta);
1018 	if (abs(delta_delta.tv_sec)  >= 2) {
1019 		/*
1020 		 * if delta_delta is too large, assume time correction
1021 		 * has occured and set old_delta to the current delta.
1022 		 */
1023 		old_delta = delta;
1024 	} else {
1025 		/* Otherwise try to adjust old_system to compensate */
1026 		timekeeping_suspend_time =
1027 			timespec_add(timekeeping_suspend_time, delta_delta);
1028 	}
1029 
1030 	timekeeping_update(tk, TK_MIRROR);
1031 	write_seqcount_end(&timekeeper_seq);
1032 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1033 
1034 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1035 	clocksource_suspend();
1036 	clockevents_suspend();
1037 
1038 	return 0;
1039 }
1040 
1041 /* sysfs resume/suspend bits for timekeeping */
1042 static struct syscore_ops timekeeping_syscore_ops = {
1043 	.resume		= timekeeping_resume,
1044 	.suspend	= timekeeping_suspend,
1045 };
1046 
1047 static int __init timekeeping_init_ops(void)
1048 {
1049 	register_syscore_ops(&timekeeping_syscore_ops);
1050 	return 0;
1051 }
1052 
1053 device_initcall(timekeeping_init_ops);
1054 
1055 /*
1056  * If the error is already larger, we look ahead even further
1057  * to compensate for late or lost adjustments.
1058  */
1059 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1060 						 s64 error, s64 *interval,
1061 						 s64 *offset)
1062 {
1063 	s64 tick_error, i;
1064 	u32 look_ahead, adj;
1065 	s32 error2, mult;
1066 
1067 	/*
1068 	 * Use the current error value to determine how much to look ahead.
1069 	 * The larger the error the slower we adjust for it to avoid problems
1070 	 * with losing too many ticks, otherwise we would overadjust and
1071 	 * produce an even larger error.  The smaller the adjustment the
1072 	 * faster we try to adjust for it, as lost ticks can do less harm
1073 	 * here.  This is tuned so that an error of about 1 msec is adjusted
1074 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1075 	 */
1076 	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1077 	error2 = abs(error2);
1078 	for (look_ahead = 0; error2 > 0; look_ahead++)
1079 		error2 >>= 2;
1080 
1081 	/*
1082 	 * Now calculate the error in (1 << look_ahead) ticks, but first
1083 	 * remove the single look ahead already included in the error.
1084 	 */
1085 	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1086 	tick_error -= tk->xtime_interval >> 1;
1087 	error = ((error - tick_error) >> look_ahead) + tick_error;
1088 
1089 	/* Finally calculate the adjustment shift value.  */
1090 	i = *interval;
1091 	mult = 1;
1092 	if (error < 0) {
1093 		error = -error;
1094 		*interval = -*interval;
1095 		*offset = -*offset;
1096 		mult = -1;
1097 	}
1098 	for (adj = 0; error > i; adj++)
1099 		error >>= 1;
1100 
1101 	*interval <<= adj;
1102 	*offset <<= adj;
1103 	return mult << adj;
1104 }
1105 
1106 /*
1107  * Adjust the multiplier to reduce the error value,
1108  * this is optimized for the most common adjustments of -1,0,1,
1109  * for other values we can do a bit more work.
1110  */
1111 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1112 {
1113 	s64 error, interval = tk->cycle_interval;
1114 	int adj;
1115 
1116 	/*
1117 	 * The point of this is to check if the error is greater than half
1118 	 * an interval.
1119 	 *
1120 	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1121 	 *
1122 	 * Note we subtract one in the shift, so that error is really error*2.
1123 	 * This "saves" dividing(shifting) interval twice, but keeps the
1124 	 * (error > interval) comparison as still measuring if error is
1125 	 * larger than half an interval.
1126 	 *
1127 	 * Note: It does not "save" on aggravation when reading the code.
1128 	 */
1129 	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1130 	if (error > interval) {
1131 		/*
1132 		 * We now divide error by 4(via shift), which checks if
1133 		 * the error is greater than twice the interval.
1134 		 * If it is greater, we need a bigadjust, if its smaller,
1135 		 * we can adjust by 1.
1136 		 */
1137 		error >>= 2;
1138 		if (likely(error <= interval))
1139 			adj = 1;
1140 		else
1141 			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1142 	} else {
1143 		if (error < -interval) {
1144 			/* See comment above, this is just switched for the negative */
1145 			error >>= 2;
1146 			if (likely(error >= -interval)) {
1147 				adj = -1;
1148 				interval = -interval;
1149 				offset = -offset;
1150 			} else {
1151 				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1152 			}
1153 		} else {
1154 			goto out_adjust;
1155 		}
1156 	}
1157 
1158 	if (unlikely(tk->clock->maxadj &&
1159 		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1160 		printk_once(KERN_WARNING
1161 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1162 			tk->clock->name, (long)tk->mult + adj,
1163 			(long)tk->clock->mult + tk->clock->maxadj);
1164 	}
1165 	/*
1166 	 * So the following can be confusing.
1167 	 *
1168 	 * To keep things simple, lets assume adj == 1 for now.
1169 	 *
1170 	 * When adj != 1, remember that the interval and offset values
1171 	 * have been appropriately scaled so the math is the same.
1172 	 *
1173 	 * The basic idea here is that we're increasing the multiplier
1174 	 * by one, this causes the xtime_interval to be incremented by
1175 	 * one cycle_interval. This is because:
1176 	 *	xtime_interval = cycle_interval * mult
1177 	 * So if mult is being incremented by one:
1178 	 *	xtime_interval = cycle_interval * (mult + 1)
1179 	 * Its the same as:
1180 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1181 	 * Which can be shortened to:
1182 	 *	xtime_interval += cycle_interval
1183 	 *
1184 	 * So offset stores the non-accumulated cycles. Thus the current
1185 	 * time (in shifted nanoseconds) is:
1186 	 *	now = (offset * adj) + xtime_nsec
1187 	 * Now, even though we're adjusting the clock frequency, we have
1188 	 * to keep time consistent. In other words, we can't jump back
1189 	 * in time, and we also want to avoid jumping forward in time.
1190 	 *
1191 	 * So given the same offset value, we need the time to be the same
1192 	 * both before and after the freq adjustment.
1193 	 *	now = (offset * adj_1) + xtime_nsec_1
1194 	 *	now = (offset * adj_2) + xtime_nsec_2
1195 	 * So:
1196 	 *	(offset * adj_1) + xtime_nsec_1 =
1197 	 *		(offset * adj_2) + xtime_nsec_2
1198 	 * And we know:
1199 	 *	adj_2 = adj_1 + 1
1200 	 * So:
1201 	 *	(offset * adj_1) + xtime_nsec_1 =
1202 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1203 	 *	(offset * adj_1) + xtime_nsec_1 =
1204 	 *		(offset * adj_1) + offset + xtime_nsec_2
1205 	 * Canceling the sides:
1206 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1207 	 * Which gives us:
1208 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1209 	 * Which simplfies to:
1210 	 *	xtime_nsec -= offset
1211 	 *
1212 	 * XXX - TODO: Doc ntp_error calculation.
1213 	 */
1214 	tk->mult += adj;
1215 	tk->xtime_interval += interval;
1216 	tk->xtime_nsec -= offset;
1217 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1218 
1219 out_adjust:
1220 	/*
1221 	 * It may be possible that when we entered this function, xtime_nsec
1222 	 * was very small.  Further, if we're slightly speeding the clocksource
1223 	 * in the code above, its possible the required corrective factor to
1224 	 * xtime_nsec could cause it to underflow.
1225 	 *
1226 	 * Now, since we already accumulated the second, cannot simply roll
1227 	 * the accumulated second back, since the NTP subsystem has been
1228 	 * notified via second_overflow. So instead we push xtime_nsec forward
1229 	 * by the amount we underflowed, and add that amount into the error.
1230 	 *
1231 	 * We'll correct this error next time through this function, when
1232 	 * xtime_nsec is not as small.
1233 	 */
1234 	if (unlikely((s64)tk->xtime_nsec < 0)) {
1235 		s64 neg = -(s64)tk->xtime_nsec;
1236 		tk->xtime_nsec = 0;
1237 		tk->ntp_error += neg << tk->ntp_error_shift;
1238 	}
1239 
1240 }
1241 
1242 /**
1243  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1244  *
1245  * Helper function that accumulates a the nsecs greater then a second
1246  * from the xtime_nsec field to the xtime_secs field.
1247  * It also calls into the NTP code to handle leapsecond processing.
1248  *
1249  */
1250 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1251 {
1252 	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1253 	unsigned int clock_set = 0;
1254 
1255 	while (tk->xtime_nsec >= nsecps) {
1256 		int leap;
1257 
1258 		tk->xtime_nsec -= nsecps;
1259 		tk->xtime_sec++;
1260 
1261 		/* Figure out if its a leap sec and apply if needed */
1262 		leap = second_overflow(tk->xtime_sec);
1263 		if (unlikely(leap)) {
1264 			struct timespec ts;
1265 
1266 			tk->xtime_sec += leap;
1267 
1268 			ts.tv_sec = leap;
1269 			ts.tv_nsec = 0;
1270 			tk_set_wall_to_mono(tk,
1271 				timespec_sub(tk->wall_to_monotonic, ts));
1272 
1273 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1274 
1275 			clock_set = TK_CLOCK_WAS_SET;
1276 		}
1277 	}
1278 	return clock_set;
1279 }
1280 
1281 /**
1282  * logarithmic_accumulation - shifted accumulation of cycles
1283  *
1284  * This functions accumulates a shifted interval of cycles into
1285  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1286  * loop.
1287  *
1288  * Returns the unconsumed cycles.
1289  */
1290 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1291 						u32 shift,
1292 						unsigned int *clock_set)
1293 {
1294 	cycle_t interval = tk->cycle_interval << shift;
1295 	u64 raw_nsecs;
1296 
1297 	/* If the offset is smaller then a shifted interval, do nothing */
1298 	if (offset < interval)
1299 		return offset;
1300 
1301 	/* Accumulate one shifted interval */
1302 	offset -= interval;
1303 	tk->cycle_last += interval;
1304 
1305 	tk->xtime_nsec += tk->xtime_interval << shift;
1306 	*clock_set |= accumulate_nsecs_to_secs(tk);
1307 
1308 	/* Accumulate raw time */
1309 	raw_nsecs = (u64)tk->raw_interval << shift;
1310 	raw_nsecs += tk->raw_time.tv_nsec;
1311 	if (raw_nsecs >= NSEC_PER_SEC) {
1312 		u64 raw_secs = raw_nsecs;
1313 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1314 		tk->raw_time.tv_sec += raw_secs;
1315 	}
1316 	tk->raw_time.tv_nsec = raw_nsecs;
1317 
1318 	/* Accumulate error between NTP and clock interval */
1319 	tk->ntp_error += ntp_tick_length() << shift;
1320 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1321 						(tk->ntp_error_shift + shift);
1322 
1323 	return offset;
1324 }
1325 
1326 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1327 static inline void old_vsyscall_fixup(struct timekeeper *tk)
1328 {
1329 	s64 remainder;
1330 
1331 	/*
1332 	* Store only full nanoseconds into xtime_nsec after rounding
1333 	* it up and add the remainder to the error difference.
1334 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
1335 	* by truncating the remainder in vsyscalls. However, it causes
1336 	* additional work to be done in timekeeping_adjust(). Once
1337 	* the vsyscall implementations are converted to use xtime_nsec
1338 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1339 	* users are removed, this can be killed.
1340 	*/
1341 	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1342 	tk->xtime_nsec -= remainder;
1343 	tk->xtime_nsec += 1ULL << tk->shift;
1344 	tk->ntp_error += remainder << tk->ntp_error_shift;
1345 	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
1346 }
1347 #else
1348 #define old_vsyscall_fixup(tk)
1349 #endif
1350 
1351 
1352 
1353 /**
1354  * update_wall_time - Uses the current clocksource to increment the wall time
1355  *
1356  */
1357 void update_wall_time(void)
1358 {
1359 	struct clocksource *clock;
1360 	struct timekeeper *real_tk = &timekeeper;
1361 	struct timekeeper *tk = &shadow_timekeeper;
1362 	cycle_t offset;
1363 	int shift = 0, maxshift;
1364 	unsigned int clock_set = 0;
1365 	unsigned long flags;
1366 
1367 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1368 
1369 	/* Make sure we're fully resumed: */
1370 	if (unlikely(timekeeping_suspended))
1371 		goto out;
1372 
1373 	clock = real_tk->clock;
1374 
1375 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1376 	offset = real_tk->cycle_interval;
1377 #else
1378 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1379 #endif
1380 
1381 	/* Check if there's really nothing to do */
1382 	if (offset < real_tk->cycle_interval)
1383 		goto out;
1384 
1385 	/*
1386 	 * With NO_HZ we may have to accumulate many cycle_intervals
1387 	 * (think "ticks") worth of time at once. To do this efficiently,
1388 	 * we calculate the largest doubling multiple of cycle_intervals
1389 	 * that is smaller than the offset.  We then accumulate that
1390 	 * chunk in one go, and then try to consume the next smaller
1391 	 * doubled multiple.
1392 	 */
1393 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1394 	shift = max(0, shift);
1395 	/* Bound shift to one less than what overflows tick_length */
1396 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1397 	shift = min(shift, maxshift);
1398 	while (offset >= tk->cycle_interval) {
1399 		offset = logarithmic_accumulation(tk, offset, shift,
1400 							&clock_set);
1401 		if (offset < tk->cycle_interval<<shift)
1402 			shift--;
1403 	}
1404 
1405 	/* correct the clock when NTP error is too big */
1406 	timekeeping_adjust(tk, offset);
1407 
1408 	/*
1409 	 * XXX This can be killed once everyone converts
1410 	 * to the new update_vsyscall.
1411 	 */
1412 	old_vsyscall_fixup(tk);
1413 
1414 	/*
1415 	 * Finally, make sure that after the rounding
1416 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1417 	 */
1418 	clock_set |= accumulate_nsecs_to_secs(tk);
1419 
1420 	write_seqcount_begin(&timekeeper_seq);
1421 	/* Update clock->cycle_last with the new value */
1422 	clock->cycle_last = tk->cycle_last;
1423 	/*
1424 	 * Update the real timekeeper.
1425 	 *
1426 	 * We could avoid this memcpy by switching pointers, but that
1427 	 * requires changes to all other timekeeper usage sites as
1428 	 * well, i.e. move the timekeeper pointer getter into the
1429 	 * spinlocked/seqcount protected sections. And we trade this
1430 	 * memcpy under the timekeeper_seq against one before we start
1431 	 * updating.
1432 	 */
1433 	memcpy(real_tk, tk, sizeof(*tk));
1434 	timekeeping_update(real_tk, clock_set);
1435 	write_seqcount_end(&timekeeper_seq);
1436 out:
1437 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1438 	if (clock_set)
1439 		/* Have to call _delayed version, since in irq context*/
1440 		clock_was_set_delayed();
1441 }
1442 
1443 /**
1444  * getboottime - Return the real time of system boot.
1445  * @ts:		pointer to the timespec to be set
1446  *
1447  * Returns the wall-time of boot in a timespec.
1448  *
1449  * This is based on the wall_to_monotonic offset and the total suspend
1450  * time. Calls to settimeofday will affect the value returned (which
1451  * basically means that however wrong your real time clock is at boot time,
1452  * you get the right time here).
1453  */
1454 void getboottime(struct timespec *ts)
1455 {
1456 	struct timekeeper *tk = &timekeeper;
1457 	struct timespec boottime = {
1458 		.tv_sec = tk->wall_to_monotonic.tv_sec +
1459 				tk->total_sleep_time.tv_sec,
1460 		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
1461 				tk->total_sleep_time.tv_nsec
1462 	};
1463 
1464 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1465 }
1466 EXPORT_SYMBOL_GPL(getboottime);
1467 
1468 /**
1469  * get_monotonic_boottime - Returns monotonic time since boot
1470  * @ts:		pointer to the timespec to be set
1471  *
1472  * Returns the monotonic time since boot in a timespec.
1473  *
1474  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1475  * includes the time spent in suspend.
1476  */
1477 void get_monotonic_boottime(struct timespec *ts)
1478 {
1479 	struct timekeeper *tk = &timekeeper;
1480 	struct timespec tomono, sleep;
1481 	s64 nsec;
1482 	unsigned int seq;
1483 
1484 	WARN_ON(timekeeping_suspended);
1485 
1486 	do {
1487 		seq = read_seqcount_begin(&timekeeper_seq);
1488 		ts->tv_sec = tk->xtime_sec;
1489 		nsec = timekeeping_get_ns(tk);
1490 		tomono = tk->wall_to_monotonic;
1491 		sleep = tk->total_sleep_time;
1492 
1493 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1494 
1495 	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1496 	ts->tv_nsec = 0;
1497 	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1498 }
1499 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1500 
1501 /**
1502  * ktime_get_boottime - Returns monotonic time since boot in a ktime
1503  *
1504  * Returns the monotonic time since boot in a ktime
1505  *
1506  * This is similar to CLOCK_MONTONIC/ktime_get, but also
1507  * includes the time spent in suspend.
1508  */
1509 ktime_t ktime_get_boottime(void)
1510 {
1511 	struct timespec ts;
1512 
1513 	get_monotonic_boottime(&ts);
1514 	return timespec_to_ktime(ts);
1515 }
1516 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1517 
1518 /**
1519  * monotonic_to_bootbased - Convert the monotonic time to boot based.
1520  * @ts:		pointer to the timespec to be converted
1521  */
1522 void monotonic_to_bootbased(struct timespec *ts)
1523 {
1524 	struct timekeeper *tk = &timekeeper;
1525 
1526 	*ts = timespec_add(*ts, tk->total_sleep_time);
1527 }
1528 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1529 
1530 unsigned long get_seconds(void)
1531 {
1532 	struct timekeeper *tk = &timekeeper;
1533 
1534 	return tk->xtime_sec;
1535 }
1536 EXPORT_SYMBOL(get_seconds);
1537 
1538 struct timespec __current_kernel_time(void)
1539 {
1540 	struct timekeeper *tk = &timekeeper;
1541 
1542 	return tk_xtime(tk);
1543 }
1544 
1545 struct timespec current_kernel_time(void)
1546 {
1547 	struct timekeeper *tk = &timekeeper;
1548 	struct timespec now;
1549 	unsigned long seq;
1550 
1551 	do {
1552 		seq = read_seqcount_begin(&timekeeper_seq);
1553 
1554 		now = tk_xtime(tk);
1555 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1556 
1557 	return now;
1558 }
1559 EXPORT_SYMBOL(current_kernel_time);
1560 
1561 struct timespec get_monotonic_coarse(void)
1562 {
1563 	struct timekeeper *tk = &timekeeper;
1564 	struct timespec now, mono;
1565 	unsigned long seq;
1566 
1567 	do {
1568 		seq = read_seqcount_begin(&timekeeper_seq);
1569 
1570 		now = tk_xtime(tk);
1571 		mono = tk->wall_to_monotonic;
1572 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1573 
1574 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1575 				now.tv_nsec + mono.tv_nsec);
1576 	return now;
1577 }
1578 
1579 /*
1580  * Must hold jiffies_lock
1581  */
1582 void do_timer(unsigned long ticks)
1583 {
1584 	jiffies_64 += ticks;
1585 	calc_global_load(ticks);
1586 }
1587 
1588 /**
1589  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1590  *    and sleep offsets.
1591  * @xtim:	pointer to timespec to be set with xtime
1592  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1593  * @sleep:	pointer to timespec to be set with time in suspend
1594  */
1595 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1596 				struct timespec *wtom, struct timespec *sleep)
1597 {
1598 	struct timekeeper *tk = &timekeeper;
1599 	unsigned long seq;
1600 
1601 	do {
1602 		seq = read_seqcount_begin(&timekeeper_seq);
1603 		*xtim = tk_xtime(tk);
1604 		*wtom = tk->wall_to_monotonic;
1605 		*sleep = tk->total_sleep_time;
1606 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1607 }
1608 
1609 #ifdef CONFIG_HIGH_RES_TIMERS
1610 /**
1611  * ktime_get_update_offsets - hrtimer helper
1612  * @offs_real:	pointer to storage for monotonic -> realtime offset
1613  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1614  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1615  *
1616  * Returns current monotonic time and updates the offsets
1617  * Called from hrtimer_interrupt() or retrigger_next_event()
1618  */
1619 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
1620 							ktime_t *offs_tai)
1621 {
1622 	struct timekeeper *tk = &timekeeper;
1623 	ktime_t now;
1624 	unsigned int seq;
1625 	u64 secs, nsecs;
1626 
1627 	do {
1628 		seq = read_seqcount_begin(&timekeeper_seq);
1629 
1630 		secs = tk->xtime_sec;
1631 		nsecs = timekeeping_get_ns(tk);
1632 
1633 		*offs_real = tk->offs_real;
1634 		*offs_boot = tk->offs_boot;
1635 		*offs_tai = tk->offs_tai;
1636 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1637 
1638 	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1639 	now = ktime_sub(now, *offs_real);
1640 	return now;
1641 }
1642 #endif
1643 
1644 /**
1645  * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1646  */
1647 ktime_t ktime_get_monotonic_offset(void)
1648 {
1649 	struct timekeeper *tk = &timekeeper;
1650 	unsigned long seq;
1651 	struct timespec wtom;
1652 
1653 	do {
1654 		seq = read_seqcount_begin(&timekeeper_seq);
1655 		wtom = tk->wall_to_monotonic;
1656 	} while (read_seqcount_retry(&timekeeper_seq, seq));
1657 
1658 	return timespec_to_ktime(wtom);
1659 }
1660 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1661 
1662 /**
1663  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1664  */
1665 int do_adjtimex(struct timex *txc)
1666 {
1667 	struct timekeeper *tk = &timekeeper;
1668 	unsigned long flags;
1669 	struct timespec ts;
1670 	s32 orig_tai, tai;
1671 	int ret;
1672 
1673 	/* Validate the data before disabling interrupts */
1674 	ret = ntp_validate_timex(txc);
1675 	if (ret)
1676 		return ret;
1677 
1678 	if (txc->modes & ADJ_SETOFFSET) {
1679 		struct timespec delta;
1680 		delta.tv_sec  = txc->time.tv_sec;
1681 		delta.tv_nsec = txc->time.tv_usec;
1682 		if (!(txc->modes & ADJ_NANO))
1683 			delta.tv_nsec *= 1000;
1684 		ret = timekeeping_inject_offset(&delta);
1685 		if (ret)
1686 			return ret;
1687 	}
1688 
1689 	getnstimeofday(&ts);
1690 
1691 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1692 	write_seqcount_begin(&timekeeper_seq);
1693 
1694 	orig_tai = tai = tk->tai_offset;
1695 	ret = __do_adjtimex(txc, &ts, &tai);
1696 
1697 	if (tai != orig_tai) {
1698 		__timekeeping_set_tai_offset(tk, tai);
1699 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1700 	}
1701 	write_seqcount_end(&timekeeper_seq);
1702 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1703 
1704 	if (tai != orig_tai)
1705 		clock_was_set();
1706 
1707 	ntp_notify_cmos_timer();
1708 
1709 	return ret;
1710 }
1711 
1712 #ifdef CONFIG_NTP_PPS
1713 /**
1714  * hardpps() - Accessor function to NTP __hardpps function
1715  */
1716 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1717 {
1718 	unsigned long flags;
1719 
1720 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1721 	write_seqcount_begin(&timekeeper_seq);
1722 
1723 	__hardpps(phase_ts, raw_ts);
1724 
1725 	write_seqcount_end(&timekeeper_seq);
1726 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1727 }
1728 EXPORT_SYMBOL(hardpps);
1729 #endif
1730 
1731 /**
1732  * xtime_update() - advances the timekeeping infrastructure
1733  * @ticks:	number of ticks, that have elapsed since the last call.
1734  *
1735  * Must be called with interrupts disabled.
1736  */
1737 void xtime_update(unsigned long ticks)
1738 {
1739 	write_seqlock(&jiffies_lock);
1740 	do_timer(ticks);
1741 	write_sequnlock(&jiffies_lock);
1742 	update_wall_time();
1743 }
1744