1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 #include <linux/stop_machine.h> 22 #include <linux/pvclock_gtod.h> 23 #include <linux/compiler.h> 24 #include <linux/audit.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 #include "timekeeping_internal.h" 29 30 #define TK_CLEAR_NTP (1 << 0) 31 #define TK_MIRROR (1 << 1) 32 #define TK_CLOCK_WAS_SET (1 << 2) 33 34 enum timekeeping_adv_mode { 35 /* Update timekeeper when a tick has passed */ 36 TK_ADV_TICK, 37 38 /* Update timekeeper on a direct frequency change */ 39 TK_ADV_FREQ 40 }; 41 42 DEFINE_RAW_SPINLOCK(timekeeper_lock); 43 44 /* 45 * The most important data for readout fits into a single 64 byte 46 * cache line. 47 */ 48 static struct { 49 seqcount_raw_spinlock_t seq; 50 struct timekeeper timekeeper; 51 } tk_core ____cacheline_aligned = { 52 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), 53 }; 54 55 static struct timekeeper shadow_timekeeper; 56 57 /* flag for if timekeeping is suspended */ 58 int __read_mostly timekeeping_suspended; 59 60 /** 61 * struct tk_fast - NMI safe timekeeper 62 * @seq: Sequence counter for protecting updates. The lowest bit 63 * is the index for the tk_read_base array 64 * @base: tk_read_base array. Access is indexed by the lowest bit of 65 * @seq. 66 * 67 * See @update_fast_timekeeper() below. 68 */ 69 struct tk_fast { 70 seqcount_latch_t seq; 71 struct tk_read_base base[2]; 72 }; 73 74 /* Suspend-time cycles value for halted fast timekeeper. */ 75 static u64 cycles_at_suspend; 76 77 static u64 dummy_clock_read(struct clocksource *cs) 78 { 79 if (timekeeping_suspended) 80 return cycles_at_suspend; 81 return local_clock(); 82 } 83 84 static struct clocksource dummy_clock = { 85 .read = dummy_clock_read, 86 }; 87 88 /* 89 * Boot time initialization which allows local_clock() to be utilized 90 * during early boot when clocksources are not available. local_clock() 91 * returns nanoseconds already so no conversion is required, hence mult=1 92 * and shift=0. When the first proper clocksource is installed then 93 * the fast time keepers are updated with the correct values. 94 */ 95 #define FAST_TK_INIT \ 96 { \ 97 .clock = &dummy_clock, \ 98 .mask = CLOCKSOURCE_MASK(64), \ 99 .mult = 1, \ 100 .shift = 0, \ 101 } 102 103 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 104 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 105 .base[0] = FAST_TK_INIT, 106 .base[1] = FAST_TK_INIT, 107 }; 108 109 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 110 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 111 .base[0] = FAST_TK_INIT, 112 .base[1] = FAST_TK_INIT, 113 }; 114 115 static inline void tk_normalize_xtime(struct timekeeper *tk) 116 { 117 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 118 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 119 tk->xtime_sec++; 120 } 121 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 122 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 123 tk->raw_sec++; 124 } 125 } 126 127 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 128 { 129 struct timespec64 ts; 130 131 ts.tv_sec = tk->xtime_sec; 132 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 133 return ts; 134 } 135 136 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 137 { 138 tk->xtime_sec = ts->tv_sec; 139 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 140 } 141 142 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 143 { 144 tk->xtime_sec += ts->tv_sec; 145 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 146 tk_normalize_xtime(tk); 147 } 148 149 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 150 { 151 struct timespec64 tmp; 152 153 /* 154 * Verify consistency of: offset_real = -wall_to_monotonic 155 * before modifying anything 156 */ 157 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 158 -tk->wall_to_monotonic.tv_nsec); 159 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 160 tk->wall_to_monotonic = wtm; 161 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 162 tk->offs_real = timespec64_to_ktime(tmp); 163 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 164 } 165 166 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 167 { 168 tk->offs_boot = ktime_add(tk->offs_boot, delta); 169 /* 170 * Timespec representation for VDSO update to avoid 64bit division 171 * on every update. 172 */ 173 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 174 } 175 176 /* 177 * tk_clock_read - atomic clocksource read() helper 178 * 179 * This helper is necessary to use in the read paths because, while the 180 * seqcount ensures we don't return a bad value while structures are updated, 181 * it doesn't protect from potential crashes. There is the possibility that 182 * the tkr's clocksource may change between the read reference, and the 183 * clock reference passed to the read function. This can cause crashes if 184 * the wrong clocksource is passed to the wrong read function. 185 * This isn't necessary to use when holding the timekeeper_lock or doing 186 * a read of the fast-timekeeper tkrs (which is protected by its own locking 187 * and update logic). 188 */ 189 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 190 { 191 struct clocksource *clock = READ_ONCE(tkr->clock); 192 193 return clock->read(clock); 194 } 195 196 #ifdef CONFIG_DEBUG_TIMEKEEPING 197 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 198 199 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 200 { 201 202 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 203 const char *name = tk->tkr_mono.clock->name; 204 205 if (offset > max_cycles) { 206 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 207 offset, name, max_cycles); 208 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 209 } else { 210 if (offset > (max_cycles >> 1)) { 211 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 212 offset, name, max_cycles >> 1); 213 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 214 } 215 } 216 217 if (tk->underflow_seen) { 218 if (jiffies - tk->last_warning > WARNING_FREQ) { 219 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 220 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 221 printk_deferred(" Your kernel is probably still fine.\n"); 222 tk->last_warning = jiffies; 223 } 224 tk->underflow_seen = 0; 225 } 226 227 if (tk->overflow_seen) { 228 if (jiffies - tk->last_warning > WARNING_FREQ) { 229 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 230 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 231 printk_deferred(" Your kernel is probably still fine.\n"); 232 tk->last_warning = jiffies; 233 } 234 tk->overflow_seen = 0; 235 } 236 } 237 238 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 239 { 240 struct timekeeper *tk = &tk_core.timekeeper; 241 u64 now, last, mask, max, delta; 242 unsigned int seq; 243 244 /* 245 * Since we're called holding a seqcount, the data may shift 246 * under us while we're doing the calculation. This can cause 247 * false positives, since we'd note a problem but throw the 248 * results away. So nest another seqcount here to atomically 249 * grab the points we are checking with. 250 */ 251 do { 252 seq = read_seqcount_begin(&tk_core.seq); 253 now = tk_clock_read(tkr); 254 last = tkr->cycle_last; 255 mask = tkr->mask; 256 max = tkr->clock->max_cycles; 257 } while (read_seqcount_retry(&tk_core.seq, seq)); 258 259 delta = clocksource_delta(now, last, mask); 260 261 /* 262 * Try to catch underflows by checking if we are seeing small 263 * mask-relative negative values. 264 */ 265 if (unlikely((~delta & mask) < (mask >> 3))) { 266 tk->underflow_seen = 1; 267 delta = 0; 268 } 269 270 /* Cap delta value to the max_cycles values to avoid mult overflows */ 271 if (unlikely(delta > max)) { 272 tk->overflow_seen = 1; 273 delta = tkr->clock->max_cycles; 274 } 275 276 return delta; 277 } 278 #else 279 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 280 { 281 } 282 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) 283 { 284 u64 cycle_now, delta; 285 286 /* read clocksource */ 287 cycle_now = tk_clock_read(tkr); 288 289 /* calculate the delta since the last update_wall_time */ 290 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 291 292 return delta; 293 } 294 #endif 295 296 /** 297 * tk_setup_internals - Set up internals to use clocksource clock. 298 * 299 * @tk: The target timekeeper to setup. 300 * @clock: Pointer to clocksource. 301 * 302 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 303 * pair and interval request. 304 * 305 * Unless you're the timekeeping code, you should not be using this! 306 */ 307 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 308 { 309 u64 interval; 310 u64 tmp, ntpinterval; 311 struct clocksource *old_clock; 312 313 ++tk->cs_was_changed_seq; 314 old_clock = tk->tkr_mono.clock; 315 tk->tkr_mono.clock = clock; 316 tk->tkr_mono.mask = clock->mask; 317 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 318 319 tk->tkr_raw.clock = clock; 320 tk->tkr_raw.mask = clock->mask; 321 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 322 323 /* Do the ns -> cycle conversion first, using original mult */ 324 tmp = NTP_INTERVAL_LENGTH; 325 tmp <<= clock->shift; 326 ntpinterval = tmp; 327 tmp += clock->mult/2; 328 do_div(tmp, clock->mult); 329 if (tmp == 0) 330 tmp = 1; 331 332 interval = (u64) tmp; 333 tk->cycle_interval = interval; 334 335 /* Go back from cycles -> shifted ns */ 336 tk->xtime_interval = interval * clock->mult; 337 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 338 tk->raw_interval = interval * clock->mult; 339 340 /* if changing clocks, convert xtime_nsec shift units */ 341 if (old_clock) { 342 int shift_change = clock->shift - old_clock->shift; 343 if (shift_change < 0) { 344 tk->tkr_mono.xtime_nsec >>= -shift_change; 345 tk->tkr_raw.xtime_nsec >>= -shift_change; 346 } else { 347 tk->tkr_mono.xtime_nsec <<= shift_change; 348 tk->tkr_raw.xtime_nsec <<= shift_change; 349 } 350 } 351 352 tk->tkr_mono.shift = clock->shift; 353 tk->tkr_raw.shift = clock->shift; 354 355 tk->ntp_error = 0; 356 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 357 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 358 359 /* 360 * The timekeeper keeps its own mult values for the currently 361 * active clocksource. These value will be adjusted via NTP 362 * to counteract clock drifting. 363 */ 364 tk->tkr_mono.mult = clock->mult; 365 tk->tkr_raw.mult = clock->mult; 366 tk->ntp_err_mult = 0; 367 tk->skip_second_overflow = 0; 368 } 369 370 /* Timekeeper helper functions. */ 371 372 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 373 static u32 default_arch_gettimeoffset(void) { return 0; } 374 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 375 #else 376 static inline u32 arch_gettimeoffset(void) { return 0; } 377 #endif 378 379 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) 380 { 381 u64 nsec; 382 383 nsec = delta * tkr->mult + tkr->xtime_nsec; 384 nsec >>= tkr->shift; 385 386 /* If arch requires, add in get_arch_timeoffset() */ 387 return nsec + arch_gettimeoffset(); 388 } 389 390 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 391 { 392 u64 delta; 393 394 delta = timekeeping_get_delta(tkr); 395 return timekeeping_delta_to_ns(tkr, delta); 396 } 397 398 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 399 { 400 u64 delta; 401 402 /* calculate the delta since the last update_wall_time */ 403 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 404 return timekeeping_delta_to_ns(tkr, delta); 405 } 406 407 /** 408 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 409 * @tkr: Timekeeping readout base from which we take the update 410 * @tkf: Pointer to NMI safe timekeeper 411 * 412 * We want to use this from any context including NMI and tracing / 413 * instrumenting the timekeeping code itself. 414 * 415 * Employ the latch technique; see @raw_write_seqcount_latch. 416 * 417 * So if a NMI hits the update of base[0] then it will use base[1] 418 * which is still consistent. In the worst case this can result is a 419 * slightly wrong timestamp (a few nanoseconds). See 420 * @ktime_get_mono_fast_ns. 421 */ 422 static void update_fast_timekeeper(const struct tk_read_base *tkr, 423 struct tk_fast *tkf) 424 { 425 struct tk_read_base *base = tkf->base; 426 427 /* Force readers off to base[1] */ 428 raw_write_seqcount_latch(&tkf->seq); 429 430 /* Update base[0] */ 431 memcpy(base, tkr, sizeof(*base)); 432 433 /* Force readers back to base[0] */ 434 raw_write_seqcount_latch(&tkf->seq); 435 436 /* Update base[1] */ 437 memcpy(base + 1, base, sizeof(*base)); 438 } 439 440 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 441 { 442 struct tk_read_base *tkr; 443 unsigned int seq; 444 u64 now; 445 446 do { 447 seq = raw_read_seqcount_latch(&tkf->seq); 448 tkr = tkf->base + (seq & 0x01); 449 now = ktime_to_ns(tkr->base); 450 451 now += timekeeping_delta_to_ns(tkr, 452 clocksource_delta( 453 tk_clock_read(tkr), 454 tkr->cycle_last, 455 tkr->mask)); 456 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 457 458 return now; 459 } 460 461 /** 462 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 463 * 464 * This timestamp is not guaranteed to be monotonic across an update. 465 * The timestamp is calculated by: 466 * 467 * now = base_mono + clock_delta * slope 468 * 469 * So if the update lowers the slope, readers who are forced to the 470 * not yet updated second array are still using the old steeper slope. 471 * 472 * tmono 473 * ^ 474 * | o n 475 * | o n 476 * | u 477 * | o 478 * |o 479 * |12345678---> reader order 480 * 481 * o = old slope 482 * u = update 483 * n = new slope 484 * 485 * So reader 6 will observe time going backwards versus reader 5. 486 * 487 * While other CPUs are likely to be able to observe that, the only way 488 * for a CPU local observation is when an NMI hits in the middle of 489 * the update. Timestamps taken from that NMI context might be ahead 490 * of the following timestamps. Callers need to be aware of that and 491 * deal with it. 492 */ 493 u64 ktime_get_mono_fast_ns(void) 494 { 495 return __ktime_get_fast_ns(&tk_fast_mono); 496 } 497 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 498 499 /** 500 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 501 * 502 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 503 * conversion factor is not affected by NTP/PTP correction. 504 */ 505 u64 ktime_get_raw_fast_ns(void) 506 { 507 return __ktime_get_fast_ns(&tk_fast_raw); 508 } 509 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 510 511 /** 512 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 513 * 514 * To keep it NMI safe since we're accessing from tracing, we're not using a 515 * separate timekeeper with updates to monotonic clock and boot offset 516 * protected with seqcounts. This has the following minor side effects: 517 * 518 * (1) Its possible that a timestamp be taken after the boot offset is updated 519 * but before the timekeeper is updated. If this happens, the new boot offset 520 * is added to the old timekeeping making the clock appear to update slightly 521 * earlier: 522 * CPU 0 CPU 1 523 * timekeeping_inject_sleeptime64() 524 * __timekeeping_inject_sleeptime(tk, delta); 525 * timestamp(); 526 * timekeeping_update(tk, TK_CLEAR_NTP...); 527 * 528 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 529 * partially updated. Since the tk->offs_boot update is a rare event, this 530 * should be a rare occurrence which postprocessing should be able to handle. 531 * 532 * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns() 533 * apply as well. 534 */ 535 u64 notrace ktime_get_boot_fast_ns(void) 536 { 537 struct timekeeper *tk = &tk_core.timekeeper; 538 539 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 540 } 541 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 542 543 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 544 { 545 struct tk_read_base *tkr; 546 u64 basem, baser, delta; 547 unsigned int seq; 548 549 do { 550 seq = raw_read_seqcount_latch(&tkf->seq); 551 tkr = tkf->base + (seq & 0x01); 552 basem = ktime_to_ns(tkr->base); 553 baser = ktime_to_ns(tkr->base_real); 554 555 delta = timekeeping_delta_to_ns(tkr, 556 clocksource_delta(tk_clock_read(tkr), 557 tkr->cycle_last, tkr->mask)); 558 } while (read_seqcount_latch_retry(&tkf->seq, seq)); 559 560 if (mono) 561 *mono = basem + delta; 562 return baser + delta; 563 } 564 565 /** 566 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 567 * 568 * See ktime_get_fast_ns() for documentation of the time stamp ordering. 569 */ 570 u64 ktime_get_real_fast_ns(void) 571 { 572 return __ktime_get_real_fast(&tk_fast_mono, NULL); 573 } 574 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 575 576 /** 577 * ktime_get_fast_timestamps: - NMI safe timestamps 578 * @snapshot: Pointer to timestamp storage 579 * 580 * Stores clock monotonic, boottime and realtime timestamps. 581 * 582 * Boot time is a racy access on 32bit systems if the sleep time injection 583 * happens late during resume and not in timekeeping_resume(). That could 584 * be avoided by expanding struct tk_read_base with boot offset for 32bit 585 * and adding more overhead to the update. As this is a hard to observe 586 * once per resume event which can be filtered with reasonable effort using 587 * the accurate mono/real timestamps, it's probably not worth the trouble. 588 * 589 * Aside of that it might be possible on 32 and 64 bit to observe the 590 * following when the sleep time injection happens late: 591 * 592 * CPU 0 CPU 1 593 * timekeeping_resume() 594 * ktime_get_fast_timestamps() 595 * mono, real = __ktime_get_real_fast() 596 * inject_sleep_time() 597 * update boot offset 598 * boot = mono + bootoffset; 599 * 600 * That means that boot time already has the sleep time adjustment, but 601 * real time does not. On the next readout both are in sync again. 602 * 603 * Preventing this for 64bit is not really feasible without destroying the 604 * careful cache layout of the timekeeper because the sequence count and 605 * struct tk_read_base would then need two cache lines instead of one. 606 * 607 * Access to the time keeper clock source is disabled accross the innermost 608 * steps of suspend/resume. The accessors still work, but the timestamps 609 * are frozen until time keeping is resumed which happens very early. 610 * 611 * For regular suspend/resume there is no observable difference vs. sched 612 * clock, but it might affect some of the nasty low level debug printks. 613 * 614 * OTOH, access to sched clock is not guaranteed accross suspend/resume on 615 * all systems either so it depends on the hardware in use. 616 * 617 * If that turns out to be a real problem then this could be mitigated by 618 * using sched clock in a similar way as during early boot. But it's not as 619 * trivial as on early boot because it needs some careful protection 620 * against the clock monotonic timestamp jumping backwards on resume. 621 */ 622 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 623 { 624 struct timekeeper *tk = &tk_core.timekeeper; 625 626 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 627 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 628 } 629 630 /** 631 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 632 * @tk: Timekeeper to snapshot. 633 * 634 * It generally is unsafe to access the clocksource after timekeeping has been 635 * suspended, so take a snapshot of the readout base of @tk and use it as the 636 * fast timekeeper's readout base while suspended. It will return the same 637 * number of cycles every time until timekeeping is resumed at which time the 638 * proper readout base for the fast timekeeper will be restored automatically. 639 */ 640 static void halt_fast_timekeeper(const struct timekeeper *tk) 641 { 642 static struct tk_read_base tkr_dummy; 643 const struct tk_read_base *tkr = &tk->tkr_mono; 644 645 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 646 cycles_at_suspend = tk_clock_read(tkr); 647 tkr_dummy.clock = &dummy_clock; 648 tkr_dummy.base_real = tkr->base + tk->offs_real; 649 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 650 651 tkr = &tk->tkr_raw; 652 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 653 tkr_dummy.clock = &dummy_clock; 654 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 655 } 656 657 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 658 659 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 660 { 661 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 662 } 663 664 /** 665 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 666 * @nb: Pointer to the notifier block to register 667 */ 668 int pvclock_gtod_register_notifier(struct notifier_block *nb) 669 { 670 struct timekeeper *tk = &tk_core.timekeeper; 671 unsigned long flags; 672 int ret; 673 674 raw_spin_lock_irqsave(&timekeeper_lock, flags); 675 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 676 update_pvclock_gtod(tk, true); 677 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 678 679 return ret; 680 } 681 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 682 683 /** 684 * pvclock_gtod_unregister_notifier - unregister a pvclock 685 * timedata update listener 686 * @nb: Pointer to the notifier block to unregister 687 */ 688 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 689 { 690 unsigned long flags; 691 int ret; 692 693 raw_spin_lock_irqsave(&timekeeper_lock, flags); 694 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 695 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 696 697 return ret; 698 } 699 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 700 701 /* 702 * tk_update_leap_state - helper to update the next_leap_ktime 703 */ 704 static inline void tk_update_leap_state(struct timekeeper *tk) 705 { 706 tk->next_leap_ktime = ntp_get_next_leap(); 707 if (tk->next_leap_ktime != KTIME_MAX) 708 /* Convert to monotonic time */ 709 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 710 } 711 712 /* 713 * Update the ktime_t based scalar nsec members of the timekeeper 714 */ 715 static inline void tk_update_ktime_data(struct timekeeper *tk) 716 { 717 u64 seconds; 718 u32 nsec; 719 720 /* 721 * The xtime based monotonic readout is: 722 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 723 * The ktime based monotonic readout is: 724 * nsec = base_mono + now(); 725 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 726 */ 727 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 728 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 729 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 730 731 /* 732 * The sum of the nanoseconds portions of xtime and 733 * wall_to_monotonic can be greater/equal one second. Take 734 * this into account before updating tk->ktime_sec. 735 */ 736 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 737 if (nsec >= NSEC_PER_SEC) 738 seconds++; 739 tk->ktime_sec = seconds; 740 741 /* Update the monotonic raw base */ 742 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 743 } 744 745 /* must hold timekeeper_lock */ 746 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 747 { 748 if (action & TK_CLEAR_NTP) { 749 tk->ntp_error = 0; 750 ntp_clear(); 751 } 752 753 tk_update_leap_state(tk); 754 tk_update_ktime_data(tk); 755 756 update_vsyscall(tk); 757 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 758 759 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 760 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 761 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 762 763 if (action & TK_CLOCK_WAS_SET) 764 tk->clock_was_set_seq++; 765 /* 766 * The mirroring of the data to the shadow-timekeeper needs 767 * to happen last here to ensure we don't over-write the 768 * timekeeper structure on the next update with stale data 769 */ 770 if (action & TK_MIRROR) 771 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 772 sizeof(tk_core.timekeeper)); 773 } 774 775 /** 776 * timekeeping_forward_now - update clock to the current time 777 * @tk: Pointer to the timekeeper to update 778 * 779 * Forward the current clock to update its state since the last call to 780 * update_wall_time(). This is useful before significant clock changes, 781 * as it avoids having to deal with this time offset explicitly. 782 */ 783 static void timekeeping_forward_now(struct timekeeper *tk) 784 { 785 u64 cycle_now, delta; 786 787 cycle_now = tk_clock_read(&tk->tkr_mono); 788 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 789 tk->tkr_mono.cycle_last = cycle_now; 790 tk->tkr_raw.cycle_last = cycle_now; 791 792 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 793 794 /* If arch requires, add in get_arch_timeoffset() */ 795 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 796 797 798 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 799 800 /* If arch requires, add in get_arch_timeoffset() */ 801 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 802 803 tk_normalize_xtime(tk); 804 } 805 806 /** 807 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 808 * @ts: pointer to the timespec to be set 809 * 810 * Returns the time of day in a timespec64 (WARN if suspended). 811 */ 812 void ktime_get_real_ts64(struct timespec64 *ts) 813 { 814 struct timekeeper *tk = &tk_core.timekeeper; 815 unsigned int seq; 816 u64 nsecs; 817 818 WARN_ON(timekeeping_suspended); 819 820 do { 821 seq = read_seqcount_begin(&tk_core.seq); 822 823 ts->tv_sec = tk->xtime_sec; 824 nsecs = timekeeping_get_ns(&tk->tkr_mono); 825 826 } while (read_seqcount_retry(&tk_core.seq, seq)); 827 828 ts->tv_nsec = 0; 829 timespec64_add_ns(ts, nsecs); 830 } 831 EXPORT_SYMBOL(ktime_get_real_ts64); 832 833 ktime_t ktime_get(void) 834 { 835 struct timekeeper *tk = &tk_core.timekeeper; 836 unsigned int seq; 837 ktime_t base; 838 u64 nsecs; 839 840 WARN_ON(timekeeping_suspended); 841 842 do { 843 seq = read_seqcount_begin(&tk_core.seq); 844 base = tk->tkr_mono.base; 845 nsecs = timekeeping_get_ns(&tk->tkr_mono); 846 847 } while (read_seqcount_retry(&tk_core.seq, seq)); 848 849 return ktime_add_ns(base, nsecs); 850 } 851 EXPORT_SYMBOL_GPL(ktime_get); 852 853 u32 ktime_get_resolution_ns(void) 854 { 855 struct timekeeper *tk = &tk_core.timekeeper; 856 unsigned int seq; 857 u32 nsecs; 858 859 WARN_ON(timekeeping_suspended); 860 861 do { 862 seq = read_seqcount_begin(&tk_core.seq); 863 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 864 } while (read_seqcount_retry(&tk_core.seq, seq)); 865 866 return nsecs; 867 } 868 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 869 870 static ktime_t *offsets[TK_OFFS_MAX] = { 871 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 872 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 873 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 874 }; 875 876 ktime_t ktime_get_with_offset(enum tk_offsets offs) 877 { 878 struct timekeeper *tk = &tk_core.timekeeper; 879 unsigned int seq; 880 ktime_t base, *offset = offsets[offs]; 881 u64 nsecs; 882 883 WARN_ON(timekeeping_suspended); 884 885 do { 886 seq = read_seqcount_begin(&tk_core.seq); 887 base = ktime_add(tk->tkr_mono.base, *offset); 888 nsecs = timekeeping_get_ns(&tk->tkr_mono); 889 890 } while (read_seqcount_retry(&tk_core.seq, seq)); 891 892 return ktime_add_ns(base, nsecs); 893 894 } 895 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 896 897 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 898 { 899 struct timekeeper *tk = &tk_core.timekeeper; 900 unsigned int seq; 901 ktime_t base, *offset = offsets[offs]; 902 u64 nsecs; 903 904 WARN_ON(timekeeping_suspended); 905 906 do { 907 seq = read_seqcount_begin(&tk_core.seq); 908 base = ktime_add(tk->tkr_mono.base, *offset); 909 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 910 911 } while (read_seqcount_retry(&tk_core.seq, seq)); 912 913 return ktime_add_ns(base, nsecs); 914 } 915 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 916 917 /** 918 * ktime_mono_to_any() - convert mononotic time to any other time 919 * @tmono: time to convert. 920 * @offs: which offset to use 921 */ 922 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 923 { 924 ktime_t *offset = offsets[offs]; 925 unsigned int seq; 926 ktime_t tconv; 927 928 do { 929 seq = read_seqcount_begin(&tk_core.seq); 930 tconv = ktime_add(tmono, *offset); 931 } while (read_seqcount_retry(&tk_core.seq, seq)); 932 933 return tconv; 934 } 935 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 936 937 /** 938 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 939 */ 940 ktime_t ktime_get_raw(void) 941 { 942 struct timekeeper *tk = &tk_core.timekeeper; 943 unsigned int seq; 944 ktime_t base; 945 u64 nsecs; 946 947 do { 948 seq = read_seqcount_begin(&tk_core.seq); 949 base = tk->tkr_raw.base; 950 nsecs = timekeeping_get_ns(&tk->tkr_raw); 951 952 } while (read_seqcount_retry(&tk_core.seq, seq)); 953 954 return ktime_add_ns(base, nsecs); 955 } 956 EXPORT_SYMBOL_GPL(ktime_get_raw); 957 958 /** 959 * ktime_get_ts64 - get the monotonic clock in timespec64 format 960 * @ts: pointer to timespec variable 961 * 962 * The function calculates the monotonic clock from the realtime 963 * clock and the wall_to_monotonic offset and stores the result 964 * in normalized timespec64 format in the variable pointed to by @ts. 965 */ 966 void ktime_get_ts64(struct timespec64 *ts) 967 { 968 struct timekeeper *tk = &tk_core.timekeeper; 969 struct timespec64 tomono; 970 unsigned int seq; 971 u64 nsec; 972 973 WARN_ON(timekeeping_suspended); 974 975 do { 976 seq = read_seqcount_begin(&tk_core.seq); 977 ts->tv_sec = tk->xtime_sec; 978 nsec = timekeeping_get_ns(&tk->tkr_mono); 979 tomono = tk->wall_to_monotonic; 980 981 } while (read_seqcount_retry(&tk_core.seq, seq)); 982 983 ts->tv_sec += tomono.tv_sec; 984 ts->tv_nsec = 0; 985 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 986 } 987 EXPORT_SYMBOL_GPL(ktime_get_ts64); 988 989 /** 990 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 991 * 992 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 993 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 994 * works on both 32 and 64 bit systems. On 32 bit systems the readout 995 * covers ~136 years of uptime which should be enough to prevent 996 * premature wrap arounds. 997 */ 998 time64_t ktime_get_seconds(void) 999 { 1000 struct timekeeper *tk = &tk_core.timekeeper; 1001 1002 WARN_ON(timekeeping_suspended); 1003 return tk->ktime_sec; 1004 } 1005 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1006 1007 /** 1008 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1009 * 1010 * Returns the wall clock seconds since 1970. This replaces the 1011 * get_seconds() interface which is not y2038 safe on 32bit systems. 1012 * 1013 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1014 * 32bit systems the access must be protected with the sequence 1015 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1016 * value. 1017 */ 1018 time64_t ktime_get_real_seconds(void) 1019 { 1020 struct timekeeper *tk = &tk_core.timekeeper; 1021 time64_t seconds; 1022 unsigned int seq; 1023 1024 if (IS_ENABLED(CONFIG_64BIT)) 1025 return tk->xtime_sec; 1026 1027 do { 1028 seq = read_seqcount_begin(&tk_core.seq); 1029 seconds = tk->xtime_sec; 1030 1031 } while (read_seqcount_retry(&tk_core.seq, seq)); 1032 1033 return seconds; 1034 } 1035 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1036 1037 /** 1038 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1039 * but without the sequence counter protect. This internal function 1040 * is called just when timekeeping lock is already held. 1041 */ 1042 noinstr time64_t __ktime_get_real_seconds(void) 1043 { 1044 struct timekeeper *tk = &tk_core.timekeeper; 1045 1046 return tk->xtime_sec; 1047 } 1048 1049 /** 1050 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1051 * @systime_snapshot: pointer to struct receiving the system time snapshot 1052 */ 1053 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1054 { 1055 struct timekeeper *tk = &tk_core.timekeeper; 1056 unsigned int seq; 1057 ktime_t base_raw; 1058 ktime_t base_real; 1059 u64 nsec_raw; 1060 u64 nsec_real; 1061 u64 now; 1062 1063 WARN_ON_ONCE(timekeeping_suspended); 1064 1065 do { 1066 seq = read_seqcount_begin(&tk_core.seq); 1067 now = tk_clock_read(&tk->tkr_mono); 1068 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1069 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1070 base_real = ktime_add(tk->tkr_mono.base, 1071 tk_core.timekeeper.offs_real); 1072 base_raw = tk->tkr_raw.base; 1073 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1074 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1075 } while (read_seqcount_retry(&tk_core.seq, seq)); 1076 1077 systime_snapshot->cycles = now; 1078 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1079 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1080 } 1081 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1082 1083 /* Scale base by mult/div checking for overflow */ 1084 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1085 { 1086 u64 tmp, rem; 1087 1088 tmp = div64_u64_rem(*base, div, &rem); 1089 1090 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1091 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1092 return -EOVERFLOW; 1093 tmp *= mult; 1094 1095 rem = div64_u64(rem * mult, div); 1096 *base = tmp + rem; 1097 return 0; 1098 } 1099 1100 /** 1101 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1102 * @history: Snapshot representing start of history 1103 * @partial_history_cycles: Cycle offset into history (fractional part) 1104 * @total_history_cycles: Total history length in cycles 1105 * @discontinuity: True indicates clock was set on history period 1106 * @ts: Cross timestamp that should be adjusted using 1107 * partial/total ratio 1108 * 1109 * Helper function used by get_device_system_crosststamp() to correct the 1110 * crosstimestamp corresponding to the start of the current interval to the 1111 * system counter value (timestamp point) provided by the driver. The 1112 * total_history_* quantities are the total history starting at the provided 1113 * reference point and ending at the start of the current interval. The cycle 1114 * count between the driver timestamp point and the start of the current 1115 * interval is partial_history_cycles. 1116 */ 1117 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1118 u64 partial_history_cycles, 1119 u64 total_history_cycles, 1120 bool discontinuity, 1121 struct system_device_crosststamp *ts) 1122 { 1123 struct timekeeper *tk = &tk_core.timekeeper; 1124 u64 corr_raw, corr_real; 1125 bool interp_forward; 1126 int ret; 1127 1128 if (total_history_cycles == 0 || partial_history_cycles == 0) 1129 return 0; 1130 1131 /* Interpolate shortest distance from beginning or end of history */ 1132 interp_forward = partial_history_cycles > total_history_cycles / 2; 1133 partial_history_cycles = interp_forward ? 1134 total_history_cycles - partial_history_cycles : 1135 partial_history_cycles; 1136 1137 /* 1138 * Scale the monotonic raw time delta by: 1139 * partial_history_cycles / total_history_cycles 1140 */ 1141 corr_raw = (u64)ktime_to_ns( 1142 ktime_sub(ts->sys_monoraw, history->raw)); 1143 ret = scale64_check_overflow(partial_history_cycles, 1144 total_history_cycles, &corr_raw); 1145 if (ret) 1146 return ret; 1147 1148 /* 1149 * If there is a discontinuity in the history, scale monotonic raw 1150 * correction by: 1151 * mult(real)/mult(raw) yielding the realtime correction 1152 * Otherwise, calculate the realtime correction similar to monotonic 1153 * raw calculation 1154 */ 1155 if (discontinuity) { 1156 corr_real = mul_u64_u32_div 1157 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1158 } else { 1159 corr_real = (u64)ktime_to_ns( 1160 ktime_sub(ts->sys_realtime, history->real)); 1161 ret = scale64_check_overflow(partial_history_cycles, 1162 total_history_cycles, &corr_real); 1163 if (ret) 1164 return ret; 1165 } 1166 1167 /* Fixup monotonic raw and real time time values */ 1168 if (interp_forward) { 1169 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1170 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1171 } else { 1172 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1173 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1174 } 1175 1176 return 0; 1177 } 1178 1179 /* 1180 * cycle_between - true if test occurs chronologically between before and after 1181 */ 1182 static bool cycle_between(u64 before, u64 test, u64 after) 1183 { 1184 if (test > before && test < after) 1185 return true; 1186 if (test < before && before > after) 1187 return true; 1188 return false; 1189 } 1190 1191 /** 1192 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1193 * @get_time_fn: Callback to get simultaneous device time and 1194 * system counter from the device driver 1195 * @ctx: Context passed to get_time_fn() 1196 * @history_begin: Historical reference point used to interpolate system 1197 * time when counter provided by the driver is before the current interval 1198 * @xtstamp: Receives simultaneously captured system and device time 1199 * 1200 * Reads a timestamp from a device and correlates it to system time 1201 */ 1202 int get_device_system_crosststamp(int (*get_time_fn) 1203 (ktime_t *device_time, 1204 struct system_counterval_t *sys_counterval, 1205 void *ctx), 1206 void *ctx, 1207 struct system_time_snapshot *history_begin, 1208 struct system_device_crosststamp *xtstamp) 1209 { 1210 struct system_counterval_t system_counterval; 1211 struct timekeeper *tk = &tk_core.timekeeper; 1212 u64 cycles, now, interval_start; 1213 unsigned int clock_was_set_seq = 0; 1214 ktime_t base_real, base_raw; 1215 u64 nsec_real, nsec_raw; 1216 u8 cs_was_changed_seq; 1217 unsigned int seq; 1218 bool do_interp; 1219 int ret; 1220 1221 do { 1222 seq = read_seqcount_begin(&tk_core.seq); 1223 /* 1224 * Try to synchronously capture device time and a system 1225 * counter value calling back into the device driver 1226 */ 1227 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1228 if (ret) 1229 return ret; 1230 1231 /* 1232 * Verify that the clocksource associated with the captured 1233 * system counter value is the same as the currently installed 1234 * timekeeper clocksource 1235 */ 1236 if (tk->tkr_mono.clock != system_counterval.cs) 1237 return -ENODEV; 1238 cycles = system_counterval.cycles; 1239 1240 /* 1241 * Check whether the system counter value provided by the 1242 * device driver is on the current timekeeping interval. 1243 */ 1244 now = tk_clock_read(&tk->tkr_mono); 1245 interval_start = tk->tkr_mono.cycle_last; 1246 if (!cycle_between(interval_start, cycles, now)) { 1247 clock_was_set_seq = tk->clock_was_set_seq; 1248 cs_was_changed_seq = tk->cs_was_changed_seq; 1249 cycles = interval_start; 1250 do_interp = true; 1251 } else { 1252 do_interp = false; 1253 } 1254 1255 base_real = ktime_add(tk->tkr_mono.base, 1256 tk_core.timekeeper.offs_real); 1257 base_raw = tk->tkr_raw.base; 1258 1259 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1260 system_counterval.cycles); 1261 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1262 system_counterval.cycles); 1263 } while (read_seqcount_retry(&tk_core.seq, seq)); 1264 1265 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1266 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1267 1268 /* 1269 * Interpolate if necessary, adjusting back from the start of the 1270 * current interval 1271 */ 1272 if (do_interp) { 1273 u64 partial_history_cycles, total_history_cycles; 1274 bool discontinuity; 1275 1276 /* 1277 * Check that the counter value occurs after the provided 1278 * history reference and that the history doesn't cross a 1279 * clocksource change 1280 */ 1281 if (!history_begin || 1282 !cycle_between(history_begin->cycles, 1283 system_counterval.cycles, cycles) || 1284 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1285 return -EINVAL; 1286 partial_history_cycles = cycles - system_counterval.cycles; 1287 total_history_cycles = cycles - history_begin->cycles; 1288 discontinuity = 1289 history_begin->clock_was_set_seq != clock_was_set_seq; 1290 1291 ret = adjust_historical_crosststamp(history_begin, 1292 partial_history_cycles, 1293 total_history_cycles, 1294 discontinuity, xtstamp); 1295 if (ret) 1296 return ret; 1297 } 1298 1299 return 0; 1300 } 1301 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1302 1303 /** 1304 * do_settimeofday64 - Sets the time of day. 1305 * @ts: pointer to the timespec64 variable containing the new time 1306 * 1307 * Sets the time of day to the new time and update NTP and notify hrtimers 1308 */ 1309 int do_settimeofday64(const struct timespec64 *ts) 1310 { 1311 struct timekeeper *tk = &tk_core.timekeeper; 1312 struct timespec64 ts_delta, xt; 1313 unsigned long flags; 1314 int ret = 0; 1315 1316 if (!timespec64_valid_settod(ts)) 1317 return -EINVAL; 1318 1319 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1320 write_seqcount_begin(&tk_core.seq); 1321 1322 timekeeping_forward_now(tk); 1323 1324 xt = tk_xtime(tk); 1325 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1326 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1327 1328 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1329 ret = -EINVAL; 1330 goto out; 1331 } 1332 1333 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1334 1335 tk_set_xtime(tk, ts); 1336 out: 1337 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1338 1339 write_seqcount_end(&tk_core.seq); 1340 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1341 1342 /* signal hrtimers about time change */ 1343 clock_was_set(); 1344 1345 if (!ret) 1346 audit_tk_injoffset(ts_delta); 1347 1348 return ret; 1349 } 1350 EXPORT_SYMBOL(do_settimeofday64); 1351 1352 /** 1353 * timekeeping_inject_offset - Adds or subtracts from the current time. 1354 * @ts: Pointer to the timespec variable containing the offset 1355 * 1356 * Adds or subtracts an offset value from the current time. 1357 */ 1358 static int timekeeping_inject_offset(const struct timespec64 *ts) 1359 { 1360 struct timekeeper *tk = &tk_core.timekeeper; 1361 unsigned long flags; 1362 struct timespec64 tmp; 1363 int ret = 0; 1364 1365 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1366 return -EINVAL; 1367 1368 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1369 write_seqcount_begin(&tk_core.seq); 1370 1371 timekeeping_forward_now(tk); 1372 1373 /* Make sure the proposed value is valid */ 1374 tmp = timespec64_add(tk_xtime(tk), *ts); 1375 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1376 !timespec64_valid_settod(&tmp)) { 1377 ret = -EINVAL; 1378 goto error; 1379 } 1380 1381 tk_xtime_add(tk, ts); 1382 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1383 1384 error: /* even if we error out, we forwarded the time, so call update */ 1385 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1386 1387 write_seqcount_end(&tk_core.seq); 1388 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1389 1390 /* signal hrtimers about time change */ 1391 clock_was_set(); 1392 1393 return ret; 1394 } 1395 1396 /* 1397 * Indicates if there is an offset between the system clock and the hardware 1398 * clock/persistent clock/rtc. 1399 */ 1400 int persistent_clock_is_local; 1401 1402 /* 1403 * Adjust the time obtained from the CMOS to be UTC time instead of 1404 * local time. 1405 * 1406 * This is ugly, but preferable to the alternatives. Otherwise we 1407 * would either need to write a program to do it in /etc/rc (and risk 1408 * confusion if the program gets run more than once; it would also be 1409 * hard to make the program warp the clock precisely n hours) or 1410 * compile in the timezone information into the kernel. Bad, bad.... 1411 * 1412 * - TYT, 1992-01-01 1413 * 1414 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1415 * as real UNIX machines always do it. This avoids all headaches about 1416 * daylight saving times and warping kernel clocks. 1417 */ 1418 void timekeeping_warp_clock(void) 1419 { 1420 if (sys_tz.tz_minuteswest != 0) { 1421 struct timespec64 adjust; 1422 1423 persistent_clock_is_local = 1; 1424 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1425 adjust.tv_nsec = 0; 1426 timekeeping_inject_offset(&adjust); 1427 } 1428 } 1429 1430 /* 1431 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1432 */ 1433 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1434 { 1435 tk->tai_offset = tai_offset; 1436 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1437 } 1438 1439 /* 1440 * change_clocksource - Swaps clocksources if a new one is available 1441 * 1442 * Accumulates current time interval and initializes new clocksource 1443 */ 1444 static int change_clocksource(void *data) 1445 { 1446 struct timekeeper *tk = &tk_core.timekeeper; 1447 struct clocksource *new, *old; 1448 unsigned long flags; 1449 1450 new = (struct clocksource *) data; 1451 1452 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1453 write_seqcount_begin(&tk_core.seq); 1454 1455 timekeeping_forward_now(tk); 1456 /* 1457 * If the cs is in module, get a module reference. Succeeds 1458 * for built-in code (owner == NULL) as well. 1459 */ 1460 if (try_module_get(new->owner)) { 1461 if (!new->enable || new->enable(new) == 0) { 1462 old = tk->tkr_mono.clock; 1463 tk_setup_internals(tk, new); 1464 if (old->disable) 1465 old->disable(old); 1466 module_put(old->owner); 1467 } else { 1468 module_put(new->owner); 1469 } 1470 } 1471 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1472 1473 write_seqcount_end(&tk_core.seq); 1474 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1475 1476 return 0; 1477 } 1478 1479 /** 1480 * timekeeping_notify - Install a new clock source 1481 * @clock: pointer to the clock source 1482 * 1483 * This function is called from clocksource.c after a new, better clock 1484 * source has been registered. The caller holds the clocksource_mutex. 1485 */ 1486 int timekeeping_notify(struct clocksource *clock) 1487 { 1488 struct timekeeper *tk = &tk_core.timekeeper; 1489 1490 if (tk->tkr_mono.clock == clock) 1491 return 0; 1492 stop_machine(change_clocksource, clock, NULL); 1493 tick_clock_notify(); 1494 return tk->tkr_mono.clock == clock ? 0 : -1; 1495 } 1496 1497 /** 1498 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1499 * @ts: pointer to the timespec64 to be set 1500 * 1501 * Returns the raw monotonic time (completely un-modified by ntp) 1502 */ 1503 void ktime_get_raw_ts64(struct timespec64 *ts) 1504 { 1505 struct timekeeper *tk = &tk_core.timekeeper; 1506 unsigned int seq; 1507 u64 nsecs; 1508 1509 do { 1510 seq = read_seqcount_begin(&tk_core.seq); 1511 ts->tv_sec = tk->raw_sec; 1512 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1513 1514 } while (read_seqcount_retry(&tk_core.seq, seq)); 1515 1516 ts->tv_nsec = 0; 1517 timespec64_add_ns(ts, nsecs); 1518 } 1519 EXPORT_SYMBOL(ktime_get_raw_ts64); 1520 1521 1522 /** 1523 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1524 */ 1525 int timekeeping_valid_for_hres(void) 1526 { 1527 struct timekeeper *tk = &tk_core.timekeeper; 1528 unsigned int seq; 1529 int ret; 1530 1531 do { 1532 seq = read_seqcount_begin(&tk_core.seq); 1533 1534 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1535 1536 } while (read_seqcount_retry(&tk_core.seq, seq)); 1537 1538 return ret; 1539 } 1540 1541 /** 1542 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1543 */ 1544 u64 timekeeping_max_deferment(void) 1545 { 1546 struct timekeeper *tk = &tk_core.timekeeper; 1547 unsigned int seq; 1548 u64 ret; 1549 1550 do { 1551 seq = read_seqcount_begin(&tk_core.seq); 1552 1553 ret = tk->tkr_mono.clock->max_idle_ns; 1554 1555 } while (read_seqcount_retry(&tk_core.seq, seq)); 1556 1557 return ret; 1558 } 1559 1560 /** 1561 * read_persistent_clock64 - Return time from the persistent clock. 1562 * @ts: Pointer to the storage for the readout value 1563 * 1564 * Weak dummy function for arches that do not yet support it. 1565 * Reads the time from the battery backed persistent clock. 1566 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1567 * 1568 * XXX - Do be sure to remove it once all arches implement it. 1569 */ 1570 void __weak read_persistent_clock64(struct timespec64 *ts) 1571 { 1572 ts->tv_sec = 0; 1573 ts->tv_nsec = 0; 1574 } 1575 1576 /** 1577 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1578 * from the boot. 1579 * 1580 * Weak dummy function for arches that do not yet support it. 1581 * @wall_time: - current time as returned by persistent clock 1582 * @boot_offset: - offset that is defined as wall_time - boot_time 1583 * 1584 * The default function calculates offset based on the current value of 1585 * local_clock(). This way architectures that support sched_clock() but don't 1586 * support dedicated boot time clock will provide the best estimate of the 1587 * boot time. 1588 */ 1589 void __weak __init 1590 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1591 struct timespec64 *boot_offset) 1592 { 1593 read_persistent_clock64(wall_time); 1594 *boot_offset = ns_to_timespec64(local_clock()); 1595 } 1596 1597 /* 1598 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1599 * 1600 * The flag starts of false and is only set when a suspend reaches 1601 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1602 * timekeeper clocksource is not stopping across suspend and has been 1603 * used to update sleep time. If the timekeeper clocksource has stopped 1604 * then the flag stays true and is used by the RTC resume code to decide 1605 * whether sleeptime must be injected and if so the flag gets false then. 1606 * 1607 * If a suspend fails before reaching timekeeping_resume() then the flag 1608 * stays false and prevents erroneous sleeptime injection. 1609 */ 1610 static bool suspend_timing_needed; 1611 1612 /* Flag for if there is a persistent clock on this platform */ 1613 static bool persistent_clock_exists; 1614 1615 /* 1616 * timekeeping_init - Initializes the clocksource and common timekeeping values 1617 */ 1618 void __init timekeeping_init(void) 1619 { 1620 struct timespec64 wall_time, boot_offset, wall_to_mono; 1621 struct timekeeper *tk = &tk_core.timekeeper; 1622 struct clocksource *clock; 1623 unsigned long flags; 1624 1625 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1626 if (timespec64_valid_settod(&wall_time) && 1627 timespec64_to_ns(&wall_time) > 0) { 1628 persistent_clock_exists = true; 1629 } else if (timespec64_to_ns(&wall_time) != 0) { 1630 pr_warn("Persistent clock returned invalid value"); 1631 wall_time = (struct timespec64){0}; 1632 } 1633 1634 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1635 boot_offset = (struct timespec64){0}; 1636 1637 /* 1638 * We want set wall_to_mono, so the following is true: 1639 * wall time + wall_to_mono = boot time 1640 */ 1641 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1642 1643 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1644 write_seqcount_begin(&tk_core.seq); 1645 ntp_init(); 1646 1647 clock = clocksource_default_clock(); 1648 if (clock->enable) 1649 clock->enable(clock); 1650 tk_setup_internals(tk, clock); 1651 1652 tk_set_xtime(tk, &wall_time); 1653 tk->raw_sec = 0; 1654 1655 tk_set_wall_to_mono(tk, wall_to_mono); 1656 1657 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1658 1659 write_seqcount_end(&tk_core.seq); 1660 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1661 } 1662 1663 /* time in seconds when suspend began for persistent clock */ 1664 static struct timespec64 timekeeping_suspend_time; 1665 1666 /** 1667 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1668 * @tk: Pointer to the timekeeper to be updated 1669 * @delta: Pointer to the delta value in timespec64 format 1670 * 1671 * Takes a timespec offset measuring a suspend interval and properly 1672 * adds the sleep offset to the timekeeping variables. 1673 */ 1674 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1675 const struct timespec64 *delta) 1676 { 1677 if (!timespec64_valid_strict(delta)) { 1678 printk_deferred(KERN_WARNING 1679 "__timekeeping_inject_sleeptime: Invalid " 1680 "sleep delta value!\n"); 1681 return; 1682 } 1683 tk_xtime_add(tk, delta); 1684 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1685 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1686 tk_debug_account_sleep_time(delta); 1687 } 1688 1689 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1690 /** 1691 * We have three kinds of time sources to use for sleep time 1692 * injection, the preference order is: 1693 * 1) non-stop clocksource 1694 * 2) persistent clock (ie: RTC accessible when irqs are off) 1695 * 3) RTC 1696 * 1697 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1698 * If system has neither 1) nor 2), 3) will be used finally. 1699 * 1700 * 1701 * If timekeeping has injected sleeptime via either 1) or 2), 1702 * 3) becomes needless, so in this case we don't need to call 1703 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1704 * means. 1705 */ 1706 bool timekeeping_rtc_skipresume(void) 1707 { 1708 return !suspend_timing_needed; 1709 } 1710 1711 /** 1712 * 1) can be determined whether to use or not only when doing 1713 * timekeeping_resume() which is invoked after rtc_suspend(), 1714 * so we can't skip rtc_suspend() surely if system has 1). 1715 * 1716 * But if system has 2), 2) will definitely be used, so in this 1717 * case we don't need to call rtc_suspend(), and this is what 1718 * timekeeping_rtc_skipsuspend() means. 1719 */ 1720 bool timekeeping_rtc_skipsuspend(void) 1721 { 1722 return persistent_clock_exists; 1723 } 1724 1725 /** 1726 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1727 * @delta: pointer to a timespec64 delta value 1728 * 1729 * This hook is for architectures that cannot support read_persistent_clock64 1730 * because their RTC/persistent clock is only accessible when irqs are enabled. 1731 * and also don't have an effective nonstop clocksource. 1732 * 1733 * This function should only be called by rtc_resume(), and allows 1734 * a suspend offset to be injected into the timekeeping values. 1735 */ 1736 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1737 { 1738 struct timekeeper *tk = &tk_core.timekeeper; 1739 unsigned long flags; 1740 1741 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1742 write_seqcount_begin(&tk_core.seq); 1743 1744 suspend_timing_needed = false; 1745 1746 timekeeping_forward_now(tk); 1747 1748 __timekeeping_inject_sleeptime(tk, delta); 1749 1750 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1751 1752 write_seqcount_end(&tk_core.seq); 1753 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1754 1755 /* signal hrtimers about time change */ 1756 clock_was_set(); 1757 } 1758 #endif 1759 1760 /** 1761 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1762 */ 1763 void timekeeping_resume(void) 1764 { 1765 struct timekeeper *tk = &tk_core.timekeeper; 1766 struct clocksource *clock = tk->tkr_mono.clock; 1767 unsigned long flags; 1768 struct timespec64 ts_new, ts_delta; 1769 u64 cycle_now, nsec; 1770 bool inject_sleeptime = false; 1771 1772 read_persistent_clock64(&ts_new); 1773 1774 clockevents_resume(); 1775 clocksource_resume(); 1776 1777 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1778 write_seqcount_begin(&tk_core.seq); 1779 1780 /* 1781 * After system resumes, we need to calculate the suspended time and 1782 * compensate it for the OS time. There are 3 sources that could be 1783 * used: Nonstop clocksource during suspend, persistent clock and rtc 1784 * device. 1785 * 1786 * One specific platform may have 1 or 2 or all of them, and the 1787 * preference will be: 1788 * suspend-nonstop clocksource -> persistent clock -> rtc 1789 * The less preferred source will only be tried if there is no better 1790 * usable source. The rtc part is handled separately in rtc core code. 1791 */ 1792 cycle_now = tk_clock_read(&tk->tkr_mono); 1793 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1794 if (nsec > 0) { 1795 ts_delta = ns_to_timespec64(nsec); 1796 inject_sleeptime = true; 1797 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1798 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1799 inject_sleeptime = true; 1800 } 1801 1802 if (inject_sleeptime) { 1803 suspend_timing_needed = false; 1804 __timekeeping_inject_sleeptime(tk, &ts_delta); 1805 } 1806 1807 /* Re-base the last cycle value */ 1808 tk->tkr_mono.cycle_last = cycle_now; 1809 tk->tkr_raw.cycle_last = cycle_now; 1810 1811 tk->ntp_error = 0; 1812 timekeeping_suspended = 0; 1813 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1814 write_seqcount_end(&tk_core.seq); 1815 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1816 1817 touch_softlockup_watchdog(); 1818 1819 tick_resume(); 1820 hrtimers_resume(); 1821 } 1822 1823 int timekeeping_suspend(void) 1824 { 1825 struct timekeeper *tk = &tk_core.timekeeper; 1826 unsigned long flags; 1827 struct timespec64 delta, delta_delta; 1828 static struct timespec64 old_delta; 1829 struct clocksource *curr_clock; 1830 u64 cycle_now; 1831 1832 read_persistent_clock64(&timekeeping_suspend_time); 1833 1834 /* 1835 * On some systems the persistent_clock can not be detected at 1836 * timekeeping_init by its return value, so if we see a valid 1837 * value returned, update the persistent_clock_exists flag. 1838 */ 1839 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1840 persistent_clock_exists = true; 1841 1842 suspend_timing_needed = true; 1843 1844 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1845 write_seqcount_begin(&tk_core.seq); 1846 timekeeping_forward_now(tk); 1847 timekeeping_suspended = 1; 1848 1849 /* 1850 * Since we've called forward_now, cycle_last stores the value 1851 * just read from the current clocksource. Save this to potentially 1852 * use in suspend timing. 1853 */ 1854 curr_clock = tk->tkr_mono.clock; 1855 cycle_now = tk->tkr_mono.cycle_last; 1856 clocksource_start_suspend_timing(curr_clock, cycle_now); 1857 1858 if (persistent_clock_exists) { 1859 /* 1860 * To avoid drift caused by repeated suspend/resumes, 1861 * which each can add ~1 second drift error, 1862 * try to compensate so the difference in system time 1863 * and persistent_clock time stays close to constant. 1864 */ 1865 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1866 delta_delta = timespec64_sub(delta, old_delta); 1867 if (abs(delta_delta.tv_sec) >= 2) { 1868 /* 1869 * if delta_delta is too large, assume time correction 1870 * has occurred and set old_delta to the current delta. 1871 */ 1872 old_delta = delta; 1873 } else { 1874 /* Otherwise try to adjust old_system to compensate */ 1875 timekeeping_suspend_time = 1876 timespec64_add(timekeeping_suspend_time, delta_delta); 1877 } 1878 } 1879 1880 timekeeping_update(tk, TK_MIRROR); 1881 halt_fast_timekeeper(tk); 1882 write_seqcount_end(&tk_core.seq); 1883 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1884 1885 tick_suspend(); 1886 clocksource_suspend(); 1887 clockevents_suspend(); 1888 1889 return 0; 1890 } 1891 1892 /* sysfs resume/suspend bits for timekeeping */ 1893 static struct syscore_ops timekeeping_syscore_ops = { 1894 .resume = timekeeping_resume, 1895 .suspend = timekeeping_suspend, 1896 }; 1897 1898 static int __init timekeeping_init_ops(void) 1899 { 1900 register_syscore_ops(&timekeeping_syscore_ops); 1901 return 0; 1902 } 1903 device_initcall(timekeeping_init_ops); 1904 1905 /* 1906 * Apply a multiplier adjustment to the timekeeper 1907 */ 1908 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1909 s64 offset, 1910 s32 mult_adj) 1911 { 1912 s64 interval = tk->cycle_interval; 1913 1914 if (mult_adj == 0) { 1915 return; 1916 } else if (mult_adj == -1) { 1917 interval = -interval; 1918 offset = -offset; 1919 } else if (mult_adj != 1) { 1920 interval *= mult_adj; 1921 offset *= mult_adj; 1922 } 1923 1924 /* 1925 * So the following can be confusing. 1926 * 1927 * To keep things simple, lets assume mult_adj == 1 for now. 1928 * 1929 * When mult_adj != 1, remember that the interval and offset values 1930 * have been appropriately scaled so the math is the same. 1931 * 1932 * The basic idea here is that we're increasing the multiplier 1933 * by one, this causes the xtime_interval to be incremented by 1934 * one cycle_interval. This is because: 1935 * xtime_interval = cycle_interval * mult 1936 * So if mult is being incremented by one: 1937 * xtime_interval = cycle_interval * (mult + 1) 1938 * Its the same as: 1939 * xtime_interval = (cycle_interval * mult) + cycle_interval 1940 * Which can be shortened to: 1941 * xtime_interval += cycle_interval 1942 * 1943 * So offset stores the non-accumulated cycles. Thus the current 1944 * time (in shifted nanoseconds) is: 1945 * now = (offset * adj) + xtime_nsec 1946 * Now, even though we're adjusting the clock frequency, we have 1947 * to keep time consistent. In other words, we can't jump back 1948 * in time, and we also want to avoid jumping forward in time. 1949 * 1950 * So given the same offset value, we need the time to be the same 1951 * both before and after the freq adjustment. 1952 * now = (offset * adj_1) + xtime_nsec_1 1953 * now = (offset * adj_2) + xtime_nsec_2 1954 * So: 1955 * (offset * adj_1) + xtime_nsec_1 = 1956 * (offset * adj_2) + xtime_nsec_2 1957 * And we know: 1958 * adj_2 = adj_1 + 1 1959 * So: 1960 * (offset * adj_1) + xtime_nsec_1 = 1961 * (offset * (adj_1+1)) + xtime_nsec_2 1962 * (offset * adj_1) + xtime_nsec_1 = 1963 * (offset * adj_1) + offset + xtime_nsec_2 1964 * Canceling the sides: 1965 * xtime_nsec_1 = offset + xtime_nsec_2 1966 * Which gives us: 1967 * xtime_nsec_2 = xtime_nsec_1 - offset 1968 * Which simplfies to: 1969 * xtime_nsec -= offset 1970 */ 1971 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1972 /* NTP adjustment caused clocksource mult overflow */ 1973 WARN_ON_ONCE(1); 1974 return; 1975 } 1976 1977 tk->tkr_mono.mult += mult_adj; 1978 tk->xtime_interval += interval; 1979 tk->tkr_mono.xtime_nsec -= offset; 1980 } 1981 1982 /* 1983 * Adjust the timekeeper's multiplier to the correct frequency 1984 * and also to reduce the accumulated error value. 1985 */ 1986 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1987 { 1988 u32 mult; 1989 1990 /* 1991 * Determine the multiplier from the current NTP tick length. 1992 * Avoid expensive division when the tick length doesn't change. 1993 */ 1994 if (likely(tk->ntp_tick == ntp_tick_length())) { 1995 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1996 } else { 1997 tk->ntp_tick = ntp_tick_length(); 1998 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1999 tk->xtime_remainder, tk->cycle_interval); 2000 } 2001 2002 /* 2003 * If the clock is behind the NTP time, increase the multiplier by 1 2004 * to catch up with it. If it's ahead and there was a remainder in the 2005 * tick division, the clock will slow down. Otherwise it will stay 2006 * ahead until the tick length changes to a non-divisible value. 2007 */ 2008 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2009 mult += tk->ntp_err_mult; 2010 2011 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2012 2013 if (unlikely(tk->tkr_mono.clock->maxadj && 2014 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2015 > tk->tkr_mono.clock->maxadj))) { 2016 printk_once(KERN_WARNING 2017 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2018 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2019 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2020 } 2021 2022 /* 2023 * It may be possible that when we entered this function, xtime_nsec 2024 * was very small. Further, if we're slightly speeding the clocksource 2025 * in the code above, its possible the required corrective factor to 2026 * xtime_nsec could cause it to underflow. 2027 * 2028 * Now, since we have already accumulated the second and the NTP 2029 * subsystem has been notified via second_overflow(), we need to skip 2030 * the next update. 2031 */ 2032 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2033 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2034 tk->tkr_mono.shift; 2035 tk->xtime_sec--; 2036 tk->skip_second_overflow = 1; 2037 } 2038 } 2039 2040 /* 2041 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2042 * 2043 * Helper function that accumulates the nsecs greater than a second 2044 * from the xtime_nsec field to the xtime_secs field. 2045 * It also calls into the NTP code to handle leapsecond processing. 2046 */ 2047 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2048 { 2049 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2050 unsigned int clock_set = 0; 2051 2052 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2053 int leap; 2054 2055 tk->tkr_mono.xtime_nsec -= nsecps; 2056 tk->xtime_sec++; 2057 2058 /* 2059 * Skip NTP update if this second was accumulated before, 2060 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2061 */ 2062 if (unlikely(tk->skip_second_overflow)) { 2063 tk->skip_second_overflow = 0; 2064 continue; 2065 } 2066 2067 /* Figure out if its a leap sec and apply if needed */ 2068 leap = second_overflow(tk->xtime_sec); 2069 if (unlikely(leap)) { 2070 struct timespec64 ts; 2071 2072 tk->xtime_sec += leap; 2073 2074 ts.tv_sec = leap; 2075 ts.tv_nsec = 0; 2076 tk_set_wall_to_mono(tk, 2077 timespec64_sub(tk->wall_to_monotonic, ts)); 2078 2079 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2080 2081 clock_set = TK_CLOCK_WAS_SET; 2082 } 2083 } 2084 return clock_set; 2085 } 2086 2087 /* 2088 * logarithmic_accumulation - shifted accumulation of cycles 2089 * 2090 * This functions accumulates a shifted interval of cycles into 2091 * a shifted interval nanoseconds. Allows for O(log) accumulation 2092 * loop. 2093 * 2094 * Returns the unconsumed cycles. 2095 */ 2096 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2097 u32 shift, unsigned int *clock_set) 2098 { 2099 u64 interval = tk->cycle_interval << shift; 2100 u64 snsec_per_sec; 2101 2102 /* If the offset is smaller than a shifted interval, do nothing */ 2103 if (offset < interval) 2104 return offset; 2105 2106 /* Accumulate one shifted interval */ 2107 offset -= interval; 2108 tk->tkr_mono.cycle_last += interval; 2109 tk->tkr_raw.cycle_last += interval; 2110 2111 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2112 *clock_set |= accumulate_nsecs_to_secs(tk); 2113 2114 /* Accumulate raw time */ 2115 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2116 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2117 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2118 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2119 tk->raw_sec++; 2120 } 2121 2122 /* Accumulate error between NTP and clock interval */ 2123 tk->ntp_error += tk->ntp_tick << shift; 2124 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2125 (tk->ntp_error_shift + shift); 2126 2127 return offset; 2128 } 2129 2130 /* 2131 * timekeeping_advance - Updates the timekeeper to the current time and 2132 * current NTP tick length 2133 */ 2134 static void timekeeping_advance(enum timekeeping_adv_mode mode) 2135 { 2136 struct timekeeper *real_tk = &tk_core.timekeeper; 2137 struct timekeeper *tk = &shadow_timekeeper; 2138 u64 offset; 2139 int shift = 0, maxshift; 2140 unsigned int clock_set = 0; 2141 unsigned long flags; 2142 2143 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2144 2145 /* Make sure we're fully resumed: */ 2146 if (unlikely(timekeeping_suspended)) 2147 goto out; 2148 2149 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2150 offset = real_tk->cycle_interval; 2151 2152 if (mode != TK_ADV_TICK) 2153 goto out; 2154 #else 2155 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2156 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2157 2158 /* Check if there's really nothing to do */ 2159 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2160 goto out; 2161 #endif 2162 2163 /* Do some additional sanity checking */ 2164 timekeeping_check_update(tk, offset); 2165 2166 /* 2167 * With NO_HZ we may have to accumulate many cycle_intervals 2168 * (think "ticks") worth of time at once. To do this efficiently, 2169 * we calculate the largest doubling multiple of cycle_intervals 2170 * that is smaller than the offset. We then accumulate that 2171 * chunk in one go, and then try to consume the next smaller 2172 * doubled multiple. 2173 */ 2174 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2175 shift = max(0, shift); 2176 /* Bound shift to one less than what overflows tick_length */ 2177 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2178 shift = min(shift, maxshift); 2179 while (offset >= tk->cycle_interval) { 2180 offset = logarithmic_accumulation(tk, offset, shift, 2181 &clock_set); 2182 if (offset < tk->cycle_interval<<shift) 2183 shift--; 2184 } 2185 2186 /* Adjust the multiplier to correct NTP error */ 2187 timekeeping_adjust(tk, offset); 2188 2189 /* 2190 * Finally, make sure that after the rounding 2191 * xtime_nsec isn't larger than NSEC_PER_SEC 2192 */ 2193 clock_set |= accumulate_nsecs_to_secs(tk); 2194 2195 write_seqcount_begin(&tk_core.seq); 2196 /* 2197 * Update the real timekeeper. 2198 * 2199 * We could avoid this memcpy by switching pointers, but that 2200 * requires changes to all other timekeeper usage sites as 2201 * well, i.e. move the timekeeper pointer getter into the 2202 * spinlocked/seqcount protected sections. And we trade this 2203 * memcpy under the tk_core.seq against one before we start 2204 * updating. 2205 */ 2206 timekeeping_update(tk, clock_set); 2207 memcpy(real_tk, tk, sizeof(*tk)); 2208 /* The memcpy must come last. Do not put anything here! */ 2209 write_seqcount_end(&tk_core.seq); 2210 out: 2211 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2212 if (clock_set) 2213 /* Have to call _delayed version, since in irq context*/ 2214 clock_was_set_delayed(); 2215 } 2216 2217 /** 2218 * update_wall_time - Uses the current clocksource to increment the wall time 2219 * 2220 */ 2221 void update_wall_time(void) 2222 { 2223 timekeeping_advance(TK_ADV_TICK); 2224 } 2225 2226 /** 2227 * getboottime64 - Return the real time of system boot. 2228 * @ts: pointer to the timespec64 to be set 2229 * 2230 * Returns the wall-time of boot in a timespec64. 2231 * 2232 * This is based on the wall_to_monotonic offset and the total suspend 2233 * time. Calls to settimeofday will affect the value returned (which 2234 * basically means that however wrong your real time clock is at boot time, 2235 * you get the right time here). 2236 */ 2237 void getboottime64(struct timespec64 *ts) 2238 { 2239 struct timekeeper *tk = &tk_core.timekeeper; 2240 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2241 2242 *ts = ktime_to_timespec64(t); 2243 } 2244 EXPORT_SYMBOL_GPL(getboottime64); 2245 2246 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2247 { 2248 struct timekeeper *tk = &tk_core.timekeeper; 2249 unsigned int seq; 2250 2251 do { 2252 seq = read_seqcount_begin(&tk_core.seq); 2253 2254 *ts = tk_xtime(tk); 2255 } while (read_seqcount_retry(&tk_core.seq, seq)); 2256 } 2257 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2258 2259 void ktime_get_coarse_ts64(struct timespec64 *ts) 2260 { 2261 struct timekeeper *tk = &tk_core.timekeeper; 2262 struct timespec64 now, mono; 2263 unsigned int seq; 2264 2265 do { 2266 seq = read_seqcount_begin(&tk_core.seq); 2267 2268 now = tk_xtime(tk); 2269 mono = tk->wall_to_monotonic; 2270 } while (read_seqcount_retry(&tk_core.seq, seq)); 2271 2272 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2273 now.tv_nsec + mono.tv_nsec); 2274 } 2275 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2276 2277 /* 2278 * Must hold jiffies_lock 2279 */ 2280 void do_timer(unsigned long ticks) 2281 { 2282 jiffies_64 += ticks; 2283 calc_global_load(); 2284 } 2285 2286 /** 2287 * ktime_get_update_offsets_now - hrtimer helper 2288 * @cwsseq: pointer to check and store the clock was set sequence number 2289 * @offs_real: pointer to storage for monotonic -> realtime offset 2290 * @offs_boot: pointer to storage for monotonic -> boottime offset 2291 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2292 * 2293 * Returns current monotonic time and updates the offsets if the 2294 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2295 * different. 2296 * 2297 * Called from hrtimer_interrupt() or retrigger_next_event() 2298 */ 2299 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2300 ktime_t *offs_boot, ktime_t *offs_tai) 2301 { 2302 struct timekeeper *tk = &tk_core.timekeeper; 2303 unsigned int seq; 2304 ktime_t base; 2305 u64 nsecs; 2306 2307 do { 2308 seq = read_seqcount_begin(&tk_core.seq); 2309 2310 base = tk->tkr_mono.base; 2311 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2312 base = ktime_add_ns(base, nsecs); 2313 2314 if (*cwsseq != tk->clock_was_set_seq) { 2315 *cwsseq = tk->clock_was_set_seq; 2316 *offs_real = tk->offs_real; 2317 *offs_boot = tk->offs_boot; 2318 *offs_tai = tk->offs_tai; 2319 } 2320 2321 /* Handle leapsecond insertion adjustments */ 2322 if (unlikely(base >= tk->next_leap_ktime)) 2323 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2324 2325 } while (read_seqcount_retry(&tk_core.seq, seq)); 2326 2327 return base; 2328 } 2329 2330 /* 2331 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2332 */ 2333 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2334 { 2335 if (txc->modes & ADJ_ADJTIME) { 2336 /* singleshot must not be used with any other mode bits */ 2337 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2338 return -EINVAL; 2339 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2340 !capable(CAP_SYS_TIME)) 2341 return -EPERM; 2342 } else { 2343 /* In order to modify anything, you gotta be super-user! */ 2344 if (txc->modes && !capable(CAP_SYS_TIME)) 2345 return -EPERM; 2346 /* 2347 * if the quartz is off by more than 10% then 2348 * something is VERY wrong! 2349 */ 2350 if (txc->modes & ADJ_TICK && 2351 (txc->tick < 900000/USER_HZ || 2352 txc->tick > 1100000/USER_HZ)) 2353 return -EINVAL; 2354 } 2355 2356 if (txc->modes & ADJ_SETOFFSET) { 2357 /* In order to inject time, you gotta be super-user! */ 2358 if (!capable(CAP_SYS_TIME)) 2359 return -EPERM; 2360 2361 /* 2362 * Validate if a timespec/timeval used to inject a time 2363 * offset is valid. Offsets can be postive or negative, so 2364 * we don't check tv_sec. The value of the timeval/timespec 2365 * is the sum of its fields,but *NOTE*: 2366 * The field tv_usec/tv_nsec must always be non-negative and 2367 * we can't have more nanoseconds/microseconds than a second. 2368 */ 2369 if (txc->time.tv_usec < 0) 2370 return -EINVAL; 2371 2372 if (txc->modes & ADJ_NANO) { 2373 if (txc->time.tv_usec >= NSEC_PER_SEC) 2374 return -EINVAL; 2375 } else { 2376 if (txc->time.tv_usec >= USEC_PER_SEC) 2377 return -EINVAL; 2378 } 2379 } 2380 2381 /* 2382 * Check for potential multiplication overflows that can 2383 * only happen on 64-bit systems: 2384 */ 2385 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2386 if (LLONG_MIN / PPM_SCALE > txc->freq) 2387 return -EINVAL; 2388 if (LLONG_MAX / PPM_SCALE < txc->freq) 2389 return -EINVAL; 2390 } 2391 2392 return 0; 2393 } 2394 2395 2396 /** 2397 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2398 */ 2399 int do_adjtimex(struct __kernel_timex *txc) 2400 { 2401 struct timekeeper *tk = &tk_core.timekeeper; 2402 struct audit_ntp_data ad; 2403 unsigned long flags; 2404 struct timespec64 ts; 2405 s32 orig_tai, tai; 2406 int ret; 2407 2408 /* Validate the data before disabling interrupts */ 2409 ret = timekeeping_validate_timex(txc); 2410 if (ret) 2411 return ret; 2412 2413 if (txc->modes & ADJ_SETOFFSET) { 2414 struct timespec64 delta; 2415 delta.tv_sec = txc->time.tv_sec; 2416 delta.tv_nsec = txc->time.tv_usec; 2417 if (!(txc->modes & ADJ_NANO)) 2418 delta.tv_nsec *= 1000; 2419 ret = timekeeping_inject_offset(&delta); 2420 if (ret) 2421 return ret; 2422 2423 audit_tk_injoffset(delta); 2424 } 2425 2426 audit_ntp_init(&ad); 2427 2428 ktime_get_real_ts64(&ts); 2429 2430 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2431 write_seqcount_begin(&tk_core.seq); 2432 2433 orig_tai = tai = tk->tai_offset; 2434 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2435 2436 if (tai != orig_tai) { 2437 __timekeeping_set_tai_offset(tk, tai); 2438 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2439 } 2440 tk_update_leap_state(tk); 2441 2442 write_seqcount_end(&tk_core.seq); 2443 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2444 2445 audit_ntp_log(&ad); 2446 2447 /* Update the multiplier immediately if frequency was set directly */ 2448 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2449 timekeeping_advance(TK_ADV_FREQ); 2450 2451 if (tai != orig_tai) 2452 clock_was_set(); 2453 2454 ntp_notify_cmos_timer(); 2455 2456 return ret; 2457 } 2458 2459 #ifdef CONFIG_NTP_PPS 2460 /** 2461 * hardpps() - Accessor function to NTP __hardpps function 2462 */ 2463 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2464 { 2465 unsigned long flags; 2466 2467 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2468 write_seqcount_begin(&tk_core.seq); 2469 2470 __hardpps(phase_ts, raw_ts); 2471 2472 write_seqcount_end(&tk_core.seq); 2473 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2474 } 2475 EXPORT_SYMBOL(hardpps); 2476 #endif /* CONFIG_NTP_PPS */ 2477 2478 /** 2479 * xtime_update() - advances the timekeeping infrastructure 2480 * @ticks: number of ticks, that have elapsed since the last call. 2481 * 2482 * Must be called with interrupts disabled. 2483 */ 2484 void xtime_update(unsigned long ticks) 2485 { 2486 raw_spin_lock(&jiffies_lock); 2487 write_seqcount_begin(&jiffies_seq); 2488 do_timer(ticks); 2489 write_seqcount_end(&jiffies_seq); 2490 raw_spin_unlock(&jiffies_lock); 2491 update_wall_time(); 2492 } 2493