1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 old_clock = tk->tkr_mono.clock; 237 tk->tkr_mono.clock = clock; 238 tk->tkr_mono.read = clock->read; 239 tk->tkr_mono.mask = clock->mask; 240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 241 242 tk->tkr_raw.clock = clock; 243 tk->tkr_raw.read = clock->read; 244 tk->tkr_raw.mask = clock->mask; 245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 246 247 /* Do the ns -> cycle conversion first, using original mult */ 248 tmp = NTP_INTERVAL_LENGTH; 249 tmp <<= clock->shift; 250 ntpinterval = tmp; 251 tmp += clock->mult/2; 252 do_div(tmp, clock->mult); 253 if (tmp == 0) 254 tmp = 1; 255 256 interval = (cycle_t) tmp; 257 tk->cycle_interval = interval; 258 259 /* Go back from cycles -> shifted ns */ 260 tk->xtime_interval = (u64) interval * clock->mult; 261 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 262 tk->raw_interval = 263 ((u64) interval * clock->mult) >> clock->shift; 264 265 /* if changing clocks, convert xtime_nsec shift units */ 266 if (old_clock) { 267 int shift_change = clock->shift - old_clock->shift; 268 if (shift_change < 0) 269 tk->tkr_mono.xtime_nsec >>= -shift_change; 270 else 271 tk->tkr_mono.xtime_nsec <<= shift_change; 272 } 273 tk->tkr_raw.xtime_nsec = 0; 274 275 tk->tkr_mono.shift = clock->shift; 276 tk->tkr_raw.shift = clock->shift; 277 278 tk->ntp_error = 0; 279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 281 282 /* 283 * The timekeeper keeps its own mult values for the currently 284 * active clocksource. These value will be adjusted via NTP 285 * to counteract clock drifting. 286 */ 287 tk->tkr_mono.mult = clock->mult; 288 tk->tkr_raw.mult = clock->mult; 289 tk->ntp_err_mult = 0; 290 } 291 292 /* Timekeeper helper functions. */ 293 294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 295 static u32 default_arch_gettimeoffset(void) { return 0; } 296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 297 #else 298 static inline u32 arch_gettimeoffset(void) { return 0; } 299 #endif 300 301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 302 { 303 cycle_t delta; 304 s64 nsec; 305 306 delta = timekeeping_get_delta(tkr); 307 308 nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift; 309 310 /* If arch requires, add in get_arch_timeoffset() */ 311 return nsec + arch_gettimeoffset(); 312 } 313 314 /** 315 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 316 * @tkr: Timekeeping readout base from which we take the update 317 * 318 * We want to use this from any context including NMI and tracing / 319 * instrumenting the timekeeping code itself. 320 * 321 * Employ the latch technique; see @raw_write_seqcount_latch. 322 * 323 * So if a NMI hits the update of base[0] then it will use base[1] 324 * which is still consistent. In the worst case this can result is a 325 * slightly wrong timestamp (a few nanoseconds). See 326 * @ktime_get_mono_fast_ns. 327 */ 328 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 329 { 330 struct tk_read_base *base = tkf->base; 331 332 /* Force readers off to base[1] */ 333 raw_write_seqcount_latch(&tkf->seq); 334 335 /* Update base[0] */ 336 memcpy(base, tkr, sizeof(*base)); 337 338 /* Force readers back to base[0] */ 339 raw_write_seqcount_latch(&tkf->seq); 340 341 /* Update base[1] */ 342 memcpy(base + 1, base, sizeof(*base)); 343 } 344 345 /** 346 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 347 * 348 * This timestamp is not guaranteed to be monotonic across an update. 349 * The timestamp is calculated by: 350 * 351 * now = base_mono + clock_delta * slope 352 * 353 * So if the update lowers the slope, readers who are forced to the 354 * not yet updated second array are still using the old steeper slope. 355 * 356 * tmono 357 * ^ 358 * | o n 359 * | o n 360 * | u 361 * | o 362 * |o 363 * |12345678---> reader order 364 * 365 * o = old slope 366 * u = update 367 * n = new slope 368 * 369 * So reader 6 will observe time going backwards versus reader 5. 370 * 371 * While other CPUs are likely to be able observe that, the only way 372 * for a CPU local observation is when an NMI hits in the middle of 373 * the update. Timestamps taken from that NMI context might be ahead 374 * of the following timestamps. Callers need to be aware of that and 375 * deal with it. 376 */ 377 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 378 { 379 struct tk_read_base *tkr; 380 unsigned int seq; 381 u64 now; 382 383 do { 384 seq = raw_read_seqcount_latch(&tkf->seq); 385 tkr = tkf->base + (seq & 0x01); 386 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr); 387 } while (read_seqcount_retry(&tkf->seq, seq)); 388 389 return now; 390 } 391 392 u64 ktime_get_mono_fast_ns(void) 393 { 394 return __ktime_get_fast_ns(&tk_fast_mono); 395 } 396 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 397 398 u64 ktime_get_raw_fast_ns(void) 399 { 400 return __ktime_get_fast_ns(&tk_fast_raw); 401 } 402 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 403 404 /* Suspend-time cycles value for halted fast timekeeper. */ 405 static cycle_t cycles_at_suspend; 406 407 static cycle_t dummy_clock_read(struct clocksource *cs) 408 { 409 return cycles_at_suspend; 410 } 411 412 /** 413 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 414 * @tk: Timekeeper to snapshot. 415 * 416 * It generally is unsafe to access the clocksource after timekeeping has been 417 * suspended, so take a snapshot of the readout base of @tk and use it as the 418 * fast timekeeper's readout base while suspended. It will return the same 419 * number of cycles every time until timekeeping is resumed at which time the 420 * proper readout base for the fast timekeeper will be restored automatically. 421 */ 422 static void halt_fast_timekeeper(struct timekeeper *tk) 423 { 424 static struct tk_read_base tkr_dummy; 425 struct tk_read_base *tkr = &tk->tkr_mono; 426 427 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 428 cycles_at_suspend = tkr->read(tkr->clock); 429 tkr_dummy.read = dummy_clock_read; 430 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 431 432 tkr = &tk->tkr_raw; 433 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 434 tkr_dummy.read = dummy_clock_read; 435 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 436 } 437 438 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 439 440 static inline void update_vsyscall(struct timekeeper *tk) 441 { 442 struct timespec xt, wm; 443 444 xt = timespec64_to_timespec(tk_xtime(tk)); 445 wm = timespec64_to_timespec(tk->wall_to_monotonic); 446 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 447 tk->tkr_mono.cycle_last); 448 } 449 450 static inline void old_vsyscall_fixup(struct timekeeper *tk) 451 { 452 s64 remainder; 453 454 /* 455 * Store only full nanoseconds into xtime_nsec after rounding 456 * it up and add the remainder to the error difference. 457 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 458 * by truncating the remainder in vsyscalls. However, it causes 459 * additional work to be done in timekeeping_adjust(). Once 460 * the vsyscall implementations are converted to use xtime_nsec 461 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 462 * users are removed, this can be killed. 463 */ 464 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 465 tk->tkr_mono.xtime_nsec -= remainder; 466 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 467 tk->ntp_error += remainder << tk->ntp_error_shift; 468 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 469 } 470 #else 471 #define old_vsyscall_fixup(tk) 472 #endif 473 474 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 475 476 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 477 { 478 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 479 } 480 481 /** 482 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 483 */ 484 int pvclock_gtod_register_notifier(struct notifier_block *nb) 485 { 486 struct timekeeper *tk = &tk_core.timekeeper; 487 unsigned long flags; 488 int ret; 489 490 raw_spin_lock_irqsave(&timekeeper_lock, flags); 491 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 492 update_pvclock_gtod(tk, true); 493 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 494 495 return ret; 496 } 497 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 498 499 /** 500 * pvclock_gtod_unregister_notifier - unregister a pvclock 501 * timedata update listener 502 */ 503 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 504 { 505 unsigned long flags; 506 int ret; 507 508 raw_spin_lock_irqsave(&timekeeper_lock, flags); 509 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 510 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 511 512 return ret; 513 } 514 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 515 516 /* 517 * tk_update_leap_state - helper to update the next_leap_ktime 518 */ 519 static inline void tk_update_leap_state(struct timekeeper *tk) 520 { 521 tk->next_leap_ktime = ntp_get_next_leap(); 522 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 523 /* Convert to monotonic time */ 524 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 525 } 526 527 /* 528 * Update the ktime_t based scalar nsec members of the timekeeper 529 */ 530 static inline void tk_update_ktime_data(struct timekeeper *tk) 531 { 532 u64 seconds; 533 u32 nsec; 534 535 /* 536 * The xtime based monotonic readout is: 537 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 538 * The ktime based monotonic readout is: 539 * nsec = base_mono + now(); 540 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 541 */ 542 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 543 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 544 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 545 546 /* Update the monotonic raw base */ 547 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 548 549 /* 550 * The sum of the nanoseconds portions of xtime and 551 * wall_to_monotonic can be greater/equal one second. Take 552 * this into account before updating tk->ktime_sec. 553 */ 554 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 555 if (nsec >= NSEC_PER_SEC) 556 seconds++; 557 tk->ktime_sec = seconds; 558 } 559 560 /* must hold timekeeper_lock */ 561 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 562 { 563 if (action & TK_CLEAR_NTP) { 564 tk->ntp_error = 0; 565 ntp_clear(); 566 } 567 568 tk_update_leap_state(tk); 569 tk_update_ktime_data(tk); 570 571 update_vsyscall(tk); 572 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 573 574 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 575 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 576 577 if (action & TK_CLOCK_WAS_SET) 578 tk->clock_was_set_seq++; 579 /* 580 * The mirroring of the data to the shadow-timekeeper needs 581 * to happen last here to ensure we don't over-write the 582 * timekeeper structure on the next update with stale data 583 */ 584 if (action & TK_MIRROR) 585 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 586 sizeof(tk_core.timekeeper)); 587 } 588 589 /** 590 * timekeeping_forward_now - update clock to the current time 591 * 592 * Forward the current clock to update its state since the last call to 593 * update_wall_time(). This is useful before significant clock changes, 594 * as it avoids having to deal with this time offset explicitly. 595 */ 596 static void timekeeping_forward_now(struct timekeeper *tk) 597 { 598 struct clocksource *clock = tk->tkr_mono.clock; 599 cycle_t cycle_now, delta; 600 s64 nsec; 601 602 cycle_now = tk->tkr_mono.read(clock); 603 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 604 tk->tkr_mono.cycle_last = cycle_now; 605 tk->tkr_raw.cycle_last = cycle_now; 606 607 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 608 609 /* If arch requires, add in get_arch_timeoffset() */ 610 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 611 612 tk_normalize_xtime(tk); 613 614 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 615 timespec64_add_ns(&tk->raw_time, nsec); 616 } 617 618 /** 619 * __getnstimeofday64 - Returns the time of day in a timespec64. 620 * @ts: pointer to the timespec to be set 621 * 622 * Updates the time of day in the timespec. 623 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 624 */ 625 int __getnstimeofday64(struct timespec64 *ts) 626 { 627 struct timekeeper *tk = &tk_core.timekeeper; 628 unsigned long seq; 629 s64 nsecs = 0; 630 631 do { 632 seq = read_seqcount_begin(&tk_core.seq); 633 634 ts->tv_sec = tk->xtime_sec; 635 nsecs = timekeeping_get_ns(&tk->tkr_mono); 636 637 } while (read_seqcount_retry(&tk_core.seq, seq)); 638 639 ts->tv_nsec = 0; 640 timespec64_add_ns(ts, nsecs); 641 642 /* 643 * Do not bail out early, in case there were callers still using 644 * the value, even in the face of the WARN_ON. 645 */ 646 if (unlikely(timekeeping_suspended)) 647 return -EAGAIN; 648 return 0; 649 } 650 EXPORT_SYMBOL(__getnstimeofday64); 651 652 /** 653 * getnstimeofday64 - Returns the time of day in a timespec64. 654 * @ts: pointer to the timespec64 to be set 655 * 656 * Returns the time of day in a timespec64 (WARN if suspended). 657 */ 658 void getnstimeofday64(struct timespec64 *ts) 659 { 660 WARN_ON(__getnstimeofday64(ts)); 661 } 662 EXPORT_SYMBOL(getnstimeofday64); 663 664 ktime_t ktime_get(void) 665 { 666 struct timekeeper *tk = &tk_core.timekeeper; 667 unsigned int seq; 668 ktime_t base; 669 s64 nsecs; 670 671 WARN_ON(timekeeping_suspended); 672 673 do { 674 seq = read_seqcount_begin(&tk_core.seq); 675 base = tk->tkr_mono.base; 676 nsecs = timekeeping_get_ns(&tk->tkr_mono); 677 678 } while (read_seqcount_retry(&tk_core.seq, seq)); 679 680 return ktime_add_ns(base, nsecs); 681 } 682 EXPORT_SYMBOL_GPL(ktime_get); 683 684 u32 ktime_get_resolution_ns(void) 685 { 686 struct timekeeper *tk = &tk_core.timekeeper; 687 unsigned int seq; 688 u32 nsecs; 689 690 WARN_ON(timekeeping_suspended); 691 692 do { 693 seq = read_seqcount_begin(&tk_core.seq); 694 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 695 } while (read_seqcount_retry(&tk_core.seq, seq)); 696 697 return nsecs; 698 } 699 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 700 701 static ktime_t *offsets[TK_OFFS_MAX] = { 702 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 703 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 704 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 705 }; 706 707 ktime_t ktime_get_with_offset(enum tk_offsets offs) 708 { 709 struct timekeeper *tk = &tk_core.timekeeper; 710 unsigned int seq; 711 ktime_t base, *offset = offsets[offs]; 712 s64 nsecs; 713 714 WARN_ON(timekeeping_suspended); 715 716 do { 717 seq = read_seqcount_begin(&tk_core.seq); 718 base = ktime_add(tk->tkr_mono.base, *offset); 719 nsecs = timekeeping_get_ns(&tk->tkr_mono); 720 721 } while (read_seqcount_retry(&tk_core.seq, seq)); 722 723 return ktime_add_ns(base, nsecs); 724 725 } 726 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 727 728 /** 729 * ktime_mono_to_any() - convert mononotic time to any other time 730 * @tmono: time to convert. 731 * @offs: which offset to use 732 */ 733 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 734 { 735 ktime_t *offset = offsets[offs]; 736 unsigned long seq; 737 ktime_t tconv; 738 739 do { 740 seq = read_seqcount_begin(&tk_core.seq); 741 tconv = ktime_add(tmono, *offset); 742 } while (read_seqcount_retry(&tk_core.seq, seq)); 743 744 return tconv; 745 } 746 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 747 748 /** 749 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 750 */ 751 ktime_t ktime_get_raw(void) 752 { 753 struct timekeeper *tk = &tk_core.timekeeper; 754 unsigned int seq; 755 ktime_t base; 756 s64 nsecs; 757 758 do { 759 seq = read_seqcount_begin(&tk_core.seq); 760 base = tk->tkr_raw.base; 761 nsecs = timekeeping_get_ns(&tk->tkr_raw); 762 763 } while (read_seqcount_retry(&tk_core.seq, seq)); 764 765 return ktime_add_ns(base, nsecs); 766 } 767 EXPORT_SYMBOL_GPL(ktime_get_raw); 768 769 /** 770 * ktime_get_ts64 - get the monotonic clock in timespec64 format 771 * @ts: pointer to timespec variable 772 * 773 * The function calculates the monotonic clock from the realtime 774 * clock and the wall_to_monotonic offset and stores the result 775 * in normalized timespec64 format in the variable pointed to by @ts. 776 */ 777 void ktime_get_ts64(struct timespec64 *ts) 778 { 779 struct timekeeper *tk = &tk_core.timekeeper; 780 struct timespec64 tomono; 781 s64 nsec; 782 unsigned int seq; 783 784 WARN_ON(timekeeping_suspended); 785 786 do { 787 seq = read_seqcount_begin(&tk_core.seq); 788 ts->tv_sec = tk->xtime_sec; 789 nsec = timekeeping_get_ns(&tk->tkr_mono); 790 tomono = tk->wall_to_monotonic; 791 792 } while (read_seqcount_retry(&tk_core.seq, seq)); 793 794 ts->tv_sec += tomono.tv_sec; 795 ts->tv_nsec = 0; 796 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 797 } 798 EXPORT_SYMBOL_GPL(ktime_get_ts64); 799 800 /** 801 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 802 * 803 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 804 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 805 * works on both 32 and 64 bit systems. On 32 bit systems the readout 806 * covers ~136 years of uptime which should be enough to prevent 807 * premature wrap arounds. 808 */ 809 time64_t ktime_get_seconds(void) 810 { 811 struct timekeeper *tk = &tk_core.timekeeper; 812 813 WARN_ON(timekeeping_suspended); 814 return tk->ktime_sec; 815 } 816 EXPORT_SYMBOL_GPL(ktime_get_seconds); 817 818 /** 819 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 820 * 821 * Returns the wall clock seconds since 1970. This replaces the 822 * get_seconds() interface which is not y2038 safe on 32bit systems. 823 * 824 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 825 * 32bit systems the access must be protected with the sequence 826 * counter to provide "atomic" access to the 64bit tk->xtime_sec 827 * value. 828 */ 829 time64_t ktime_get_real_seconds(void) 830 { 831 struct timekeeper *tk = &tk_core.timekeeper; 832 time64_t seconds; 833 unsigned int seq; 834 835 if (IS_ENABLED(CONFIG_64BIT)) 836 return tk->xtime_sec; 837 838 do { 839 seq = read_seqcount_begin(&tk_core.seq); 840 seconds = tk->xtime_sec; 841 842 } while (read_seqcount_retry(&tk_core.seq, seq)); 843 844 return seconds; 845 } 846 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 847 848 /** 849 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 850 * but without the sequence counter protect. This internal function 851 * is called just when timekeeping lock is already held. 852 */ 853 time64_t __ktime_get_real_seconds(void) 854 { 855 struct timekeeper *tk = &tk_core.timekeeper; 856 857 return tk->xtime_sec; 858 } 859 860 861 #ifdef CONFIG_NTP_PPS 862 863 /** 864 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format 865 * @ts_raw: pointer to the timespec to be set to raw monotonic time 866 * @ts_real: pointer to the timespec to be set to the time of day 867 * 868 * This function reads both the time of day and raw monotonic time at the 869 * same time atomically and stores the resulting timestamps in timespec 870 * format. 871 */ 872 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real) 873 { 874 struct timekeeper *tk = &tk_core.timekeeper; 875 unsigned long seq; 876 s64 nsecs_raw, nsecs_real; 877 878 WARN_ON_ONCE(timekeeping_suspended); 879 880 do { 881 seq = read_seqcount_begin(&tk_core.seq); 882 883 *ts_raw = tk->raw_time; 884 ts_real->tv_sec = tk->xtime_sec; 885 ts_real->tv_nsec = 0; 886 887 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw); 888 nsecs_real = timekeeping_get_ns(&tk->tkr_mono); 889 890 } while (read_seqcount_retry(&tk_core.seq, seq)); 891 892 timespec64_add_ns(ts_raw, nsecs_raw); 893 timespec64_add_ns(ts_real, nsecs_real); 894 } 895 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64); 896 897 #endif /* CONFIG_NTP_PPS */ 898 899 /** 900 * do_gettimeofday - Returns the time of day in a timeval 901 * @tv: pointer to the timeval to be set 902 * 903 * NOTE: Users should be converted to using getnstimeofday() 904 */ 905 void do_gettimeofday(struct timeval *tv) 906 { 907 struct timespec64 now; 908 909 getnstimeofday64(&now); 910 tv->tv_sec = now.tv_sec; 911 tv->tv_usec = now.tv_nsec/1000; 912 } 913 EXPORT_SYMBOL(do_gettimeofday); 914 915 /** 916 * do_settimeofday64 - Sets the time of day. 917 * @ts: pointer to the timespec64 variable containing the new time 918 * 919 * Sets the time of day to the new time and update NTP and notify hrtimers 920 */ 921 int do_settimeofday64(const struct timespec64 *ts) 922 { 923 struct timekeeper *tk = &tk_core.timekeeper; 924 struct timespec64 ts_delta, xt; 925 unsigned long flags; 926 int ret = 0; 927 928 if (!timespec64_valid_strict(ts)) 929 return -EINVAL; 930 931 raw_spin_lock_irqsave(&timekeeper_lock, flags); 932 write_seqcount_begin(&tk_core.seq); 933 934 timekeeping_forward_now(tk); 935 936 xt = tk_xtime(tk); 937 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 938 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 939 940 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 941 ret = -EINVAL; 942 goto out; 943 } 944 945 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 946 947 tk_set_xtime(tk, ts); 948 out: 949 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 950 951 write_seqcount_end(&tk_core.seq); 952 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 953 954 /* signal hrtimers about time change */ 955 clock_was_set(); 956 957 return ret; 958 } 959 EXPORT_SYMBOL(do_settimeofday64); 960 961 /** 962 * timekeeping_inject_offset - Adds or subtracts from the current time. 963 * @tv: pointer to the timespec variable containing the offset 964 * 965 * Adds or subtracts an offset value from the current time. 966 */ 967 int timekeeping_inject_offset(struct timespec *ts) 968 { 969 struct timekeeper *tk = &tk_core.timekeeper; 970 unsigned long flags; 971 struct timespec64 ts64, tmp; 972 int ret = 0; 973 974 if (!timespec_inject_offset_valid(ts)) 975 return -EINVAL; 976 977 ts64 = timespec_to_timespec64(*ts); 978 979 raw_spin_lock_irqsave(&timekeeper_lock, flags); 980 write_seqcount_begin(&tk_core.seq); 981 982 timekeeping_forward_now(tk); 983 984 /* Make sure the proposed value is valid */ 985 tmp = timespec64_add(tk_xtime(tk), ts64); 986 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 987 !timespec64_valid_strict(&tmp)) { 988 ret = -EINVAL; 989 goto error; 990 } 991 992 tk_xtime_add(tk, &ts64); 993 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 994 995 error: /* even if we error out, we forwarded the time, so call update */ 996 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 997 998 write_seqcount_end(&tk_core.seq); 999 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1000 1001 /* signal hrtimers about time change */ 1002 clock_was_set(); 1003 1004 return ret; 1005 } 1006 EXPORT_SYMBOL(timekeeping_inject_offset); 1007 1008 1009 /** 1010 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 1011 * 1012 */ 1013 s32 timekeeping_get_tai_offset(void) 1014 { 1015 struct timekeeper *tk = &tk_core.timekeeper; 1016 unsigned int seq; 1017 s32 ret; 1018 1019 do { 1020 seq = read_seqcount_begin(&tk_core.seq); 1021 ret = tk->tai_offset; 1022 } while (read_seqcount_retry(&tk_core.seq, seq)); 1023 1024 return ret; 1025 } 1026 1027 /** 1028 * __timekeeping_set_tai_offset - Lock free worker function 1029 * 1030 */ 1031 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1032 { 1033 tk->tai_offset = tai_offset; 1034 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1035 } 1036 1037 /** 1038 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1039 * 1040 */ 1041 void timekeeping_set_tai_offset(s32 tai_offset) 1042 { 1043 struct timekeeper *tk = &tk_core.timekeeper; 1044 unsigned long flags; 1045 1046 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1047 write_seqcount_begin(&tk_core.seq); 1048 __timekeeping_set_tai_offset(tk, tai_offset); 1049 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1050 write_seqcount_end(&tk_core.seq); 1051 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1052 clock_was_set(); 1053 } 1054 1055 /** 1056 * change_clocksource - Swaps clocksources if a new one is available 1057 * 1058 * Accumulates current time interval and initializes new clocksource 1059 */ 1060 static int change_clocksource(void *data) 1061 { 1062 struct timekeeper *tk = &tk_core.timekeeper; 1063 struct clocksource *new, *old; 1064 unsigned long flags; 1065 1066 new = (struct clocksource *) data; 1067 1068 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1069 write_seqcount_begin(&tk_core.seq); 1070 1071 timekeeping_forward_now(tk); 1072 /* 1073 * If the cs is in module, get a module reference. Succeeds 1074 * for built-in code (owner == NULL) as well. 1075 */ 1076 if (try_module_get(new->owner)) { 1077 if (!new->enable || new->enable(new) == 0) { 1078 old = tk->tkr_mono.clock; 1079 tk_setup_internals(tk, new); 1080 if (old->disable) 1081 old->disable(old); 1082 module_put(old->owner); 1083 } else { 1084 module_put(new->owner); 1085 } 1086 } 1087 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1088 1089 write_seqcount_end(&tk_core.seq); 1090 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1091 1092 return 0; 1093 } 1094 1095 /** 1096 * timekeeping_notify - Install a new clock source 1097 * @clock: pointer to the clock source 1098 * 1099 * This function is called from clocksource.c after a new, better clock 1100 * source has been registered. The caller holds the clocksource_mutex. 1101 */ 1102 int timekeeping_notify(struct clocksource *clock) 1103 { 1104 struct timekeeper *tk = &tk_core.timekeeper; 1105 1106 if (tk->tkr_mono.clock == clock) 1107 return 0; 1108 stop_machine(change_clocksource, clock, NULL); 1109 tick_clock_notify(); 1110 return tk->tkr_mono.clock == clock ? 0 : -1; 1111 } 1112 1113 /** 1114 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1115 * @ts: pointer to the timespec64 to be set 1116 * 1117 * Returns the raw monotonic time (completely un-modified by ntp) 1118 */ 1119 void getrawmonotonic64(struct timespec64 *ts) 1120 { 1121 struct timekeeper *tk = &tk_core.timekeeper; 1122 struct timespec64 ts64; 1123 unsigned long seq; 1124 s64 nsecs; 1125 1126 do { 1127 seq = read_seqcount_begin(&tk_core.seq); 1128 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1129 ts64 = tk->raw_time; 1130 1131 } while (read_seqcount_retry(&tk_core.seq, seq)); 1132 1133 timespec64_add_ns(&ts64, nsecs); 1134 *ts = ts64; 1135 } 1136 EXPORT_SYMBOL(getrawmonotonic64); 1137 1138 1139 /** 1140 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1141 */ 1142 int timekeeping_valid_for_hres(void) 1143 { 1144 struct timekeeper *tk = &tk_core.timekeeper; 1145 unsigned long seq; 1146 int ret; 1147 1148 do { 1149 seq = read_seqcount_begin(&tk_core.seq); 1150 1151 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1152 1153 } while (read_seqcount_retry(&tk_core.seq, seq)); 1154 1155 return ret; 1156 } 1157 1158 /** 1159 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1160 */ 1161 u64 timekeeping_max_deferment(void) 1162 { 1163 struct timekeeper *tk = &tk_core.timekeeper; 1164 unsigned long seq; 1165 u64 ret; 1166 1167 do { 1168 seq = read_seqcount_begin(&tk_core.seq); 1169 1170 ret = tk->tkr_mono.clock->max_idle_ns; 1171 1172 } while (read_seqcount_retry(&tk_core.seq, seq)); 1173 1174 return ret; 1175 } 1176 1177 /** 1178 * read_persistent_clock - Return time from the persistent clock. 1179 * 1180 * Weak dummy function for arches that do not yet support it. 1181 * Reads the time from the battery backed persistent clock. 1182 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1183 * 1184 * XXX - Do be sure to remove it once all arches implement it. 1185 */ 1186 void __weak read_persistent_clock(struct timespec *ts) 1187 { 1188 ts->tv_sec = 0; 1189 ts->tv_nsec = 0; 1190 } 1191 1192 void __weak read_persistent_clock64(struct timespec64 *ts64) 1193 { 1194 struct timespec ts; 1195 1196 read_persistent_clock(&ts); 1197 *ts64 = timespec_to_timespec64(ts); 1198 } 1199 1200 /** 1201 * read_boot_clock64 - Return time of the system start. 1202 * 1203 * Weak dummy function for arches that do not yet support it. 1204 * Function to read the exact time the system has been started. 1205 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1206 * 1207 * XXX - Do be sure to remove it once all arches implement it. 1208 */ 1209 void __weak read_boot_clock64(struct timespec64 *ts) 1210 { 1211 ts->tv_sec = 0; 1212 ts->tv_nsec = 0; 1213 } 1214 1215 /* Flag for if timekeeping_resume() has injected sleeptime */ 1216 static bool sleeptime_injected; 1217 1218 /* Flag for if there is a persistent clock on this platform */ 1219 static bool persistent_clock_exists; 1220 1221 /* 1222 * timekeeping_init - Initializes the clocksource and common timekeeping values 1223 */ 1224 void __init timekeeping_init(void) 1225 { 1226 struct timekeeper *tk = &tk_core.timekeeper; 1227 struct clocksource *clock; 1228 unsigned long flags; 1229 struct timespec64 now, boot, tmp; 1230 1231 read_persistent_clock64(&now); 1232 if (!timespec64_valid_strict(&now)) { 1233 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1234 " Check your CMOS/BIOS settings.\n"); 1235 now.tv_sec = 0; 1236 now.tv_nsec = 0; 1237 } else if (now.tv_sec || now.tv_nsec) 1238 persistent_clock_exists = true; 1239 1240 read_boot_clock64(&boot); 1241 if (!timespec64_valid_strict(&boot)) { 1242 pr_warn("WARNING: Boot clock returned invalid value!\n" 1243 " Check your CMOS/BIOS settings.\n"); 1244 boot.tv_sec = 0; 1245 boot.tv_nsec = 0; 1246 } 1247 1248 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1249 write_seqcount_begin(&tk_core.seq); 1250 ntp_init(); 1251 1252 clock = clocksource_default_clock(); 1253 if (clock->enable) 1254 clock->enable(clock); 1255 tk_setup_internals(tk, clock); 1256 1257 tk_set_xtime(tk, &now); 1258 tk->raw_time.tv_sec = 0; 1259 tk->raw_time.tv_nsec = 0; 1260 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1261 boot = tk_xtime(tk); 1262 1263 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1264 tk_set_wall_to_mono(tk, tmp); 1265 1266 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1267 1268 write_seqcount_end(&tk_core.seq); 1269 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1270 } 1271 1272 /* time in seconds when suspend began for persistent clock */ 1273 static struct timespec64 timekeeping_suspend_time; 1274 1275 /** 1276 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1277 * @delta: pointer to a timespec delta value 1278 * 1279 * Takes a timespec offset measuring a suspend interval and properly 1280 * adds the sleep offset to the timekeeping variables. 1281 */ 1282 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1283 struct timespec64 *delta) 1284 { 1285 if (!timespec64_valid_strict(delta)) { 1286 printk_deferred(KERN_WARNING 1287 "__timekeeping_inject_sleeptime: Invalid " 1288 "sleep delta value!\n"); 1289 return; 1290 } 1291 tk_xtime_add(tk, delta); 1292 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1293 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1294 tk_debug_account_sleep_time(delta); 1295 } 1296 1297 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1298 /** 1299 * We have three kinds of time sources to use for sleep time 1300 * injection, the preference order is: 1301 * 1) non-stop clocksource 1302 * 2) persistent clock (ie: RTC accessible when irqs are off) 1303 * 3) RTC 1304 * 1305 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1306 * If system has neither 1) nor 2), 3) will be used finally. 1307 * 1308 * 1309 * If timekeeping has injected sleeptime via either 1) or 2), 1310 * 3) becomes needless, so in this case we don't need to call 1311 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1312 * means. 1313 */ 1314 bool timekeeping_rtc_skipresume(void) 1315 { 1316 return sleeptime_injected; 1317 } 1318 1319 /** 1320 * 1) can be determined whether to use or not only when doing 1321 * timekeeping_resume() which is invoked after rtc_suspend(), 1322 * so we can't skip rtc_suspend() surely if system has 1). 1323 * 1324 * But if system has 2), 2) will definitely be used, so in this 1325 * case we don't need to call rtc_suspend(), and this is what 1326 * timekeeping_rtc_skipsuspend() means. 1327 */ 1328 bool timekeeping_rtc_skipsuspend(void) 1329 { 1330 return persistent_clock_exists; 1331 } 1332 1333 /** 1334 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1335 * @delta: pointer to a timespec64 delta value 1336 * 1337 * This hook is for architectures that cannot support read_persistent_clock64 1338 * because their RTC/persistent clock is only accessible when irqs are enabled. 1339 * and also don't have an effective nonstop clocksource. 1340 * 1341 * This function should only be called by rtc_resume(), and allows 1342 * a suspend offset to be injected into the timekeeping values. 1343 */ 1344 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1345 { 1346 struct timekeeper *tk = &tk_core.timekeeper; 1347 unsigned long flags; 1348 1349 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1350 write_seqcount_begin(&tk_core.seq); 1351 1352 timekeeping_forward_now(tk); 1353 1354 __timekeeping_inject_sleeptime(tk, delta); 1355 1356 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1357 1358 write_seqcount_end(&tk_core.seq); 1359 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1360 1361 /* signal hrtimers about time change */ 1362 clock_was_set(); 1363 } 1364 #endif 1365 1366 /** 1367 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1368 */ 1369 void timekeeping_resume(void) 1370 { 1371 struct timekeeper *tk = &tk_core.timekeeper; 1372 struct clocksource *clock = tk->tkr_mono.clock; 1373 unsigned long flags; 1374 struct timespec64 ts_new, ts_delta; 1375 cycle_t cycle_now, cycle_delta; 1376 1377 sleeptime_injected = false; 1378 read_persistent_clock64(&ts_new); 1379 1380 clockevents_resume(); 1381 clocksource_resume(); 1382 1383 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1384 write_seqcount_begin(&tk_core.seq); 1385 1386 /* 1387 * After system resumes, we need to calculate the suspended time and 1388 * compensate it for the OS time. There are 3 sources that could be 1389 * used: Nonstop clocksource during suspend, persistent clock and rtc 1390 * device. 1391 * 1392 * One specific platform may have 1 or 2 or all of them, and the 1393 * preference will be: 1394 * suspend-nonstop clocksource -> persistent clock -> rtc 1395 * The less preferred source will only be tried if there is no better 1396 * usable source. The rtc part is handled separately in rtc core code. 1397 */ 1398 cycle_now = tk->tkr_mono.read(clock); 1399 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1400 cycle_now > tk->tkr_mono.cycle_last) { 1401 u64 num, max = ULLONG_MAX; 1402 u32 mult = clock->mult; 1403 u32 shift = clock->shift; 1404 s64 nsec = 0; 1405 1406 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1407 tk->tkr_mono.mask); 1408 1409 /* 1410 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1411 * suspended time is too long. In that case we need do the 1412 * 64 bits math carefully 1413 */ 1414 do_div(max, mult); 1415 if (cycle_delta > max) { 1416 num = div64_u64(cycle_delta, max); 1417 nsec = (((u64) max * mult) >> shift) * num; 1418 cycle_delta -= num * max; 1419 } 1420 nsec += ((u64) cycle_delta * mult) >> shift; 1421 1422 ts_delta = ns_to_timespec64(nsec); 1423 sleeptime_injected = true; 1424 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1425 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1426 sleeptime_injected = true; 1427 } 1428 1429 if (sleeptime_injected) 1430 __timekeeping_inject_sleeptime(tk, &ts_delta); 1431 1432 /* Re-base the last cycle value */ 1433 tk->tkr_mono.cycle_last = cycle_now; 1434 tk->tkr_raw.cycle_last = cycle_now; 1435 1436 tk->ntp_error = 0; 1437 timekeeping_suspended = 0; 1438 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1439 write_seqcount_end(&tk_core.seq); 1440 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1441 1442 touch_softlockup_watchdog(); 1443 1444 tick_resume(); 1445 hrtimers_resume(); 1446 } 1447 1448 int timekeeping_suspend(void) 1449 { 1450 struct timekeeper *tk = &tk_core.timekeeper; 1451 unsigned long flags; 1452 struct timespec64 delta, delta_delta; 1453 static struct timespec64 old_delta; 1454 1455 read_persistent_clock64(&timekeeping_suspend_time); 1456 1457 /* 1458 * On some systems the persistent_clock can not be detected at 1459 * timekeeping_init by its return value, so if we see a valid 1460 * value returned, update the persistent_clock_exists flag. 1461 */ 1462 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1463 persistent_clock_exists = true; 1464 1465 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1466 write_seqcount_begin(&tk_core.seq); 1467 timekeeping_forward_now(tk); 1468 timekeeping_suspended = 1; 1469 1470 if (persistent_clock_exists) { 1471 /* 1472 * To avoid drift caused by repeated suspend/resumes, 1473 * which each can add ~1 second drift error, 1474 * try to compensate so the difference in system time 1475 * and persistent_clock time stays close to constant. 1476 */ 1477 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1478 delta_delta = timespec64_sub(delta, old_delta); 1479 if (abs(delta_delta.tv_sec) >= 2) { 1480 /* 1481 * if delta_delta is too large, assume time correction 1482 * has occurred and set old_delta to the current delta. 1483 */ 1484 old_delta = delta; 1485 } else { 1486 /* Otherwise try to adjust old_system to compensate */ 1487 timekeeping_suspend_time = 1488 timespec64_add(timekeeping_suspend_time, delta_delta); 1489 } 1490 } 1491 1492 timekeeping_update(tk, TK_MIRROR); 1493 halt_fast_timekeeper(tk); 1494 write_seqcount_end(&tk_core.seq); 1495 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1496 1497 tick_suspend(); 1498 clocksource_suspend(); 1499 clockevents_suspend(); 1500 1501 return 0; 1502 } 1503 1504 /* sysfs resume/suspend bits for timekeeping */ 1505 static struct syscore_ops timekeeping_syscore_ops = { 1506 .resume = timekeeping_resume, 1507 .suspend = timekeeping_suspend, 1508 }; 1509 1510 static int __init timekeeping_init_ops(void) 1511 { 1512 register_syscore_ops(&timekeeping_syscore_ops); 1513 return 0; 1514 } 1515 device_initcall(timekeeping_init_ops); 1516 1517 /* 1518 * Apply a multiplier adjustment to the timekeeper 1519 */ 1520 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1521 s64 offset, 1522 bool negative, 1523 int adj_scale) 1524 { 1525 s64 interval = tk->cycle_interval; 1526 s32 mult_adj = 1; 1527 1528 if (negative) { 1529 mult_adj = -mult_adj; 1530 interval = -interval; 1531 offset = -offset; 1532 } 1533 mult_adj <<= adj_scale; 1534 interval <<= adj_scale; 1535 offset <<= adj_scale; 1536 1537 /* 1538 * So the following can be confusing. 1539 * 1540 * To keep things simple, lets assume mult_adj == 1 for now. 1541 * 1542 * When mult_adj != 1, remember that the interval and offset values 1543 * have been appropriately scaled so the math is the same. 1544 * 1545 * The basic idea here is that we're increasing the multiplier 1546 * by one, this causes the xtime_interval to be incremented by 1547 * one cycle_interval. This is because: 1548 * xtime_interval = cycle_interval * mult 1549 * So if mult is being incremented by one: 1550 * xtime_interval = cycle_interval * (mult + 1) 1551 * Its the same as: 1552 * xtime_interval = (cycle_interval * mult) + cycle_interval 1553 * Which can be shortened to: 1554 * xtime_interval += cycle_interval 1555 * 1556 * So offset stores the non-accumulated cycles. Thus the current 1557 * time (in shifted nanoseconds) is: 1558 * now = (offset * adj) + xtime_nsec 1559 * Now, even though we're adjusting the clock frequency, we have 1560 * to keep time consistent. In other words, we can't jump back 1561 * in time, and we also want to avoid jumping forward in time. 1562 * 1563 * So given the same offset value, we need the time to be the same 1564 * both before and after the freq adjustment. 1565 * now = (offset * adj_1) + xtime_nsec_1 1566 * now = (offset * adj_2) + xtime_nsec_2 1567 * So: 1568 * (offset * adj_1) + xtime_nsec_1 = 1569 * (offset * adj_2) + xtime_nsec_2 1570 * And we know: 1571 * adj_2 = adj_1 + 1 1572 * So: 1573 * (offset * adj_1) + xtime_nsec_1 = 1574 * (offset * (adj_1+1)) + xtime_nsec_2 1575 * (offset * adj_1) + xtime_nsec_1 = 1576 * (offset * adj_1) + offset + xtime_nsec_2 1577 * Canceling the sides: 1578 * xtime_nsec_1 = offset + xtime_nsec_2 1579 * Which gives us: 1580 * xtime_nsec_2 = xtime_nsec_1 - offset 1581 * Which simplfies to: 1582 * xtime_nsec -= offset 1583 * 1584 * XXX - TODO: Doc ntp_error calculation. 1585 */ 1586 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1587 /* NTP adjustment caused clocksource mult overflow */ 1588 WARN_ON_ONCE(1); 1589 return; 1590 } 1591 1592 tk->tkr_mono.mult += mult_adj; 1593 tk->xtime_interval += interval; 1594 tk->tkr_mono.xtime_nsec -= offset; 1595 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1596 } 1597 1598 /* 1599 * Calculate the multiplier adjustment needed to match the frequency 1600 * specified by NTP 1601 */ 1602 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1603 s64 offset) 1604 { 1605 s64 interval = tk->cycle_interval; 1606 s64 xinterval = tk->xtime_interval; 1607 u32 base = tk->tkr_mono.clock->mult; 1608 u32 max = tk->tkr_mono.clock->maxadj; 1609 u32 cur_adj = tk->tkr_mono.mult; 1610 s64 tick_error; 1611 bool negative; 1612 u32 adj_scale; 1613 1614 /* Remove any current error adj from freq calculation */ 1615 if (tk->ntp_err_mult) 1616 xinterval -= tk->cycle_interval; 1617 1618 tk->ntp_tick = ntp_tick_length(); 1619 1620 /* Calculate current error per tick */ 1621 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1622 tick_error -= (xinterval + tk->xtime_remainder); 1623 1624 /* Don't worry about correcting it if its small */ 1625 if (likely((tick_error >= 0) && (tick_error <= interval))) 1626 return; 1627 1628 /* preserve the direction of correction */ 1629 negative = (tick_error < 0); 1630 1631 /* If any adjustment would pass the max, just return */ 1632 if (negative && (cur_adj - 1) <= (base - max)) 1633 return; 1634 if (!negative && (cur_adj + 1) >= (base + max)) 1635 return; 1636 /* 1637 * Sort out the magnitude of the correction, but 1638 * avoid making so large a correction that we go 1639 * over the max adjustment. 1640 */ 1641 adj_scale = 0; 1642 tick_error = abs(tick_error); 1643 while (tick_error > interval) { 1644 u32 adj = 1 << (adj_scale + 1); 1645 1646 /* Check if adjustment gets us within 1 unit from the max */ 1647 if (negative && (cur_adj - adj) <= (base - max)) 1648 break; 1649 if (!negative && (cur_adj + adj) >= (base + max)) 1650 break; 1651 1652 adj_scale++; 1653 tick_error >>= 1; 1654 } 1655 1656 /* scale the corrections */ 1657 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1658 } 1659 1660 /* 1661 * Adjust the timekeeper's multiplier to the correct frequency 1662 * and also to reduce the accumulated error value. 1663 */ 1664 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1665 { 1666 /* Correct for the current frequency error */ 1667 timekeeping_freqadjust(tk, offset); 1668 1669 /* Next make a small adjustment to fix any cumulative error */ 1670 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1671 tk->ntp_err_mult = 1; 1672 timekeeping_apply_adjustment(tk, offset, 0, 0); 1673 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1674 /* Undo any existing error adjustment */ 1675 timekeeping_apply_adjustment(tk, offset, 1, 0); 1676 tk->ntp_err_mult = 0; 1677 } 1678 1679 if (unlikely(tk->tkr_mono.clock->maxadj && 1680 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1681 > tk->tkr_mono.clock->maxadj))) { 1682 printk_once(KERN_WARNING 1683 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1684 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1685 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1686 } 1687 1688 /* 1689 * It may be possible that when we entered this function, xtime_nsec 1690 * was very small. Further, if we're slightly speeding the clocksource 1691 * in the code above, its possible the required corrective factor to 1692 * xtime_nsec could cause it to underflow. 1693 * 1694 * Now, since we already accumulated the second, cannot simply roll 1695 * the accumulated second back, since the NTP subsystem has been 1696 * notified via second_overflow. So instead we push xtime_nsec forward 1697 * by the amount we underflowed, and add that amount into the error. 1698 * 1699 * We'll correct this error next time through this function, when 1700 * xtime_nsec is not as small. 1701 */ 1702 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1703 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1704 tk->tkr_mono.xtime_nsec = 0; 1705 tk->ntp_error += neg << tk->ntp_error_shift; 1706 } 1707 } 1708 1709 /** 1710 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1711 * 1712 * Helper function that accumulates the nsecs greater than a second 1713 * from the xtime_nsec field to the xtime_secs field. 1714 * It also calls into the NTP code to handle leapsecond processing. 1715 * 1716 */ 1717 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1718 { 1719 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1720 unsigned int clock_set = 0; 1721 1722 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1723 int leap; 1724 1725 tk->tkr_mono.xtime_nsec -= nsecps; 1726 tk->xtime_sec++; 1727 1728 /* Figure out if its a leap sec and apply if needed */ 1729 leap = second_overflow(tk->xtime_sec); 1730 if (unlikely(leap)) { 1731 struct timespec64 ts; 1732 1733 tk->xtime_sec += leap; 1734 1735 ts.tv_sec = leap; 1736 ts.tv_nsec = 0; 1737 tk_set_wall_to_mono(tk, 1738 timespec64_sub(tk->wall_to_monotonic, ts)); 1739 1740 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1741 1742 clock_set = TK_CLOCK_WAS_SET; 1743 } 1744 } 1745 return clock_set; 1746 } 1747 1748 /** 1749 * logarithmic_accumulation - shifted accumulation of cycles 1750 * 1751 * This functions accumulates a shifted interval of cycles into 1752 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1753 * loop. 1754 * 1755 * Returns the unconsumed cycles. 1756 */ 1757 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1758 u32 shift, 1759 unsigned int *clock_set) 1760 { 1761 cycle_t interval = tk->cycle_interval << shift; 1762 u64 raw_nsecs; 1763 1764 /* If the offset is smaller than a shifted interval, do nothing */ 1765 if (offset < interval) 1766 return offset; 1767 1768 /* Accumulate one shifted interval */ 1769 offset -= interval; 1770 tk->tkr_mono.cycle_last += interval; 1771 tk->tkr_raw.cycle_last += interval; 1772 1773 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 1774 *clock_set |= accumulate_nsecs_to_secs(tk); 1775 1776 /* Accumulate raw time */ 1777 raw_nsecs = (u64)tk->raw_interval << shift; 1778 raw_nsecs += tk->raw_time.tv_nsec; 1779 if (raw_nsecs >= NSEC_PER_SEC) { 1780 u64 raw_secs = raw_nsecs; 1781 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1782 tk->raw_time.tv_sec += raw_secs; 1783 } 1784 tk->raw_time.tv_nsec = raw_nsecs; 1785 1786 /* Accumulate error between NTP and clock interval */ 1787 tk->ntp_error += tk->ntp_tick << shift; 1788 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1789 (tk->ntp_error_shift + shift); 1790 1791 return offset; 1792 } 1793 1794 /** 1795 * update_wall_time - Uses the current clocksource to increment the wall time 1796 * 1797 */ 1798 void update_wall_time(void) 1799 { 1800 struct timekeeper *real_tk = &tk_core.timekeeper; 1801 struct timekeeper *tk = &shadow_timekeeper; 1802 cycle_t offset; 1803 int shift = 0, maxshift; 1804 unsigned int clock_set = 0; 1805 unsigned long flags; 1806 1807 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1808 1809 /* Make sure we're fully resumed: */ 1810 if (unlikely(timekeeping_suspended)) 1811 goto out; 1812 1813 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1814 offset = real_tk->cycle_interval; 1815 #else 1816 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 1817 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 1818 #endif 1819 1820 /* Check if there's really nothing to do */ 1821 if (offset < real_tk->cycle_interval) 1822 goto out; 1823 1824 /* Do some additional sanity checking */ 1825 timekeeping_check_update(real_tk, offset); 1826 1827 /* 1828 * With NO_HZ we may have to accumulate many cycle_intervals 1829 * (think "ticks") worth of time at once. To do this efficiently, 1830 * we calculate the largest doubling multiple of cycle_intervals 1831 * that is smaller than the offset. We then accumulate that 1832 * chunk in one go, and then try to consume the next smaller 1833 * doubled multiple. 1834 */ 1835 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1836 shift = max(0, shift); 1837 /* Bound shift to one less than what overflows tick_length */ 1838 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1839 shift = min(shift, maxshift); 1840 while (offset >= tk->cycle_interval) { 1841 offset = logarithmic_accumulation(tk, offset, shift, 1842 &clock_set); 1843 if (offset < tk->cycle_interval<<shift) 1844 shift--; 1845 } 1846 1847 /* correct the clock when NTP error is too big */ 1848 timekeeping_adjust(tk, offset); 1849 1850 /* 1851 * XXX This can be killed once everyone converts 1852 * to the new update_vsyscall. 1853 */ 1854 old_vsyscall_fixup(tk); 1855 1856 /* 1857 * Finally, make sure that after the rounding 1858 * xtime_nsec isn't larger than NSEC_PER_SEC 1859 */ 1860 clock_set |= accumulate_nsecs_to_secs(tk); 1861 1862 write_seqcount_begin(&tk_core.seq); 1863 /* 1864 * Update the real timekeeper. 1865 * 1866 * We could avoid this memcpy by switching pointers, but that 1867 * requires changes to all other timekeeper usage sites as 1868 * well, i.e. move the timekeeper pointer getter into the 1869 * spinlocked/seqcount protected sections. And we trade this 1870 * memcpy under the tk_core.seq against one before we start 1871 * updating. 1872 */ 1873 timekeeping_update(tk, clock_set); 1874 memcpy(real_tk, tk, sizeof(*tk)); 1875 /* The memcpy must come last. Do not put anything here! */ 1876 write_seqcount_end(&tk_core.seq); 1877 out: 1878 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1879 if (clock_set) 1880 /* Have to call _delayed version, since in irq context*/ 1881 clock_was_set_delayed(); 1882 } 1883 1884 /** 1885 * getboottime64 - Return the real time of system boot. 1886 * @ts: pointer to the timespec64 to be set 1887 * 1888 * Returns the wall-time of boot in a timespec64. 1889 * 1890 * This is based on the wall_to_monotonic offset and the total suspend 1891 * time. Calls to settimeofday will affect the value returned (which 1892 * basically means that however wrong your real time clock is at boot time, 1893 * you get the right time here). 1894 */ 1895 void getboottime64(struct timespec64 *ts) 1896 { 1897 struct timekeeper *tk = &tk_core.timekeeper; 1898 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1899 1900 *ts = ktime_to_timespec64(t); 1901 } 1902 EXPORT_SYMBOL_GPL(getboottime64); 1903 1904 unsigned long get_seconds(void) 1905 { 1906 struct timekeeper *tk = &tk_core.timekeeper; 1907 1908 return tk->xtime_sec; 1909 } 1910 EXPORT_SYMBOL(get_seconds); 1911 1912 struct timespec __current_kernel_time(void) 1913 { 1914 struct timekeeper *tk = &tk_core.timekeeper; 1915 1916 return timespec64_to_timespec(tk_xtime(tk)); 1917 } 1918 1919 struct timespec64 current_kernel_time64(void) 1920 { 1921 struct timekeeper *tk = &tk_core.timekeeper; 1922 struct timespec64 now; 1923 unsigned long seq; 1924 1925 do { 1926 seq = read_seqcount_begin(&tk_core.seq); 1927 1928 now = tk_xtime(tk); 1929 } while (read_seqcount_retry(&tk_core.seq, seq)); 1930 1931 return now; 1932 } 1933 EXPORT_SYMBOL(current_kernel_time64); 1934 1935 struct timespec64 get_monotonic_coarse64(void) 1936 { 1937 struct timekeeper *tk = &tk_core.timekeeper; 1938 struct timespec64 now, mono; 1939 unsigned long seq; 1940 1941 do { 1942 seq = read_seqcount_begin(&tk_core.seq); 1943 1944 now = tk_xtime(tk); 1945 mono = tk->wall_to_monotonic; 1946 } while (read_seqcount_retry(&tk_core.seq, seq)); 1947 1948 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1949 now.tv_nsec + mono.tv_nsec); 1950 1951 return now; 1952 } 1953 1954 /* 1955 * Must hold jiffies_lock 1956 */ 1957 void do_timer(unsigned long ticks) 1958 { 1959 jiffies_64 += ticks; 1960 calc_global_load(ticks); 1961 } 1962 1963 /** 1964 * ktime_get_update_offsets_now - hrtimer helper 1965 * @cwsseq: pointer to check and store the clock was set sequence number 1966 * @offs_real: pointer to storage for monotonic -> realtime offset 1967 * @offs_boot: pointer to storage for monotonic -> boottime offset 1968 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1969 * 1970 * Returns current monotonic time and updates the offsets if the 1971 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 1972 * different. 1973 * 1974 * Called from hrtimer_interrupt() or retrigger_next_event() 1975 */ 1976 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 1977 ktime_t *offs_boot, ktime_t *offs_tai) 1978 { 1979 struct timekeeper *tk = &tk_core.timekeeper; 1980 unsigned int seq; 1981 ktime_t base; 1982 u64 nsecs; 1983 1984 do { 1985 seq = read_seqcount_begin(&tk_core.seq); 1986 1987 base = tk->tkr_mono.base; 1988 nsecs = timekeeping_get_ns(&tk->tkr_mono); 1989 base = ktime_add_ns(base, nsecs); 1990 1991 if (*cwsseq != tk->clock_was_set_seq) { 1992 *cwsseq = tk->clock_was_set_seq; 1993 *offs_real = tk->offs_real; 1994 *offs_boot = tk->offs_boot; 1995 *offs_tai = tk->offs_tai; 1996 } 1997 1998 /* Handle leapsecond insertion adjustments */ 1999 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 2000 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2001 2002 } while (read_seqcount_retry(&tk_core.seq, seq)); 2003 2004 return base; 2005 } 2006 2007 /** 2008 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2009 */ 2010 int do_adjtimex(struct timex *txc) 2011 { 2012 struct timekeeper *tk = &tk_core.timekeeper; 2013 unsigned long flags; 2014 struct timespec64 ts; 2015 s32 orig_tai, tai; 2016 int ret; 2017 2018 /* Validate the data before disabling interrupts */ 2019 ret = ntp_validate_timex(txc); 2020 if (ret) 2021 return ret; 2022 2023 if (txc->modes & ADJ_SETOFFSET) { 2024 struct timespec delta; 2025 delta.tv_sec = txc->time.tv_sec; 2026 delta.tv_nsec = txc->time.tv_usec; 2027 if (!(txc->modes & ADJ_NANO)) 2028 delta.tv_nsec *= 1000; 2029 ret = timekeeping_inject_offset(&delta); 2030 if (ret) 2031 return ret; 2032 } 2033 2034 getnstimeofday64(&ts); 2035 2036 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2037 write_seqcount_begin(&tk_core.seq); 2038 2039 orig_tai = tai = tk->tai_offset; 2040 ret = __do_adjtimex(txc, &ts, &tai); 2041 2042 if (tai != orig_tai) { 2043 __timekeeping_set_tai_offset(tk, tai); 2044 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2045 } 2046 tk_update_leap_state(tk); 2047 2048 write_seqcount_end(&tk_core.seq); 2049 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2050 2051 if (tai != orig_tai) 2052 clock_was_set(); 2053 2054 ntp_notify_cmos_timer(); 2055 2056 return ret; 2057 } 2058 2059 #ifdef CONFIG_NTP_PPS 2060 /** 2061 * hardpps() - Accessor function to NTP __hardpps function 2062 */ 2063 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2064 { 2065 unsigned long flags; 2066 2067 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2068 write_seqcount_begin(&tk_core.seq); 2069 2070 __hardpps(phase_ts, raw_ts); 2071 2072 write_seqcount_end(&tk_core.seq); 2073 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2074 } 2075 EXPORT_SYMBOL(hardpps); 2076 #endif 2077 2078 /** 2079 * xtime_update() - advances the timekeeping infrastructure 2080 * @ticks: number of ticks, that have elapsed since the last call. 2081 * 2082 * Must be called with interrupts disabled. 2083 */ 2084 void xtime_update(unsigned long ticks) 2085 { 2086 write_seqlock(&jiffies_lock); 2087 do_timer(ticks); 2088 write_sequnlock(&jiffies_lock); 2089 update_wall_time(); 2090 } 2091