xref: /openbmc/linux/kernel/time/timekeeping.c (revision a1e58bbd)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 
22 
23 /*
24  * This read-write spinlock protects us from races in SMP while
25  * playing with xtime and avenrun.
26  */
27 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
28 
29 
30 /*
31  * The current time
32  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
33  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
34  * at zero at system boot time, so wall_to_monotonic will be negative,
35  * however, we will ALWAYS keep the tv_nsec part positive so we can use
36  * the usual normalization.
37  *
38  * wall_to_monotonic is moved after resume from suspend for the monotonic
39  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
40  * to get the real boot based time offset.
41  *
42  * - wall_to_monotonic is no longer the boot time, getboottime must be
43  * used instead.
44  */
45 struct timespec xtime __attribute__ ((aligned (16)));
46 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
47 static unsigned long total_sleep_time;		/* seconds */
48 
49 static struct timespec xtime_cache __attribute__ ((aligned (16)));
50 void update_xtime_cache(u64 nsec)
51 {
52 	xtime_cache = xtime;
53 	timespec_add_ns(&xtime_cache, nsec);
54 }
55 
56 static struct clocksource *clock; /* pointer to current clocksource */
57 
58 
59 #ifdef CONFIG_GENERIC_TIME
60 /**
61  * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
62  *
63  * private function, must hold xtime_lock lock when being
64  * called. Returns the number of nanoseconds since the
65  * last call to update_wall_time() (adjusted by NTP scaling)
66  */
67 static inline s64 __get_nsec_offset(void)
68 {
69 	cycle_t cycle_now, cycle_delta;
70 	s64 ns_offset;
71 
72 	/* read clocksource: */
73 	cycle_now = clocksource_read(clock);
74 
75 	/* calculate the delta since the last update_wall_time: */
76 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
77 
78 	/* convert to nanoseconds: */
79 	ns_offset = cyc2ns(clock, cycle_delta);
80 
81 	return ns_offset;
82 }
83 
84 /**
85  * getnstimeofday - Returns the time of day in a timespec
86  * @ts:		pointer to the timespec to be set
87  *
88  * Returns the time of day in a timespec.
89  */
90 void getnstimeofday(struct timespec *ts)
91 {
92 	unsigned long seq;
93 	s64 nsecs;
94 
95 	do {
96 		seq = read_seqbegin(&xtime_lock);
97 
98 		*ts = xtime;
99 		nsecs = __get_nsec_offset();
100 
101 	} while (read_seqretry(&xtime_lock, seq));
102 
103 	timespec_add_ns(ts, nsecs);
104 }
105 
106 EXPORT_SYMBOL(getnstimeofday);
107 
108 /**
109  * do_gettimeofday - Returns the time of day in a timeval
110  * @tv:		pointer to the timeval to be set
111  *
112  * NOTE: Users should be converted to using getnstimeofday()
113  */
114 void do_gettimeofday(struct timeval *tv)
115 {
116 	struct timespec now;
117 
118 	getnstimeofday(&now);
119 	tv->tv_sec = now.tv_sec;
120 	tv->tv_usec = now.tv_nsec/1000;
121 }
122 
123 EXPORT_SYMBOL(do_gettimeofday);
124 /**
125  * do_settimeofday - Sets the time of day
126  * @tv:		pointer to the timespec variable containing the new time
127  *
128  * Sets the time of day to the new time and update NTP and notify hrtimers
129  */
130 int do_settimeofday(struct timespec *tv)
131 {
132 	unsigned long flags;
133 	time_t wtm_sec, sec = tv->tv_sec;
134 	long wtm_nsec, nsec = tv->tv_nsec;
135 
136 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
137 		return -EINVAL;
138 
139 	write_seqlock_irqsave(&xtime_lock, flags);
140 
141 	nsec -= __get_nsec_offset();
142 
143 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
144 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
145 
146 	set_normalized_timespec(&xtime, sec, nsec);
147 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
148 	update_xtime_cache(0);
149 
150 	clock->error = 0;
151 	ntp_clear();
152 
153 	update_vsyscall(&xtime, clock);
154 
155 	write_sequnlock_irqrestore(&xtime_lock, flags);
156 
157 	/* signal hrtimers about time change */
158 	clock_was_set();
159 
160 	return 0;
161 }
162 
163 EXPORT_SYMBOL(do_settimeofday);
164 
165 /**
166  * change_clocksource - Swaps clocksources if a new one is available
167  *
168  * Accumulates current time interval and initializes new clocksource
169  */
170 static void change_clocksource(void)
171 {
172 	struct clocksource *new;
173 	cycle_t now;
174 	u64 nsec;
175 
176 	new = clocksource_get_next();
177 
178 	if (clock == new)
179 		return;
180 
181 	now = clocksource_read(new);
182 	nsec =  __get_nsec_offset();
183 	timespec_add_ns(&xtime, nsec);
184 
185 	clock = new;
186 	clock->cycle_last = now;
187 
188 	clock->error = 0;
189 	clock->xtime_nsec = 0;
190 	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
191 
192 	tick_clock_notify();
193 
194 	/*
195 	 * We're holding xtime lock and waking up klogd would deadlock
196 	 * us on enqueue.  So no printing!
197 	printk(KERN_INFO "Time: %s clocksource has been installed.\n",
198 	       clock->name);
199 	 */
200 }
201 #else
202 static inline void change_clocksource(void) { }
203 static inline s64 __get_nsec_offset(void) { return 0; }
204 #endif
205 
206 /**
207  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
208  */
209 int timekeeping_valid_for_hres(void)
210 {
211 	unsigned long seq;
212 	int ret;
213 
214 	do {
215 		seq = read_seqbegin(&xtime_lock);
216 
217 		ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
218 
219 	} while (read_seqretry(&xtime_lock, seq));
220 
221 	return ret;
222 }
223 
224 /**
225  * read_persistent_clock -  Return time in seconds from the persistent clock.
226  *
227  * Weak dummy function for arches that do not yet support it.
228  * Returns seconds from epoch using the battery backed persistent clock.
229  * Returns zero if unsupported.
230  *
231  *  XXX - Do be sure to remove it once all arches implement it.
232  */
233 unsigned long __attribute__((weak)) read_persistent_clock(void)
234 {
235 	return 0;
236 }
237 
238 /*
239  * timekeeping_init - Initializes the clocksource and common timekeeping values
240  */
241 void __init timekeeping_init(void)
242 {
243 	unsigned long flags;
244 	unsigned long sec = read_persistent_clock();
245 
246 	write_seqlock_irqsave(&xtime_lock, flags);
247 
248 	ntp_clear();
249 
250 	clock = clocksource_get_next();
251 	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
252 	clock->cycle_last = clocksource_read(clock);
253 
254 	xtime.tv_sec = sec;
255 	xtime.tv_nsec = 0;
256 	set_normalized_timespec(&wall_to_monotonic,
257 		-xtime.tv_sec, -xtime.tv_nsec);
258 	update_xtime_cache(0);
259 	total_sleep_time = 0;
260 	write_sequnlock_irqrestore(&xtime_lock, flags);
261 }
262 
263 /* flag for if timekeeping is suspended */
264 static int timekeeping_suspended;
265 /* time in seconds when suspend began */
266 static unsigned long timekeeping_suspend_time;
267 /* xtime offset when we went into suspend */
268 static s64 timekeeping_suspend_nsecs;
269 
270 /**
271  * timekeeping_resume - Resumes the generic timekeeping subsystem.
272  * @dev:	unused
273  *
274  * This is for the generic clocksource timekeeping.
275  * xtime/wall_to_monotonic/jiffies/etc are
276  * still managed by arch specific suspend/resume code.
277  */
278 static int timekeeping_resume(struct sys_device *dev)
279 {
280 	unsigned long flags;
281 	unsigned long now = read_persistent_clock();
282 
283 	clocksource_resume();
284 
285 	write_seqlock_irqsave(&xtime_lock, flags);
286 
287 	if (now && (now > timekeeping_suspend_time)) {
288 		unsigned long sleep_length = now - timekeeping_suspend_time;
289 
290 		xtime.tv_sec += sleep_length;
291 		wall_to_monotonic.tv_sec -= sleep_length;
292 		total_sleep_time += sleep_length;
293 	}
294 	/* Make sure that we have the correct xtime reference */
295 	timespec_add_ns(&xtime, timekeeping_suspend_nsecs);
296 	update_xtime_cache(0);
297 	/* re-base the last cycle value */
298 	clock->cycle_last = clocksource_read(clock);
299 	clock->error = 0;
300 	timekeeping_suspended = 0;
301 	write_sequnlock_irqrestore(&xtime_lock, flags);
302 
303 	touch_softlockup_watchdog();
304 
305 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
306 
307 	/* Resume hrtimers */
308 	hres_timers_resume();
309 
310 	return 0;
311 }
312 
313 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
314 {
315 	unsigned long flags;
316 
317 	timekeeping_suspend_time = read_persistent_clock();
318 
319 	write_seqlock_irqsave(&xtime_lock, flags);
320 	/* Get the current xtime offset */
321 	timekeeping_suspend_nsecs = __get_nsec_offset();
322 	timekeeping_suspended = 1;
323 	write_sequnlock_irqrestore(&xtime_lock, flags);
324 
325 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
326 
327 	return 0;
328 }
329 
330 /* sysfs resume/suspend bits for timekeeping */
331 static struct sysdev_class timekeeping_sysclass = {
332 	.name		= "timekeeping",
333 	.resume		= timekeeping_resume,
334 	.suspend	= timekeeping_suspend,
335 };
336 
337 static struct sys_device device_timer = {
338 	.id		= 0,
339 	.cls		= &timekeeping_sysclass,
340 };
341 
342 static int __init timekeeping_init_device(void)
343 {
344 	int error = sysdev_class_register(&timekeeping_sysclass);
345 	if (!error)
346 		error = sysdev_register(&device_timer);
347 	return error;
348 }
349 
350 device_initcall(timekeeping_init_device);
351 
352 /*
353  * If the error is already larger, we look ahead even further
354  * to compensate for late or lost adjustments.
355  */
356 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
357 						 s64 *offset)
358 {
359 	s64 tick_error, i;
360 	u32 look_ahead, adj;
361 	s32 error2, mult;
362 
363 	/*
364 	 * Use the current error value to determine how much to look ahead.
365 	 * The larger the error the slower we adjust for it to avoid problems
366 	 * with losing too many ticks, otherwise we would overadjust and
367 	 * produce an even larger error.  The smaller the adjustment the
368 	 * faster we try to adjust for it, as lost ticks can do less harm
369 	 * here.  This is tuned so that an error of about 1 msec is adjusted
370 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
371 	 */
372 	error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
373 	error2 = abs(error2);
374 	for (look_ahead = 0; error2 > 0; look_ahead++)
375 		error2 >>= 2;
376 
377 	/*
378 	 * Now calculate the error in (1 << look_ahead) ticks, but first
379 	 * remove the single look ahead already included in the error.
380 	 */
381 	tick_error = current_tick_length() >>
382 		(TICK_LENGTH_SHIFT - clock->shift + 1);
383 	tick_error -= clock->xtime_interval >> 1;
384 	error = ((error - tick_error) >> look_ahead) + tick_error;
385 
386 	/* Finally calculate the adjustment shift value.  */
387 	i = *interval;
388 	mult = 1;
389 	if (error < 0) {
390 		error = -error;
391 		*interval = -*interval;
392 		*offset = -*offset;
393 		mult = -1;
394 	}
395 	for (adj = 0; error > i; adj++)
396 		error >>= 1;
397 
398 	*interval <<= adj;
399 	*offset <<= adj;
400 	return mult << adj;
401 }
402 
403 /*
404  * Adjust the multiplier to reduce the error value,
405  * this is optimized for the most common adjustments of -1,0,1,
406  * for other values we can do a bit more work.
407  */
408 static void clocksource_adjust(s64 offset)
409 {
410 	s64 error, interval = clock->cycle_interval;
411 	int adj;
412 
413 	error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
414 	if (error > interval) {
415 		error >>= 2;
416 		if (likely(error <= interval))
417 			adj = 1;
418 		else
419 			adj = clocksource_bigadjust(error, &interval, &offset);
420 	} else if (error < -interval) {
421 		error >>= 2;
422 		if (likely(error >= -interval)) {
423 			adj = -1;
424 			interval = -interval;
425 			offset = -offset;
426 		} else
427 			adj = clocksource_bigadjust(error, &interval, &offset);
428 	} else
429 		return;
430 
431 	clock->mult += adj;
432 	clock->xtime_interval += interval;
433 	clock->xtime_nsec -= offset;
434 	clock->error -= (interval - offset) <<
435 			(TICK_LENGTH_SHIFT - clock->shift);
436 }
437 
438 /**
439  * update_wall_time - Uses the current clocksource to increment the wall time
440  *
441  * Called from the timer interrupt, must hold a write on xtime_lock.
442  */
443 void update_wall_time(void)
444 {
445 	cycle_t offset;
446 
447 	/* Make sure we're fully resumed: */
448 	if (unlikely(timekeeping_suspended))
449 		return;
450 
451 #ifdef CONFIG_GENERIC_TIME
452 	offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
453 #else
454 	offset = clock->cycle_interval;
455 #endif
456 	clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
457 
458 	/* normally this loop will run just once, however in the
459 	 * case of lost or late ticks, it will accumulate correctly.
460 	 */
461 	while (offset >= clock->cycle_interval) {
462 		/* accumulate one interval */
463 		clock->xtime_nsec += clock->xtime_interval;
464 		clock->cycle_last += clock->cycle_interval;
465 		offset -= clock->cycle_interval;
466 
467 		if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
468 			clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
469 			xtime.tv_sec++;
470 			second_overflow();
471 		}
472 
473 		/* accumulate error between NTP and clock interval */
474 		clock->error += current_tick_length();
475 		clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
476 	}
477 
478 	/* correct the clock when NTP error is too big */
479 	clocksource_adjust(offset);
480 
481 	/* store full nanoseconds into xtime */
482 	xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
483 	clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
484 
485 	update_xtime_cache(cyc2ns(clock, offset));
486 
487 	/* check to see if there is a new clocksource to use */
488 	change_clocksource();
489 	update_vsyscall(&xtime, clock);
490 }
491 
492 /**
493  * getboottime - Return the real time of system boot.
494  * @ts:		pointer to the timespec to be set
495  *
496  * Returns the time of day in a timespec.
497  *
498  * This is based on the wall_to_monotonic offset and the total suspend
499  * time. Calls to settimeofday will affect the value returned (which
500  * basically means that however wrong your real time clock is at boot time,
501  * you get the right time here).
502  */
503 void getboottime(struct timespec *ts)
504 {
505 	set_normalized_timespec(ts,
506 		- (wall_to_monotonic.tv_sec + total_sleep_time),
507 		- wall_to_monotonic.tv_nsec);
508 }
509 
510 /**
511  * monotonic_to_bootbased - Convert the monotonic time to boot based.
512  * @ts:		pointer to the timespec to be converted
513  */
514 void monotonic_to_bootbased(struct timespec *ts)
515 {
516 	ts->tv_sec += total_sleep_time;
517 }
518 
519 unsigned long get_seconds(void)
520 {
521 	return xtime_cache.tv_sec;
522 }
523 EXPORT_SYMBOL(get_seconds);
524 
525 
526 struct timespec current_kernel_time(void)
527 {
528 	struct timespec now;
529 	unsigned long seq;
530 
531 	do {
532 		seq = read_seqbegin(&xtime_lock);
533 
534 		now = xtime_cache;
535 	} while (read_seqretry(&xtime_lock, seq));
536 
537 	return now;
538 }
539 EXPORT_SYMBOL(current_kernel_time);
540