xref: /openbmc/linux/kernel/time/timekeeping.c (revision aa6159ab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 enum timekeeping_adv_mode {
35 	/* Update timekeeper when a tick has passed */
36 	TK_ADV_TICK,
37 
38 	/* Update timekeeper on a direct frequency change */
39 	TK_ADV_FREQ
40 };
41 
42 DEFINE_RAW_SPINLOCK(timekeeper_lock);
43 
44 /*
45  * The most important data for readout fits into a single 64 byte
46  * cache line.
47  */
48 static struct {
49 	seqcount_raw_spinlock_t	seq;
50 	struct timekeeper	timekeeper;
51 } tk_core ____cacheline_aligned = {
52 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
53 };
54 
55 static struct timekeeper shadow_timekeeper;
56 
57 /* flag for if timekeeping is suspended */
58 int __read_mostly timekeeping_suspended;
59 
60 /**
61  * struct tk_fast - NMI safe timekeeper
62  * @seq:	Sequence counter for protecting updates. The lowest bit
63  *		is the index for the tk_read_base array
64  * @base:	tk_read_base array. Access is indexed by the lowest bit of
65  *		@seq.
66  *
67  * See @update_fast_timekeeper() below.
68  */
69 struct tk_fast {
70 	seqcount_latch_t	seq;
71 	struct tk_read_base	base[2];
72 };
73 
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76 
77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79 	if (timekeeping_suspended)
80 		return cycles_at_suspend;
81 	return local_clock();
82 }
83 
84 static struct clocksource dummy_clock = {
85 	.read = dummy_clock_read,
86 };
87 
88 /*
89  * Boot time initialization which allows local_clock() to be utilized
90  * during early boot when clocksources are not available. local_clock()
91  * returns nanoseconds already so no conversion is required, hence mult=1
92  * and shift=0. When the first proper clocksource is installed then
93  * the fast time keepers are updated with the correct values.
94  */
95 #define FAST_TK_INIT						\
96 	{							\
97 		.clock		= &dummy_clock,			\
98 		.mask		= CLOCKSOURCE_MASK(64),		\
99 		.mult		= 1,				\
100 		.shift		= 0,				\
101 	}
102 
103 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
104 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
105 	.base[0] = FAST_TK_INIT,
106 	.base[1] = FAST_TK_INIT,
107 };
108 
109 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
110 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
111 	.base[0] = FAST_TK_INIT,
112 	.base[1] = FAST_TK_INIT,
113 };
114 
115 static inline void tk_normalize_xtime(struct timekeeper *tk)
116 {
117 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
118 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
119 		tk->xtime_sec++;
120 	}
121 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
122 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
123 		tk->raw_sec++;
124 	}
125 }
126 
127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
128 {
129 	struct timespec64 ts;
130 
131 	ts.tv_sec = tk->xtime_sec;
132 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
133 	return ts;
134 }
135 
136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
137 {
138 	tk->xtime_sec = ts->tv_sec;
139 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
140 }
141 
142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
143 {
144 	tk->xtime_sec += ts->tv_sec;
145 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
146 	tk_normalize_xtime(tk);
147 }
148 
149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
150 {
151 	struct timespec64 tmp;
152 
153 	/*
154 	 * Verify consistency of: offset_real = -wall_to_monotonic
155 	 * before modifying anything
156 	 */
157 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
158 					-tk->wall_to_monotonic.tv_nsec);
159 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
160 	tk->wall_to_monotonic = wtm;
161 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
162 	tk->offs_real = timespec64_to_ktime(tmp);
163 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
164 }
165 
166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
167 {
168 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
169 	/*
170 	 * Timespec representation for VDSO update to avoid 64bit division
171 	 * on every update.
172 	 */
173 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
174 }
175 
176 /*
177  * tk_clock_read - atomic clocksource read() helper
178  *
179  * This helper is necessary to use in the read paths because, while the
180  * seqcount ensures we don't return a bad value while structures are updated,
181  * it doesn't protect from potential crashes. There is the possibility that
182  * the tkr's clocksource may change between the read reference, and the
183  * clock reference passed to the read function.  This can cause crashes if
184  * the wrong clocksource is passed to the wrong read function.
185  * This isn't necessary to use when holding the timekeeper_lock or doing
186  * a read of the fast-timekeeper tkrs (which is protected by its own locking
187  * and update logic).
188  */
189 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
190 {
191 	struct clocksource *clock = READ_ONCE(tkr->clock);
192 
193 	return clock->read(clock);
194 }
195 
196 #ifdef CONFIG_DEBUG_TIMEKEEPING
197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
198 
199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
200 {
201 
202 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
203 	const char *name = tk->tkr_mono.clock->name;
204 
205 	if (offset > max_cycles) {
206 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
207 				offset, name, max_cycles);
208 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
209 	} else {
210 		if (offset > (max_cycles >> 1)) {
211 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
212 					offset, name, max_cycles >> 1);
213 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
214 		}
215 	}
216 
217 	if (tk->underflow_seen) {
218 		if (jiffies - tk->last_warning > WARNING_FREQ) {
219 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
220 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
221 			printk_deferred("         Your kernel is probably still fine.\n");
222 			tk->last_warning = jiffies;
223 		}
224 		tk->underflow_seen = 0;
225 	}
226 
227 	if (tk->overflow_seen) {
228 		if (jiffies - tk->last_warning > WARNING_FREQ) {
229 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
230 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
231 			printk_deferred("         Your kernel is probably still fine.\n");
232 			tk->last_warning = jiffies;
233 		}
234 		tk->overflow_seen = 0;
235 	}
236 }
237 
238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
239 {
240 	struct timekeeper *tk = &tk_core.timekeeper;
241 	u64 now, last, mask, max, delta;
242 	unsigned int seq;
243 
244 	/*
245 	 * Since we're called holding a seqcount, the data may shift
246 	 * under us while we're doing the calculation. This can cause
247 	 * false positives, since we'd note a problem but throw the
248 	 * results away. So nest another seqcount here to atomically
249 	 * grab the points we are checking with.
250 	 */
251 	do {
252 		seq = read_seqcount_begin(&tk_core.seq);
253 		now = tk_clock_read(tkr);
254 		last = tkr->cycle_last;
255 		mask = tkr->mask;
256 		max = tkr->clock->max_cycles;
257 	} while (read_seqcount_retry(&tk_core.seq, seq));
258 
259 	delta = clocksource_delta(now, last, mask);
260 
261 	/*
262 	 * Try to catch underflows by checking if we are seeing small
263 	 * mask-relative negative values.
264 	 */
265 	if (unlikely((~delta & mask) < (mask >> 3))) {
266 		tk->underflow_seen = 1;
267 		delta = 0;
268 	}
269 
270 	/* Cap delta value to the max_cycles values to avoid mult overflows */
271 	if (unlikely(delta > max)) {
272 		tk->overflow_seen = 1;
273 		delta = tkr->clock->max_cycles;
274 	}
275 
276 	return delta;
277 }
278 #else
279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
280 {
281 }
282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
283 {
284 	u64 cycle_now, delta;
285 
286 	/* read clocksource */
287 	cycle_now = tk_clock_read(tkr);
288 
289 	/* calculate the delta since the last update_wall_time */
290 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
291 
292 	return delta;
293 }
294 #endif
295 
296 /**
297  * tk_setup_internals - Set up internals to use clocksource clock.
298  *
299  * @tk:		The target timekeeper to setup.
300  * @clock:		Pointer to clocksource.
301  *
302  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
303  * pair and interval request.
304  *
305  * Unless you're the timekeeping code, you should not be using this!
306  */
307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
308 {
309 	u64 interval;
310 	u64 tmp, ntpinterval;
311 	struct clocksource *old_clock;
312 
313 	++tk->cs_was_changed_seq;
314 	old_clock = tk->tkr_mono.clock;
315 	tk->tkr_mono.clock = clock;
316 	tk->tkr_mono.mask = clock->mask;
317 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
318 
319 	tk->tkr_raw.clock = clock;
320 	tk->tkr_raw.mask = clock->mask;
321 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
322 
323 	/* Do the ns -> cycle conversion first, using original mult */
324 	tmp = NTP_INTERVAL_LENGTH;
325 	tmp <<= clock->shift;
326 	ntpinterval = tmp;
327 	tmp += clock->mult/2;
328 	do_div(tmp, clock->mult);
329 	if (tmp == 0)
330 		tmp = 1;
331 
332 	interval = (u64) tmp;
333 	tk->cycle_interval = interval;
334 
335 	/* Go back from cycles -> shifted ns */
336 	tk->xtime_interval = interval * clock->mult;
337 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
338 	tk->raw_interval = interval * clock->mult;
339 
340 	 /* if changing clocks, convert xtime_nsec shift units */
341 	if (old_clock) {
342 		int shift_change = clock->shift - old_clock->shift;
343 		if (shift_change < 0) {
344 			tk->tkr_mono.xtime_nsec >>= -shift_change;
345 			tk->tkr_raw.xtime_nsec >>= -shift_change;
346 		} else {
347 			tk->tkr_mono.xtime_nsec <<= shift_change;
348 			tk->tkr_raw.xtime_nsec <<= shift_change;
349 		}
350 	}
351 
352 	tk->tkr_mono.shift = clock->shift;
353 	tk->tkr_raw.shift = clock->shift;
354 
355 	tk->ntp_error = 0;
356 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
357 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
358 
359 	/*
360 	 * The timekeeper keeps its own mult values for the currently
361 	 * active clocksource. These value will be adjusted via NTP
362 	 * to counteract clock drifting.
363 	 */
364 	tk->tkr_mono.mult = clock->mult;
365 	tk->tkr_raw.mult = clock->mult;
366 	tk->ntp_err_mult = 0;
367 	tk->skip_second_overflow = 0;
368 }
369 
370 /* Timekeeper helper functions. */
371 
372 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
373 static u32 default_arch_gettimeoffset(void) { return 0; }
374 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
375 #else
376 static inline u32 arch_gettimeoffset(void) { return 0; }
377 #endif
378 
379 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
380 {
381 	u64 nsec;
382 
383 	nsec = delta * tkr->mult + tkr->xtime_nsec;
384 	nsec >>= tkr->shift;
385 
386 	/* If arch requires, add in get_arch_timeoffset() */
387 	return nsec + arch_gettimeoffset();
388 }
389 
390 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
391 {
392 	u64 delta;
393 
394 	delta = timekeeping_get_delta(tkr);
395 	return timekeeping_delta_to_ns(tkr, delta);
396 }
397 
398 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
399 {
400 	u64 delta;
401 
402 	/* calculate the delta since the last update_wall_time */
403 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
404 	return timekeeping_delta_to_ns(tkr, delta);
405 }
406 
407 /**
408  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
409  * @tkr: Timekeeping readout base from which we take the update
410  * @tkf: Pointer to NMI safe timekeeper
411  *
412  * We want to use this from any context including NMI and tracing /
413  * instrumenting the timekeeping code itself.
414  *
415  * Employ the latch technique; see @raw_write_seqcount_latch.
416  *
417  * So if a NMI hits the update of base[0] then it will use base[1]
418  * which is still consistent. In the worst case this can result is a
419  * slightly wrong timestamp (a few nanoseconds). See
420  * @ktime_get_mono_fast_ns.
421  */
422 static void update_fast_timekeeper(const struct tk_read_base *tkr,
423 				   struct tk_fast *tkf)
424 {
425 	struct tk_read_base *base = tkf->base;
426 
427 	/* Force readers off to base[1] */
428 	raw_write_seqcount_latch(&tkf->seq);
429 
430 	/* Update base[0] */
431 	memcpy(base, tkr, sizeof(*base));
432 
433 	/* Force readers back to base[0] */
434 	raw_write_seqcount_latch(&tkf->seq);
435 
436 	/* Update base[1] */
437 	memcpy(base + 1, base, sizeof(*base));
438 }
439 
440 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
441 {
442 	struct tk_read_base *tkr;
443 	unsigned int seq;
444 	u64 now;
445 
446 	do {
447 		seq = raw_read_seqcount_latch(&tkf->seq);
448 		tkr = tkf->base + (seq & 0x01);
449 		now = ktime_to_ns(tkr->base);
450 
451 		now += timekeeping_delta_to_ns(tkr,
452 				clocksource_delta(
453 					tk_clock_read(tkr),
454 					tkr->cycle_last,
455 					tkr->mask));
456 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
457 
458 	return now;
459 }
460 
461 /**
462  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
463  *
464  * This timestamp is not guaranteed to be monotonic across an update.
465  * The timestamp is calculated by:
466  *
467  *	now = base_mono + clock_delta * slope
468  *
469  * So if the update lowers the slope, readers who are forced to the
470  * not yet updated second array are still using the old steeper slope.
471  *
472  * tmono
473  * ^
474  * |    o  n
475  * |   o n
476  * |  u
477  * | o
478  * |o
479  * |12345678---> reader order
480  *
481  * o = old slope
482  * u = update
483  * n = new slope
484  *
485  * So reader 6 will observe time going backwards versus reader 5.
486  *
487  * While other CPUs are likely to be able to observe that, the only way
488  * for a CPU local observation is when an NMI hits in the middle of
489  * the update. Timestamps taken from that NMI context might be ahead
490  * of the following timestamps. Callers need to be aware of that and
491  * deal with it.
492  */
493 u64 ktime_get_mono_fast_ns(void)
494 {
495 	return __ktime_get_fast_ns(&tk_fast_mono);
496 }
497 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
498 
499 /**
500  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
501  *
502  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
503  * conversion factor is not affected by NTP/PTP correction.
504  */
505 u64 ktime_get_raw_fast_ns(void)
506 {
507 	return __ktime_get_fast_ns(&tk_fast_raw);
508 }
509 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
510 
511 /**
512  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
513  *
514  * To keep it NMI safe since we're accessing from tracing, we're not using a
515  * separate timekeeper with updates to monotonic clock and boot offset
516  * protected with seqcounts. This has the following minor side effects:
517  *
518  * (1) Its possible that a timestamp be taken after the boot offset is updated
519  * but before the timekeeper is updated. If this happens, the new boot offset
520  * is added to the old timekeeping making the clock appear to update slightly
521  * earlier:
522  *    CPU 0                                        CPU 1
523  *    timekeeping_inject_sleeptime64()
524  *    __timekeeping_inject_sleeptime(tk, delta);
525  *                                                 timestamp();
526  *    timekeeping_update(tk, TK_CLEAR_NTP...);
527  *
528  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
529  * partially updated.  Since the tk->offs_boot update is a rare event, this
530  * should be a rare occurrence which postprocessing should be able to handle.
531  *
532  * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
533  * apply as well.
534  */
535 u64 notrace ktime_get_boot_fast_ns(void)
536 {
537 	struct timekeeper *tk = &tk_core.timekeeper;
538 
539 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
540 }
541 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
542 
543 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
544 {
545 	struct tk_read_base *tkr;
546 	u64 basem, baser, delta;
547 	unsigned int seq;
548 
549 	do {
550 		seq = raw_read_seqcount_latch(&tkf->seq);
551 		tkr = tkf->base + (seq & 0x01);
552 		basem = ktime_to_ns(tkr->base);
553 		baser = ktime_to_ns(tkr->base_real);
554 
555 		delta = timekeeping_delta_to_ns(tkr,
556 				clocksource_delta(tk_clock_read(tkr),
557 				tkr->cycle_last, tkr->mask));
558 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
559 
560 	if (mono)
561 		*mono = basem + delta;
562 	return baser + delta;
563 }
564 
565 /**
566  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
567  *
568  * See ktime_get_fast_ns() for documentation of the time stamp ordering.
569  */
570 u64 ktime_get_real_fast_ns(void)
571 {
572 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
573 }
574 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
575 
576 /**
577  * ktime_get_fast_timestamps: - NMI safe timestamps
578  * @snapshot:	Pointer to timestamp storage
579  *
580  * Stores clock monotonic, boottime and realtime timestamps.
581  *
582  * Boot time is a racy access on 32bit systems if the sleep time injection
583  * happens late during resume and not in timekeeping_resume(). That could
584  * be avoided by expanding struct tk_read_base with boot offset for 32bit
585  * and adding more overhead to the update. As this is a hard to observe
586  * once per resume event which can be filtered with reasonable effort using
587  * the accurate mono/real timestamps, it's probably not worth the trouble.
588  *
589  * Aside of that it might be possible on 32 and 64 bit to observe the
590  * following when the sleep time injection happens late:
591  *
592  * CPU 0				CPU 1
593  * timekeeping_resume()
594  * ktime_get_fast_timestamps()
595  *	mono, real = __ktime_get_real_fast()
596  *					inject_sleep_time()
597  *					   update boot offset
598  *	boot = mono + bootoffset;
599  *
600  * That means that boot time already has the sleep time adjustment, but
601  * real time does not. On the next readout both are in sync again.
602  *
603  * Preventing this for 64bit is not really feasible without destroying the
604  * careful cache layout of the timekeeper because the sequence count and
605  * struct tk_read_base would then need two cache lines instead of one.
606  *
607  * Access to the time keeper clock source is disabled accross the innermost
608  * steps of suspend/resume. The accessors still work, but the timestamps
609  * are frozen until time keeping is resumed which happens very early.
610  *
611  * For regular suspend/resume there is no observable difference vs. sched
612  * clock, but it might affect some of the nasty low level debug printks.
613  *
614  * OTOH, access to sched clock is not guaranteed accross suspend/resume on
615  * all systems either so it depends on the hardware in use.
616  *
617  * If that turns out to be a real problem then this could be mitigated by
618  * using sched clock in a similar way as during early boot. But it's not as
619  * trivial as on early boot because it needs some careful protection
620  * against the clock monotonic timestamp jumping backwards on resume.
621  */
622 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
623 {
624 	struct timekeeper *tk = &tk_core.timekeeper;
625 
626 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
627 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
628 }
629 
630 /**
631  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
632  * @tk: Timekeeper to snapshot.
633  *
634  * It generally is unsafe to access the clocksource after timekeeping has been
635  * suspended, so take a snapshot of the readout base of @tk and use it as the
636  * fast timekeeper's readout base while suspended.  It will return the same
637  * number of cycles every time until timekeeping is resumed at which time the
638  * proper readout base for the fast timekeeper will be restored automatically.
639  */
640 static void halt_fast_timekeeper(const struct timekeeper *tk)
641 {
642 	static struct tk_read_base tkr_dummy;
643 	const struct tk_read_base *tkr = &tk->tkr_mono;
644 
645 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
646 	cycles_at_suspend = tk_clock_read(tkr);
647 	tkr_dummy.clock = &dummy_clock;
648 	tkr_dummy.base_real = tkr->base + tk->offs_real;
649 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
650 
651 	tkr = &tk->tkr_raw;
652 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
653 	tkr_dummy.clock = &dummy_clock;
654 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
655 }
656 
657 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
658 
659 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
660 {
661 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
662 }
663 
664 /**
665  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
666  * @nb: Pointer to the notifier block to register
667  */
668 int pvclock_gtod_register_notifier(struct notifier_block *nb)
669 {
670 	struct timekeeper *tk = &tk_core.timekeeper;
671 	unsigned long flags;
672 	int ret;
673 
674 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
675 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
676 	update_pvclock_gtod(tk, true);
677 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
678 
679 	return ret;
680 }
681 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
682 
683 /**
684  * pvclock_gtod_unregister_notifier - unregister a pvclock
685  * timedata update listener
686  * @nb: Pointer to the notifier block to unregister
687  */
688 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
689 {
690 	unsigned long flags;
691 	int ret;
692 
693 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
694 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
695 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
696 
697 	return ret;
698 }
699 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
700 
701 /*
702  * tk_update_leap_state - helper to update the next_leap_ktime
703  */
704 static inline void tk_update_leap_state(struct timekeeper *tk)
705 {
706 	tk->next_leap_ktime = ntp_get_next_leap();
707 	if (tk->next_leap_ktime != KTIME_MAX)
708 		/* Convert to monotonic time */
709 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
710 }
711 
712 /*
713  * Update the ktime_t based scalar nsec members of the timekeeper
714  */
715 static inline void tk_update_ktime_data(struct timekeeper *tk)
716 {
717 	u64 seconds;
718 	u32 nsec;
719 
720 	/*
721 	 * The xtime based monotonic readout is:
722 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
723 	 * The ktime based monotonic readout is:
724 	 *	nsec = base_mono + now();
725 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
726 	 */
727 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
728 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
729 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
730 
731 	/*
732 	 * The sum of the nanoseconds portions of xtime and
733 	 * wall_to_monotonic can be greater/equal one second. Take
734 	 * this into account before updating tk->ktime_sec.
735 	 */
736 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
737 	if (nsec >= NSEC_PER_SEC)
738 		seconds++;
739 	tk->ktime_sec = seconds;
740 
741 	/* Update the monotonic raw base */
742 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
743 }
744 
745 /* must hold timekeeper_lock */
746 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
747 {
748 	if (action & TK_CLEAR_NTP) {
749 		tk->ntp_error = 0;
750 		ntp_clear();
751 	}
752 
753 	tk_update_leap_state(tk);
754 	tk_update_ktime_data(tk);
755 
756 	update_vsyscall(tk);
757 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
758 
759 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
760 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
761 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
762 
763 	if (action & TK_CLOCK_WAS_SET)
764 		tk->clock_was_set_seq++;
765 	/*
766 	 * The mirroring of the data to the shadow-timekeeper needs
767 	 * to happen last here to ensure we don't over-write the
768 	 * timekeeper structure on the next update with stale data
769 	 */
770 	if (action & TK_MIRROR)
771 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
772 		       sizeof(tk_core.timekeeper));
773 }
774 
775 /**
776  * timekeeping_forward_now - update clock to the current time
777  * @tk:		Pointer to the timekeeper to update
778  *
779  * Forward the current clock to update its state since the last call to
780  * update_wall_time(). This is useful before significant clock changes,
781  * as it avoids having to deal with this time offset explicitly.
782  */
783 static void timekeeping_forward_now(struct timekeeper *tk)
784 {
785 	u64 cycle_now, delta;
786 
787 	cycle_now = tk_clock_read(&tk->tkr_mono);
788 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
789 	tk->tkr_mono.cycle_last = cycle_now;
790 	tk->tkr_raw.cycle_last  = cycle_now;
791 
792 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
793 
794 	/* If arch requires, add in get_arch_timeoffset() */
795 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
796 
797 
798 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
799 
800 	/* If arch requires, add in get_arch_timeoffset() */
801 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
802 
803 	tk_normalize_xtime(tk);
804 }
805 
806 /**
807  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
808  * @ts:		pointer to the timespec to be set
809  *
810  * Returns the time of day in a timespec64 (WARN if suspended).
811  */
812 void ktime_get_real_ts64(struct timespec64 *ts)
813 {
814 	struct timekeeper *tk = &tk_core.timekeeper;
815 	unsigned int seq;
816 	u64 nsecs;
817 
818 	WARN_ON(timekeeping_suspended);
819 
820 	do {
821 		seq = read_seqcount_begin(&tk_core.seq);
822 
823 		ts->tv_sec = tk->xtime_sec;
824 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
825 
826 	} while (read_seqcount_retry(&tk_core.seq, seq));
827 
828 	ts->tv_nsec = 0;
829 	timespec64_add_ns(ts, nsecs);
830 }
831 EXPORT_SYMBOL(ktime_get_real_ts64);
832 
833 ktime_t ktime_get(void)
834 {
835 	struct timekeeper *tk = &tk_core.timekeeper;
836 	unsigned int seq;
837 	ktime_t base;
838 	u64 nsecs;
839 
840 	WARN_ON(timekeeping_suspended);
841 
842 	do {
843 		seq = read_seqcount_begin(&tk_core.seq);
844 		base = tk->tkr_mono.base;
845 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
846 
847 	} while (read_seqcount_retry(&tk_core.seq, seq));
848 
849 	return ktime_add_ns(base, nsecs);
850 }
851 EXPORT_SYMBOL_GPL(ktime_get);
852 
853 u32 ktime_get_resolution_ns(void)
854 {
855 	struct timekeeper *tk = &tk_core.timekeeper;
856 	unsigned int seq;
857 	u32 nsecs;
858 
859 	WARN_ON(timekeeping_suspended);
860 
861 	do {
862 		seq = read_seqcount_begin(&tk_core.seq);
863 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
864 	} while (read_seqcount_retry(&tk_core.seq, seq));
865 
866 	return nsecs;
867 }
868 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
869 
870 static ktime_t *offsets[TK_OFFS_MAX] = {
871 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
872 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
873 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
874 };
875 
876 ktime_t ktime_get_with_offset(enum tk_offsets offs)
877 {
878 	struct timekeeper *tk = &tk_core.timekeeper;
879 	unsigned int seq;
880 	ktime_t base, *offset = offsets[offs];
881 	u64 nsecs;
882 
883 	WARN_ON(timekeeping_suspended);
884 
885 	do {
886 		seq = read_seqcount_begin(&tk_core.seq);
887 		base = ktime_add(tk->tkr_mono.base, *offset);
888 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
889 
890 	} while (read_seqcount_retry(&tk_core.seq, seq));
891 
892 	return ktime_add_ns(base, nsecs);
893 
894 }
895 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
896 
897 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
898 {
899 	struct timekeeper *tk = &tk_core.timekeeper;
900 	unsigned int seq;
901 	ktime_t base, *offset = offsets[offs];
902 	u64 nsecs;
903 
904 	WARN_ON(timekeeping_suspended);
905 
906 	do {
907 		seq = read_seqcount_begin(&tk_core.seq);
908 		base = ktime_add(tk->tkr_mono.base, *offset);
909 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
910 
911 	} while (read_seqcount_retry(&tk_core.seq, seq));
912 
913 	return ktime_add_ns(base, nsecs);
914 }
915 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
916 
917 /**
918  * ktime_mono_to_any() - convert mononotic time to any other time
919  * @tmono:	time to convert.
920  * @offs:	which offset to use
921  */
922 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
923 {
924 	ktime_t *offset = offsets[offs];
925 	unsigned int seq;
926 	ktime_t tconv;
927 
928 	do {
929 		seq = read_seqcount_begin(&tk_core.seq);
930 		tconv = ktime_add(tmono, *offset);
931 	} while (read_seqcount_retry(&tk_core.seq, seq));
932 
933 	return tconv;
934 }
935 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
936 
937 /**
938  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
939  */
940 ktime_t ktime_get_raw(void)
941 {
942 	struct timekeeper *tk = &tk_core.timekeeper;
943 	unsigned int seq;
944 	ktime_t base;
945 	u64 nsecs;
946 
947 	do {
948 		seq = read_seqcount_begin(&tk_core.seq);
949 		base = tk->tkr_raw.base;
950 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
951 
952 	} while (read_seqcount_retry(&tk_core.seq, seq));
953 
954 	return ktime_add_ns(base, nsecs);
955 }
956 EXPORT_SYMBOL_GPL(ktime_get_raw);
957 
958 /**
959  * ktime_get_ts64 - get the monotonic clock in timespec64 format
960  * @ts:		pointer to timespec variable
961  *
962  * The function calculates the monotonic clock from the realtime
963  * clock and the wall_to_monotonic offset and stores the result
964  * in normalized timespec64 format in the variable pointed to by @ts.
965  */
966 void ktime_get_ts64(struct timespec64 *ts)
967 {
968 	struct timekeeper *tk = &tk_core.timekeeper;
969 	struct timespec64 tomono;
970 	unsigned int seq;
971 	u64 nsec;
972 
973 	WARN_ON(timekeeping_suspended);
974 
975 	do {
976 		seq = read_seqcount_begin(&tk_core.seq);
977 		ts->tv_sec = tk->xtime_sec;
978 		nsec = timekeeping_get_ns(&tk->tkr_mono);
979 		tomono = tk->wall_to_monotonic;
980 
981 	} while (read_seqcount_retry(&tk_core.seq, seq));
982 
983 	ts->tv_sec += tomono.tv_sec;
984 	ts->tv_nsec = 0;
985 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
986 }
987 EXPORT_SYMBOL_GPL(ktime_get_ts64);
988 
989 /**
990  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
991  *
992  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
993  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
994  * works on both 32 and 64 bit systems. On 32 bit systems the readout
995  * covers ~136 years of uptime which should be enough to prevent
996  * premature wrap arounds.
997  */
998 time64_t ktime_get_seconds(void)
999 {
1000 	struct timekeeper *tk = &tk_core.timekeeper;
1001 
1002 	WARN_ON(timekeeping_suspended);
1003 	return tk->ktime_sec;
1004 }
1005 EXPORT_SYMBOL_GPL(ktime_get_seconds);
1006 
1007 /**
1008  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1009  *
1010  * Returns the wall clock seconds since 1970. This replaces the
1011  * get_seconds() interface which is not y2038 safe on 32bit systems.
1012  *
1013  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1014  * 32bit systems the access must be protected with the sequence
1015  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1016  * value.
1017  */
1018 time64_t ktime_get_real_seconds(void)
1019 {
1020 	struct timekeeper *tk = &tk_core.timekeeper;
1021 	time64_t seconds;
1022 	unsigned int seq;
1023 
1024 	if (IS_ENABLED(CONFIG_64BIT))
1025 		return tk->xtime_sec;
1026 
1027 	do {
1028 		seq = read_seqcount_begin(&tk_core.seq);
1029 		seconds = tk->xtime_sec;
1030 
1031 	} while (read_seqcount_retry(&tk_core.seq, seq));
1032 
1033 	return seconds;
1034 }
1035 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1036 
1037 /**
1038  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1039  * but without the sequence counter protect. This internal function
1040  * is called just when timekeeping lock is already held.
1041  */
1042 noinstr time64_t __ktime_get_real_seconds(void)
1043 {
1044 	struct timekeeper *tk = &tk_core.timekeeper;
1045 
1046 	return tk->xtime_sec;
1047 }
1048 
1049 /**
1050  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1051  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1052  */
1053 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1054 {
1055 	struct timekeeper *tk = &tk_core.timekeeper;
1056 	unsigned int seq;
1057 	ktime_t base_raw;
1058 	ktime_t base_real;
1059 	u64 nsec_raw;
1060 	u64 nsec_real;
1061 	u64 now;
1062 
1063 	WARN_ON_ONCE(timekeeping_suspended);
1064 
1065 	do {
1066 		seq = read_seqcount_begin(&tk_core.seq);
1067 		now = tk_clock_read(&tk->tkr_mono);
1068 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1069 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1070 		base_real = ktime_add(tk->tkr_mono.base,
1071 				      tk_core.timekeeper.offs_real);
1072 		base_raw = tk->tkr_raw.base;
1073 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1074 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1075 	} while (read_seqcount_retry(&tk_core.seq, seq));
1076 
1077 	systime_snapshot->cycles = now;
1078 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1079 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1080 }
1081 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1082 
1083 /* Scale base by mult/div checking for overflow */
1084 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1085 {
1086 	u64 tmp, rem;
1087 
1088 	tmp = div64_u64_rem(*base, div, &rem);
1089 
1090 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1091 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1092 		return -EOVERFLOW;
1093 	tmp *= mult;
1094 
1095 	rem = div64_u64(rem * mult, div);
1096 	*base = tmp + rem;
1097 	return 0;
1098 }
1099 
1100 /**
1101  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1102  * @history:			Snapshot representing start of history
1103  * @partial_history_cycles:	Cycle offset into history (fractional part)
1104  * @total_history_cycles:	Total history length in cycles
1105  * @discontinuity:		True indicates clock was set on history period
1106  * @ts:				Cross timestamp that should be adjusted using
1107  *	partial/total ratio
1108  *
1109  * Helper function used by get_device_system_crosststamp() to correct the
1110  * crosstimestamp corresponding to the start of the current interval to the
1111  * system counter value (timestamp point) provided by the driver. The
1112  * total_history_* quantities are the total history starting at the provided
1113  * reference point and ending at the start of the current interval. The cycle
1114  * count between the driver timestamp point and the start of the current
1115  * interval is partial_history_cycles.
1116  */
1117 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1118 					 u64 partial_history_cycles,
1119 					 u64 total_history_cycles,
1120 					 bool discontinuity,
1121 					 struct system_device_crosststamp *ts)
1122 {
1123 	struct timekeeper *tk = &tk_core.timekeeper;
1124 	u64 corr_raw, corr_real;
1125 	bool interp_forward;
1126 	int ret;
1127 
1128 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1129 		return 0;
1130 
1131 	/* Interpolate shortest distance from beginning or end of history */
1132 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1133 	partial_history_cycles = interp_forward ?
1134 		total_history_cycles - partial_history_cycles :
1135 		partial_history_cycles;
1136 
1137 	/*
1138 	 * Scale the monotonic raw time delta by:
1139 	 *	partial_history_cycles / total_history_cycles
1140 	 */
1141 	corr_raw = (u64)ktime_to_ns(
1142 		ktime_sub(ts->sys_monoraw, history->raw));
1143 	ret = scale64_check_overflow(partial_history_cycles,
1144 				     total_history_cycles, &corr_raw);
1145 	if (ret)
1146 		return ret;
1147 
1148 	/*
1149 	 * If there is a discontinuity in the history, scale monotonic raw
1150 	 *	correction by:
1151 	 *	mult(real)/mult(raw) yielding the realtime correction
1152 	 * Otherwise, calculate the realtime correction similar to monotonic
1153 	 *	raw calculation
1154 	 */
1155 	if (discontinuity) {
1156 		corr_real = mul_u64_u32_div
1157 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1158 	} else {
1159 		corr_real = (u64)ktime_to_ns(
1160 			ktime_sub(ts->sys_realtime, history->real));
1161 		ret = scale64_check_overflow(partial_history_cycles,
1162 					     total_history_cycles, &corr_real);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	/* Fixup monotonic raw and real time time values */
1168 	if (interp_forward) {
1169 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1170 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1171 	} else {
1172 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1173 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 /*
1180  * cycle_between - true if test occurs chronologically between before and after
1181  */
1182 static bool cycle_between(u64 before, u64 test, u64 after)
1183 {
1184 	if (test > before && test < after)
1185 		return true;
1186 	if (test < before && before > after)
1187 		return true;
1188 	return false;
1189 }
1190 
1191 /**
1192  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1193  * @get_time_fn:	Callback to get simultaneous device time and
1194  *	system counter from the device driver
1195  * @ctx:		Context passed to get_time_fn()
1196  * @history_begin:	Historical reference point used to interpolate system
1197  *	time when counter provided by the driver is before the current interval
1198  * @xtstamp:		Receives simultaneously captured system and device time
1199  *
1200  * Reads a timestamp from a device and correlates it to system time
1201  */
1202 int get_device_system_crosststamp(int (*get_time_fn)
1203 				  (ktime_t *device_time,
1204 				   struct system_counterval_t *sys_counterval,
1205 				   void *ctx),
1206 				  void *ctx,
1207 				  struct system_time_snapshot *history_begin,
1208 				  struct system_device_crosststamp *xtstamp)
1209 {
1210 	struct system_counterval_t system_counterval;
1211 	struct timekeeper *tk = &tk_core.timekeeper;
1212 	u64 cycles, now, interval_start;
1213 	unsigned int clock_was_set_seq = 0;
1214 	ktime_t base_real, base_raw;
1215 	u64 nsec_real, nsec_raw;
1216 	u8 cs_was_changed_seq;
1217 	unsigned int seq;
1218 	bool do_interp;
1219 	int ret;
1220 
1221 	do {
1222 		seq = read_seqcount_begin(&tk_core.seq);
1223 		/*
1224 		 * Try to synchronously capture device time and a system
1225 		 * counter value calling back into the device driver
1226 		 */
1227 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1228 		if (ret)
1229 			return ret;
1230 
1231 		/*
1232 		 * Verify that the clocksource associated with the captured
1233 		 * system counter value is the same as the currently installed
1234 		 * timekeeper clocksource
1235 		 */
1236 		if (tk->tkr_mono.clock != system_counterval.cs)
1237 			return -ENODEV;
1238 		cycles = system_counterval.cycles;
1239 
1240 		/*
1241 		 * Check whether the system counter value provided by the
1242 		 * device driver is on the current timekeeping interval.
1243 		 */
1244 		now = tk_clock_read(&tk->tkr_mono);
1245 		interval_start = tk->tkr_mono.cycle_last;
1246 		if (!cycle_between(interval_start, cycles, now)) {
1247 			clock_was_set_seq = tk->clock_was_set_seq;
1248 			cs_was_changed_seq = tk->cs_was_changed_seq;
1249 			cycles = interval_start;
1250 			do_interp = true;
1251 		} else {
1252 			do_interp = false;
1253 		}
1254 
1255 		base_real = ktime_add(tk->tkr_mono.base,
1256 				      tk_core.timekeeper.offs_real);
1257 		base_raw = tk->tkr_raw.base;
1258 
1259 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1260 						     system_counterval.cycles);
1261 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1262 						    system_counterval.cycles);
1263 	} while (read_seqcount_retry(&tk_core.seq, seq));
1264 
1265 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1266 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1267 
1268 	/*
1269 	 * Interpolate if necessary, adjusting back from the start of the
1270 	 * current interval
1271 	 */
1272 	if (do_interp) {
1273 		u64 partial_history_cycles, total_history_cycles;
1274 		bool discontinuity;
1275 
1276 		/*
1277 		 * Check that the counter value occurs after the provided
1278 		 * history reference and that the history doesn't cross a
1279 		 * clocksource change
1280 		 */
1281 		if (!history_begin ||
1282 		    !cycle_between(history_begin->cycles,
1283 				   system_counterval.cycles, cycles) ||
1284 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1285 			return -EINVAL;
1286 		partial_history_cycles = cycles - system_counterval.cycles;
1287 		total_history_cycles = cycles - history_begin->cycles;
1288 		discontinuity =
1289 			history_begin->clock_was_set_seq != clock_was_set_seq;
1290 
1291 		ret = adjust_historical_crosststamp(history_begin,
1292 						    partial_history_cycles,
1293 						    total_history_cycles,
1294 						    discontinuity, xtstamp);
1295 		if (ret)
1296 			return ret;
1297 	}
1298 
1299 	return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1302 
1303 /**
1304  * do_settimeofday64 - Sets the time of day.
1305  * @ts:     pointer to the timespec64 variable containing the new time
1306  *
1307  * Sets the time of day to the new time and update NTP and notify hrtimers
1308  */
1309 int do_settimeofday64(const struct timespec64 *ts)
1310 {
1311 	struct timekeeper *tk = &tk_core.timekeeper;
1312 	struct timespec64 ts_delta, xt;
1313 	unsigned long flags;
1314 	int ret = 0;
1315 
1316 	if (!timespec64_valid_settod(ts))
1317 		return -EINVAL;
1318 
1319 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1320 	write_seqcount_begin(&tk_core.seq);
1321 
1322 	timekeeping_forward_now(tk);
1323 
1324 	xt = tk_xtime(tk);
1325 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1326 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1327 
1328 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1329 		ret = -EINVAL;
1330 		goto out;
1331 	}
1332 
1333 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1334 
1335 	tk_set_xtime(tk, ts);
1336 out:
1337 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1338 
1339 	write_seqcount_end(&tk_core.seq);
1340 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1341 
1342 	/* signal hrtimers about time change */
1343 	clock_was_set();
1344 
1345 	if (!ret)
1346 		audit_tk_injoffset(ts_delta);
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(do_settimeofday64);
1351 
1352 /**
1353  * timekeeping_inject_offset - Adds or subtracts from the current time.
1354  * @ts:		Pointer to the timespec variable containing the offset
1355  *
1356  * Adds or subtracts an offset value from the current time.
1357  */
1358 static int timekeeping_inject_offset(const struct timespec64 *ts)
1359 {
1360 	struct timekeeper *tk = &tk_core.timekeeper;
1361 	unsigned long flags;
1362 	struct timespec64 tmp;
1363 	int ret = 0;
1364 
1365 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1366 		return -EINVAL;
1367 
1368 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369 	write_seqcount_begin(&tk_core.seq);
1370 
1371 	timekeeping_forward_now(tk);
1372 
1373 	/* Make sure the proposed value is valid */
1374 	tmp = timespec64_add(tk_xtime(tk), *ts);
1375 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1376 	    !timespec64_valid_settod(&tmp)) {
1377 		ret = -EINVAL;
1378 		goto error;
1379 	}
1380 
1381 	tk_xtime_add(tk, ts);
1382 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1383 
1384 error: /* even if we error out, we forwarded the time, so call update */
1385 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1386 
1387 	write_seqcount_end(&tk_core.seq);
1388 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1389 
1390 	/* signal hrtimers about time change */
1391 	clock_was_set();
1392 
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Indicates if there is an offset between the system clock and the hardware
1398  * clock/persistent clock/rtc.
1399  */
1400 int persistent_clock_is_local;
1401 
1402 /*
1403  * Adjust the time obtained from the CMOS to be UTC time instead of
1404  * local time.
1405  *
1406  * This is ugly, but preferable to the alternatives.  Otherwise we
1407  * would either need to write a program to do it in /etc/rc (and risk
1408  * confusion if the program gets run more than once; it would also be
1409  * hard to make the program warp the clock precisely n hours)  or
1410  * compile in the timezone information into the kernel.  Bad, bad....
1411  *
1412  *						- TYT, 1992-01-01
1413  *
1414  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1415  * as real UNIX machines always do it. This avoids all headaches about
1416  * daylight saving times and warping kernel clocks.
1417  */
1418 void timekeeping_warp_clock(void)
1419 {
1420 	if (sys_tz.tz_minuteswest != 0) {
1421 		struct timespec64 adjust;
1422 
1423 		persistent_clock_is_local = 1;
1424 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1425 		adjust.tv_nsec = 0;
1426 		timekeeping_inject_offset(&adjust);
1427 	}
1428 }
1429 
1430 /*
1431  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1432  */
1433 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1434 {
1435 	tk->tai_offset = tai_offset;
1436 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1437 }
1438 
1439 /*
1440  * change_clocksource - Swaps clocksources if a new one is available
1441  *
1442  * Accumulates current time interval and initializes new clocksource
1443  */
1444 static int change_clocksource(void *data)
1445 {
1446 	struct timekeeper *tk = &tk_core.timekeeper;
1447 	struct clocksource *new, *old;
1448 	unsigned long flags;
1449 
1450 	new = (struct clocksource *) data;
1451 
1452 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1453 	write_seqcount_begin(&tk_core.seq);
1454 
1455 	timekeeping_forward_now(tk);
1456 	/*
1457 	 * If the cs is in module, get a module reference. Succeeds
1458 	 * for built-in code (owner == NULL) as well.
1459 	 */
1460 	if (try_module_get(new->owner)) {
1461 		if (!new->enable || new->enable(new) == 0) {
1462 			old = tk->tkr_mono.clock;
1463 			tk_setup_internals(tk, new);
1464 			if (old->disable)
1465 				old->disable(old);
1466 			module_put(old->owner);
1467 		} else {
1468 			module_put(new->owner);
1469 		}
1470 	}
1471 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1472 
1473 	write_seqcount_end(&tk_core.seq);
1474 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * timekeeping_notify - Install a new clock source
1481  * @clock:		pointer to the clock source
1482  *
1483  * This function is called from clocksource.c after a new, better clock
1484  * source has been registered. The caller holds the clocksource_mutex.
1485  */
1486 int timekeeping_notify(struct clocksource *clock)
1487 {
1488 	struct timekeeper *tk = &tk_core.timekeeper;
1489 
1490 	if (tk->tkr_mono.clock == clock)
1491 		return 0;
1492 	stop_machine(change_clocksource, clock, NULL);
1493 	tick_clock_notify();
1494 	return tk->tkr_mono.clock == clock ? 0 : -1;
1495 }
1496 
1497 /**
1498  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1499  * @ts:		pointer to the timespec64 to be set
1500  *
1501  * Returns the raw monotonic time (completely un-modified by ntp)
1502  */
1503 void ktime_get_raw_ts64(struct timespec64 *ts)
1504 {
1505 	struct timekeeper *tk = &tk_core.timekeeper;
1506 	unsigned int seq;
1507 	u64 nsecs;
1508 
1509 	do {
1510 		seq = read_seqcount_begin(&tk_core.seq);
1511 		ts->tv_sec = tk->raw_sec;
1512 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1513 
1514 	} while (read_seqcount_retry(&tk_core.seq, seq));
1515 
1516 	ts->tv_nsec = 0;
1517 	timespec64_add_ns(ts, nsecs);
1518 }
1519 EXPORT_SYMBOL(ktime_get_raw_ts64);
1520 
1521 
1522 /**
1523  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1524  */
1525 int timekeeping_valid_for_hres(void)
1526 {
1527 	struct timekeeper *tk = &tk_core.timekeeper;
1528 	unsigned int seq;
1529 	int ret;
1530 
1531 	do {
1532 		seq = read_seqcount_begin(&tk_core.seq);
1533 
1534 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1535 
1536 	} while (read_seqcount_retry(&tk_core.seq, seq));
1537 
1538 	return ret;
1539 }
1540 
1541 /**
1542  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1543  */
1544 u64 timekeeping_max_deferment(void)
1545 {
1546 	struct timekeeper *tk = &tk_core.timekeeper;
1547 	unsigned int seq;
1548 	u64 ret;
1549 
1550 	do {
1551 		seq = read_seqcount_begin(&tk_core.seq);
1552 
1553 		ret = tk->tkr_mono.clock->max_idle_ns;
1554 
1555 	} while (read_seqcount_retry(&tk_core.seq, seq));
1556 
1557 	return ret;
1558 }
1559 
1560 /**
1561  * read_persistent_clock64 -  Return time from the persistent clock.
1562  * @ts: Pointer to the storage for the readout value
1563  *
1564  * Weak dummy function for arches that do not yet support it.
1565  * Reads the time from the battery backed persistent clock.
1566  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1567  *
1568  *  XXX - Do be sure to remove it once all arches implement it.
1569  */
1570 void __weak read_persistent_clock64(struct timespec64 *ts)
1571 {
1572 	ts->tv_sec = 0;
1573 	ts->tv_nsec = 0;
1574 }
1575 
1576 /**
1577  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1578  *                                        from the boot.
1579  *
1580  * Weak dummy function for arches that do not yet support it.
1581  * @wall_time:	- current time as returned by persistent clock
1582  * @boot_offset: - offset that is defined as wall_time - boot_time
1583  *
1584  * The default function calculates offset based on the current value of
1585  * local_clock(). This way architectures that support sched_clock() but don't
1586  * support dedicated boot time clock will provide the best estimate of the
1587  * boot time.
1588  */
1589 void __weak __init
1590 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1591 				     struct timespec64 *boot_offset)
1592 {
1593 	read_persistent_clock64(wall_time);
1594 	*boot_offset = ns_to_timespec64(local_clock());
1595 }
1596 
1597 /*
1598  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1599  *
1600  * The flag starts of false and is only set when a suspend reaches
1601  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1602  * timekeeper clocksource is not stopping across suspend and has been
1603  * used to update sleep time. If the timekeeper clocksource has stopped
1604  * then the flag stays true and is used by the RTC resume code to decide
1605  * whether sleeptime must be injected and if so the flag gets false then.
1606  *
1607  * If a suspend fails before reaching timekeeping_resume() then the flag
1608  * stays false and prevents erroneous sleeptime injection.
1609  */
1610 static bool suspend_timing_needed;
1611 
1612 /* Flag for if there is a persistent clock on this platform */
1613 static bool persistent_clock_exists;
1614 
1615 /*
1616  * timekeeping_init - Initializes the clocksource and common timekeeping values
1617  */
1618 void __init timekeeping_init(void)
1619 {
1620 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1621 	struct timekeeper *tk = &tk_core.timekeeper;
1622 	struct clocksource *clock;
1623 	unsigned long flags;
1624 
1625 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1626 	if (timespec64_valid_settod(&wall_time) &&
1627 	    timespec64_to_ns(&wall_time) > 0) {
1628 		persistent_clock_exists = true;
1629 	} else if (timespec64_to_ns(&wall_time) != 0) {
1630 		pr_warn("Persistent clock returned invalid value");
1631 		wall_time = (struct timespec64){0};
1632 	}
1633 
1634 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1635 		boot_offset = (struct timespec64){0};
1636 
1637 	/*
1638 	 * We want set wall_to_mono, so the following is true:
1639 	 * wall time + wall_to_mono = boot time
1640 	 */
1641 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1642 
1643 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1644 	write_seqcount_begin(&tk_core.seq);
1645 	ntp_init();
1646 
1647 	clock = clocksource_default_clock();
1648 	if (clock->enable)
1649 		clock->enable(clock);
1650 	tk_setup_internals(tk, clock);
1651 
1652 	tk_set_xtime(tk, &wall_time);
1653 	tk->raw_sec = 0;
1654 
1655 	tk_set_wall_to_mono(tk, wall_to_mono);
1656 
1657 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1658 
1659 	write_seqcount_end(&tk_core.seq);
1660 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1661 }
1662 
1663 /* time in seconds when suspend began for persistent clock */
1664 static struct timespec64 timekeeping_suspend_time;
1665 
1666 /**
1667  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1668  * @tk:		Pointer to the timekeeper to be updated
1669  * @delta:	Pointer to the delta value in timespec64 format
1670  *
1671  * Takes a timespec offset measuring a suspend interval and properly
1672  * adds the sleep offset to the timekeeping variables.
1673  */
1674 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1675 					   const struct timespec64 *delta)
1676 {
1677 	if (!timespec64_valid_strict(delta)) {
1678 		printk_deferred(KERN_WARNING
1679 				"__timekeeping_inject_sleeptime: Invalid "
1680 				"sleep delta value!\n");
1681 		return;
1682 	}
1683 	tk_xtime_add(tk, delta);
1684 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1685 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1686 	tk_debug_account_sleep_time(delta);
1687 }
1688 
1689 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1690 /**
1691  * We have three kinds of time sources to use for sleep time
1692  * injection, the preference order is:
1693  * 1) non-stop clocksource
1694  * 2) persistent clock (ie: RTC accessible when irqs are off)
1695  * 3) RTC
1696  *
1697  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1698  * If system has neither 1) nor 2), 3) will be used finally.
1699  *
1700  *
1701  * If timekeeping has injected sleeptime via either 1) or 2),
1702  * 3) becomes needless, so in this case we don't need to call
1703  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1704  * means.
1705  */
1706 bool timekeeping_rtc_skipresume(void)
1707 {
1708 	return !suspend_timing_needed;
1709 }
1710 
1711 /**
1712  * 1) can be determined whether to use or not only when doing
1713  * timekeeping_resume() which is invoked after rtc_suspend(),
1714  * so we can't skip rtc_suspend() surely if system has 1).
1715  *
1716  * But if system has 2), 2) will definitely be used, so in this
1717  * case we don't need to call rtc_suspend(), and this is what
1718  * timekeeping_rtc_skipsuspend() means.
1719  */
1720 bool timekeeping_rtc_skipsuspend(void)
1721 {
1722 	return persistent_clock_exists;
1723 }
1724 
1725 /**
1726  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1727  * @delta: pointer to a timespec64 delta value
1728  *
1729  * This hook is for architectures that cannot support read_persistent_clock64
1730  * because their RTC/persistent clock is only accessible when irqs are enabled.
1731  * and also don't have an effective nonstop clocksource.
1732  *
1733  * This function should only be called by rtc_resume(), and allows
1734  * a suspend offset to be injected into the timekeeping values.
1735  */
1736 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1737 {
1738 	struct timekeeper *tk = &tk_core.timekeeper;
1739 	unsigned long flags;
1740 
1741 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1742 	write_seqcount_begin(&tk_core.seq);
1743 
1744 	suspend_timing_needed = false;
1745 
1746 	timekeeping_forward_now(tk);
1747 
1748 	__timekeeping_inject_sleeptime(tk, delta);
1749 
1750 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1751 
1752 	write_seqcount_end(&tk_core.seq);
1753 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1754 
1755 	/* signal hrtimers about time change */
1756 	clock_was_set();
1757 }
1758 #endif
1759 
1760 /**
1761  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1762  */
1763 void timekeeping_resume(void)
1764 {
1765 	struct timekeeper *tk = &tk_core.timekeeper;
1766 	struct clocksource *clock = tk->tkr_mono.clock;
1767 	unsigned long flags;
1768 	struct timespec64 ts_new, ts_delta;
1769 	u64 cycle_now, nsec;
1770 	bool inject_sleeptime = false;
1771 
1772 	read_persistent_clock64(&ts_new);
1773 
1774 	clockevents_resume();
1775 	clocksource_resume();
1776 
1777 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1778 	write_seqcount_begin(&tk_core.seq);
1779 
1780 	/*
1781 	 * After system resumes, we need to calculate the suspended time and
1782 	 * compensate it for the OS time. There are 3 sources that could be
1783 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1784 	 * device.
1785 	 *
1786 	 * One specific platform may have 1 or 2 or all of them, and the
1787 	 * preference will be:
1788 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1789 	 * The less preferred source will only be tried if there is no better
1790 	 * usable source. The rtc part is handled separately in rtc core code.
1791 	 */
1792 	cycle_now = tk_clock_read(&tk->tkr_mono);
1793 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1794 	if (nsec > 0) {
1795 		ts_delta = ns_to_timespec64(nsec);
1796 		inject_sleeptime = true;
1797 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1798 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1799 		inject_sleeptime = true;
1800 	}
1801 
1802 	if (inject_sleeptime) {
1803 		suspend_timing_needed = false;
1804 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1805 	}
1806 
1807 	/* Re-base the last cycle value */
1808 	tk->tkr_mono.cycle_last = cycle_now;
1809 	tk->tkr_raw.cycle_last  = cycle_now;
1810 
1811 	tk->ntp_error = 0;
1812 	timekeeping_suspended = 0;
1813 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1814 	write_seqcount_end(&tk_core.seq);
1815 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1816 
1817 	touch_softlockup_watchdog();
1818 
1819 	tick_resume();
1820 	hrtimers_resume();
1821 }
1822 
1823 int timekeeping_suspend(void)
1824 {
1825 	struct timekeeper *tk = &tk_core.timekeeper;
1826 	unsigned long flags;
1827 	struct timespec64		delta, delta_delta;
1828 	static struct timespec64	old_delta;
1829 	struct clocksource *curr_clock;
1830 	u64 cycle_now;
1831 
1832 	read_persistent_clock64(&timekeeping_suspend_time);
1833 
1834 	/*
1835 	 * On some systems the persistent_clock can not be detected at
1836 	 * timekeeping_init by its return value, so if we see a valid
1837 	 * value returned, update the persistent_clock_exists flag.
1838 	 */
1839 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1840 		persistent_clock_exists = true;
1841 
1842 	suspend_timing_needed = true;
1843 
1844 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1845 	write_seqcount_begin(&tk_core.seq);
1846 	timekeeping_forward_now(tk);
1847 	timekeeping_suspended = 1;
1848 
1849 	/*
1850 	 * Since we've called forward_now, cycle_last stores the value
1851 	 * just read from the current clocksource. Save this to potentially
1852 	 * use in suspend timing.
1853 	 */
1854 	curr_clock = tk->tkr_mono.clock;
1855 	cycle_now = tk->tkr_mono.cycle_last;
1856 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1857 
1858 	if (persistent_clock_exists) {
1859 		/*
1860 		 * To avoid drift caused by repeated suspend/resumes,
1861 		 * which each can add ~1 second drift error,
1862 		 * try to compensate so the difference in system time
1863 		 * and persistent_clock time stays close to constant.
1864 		 */
1865 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1866 		delta_delta = timespec64_sub(delta, old_delta);
1867 		if (abs(delta_delta.tv_sec) >= 2) {
1868 			/*
1869 			 * if delta_delta is too large, assume time correction
1870 			 * has occurred and set old_delta to the current delta.
1871 			 */
1872 			old_delta = delta;
1873 		} else {
1874 			/* Otherwise try to adjust old_system to compensate */
1875 			timekeeping_suspend_time =
1876 				timespec64_add(timekeeping_suspend_time, delta_delta);
1877 		}
1878 	}
1879 
1880 	timekeeping_update(tk, TK_MIRROR);
1881 	halt_fast_timekeeper(tk);
1882 	write_seqcount_end(&tk_core.seq);
1883 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1884 
1885 	tick_suspend();
1886 	clocksource_suspend();
1887 	clockevents_suspend();
1888 
1889 	return 0;
1890 }
1891 
1892 /* sysfs resume/suspend bits for timekeeping */
1893 static struct syscore_ops timekeeping_syscore_ops = {
1894 	.resume		= timekeeping_resume,
1895 	.suspend	= timekeeping_suspend,
1896 };
1897 
1898 static int __init timekeeping_init_ops(void)
1899 {
1900 	register_syscore_ops(&timekeeping_syscore_ops);
1901 	return 0;
1902 }
1903 device_initcall(timekeeping_init_ops);
1904 
1905 /*
1906  * Apply a multiplier adjustment to the timekeeper
1907  */
1908 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1909 							 s64 offset,
1910 							 s32 mult_adj)
1911 {
1912 	s64 interval = tk->cycle_interval;
1913 
1914 	if (mult_adj == 0) {
1915 		return;
1916 	} else if (mult_adj == -1) {
1917 		interval = -interval;
1918 		offset = -offset;
1919 	} else if (mult_adj != 1) {
1920 		interval *= mult_adj;
1921 		offset *= mult_adj;
1922 	}
1923 
1924 	/*
1925 	 * So the following can be confusing.
1926 	 *
1927 	 * To keep things simple, lets assume mult_adj == 1 for now.
1928 	 *
1929 	 * When mult_adj != 1, remember that the interval and offset values
1930 	 * have been appropriately scaled so the math is the same.
1931 	 *
1932 	 * The basic idea here is that we're increasing the multiplier
1933 	 * by one, this causes the xtime_interval to be incremented by
1934 	 * one cycle_interval. This is because:
1935 	 *	xtime_interval = cycle_interval * mult
1936 	 * So if mult is being incremented by one:
1937 	 *	xtime_interval = cycle_interval * (mult + 1)
1938 	 * Its the same as:
1939 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1940 	 * Which can be shortened to:
1941 	 *	xtime_interval += cycle_interval
1942 	 *
1943 	 * So offset stores the non-accumulated cycles. Thus the current
1944 	 * time (in shifted nanoseconds) is:
1945 	 *	now = (offset * adj) + xtime_nsec
1946 	 * Now, even though we're adjusting the clock frequency, we have
1947 	 * to keep time consistent. In other words, we can't jump back
1948 	 * in time, and we also want to avoid jumping forward in time.
1949 	 *
1950 	 * So given the same offset value, we need the time to be the same
1951 	 * both before and after the freq adjustment.
1952 	 *	now = (offset * adj_1) + xtime_nsec_1
1953 	 *	now = (offset * adj_2) + xtime_nsec_2
1954 	 * So:
1955 	 *	(offset * adj_1) + xtime_nsec_1 =
1956 	 *		(offset * adj_2) + xtime_nsec_2
1957 	 * And we know:
1958 	 *	adj_2 = adj_1 + 1
1959 	 * So:
1960 	 *	(offset * adj_1) + xtime_nsec_1 =
1961 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1962 	 *	(offset * adj_1) + xtime_nsec_1 =
1963 	 *		(offset * adj_1) + offset + xtime_nsec_2
1964 	 * Canceling the sides:
1965 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1966 	 * Which gives us:
1967 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1968 	 * Which simplfies to:
1969 	 *	xtime_nsec -= offset
1970 	 */
1971 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1972 		/* NTP adjustment caused clocksource mult overflow */
1973 		WARN_ON_ONCE(1);
1974 		return;
1975 	}
1976 
1977 	tk->tkr_mono.mult += mult_adj;
1978 	tk->xtime_interval += interval;
1979 	tk->tkr_mono.xtime_nsec -= offset;
1980 }
1981 
1982 /*
1983  * Adjust the timekeeper's multiplier to the correct frequency
1984  * and also to reduce the accumulated error value.
1985  */
1986 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1987 {
1988 	u32 mult;
1989 
1990 	/*
1991 	 * Determine the multiplier from the current NTP tick length.
1992 	 * Avoid expensive division when the tick length doesn't change.
1993 	 */
1994 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1995 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1996 	} else {
1997 		tk->ntp_tick = ntp_tick_length();
1998 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1999 				 tk->xtime_remainder, tk->cycle_interval);
2000 	}
2001 
2002 	/*
2003 	 * If the clock is behind the NTP time, increase the multiplier by 1
2004 	 * to catch up with it. If it's ahead and there was a remainder in the
2005 	 * tick division, the clock will slow down. Otherwise it will stay
2006 	 * ahead until the tick length changes to a non-divisible value.
2007 	 */
2008 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2009 	mult += tk->ntp_err_mult;
2010 
2011 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2012 
2013 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2014 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2015 			> tk->tkr_mono.clock->maxadj))) {
2016 		printk_once(KERN_WARNING
2017 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2018 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2019 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2020 	}
2021 
2022 	/*
2023 	 * It may be possible that when we entered this function, xtime_nsec
2024 	 * was very small.  Further, if we're slightly speeding the clocksource
2025 	 * in the code above, its possible the required corrective factor to
2026 	 * xtime_nsec could cause it to underflow.
2027 	 *
2028 	 * Now, since we have already accumulated the second and the NTP
2029 	 * subsystem has been notified via second_overflow(), we need to skip
2030 	 * the next update.
2031 	 */
2032 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2033 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2034 							tk->tkr_mono.shift;
2035 		tk->xtime_sec--;
2036 		tk->skip_second_overflow = 1;
2037 	}
2038 }
2039 
2040 /*
2041  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2042  *
2043  * Helper function that accumulates the nsecs greater than a second
2044  * from the xtime_nsec field to the xtime_secs field.
2045  * It also calls into the NTP code to handle leapsecond processing.
2046  */
2047 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2048 {
2049 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2050 	unsigned int clock_set = 0;
2051 
2052 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2053 		int leap;
2054 
2055 		tk->tkr_mono.xtime_nsec -= nsecps;
2056 		tk->xtime_sec++;
2057 
2058 		/*
2059 		 * Skip NTP update if this second was accumulated before,
2060 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2061 		 */
2062 		if (unlikely(tk->skip_second_overflow)) {
2063 			tk->skip_second_overflow = 0;
2064 			continue;
2065 		}
2066 
2067 		/* Figure out if its a leap sec and apply if needed */
2068 		leap = second_overflow(tk->xtime_sec);
2069 		if (unlikely(leap)) {
2070 			struct timespec64 ts;
2071 
2072 			tk->xtime_sec += leap;
2073 
2074 			ts.tv_sec = leap;
2075 			ts.tv_nsec = 0;
2076 			tk_set_wall_to_mono(tk,
2077 				timespec64_sub(tk->wall_to_monotonic, ts));
2078 
2079 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2080 
2081 			clock_set = TK_CLOCK_WAS_SET;
2082 		}
2083 	}
2084 	return clock_set;
2085 }
2086 
2087 /*
2088  * logarithmic_accumulation - shifted accumulation of cycles
2089  *
2090  * This functions accumulates a shifted interval of cycles into
2091  * a shifted interval nanoseconds. Allows for O(log) accumulation
2092  * loop.
2093  *
2094  * Returns the unconsumed cycles.
2095  */
2096 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2097 				    u32 shift, unsigned int *clock_set)
2098 {
2099 	u64 interval = tk->cycle_interval << shift;
2100 	u64 snsec_per_sec;
2101 
2102 	/* If the offset is smaller than a shifted interval, do nothing */
2103 	if (offset < interval)
2104 		return offset;
2105 
2106 	/* Accumulate one shifted interval */
2107 	offset -= interval;
2108 	tk->tkr_mono.cycle_last += interval;
2109 	tk->tkr_raw.cycle_last  += interval;
2110 
2111 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2112 	*clock_set |= accumulate_nsecs_to_secs(tk);
2113 
2114 	/* Accumulate raw time */
2115 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2116 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2117 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2118 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2119 		tk->raw_sec++;
2120 	}
2121 
2122 	/* Accumulate error between NTP and clock interval */
2123 	tk->ntp_error += tk->ntp_tick << shift;
2124 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2125 						(tk->ntp_error_shift + shift);
2126 
2127 	return offset;
2128 }
2129 
2130 /*
2131  * timekeeping_advance - Updates the timekeeper to the current time and
2132  * current NTP tick length
2133  */
2134 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2135 {
2136 	struct timekeeper *real_tk = &tk_core.timekeeper;
2137 	struct timekeeper *tk = &shadow_timekeeper;
2138 	u64 offset;
2139 	int shift = 0, maxshift;
2140 	unsigned int clock_set = 0;
2141 	unsigned long flags;
2142 
2143 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2144 
2145 	/* Make sure we're fully resumed: */
2146 	if (unlikely(timekeeping_suspended))
2147 		goto out;
2148 
2149 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2150 	offset = real_tk->cycle_interval;
2151 
2152 	if (mode != TK_ADV_TICK)
2153 		goto out;
2154 #else
2155 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2156 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2157 
2158 	/* Check if there's really nothing to do */
2159 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2160 		goto out;
2161 #endif
2162 
2163 	/* Do some additional sanity checking */
2164 	timekeeping_check_update(tk, offset);
2165 
2166 	/*
2167 	 * With NO_HZ we may have to accumulate many cycle_intervals
2168 	 * (think "ticks") worth of time at once. To do this efficiently,
2169 	 * we calculate the largest doubling multiple of cycle_intervals
2170 	 * that is smaller than the offset.  We then accumulate that
2171 	 * chunk in one go, and then try to consume the next smaller
2172 	 * doubled multiple.
2173 	 */
2174 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2175 	shift = max(0, shift);
2176 	/* Bound shift to one less than what overflows tick_length */
2177 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2178 	shift = min(shift, maxshift);
2179 	while (offset >= tk->cycle_interval) {
2180 		offset = logarithmic_accumulation(tk, offset, shift,
2181 							&clock_set);
2182 		if (offset < tk->cycle_interval<<shift)
2183 			shift--;
2184 	}
2185 
2186 	/* Adjust the multiplier to correct NTP error */
2187 	timekeeping_adjust(tk, offset);
2188 
2189 	/*
2190 	 * Finally, make sure that after the rounding
2191 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2192 	 */
2193 	clock_set |= accumulate_nsecs_to_secs(tk);
2194 
2195 	write_seqcount_begin(&tk_core.seq);
2196 	/*
2197 	 * Update the real timekeeper.
2198 	 *
2199 	 * We could avoid this memcpy by switching pointers, but that
2200 	 * requires changes to all other timekeeper usage sites as
2201 	 * well, i.e. move the timekeeper pointer getter into the
2202 	 * spinlocked/seqcount protected sections. And we trade this
2203 	 * memcpy under the tk_core.seq against one before we start
2204 	 * updating.
2205 	 */
2206 	timekeeping_update(tk, clock_set);
2207 	memcpy(real_tk, tk, sizeof(*tk));
2208 	/* The memcpy must come last. Do not put anything here! */
2209 	write_seqcount_end(&tk_core.seq);
2210 out:
2211 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2212 	if (clock_set)
2213 		/* Have to call _delayed version, since in irq context*/
2214 		clock_was_set_delayed();
2215 }
2216 
2217 /**
2218  * update_wall_time - Uses the current clocksource to increment the wall time
2219  *
2220  */
2221 void update_wall_time(void)
2222 {
2223 	timekeeping_advance(TK_ADV_TICK);
2224 }
2225 
2226 /**
2227  * getboottime64 - Return the real time of system boot.
2228  * @ts:		pointer to the timespec64 to be set
2229  *
2230  * Returns the wall-time of boot in a timespec64.
2231  *
2232  * This is based on the wall_to_monotonic offset and the total suspend
2233  * time. Calls to settimeofday will affect the value returned (which
2234  * basically means that however wrong your real time clock is at boot time,
2235  * you get the right time here).
2236  */
2237 void getboottime64(struct timespec64 *ts)
2238 {
2239 	struct timekeeper *tk = &tk_core.timekeeper;
2240 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2241 
2242 	*ts = ktime_to_timespec64(t);
2243 }
2244 EXPORT_SYMBOL_GPL(getboottime64);
2245 
2246 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2247 {
2248 	struct timekeeper *tk = &tk_core.timekeeper;
2249 	unsigned int seq;
2250 
2251 	do {
2252 		seq = read_seqcount_begin(&tk_core.seq);
2253 
2254 		*ts = tk_xtime(tk);
2255 	} while (read_seqcount_retry(&tk_core.seq, seq));
2256 }
2257 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2258 
2259 void ktime_get_coarse_ts64(struct timespec64 *ts)
2260 {
2261 	struct timekeeper *tk = &tk_core.timekeeper;
2262 	struct timespec64 now, mono;
2263 	unsigned int seq;
2264 
2265 	do {
2266 		seq = read_seqcount_begin(&tk_core.seq);
2267 
2268 		now = tk_xtime(tk);
2269 		mono = tk->wall_to_monotonic;
2270 	} while (read_seqcount_retry(&tk_core.seq, seq));
2271 
2272 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2273 				now.tv_nsec + mono.tv_nsec);
2274 }
2275 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2276 
2277 /*
2278  * Must hold jiffies_lock
2279  */
2280 void do_timer(unsigned long ticks)
2281 {
2282 	jiffies_64 += ticks;
2283 	calc_global_load();
2284 }
2285 
2286 /**
2287  * ktime_get_update_offsets_now - hrtimer helper
2288  * @cwsseq:	pointer to check and store the clock was set sequence number
2289  * @offs_real:	pointer to storage for monotonic -> realtime offset
2290  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2291  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2292  *
2293  * Returns current monotonic time and updates the offsets if the
2294  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2295  * different.
2296  *
2297  * Called from hrtimer_interrupt() or retrigger_next_event()
2298  */
2299 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2300 				     ktime_t *offs_boot, ktime_t *offs_tai)
2301 {
2302 	struct timekeeper *tk = &tk_core.timekeeper;
2303 	unsigned int seq;
2304 	ktime_t base;
2305 	u64 nsecs;
2306 
2307 	do {
2308 		seq = read_seqcount_begin(&tk_core.seq);
2309 
2310 		base = tk->tkr_mono.base;
2311 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2312 		base = ktime_add_ns(base, nsecs);
2313 
2314 		if (*cwsseq != tk->clock_was_set_seq) {
2315 			*cwsseq = tk->clock_was_set_seq;
2316 			*offs_real = tk->offs_real;
2317 			*offs_boot = tk->offs_boot;
2318 			*offs_tai = tk->offs_tai;
2319 		}
2320 
2321 		/* Handle leapsecond insertion adjustments */
2322 		if (unlikely(base >= tk->next_leap_ktime))
2323 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2324 
2325 	} while (read_seqcount_retry(&tk_core.seq, seq));
2326 
2327 	return base;
2328 }
2329 
2330 /*
2331  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2332  */
2333 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2334 {
2335 	if (txc->modes & ADJ_ADJTIME) {
2336 		/* singleshot must not be used with any other mode bits */
2337 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2338 			return -EINVAL;
2339 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2340 		    !capable(CAP_SYS_TIME))
2341 			return -EPERM;
2342 	} else {
2343 		/* In order to modify anything, you gotta be super-user! */
2344 		if (txc->modes && !capable(CAP_SYS_TIME))
2345 			return -EPERM;
2346 		/*
2347 		 * if the quartz is off by more than 10% then
2348 		 * something is VERY wrong!
2349 		 */
2350 		if (txc->modes & ADJ_TICK &&
2351 		    (txc->tick <  900000/USER_HZ ||
2352 		     txc->tick > 1100000/USER_HZ))
2353 			return -EINVAL;
2354 	}
2355 
2356 	if (txc->modes & ADJ_SETOFFSET) {
2357 		/* In order to inject time, you gotta be super-user! */
2358 		if (!capable(CAP_SYS_TIME))
2359 			return -EPERM;
2360 
2361 		/*
2362 		 * Validate if a timespec/timeval used to inject a time
2363 		 * offset is valid.  Offsets can be postive or negative, so
2364 		 * we don't check tv_sec. The value of the timeval/timespec
2365 		 * is the sum of its fields,but *NOTE*:
2366 		 * The field tv_usec/tv_nsec must always be non-negative and
2367 		 * we can't have more nanoseconds/microseconds than a second.
2368 		 */
2369 		if (txc->time.tv_usec < 0)
2370 			return -EINVAL;
2371 
2372 		if (txc->modes & ADJ_NANO) {
2373 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2374 				return -EINVAL;
2375 		} else {
2376 			if (txc->time.tv_usec >= USEC_PER_SEC)
2377 				return -EINVAL;
2378 		}
2379 	}
2380 
2381 	/*
2382 	 * Check for potential multiplication overflows that can
2383 	 * only happen on 64-bit systems:
2384 	 */
2385 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2386 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2387 			return -EINVAL;
2388 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2389 			return -EINVAL;
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 
2396 /**
2397  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2398  */
2399 int do_adjtimex(struct __kernel_timex *txc)
2400 {
2401 	struct timekeeper *tk = &tk_core.timekeeper;
2402 	struct audit_ntp_data ad;
2403 	unsigned long flags;
2404 	struct timespec64 ts;
2405 	s32 orig_tai, tai;
2406 	int ret;
2407 
2408 	/* Validate the data before disabling interrupts */
2409 	ret = timekeeping_validate_timex(txc);
2410 	if (ret)
2411 		return ret;
2412 
2413 	if (txc->modes & ADJ_SETOFFSET) {
2414 		struct timespec64 delta;
2415 		delta.tv_sec  = txc->time.tv_sec;
2416 		delta.tv_nsec = txc->time.tv_usec;
2417 		if (!(txc->modes & ADJ_NANO))
2418 			delta.tv_nsec *= 1000;
2419 		ret = timekeeping_inject_offset(&delta);
2420 		if (ret)
2421 			return ret;
2422 
2423 		audit_tk_injoffset(delta);
2424 	}
2425 
2426 	audit_ntp_init(&ad);
2427 
2428 	ktime_get_real_ts64(&ts);
2429 
2430 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2431 	write_seqcount_begin(&tk_core.seq);
2432 
2433 	orig_tai = tai = tk->tai_offset;
2434 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2435 
2436 	if (tai != orig_tai) {
2437 		__timekeeping_set_tai_offset(tk, tai);
2438 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2439 	}
2440 	tk_update_leap_state(tk);
2441 
2442 	write_seqcount_end(&tk_core.seq);
2443 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2444 
2445 	audit_ntp_log(&ad);
2446 
2447 	/* Update the multiplier immediately if frequency was set directly */
2448 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2449 		timekeeping_advance(TK_ADV_FREQ);
2450 
2451 	if (tai != orig_tai)
2452 		clock_was_set();
2453 
2454 	ntp_notify_cmos_timer();
2455 
2456 	return ret;
2457 }
2458 
2459 #ifdef CONFIG_NTP_PPS
2460 /**
2461  * hardpps() - Accessor function to NTP __hardpps function
2462  */
2463 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2464 {
2465 	unsigned long flags;
2466 
2467 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2468 	write_seqcount_begin(&tk_core.seq);
2469 
2470 	__hardpps(phase_ts, raw_ts);
2471 
2472 	write_seqcount_end(&tk_core.seq);
2473 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2474 }
2475 EXPORT_SYMBOL(hardpps);
2476 #endif /* CONFIG_NTP_PPS */
2477 
2478 /**
2479  * xtime_update() - advances the timekeeping infrastructure
2480  * @ticks:	number of ticks, that have elapsed since the last call.
2481  *
2482  * Must be called with interrupts disabled.
2483  */
2484 void xtime_update(unsigned long ticks)
2485 {
2486 	raw_spin_lock(&jiffies_lock);
2487 	write_seqcount_begin(&jiffies_seq);
2488 	do_timer(ticks);
2489 	write_seqcount_end(&jiffies_seq);
2490 	raw_spin_unlock(&jiffies_lock);
2491 	update_wall_time();
2492 }
2493