1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/nmi.h> 18 #include <linux/sched.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/syscore_ops.h> 21 #include <linux/clocksource.h> 22 #include <linux/jiffies.h> 23 #include <linux/time.h> 24 #include <linux/tick.h> 25 #include <linux/stop_machine.h> 26 #include <linux/pvclock_gtod.h> 27 #include <linux/compiler.h> 28 29 #include "tick-internal.h" 30 #include "ntp_internal.h" 31 #include "timekeeping_internal.h" 32 33 #define TK_CLEAR_NTP (1 << 0) 34 #define TK_MIRROR (1 << 1) 35 #define TK_CLOCK_WAS_SET (1 << 2) 36 37 /* 38 * The most important data for readout fits into a single 64 byte 39 * cache line. 40 */ 41 static struct { 42 seqcount_t seq; 43 struct timekeeper timekeeper; 44 } tk_core ____cacheline_aligned; 45 46 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 47 static struct timekeeper shadow_timekeeper; 48 49 /** 50 * struct tk_fast - NMI safe timekeeper 51 * @seq: Sequence counter for protecting updates. The lowest bit 52 * is the index for the tk_read_base array 53 * @base: tk_read_base array. Access is indexed by the lowest bit of 54 * @seq. 55 * 56 * See @update_fast_timekeeper() below. 57 */ 58 struct tk_fast { 59 seqcount_t seq; 60 struct tk_read_base base[2]; 61 }; 62 63 static struct tk_fast tk_fast_mono ____cacheline_aligned; 64 static struct tk_fast tk_fast_raw ____cacheline_aligned; 65 66 /* flag for if timekeeping is suspended */ 67 int __read_mostly timekeeping_suspended; 68 69 static inline void tk_normalize_xtime(struct timekeeper *tk) 70 { 71 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 72 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 73 tk->xtime_sec++; 74 } 75 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 76 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 77 tk->raw_sec++; 78 } 79 } 80 81 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 82 { 83 struct timespec64 ts; 84 85 ts.tv_sec = tk->xtime_sec; 86 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 87 return ts; 88 } 89 90 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec = ts->tv_sec; 93 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 } 95 96 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 97 { 98 tk->xtime_sec += ts->tv_sec; 99 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 100 tk_normalize_xtime(tk); 101 } 102 103 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 104 { 105 struct timespec64 tmp; 106 107 /* 108 * Verify consistency of: offset_real = -wall_to_monotonic 109 * before modifying anything 110 */ 111 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 112 -tk->wall_to_monotonic.tv_nsec); 113 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 114 tk->wall_to_monotonic = wtm; 115 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 116 tk->offs_real = timespec64_to_ktime(tmp); 117 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 118 } 119 120 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 121 { 122 tk->offs_boot = ktime_add(tk->offs_boot, delta); 123 } 124 125 /* 126 * tk_clock_read - atomic clocksource read() helper 127 * 128 * This helper is necessary to use in the read paths because, while the 129 * seqlock ensures we don't return a bad value while structures are updated, 130 * it doesn't protect from potential crashes. There is the possibility that 131 * the tkr's clocksource may change between the read reference, and the 132 * clock reference passed to the read function. This can cause crashes if 133 * the wrong clocksource is passed to the wrong read function. 134 * This isn't necessary to use when holding the timekeeper_lock or doing 135 * a read of the fast-timekeeper tkrs (which is protected by its own locking 136 * and update logic). 137 */ 138 static inline u64 tk_clock_read(struct tk_read_base *tkr) 139 { 140 struct clocksource *clock = READ_ONCE(tkr->clock); 141 142 return clock->read(clock); 143 } 144 145 #ifdef CONFIG_DEBUG_TIMEKEEPING 146 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 147 148 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 149 { 150 151 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 152 const char *name = tk->tkr_mono.clock->name; 153 154 if (offset > max_cycles) { 155 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 156 offset, name, max_cycles); 157 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 158 } else { 159 if (offset > (max_cycles >> 1)) { 160 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 161 offset, name, max_cycles >> 1); 162 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 163 } 164 } 165 166 if (tk->underflow_seen) { 167 if (jiffies - tk->last_warning > WARNING_FREQ) { 168 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 169 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 170 printk_deferred(" Your kernel is probably still fine.\n"); 171 tk->last_warning = jiffies; 172 } 173 tk->underflow_seen = 0; 174 } 175 176 if (tk->overflow_seen) { 177 if (jiffies - tk->last_warning > WARNING_FREQ) { 178 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 179 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 180 printk_deferred(" Your kernel is probably still fine.\n"); 181 tk->last_warning = jiffies; 182 } 183 tk->overflow_seen = 0; 184 } 185 } 186 187 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 188 { 189 struct timekeeper *tk = &tk_core.timekeeper; 190 u64 now, last, mask, max, delta; 191 unsigned int seq; 192 193 /* 194 * Since we're called holding a seqlock, the data may shift 195 * under us while we're doing the calculation. This can cause 196 * false positives, since we'd note a problem but throw the 197 * results away. So nest another seqlock here to atomically 198 * grab the points we are checking with. 199 */ 200 do { 201 seq = read_seqcount_begin(&tk_core.seq); 202 now = tk_clock_read(tkr); 203 last = tkr->cycle_last; 204 mask = tkr->mask; 205 max = tkr->clock->max_cycles; 206 } while (read_seqcount_retry(&tk_core.seq, seq)); 207 208 delta = clocksource_delta(now, last, mask); 209 210 /* 211 * Try to catch underflows by checking if we are seeing small 212 * mask-relative negative values. 213 */ 214 if (unlikely((~delta & mask) < (mask >> 3))) { 215 tk->underflow_seen = 1; 216 delta = 0; 217 } 218 219 /* Cap delta value to the max_cycles values to avoid mult overflows */ 220 if (unlikely(delta > max)) { 221 tk->overflow_seen = 1; 222 delta = tkr->clock->max_cycles; 223 } 224 225 return delta; 226 } 227 #else 228 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 229 { 230 } 231 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 232 { 233 u64 cycle_now, delta; 234 235 /* read clocksource */ 236 cycle_now = tk_clock_read(tkr); 237 238 /* calculate the delta since the last update_wall_time */ 239 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 240 241 return delta; 242 } 243 #endif 244 245 /** 246 * tk_setup_internals - Set up internals to use clocksource clock. 247 * 248 * @tk: The target timekeeper to setup. 249 * @clock: Pointer to clocksource. 250 * 251 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 252 * pair and interval request. 253 * 254 * Unless you're the timekeeping code, you should not be using this! 255 */ 256 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 257 { 258 u64 interval; 259 u64 tmp, ntpinterval; 260 struct clocksource *old_clock; 261 262 ++tk->cs_was_changed_seq; 263 old_clock = tk->tkr_mono.clock; 264 tk->tkr_mono.clock = clock; 265 tk->tkr_mono.mask = clock->mask; 266 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 267 268 tk->tkr_raw.clock = clock; 269 tk->tkr_raw.mask = clock->mask; 270 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 271 272 /* Do the ns -> cycle conversion first, using original mult */ 273 tmp = NTP_INTERVAL_LENGTH; 274 tmp <<= clock->shift; 275 ntpinterval = tmp; 276 tmp += clock->mult/2; 277 do_div(tmp, clock->mult); 278 if (tmp == 0) 279 tmp = 1; 280 281 interval = (u64) tmp; 282 tk->cycle_interval = interval; 283 284 /* Go back from cycles -> shifted ns */ 285 tk->xtime_interval = interval * clock->mult; 286 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 287 tk->raw_interval = interval * clock->mult; 288 289 /* if changing clocks, convert xtime_nsec shift units */ 290 if (old_clock) { 291 int shift_change = clock->shift - old_clock->shift; 292 if (shift_change < 0) { 293 tk->tkr_mono.xtime_nsec >>= -shift_change; 294 tk->tkr_raw.xtime_nsec >>= -shift_change; 295 } else { 296 tk->tkr_mono.xtime_nsec <<= shift_change; 297 tk->tkr_raw.xtime_nsec <<= shift_change; 298 } 299 } 300 301 tk->tkr_mono.shift = clock->shift; 302 tk->tkr_raw.shift = clock->shift; 303 304 tk->ntp_error = 0; 305 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 306 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 307 308 /* 309 * The timekeeper keeps its own mult values for the currently 310 * active clocksource. These value will be adjusted via NTP 311 * to counteract clock drifting. 312 */ 313 tk->tkr_mono.mult = clock->mult; 314 tk->tkr_raw.mult = clock->mult; 315 tk->ntp_err_mult = 0; 316 } 317 318 /* Timekeeper helper functions. */ 319 320 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 321 static u32 default_arch_gettimeoffset(void) { return 0; } 322 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 323 #else 324 static inline u32 arch_gettimeoffset(void) { return 0; } 325 #endif 326 327 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) 328 { 329 u64 nsec; 330 331 nsec = delta * tkr->mult + tkr->xtime_nsec; 332 nsec >>= tkr->shift; 333 334 /* If arch requires, add in get_arch_timeoffset() */ 335 return nsec + arch_gettimeoffset(); 336 } 337 338 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 339 { 340 u64 delta; 341 342 delta = timekeeping_get_delta(tkr); 343 return timekeeping_delta_to_ns(tkr, delta); 344 } 345 346 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) 347 { 348 u64 delta; 349 350 /* calculate the delta since the last update_wall_time */ 351 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 352 return timekeeping_delta_to_ns(tkr, delta); 353 } 354 355 /** 356 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 357 * @tkr: Timekeeping readout base from which we take the update 358 * 359 * We want to use this from any context including NMI and tracing / 360 * instrumenting the timekeeping code itself. 361 * 362 * Employ the latch technique; see @raw_write_seqcount_latch. 363 * 364 * So if a NMI hits the update of base[0] then it will use base[1] 365 * which is still consistent. In the worst case this can result is a 366 * slightly wrong timestamp (a few nanoseconds). See 367 * @ktime_get_mono_fast_ns. 368 */ 369 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 370 { 371 struct tk_read_base *base = tkf->base; 372 373 /* Force readers off to base[1] */ 374 raw_write_seqcount_latch(&tkf->seq); 375 376 /* Update base[0] */ 377 memcpy(base, tkr, sizeof(*base)); 378 379 /* Force readers back to base[0] */ 380 raw_write_seqcount_latch(&tkf->seq); 381 382 /* Update base[1] */ 383 memcpy(base + 1, base, sizeof(*base)); 384 } 385 386 /** 387 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 388 * 389 * This timestamp is not guaranteed to be monotonic across an update. 390 * The timestamp is calculated by: 391 * 392 * now = base_mono + clock_delta * slope 393 * 394 * So if the update lowers the slope, readers who are forced to the 395 * not yet updated second array are still using the old steeper slope. 396 * 397 * tmono 398 * ^ 399 * | o n 400 * | o n 401 * | u 402 * | o 403 * |o 404 * |12345678---> reader order 405 * 406 * o = old slope 407 * u = update 408 * n = new slope 409 * 410 * So reader 6 will observe time going backwards versus reader 5. 411 * 412 * While other CPUs are likely to be able observe that, the only way 413 * for a CPU local observation is when an NMI hits in the middle of 414 * the update. Timestamps taken from that NMI context might be ahead 415 * of the following timestamps. Callers need to be aware of that and 416 * deal with it. 417 */ 418 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 419 { 420 struct tk_read_base *tkr; 421 unsigned int seq; 422 u64 now; 423 424 do { 425 seq = raw_read_seqcount_latch(&tkf->seq); 426 tkr = tkf->base + (seq & 0x01); 427 now = ktime_to_ns(tkr->base); 428 429 now += timekeeping_delta_to_ns(tkr, 430 clocksource_delta( 431 tk_clock_read(tkr), 432 tkr->cycle_last, 433 tkr->mask)); 434 } while (read_seqcount_retry(&tkf->seq, seq)); 435 436 return now; 437 } 438 439 u64 ktime_get_mono_fast_ns(void) 440 { 441 return __ktime_get_fast_ns(&tk_fast_mono); 442 } 443 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 444 445 u64 ktime_get_raw_fast_ns(void) 446 { 447 return __ktime_get_fast_ns(&tk_fast_raw); 448 } 449 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 450 451 /** 452 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 453 * 454 * To keep it NMI safe since we're accessing from tracing, we're not using a 455 * separate timekeeper with updates to monotonic clock and boot offset 456 * protected with seqlocks. This has the following minor side effects: 457 * 458 * (1) Its possible that a timestamp be taken after the boot offset is updated 459 * but before the timekeeper is updated. If this happens, the new boot offset 460 * is added to the old timekeeping making the clock appear to update slightly 461 * earlier: 462 * CPU 0 CPU 1 463 * timekeeping_inject_sleeptime64() 464 * __timekeeping_inject_sleeptime(tk, delta); 465 * timestamp(); 466 * timekeeping_update(tk, TK_CLEAR_NTP...); 467 * 468 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 469 * partially updated. Since the tk->offs_boot update is a rare event, this 470 * should be a rare occurrence which postprocessing should be able to handle. 471 */ 472 u64 notrace ktime_get_boot_fast_ns(void) 473 { 474 struct timekeeper *tk = &tk_core.timekeeper; 475 476 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 477 } 478 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 479 480 /* Suspend-time cycles value for halted fast timekeeper. */ 481 static u64 cycles_at_suspend; 482 483 static u64 dummy_clock_read(struct clocksource *cs) 484 { 485 return cycles_at_suspend; 486 } 487 488 static struct clocksource dummy_clock = { 489 .read = dummy_clock_read, 490 }; 491 492 /** 493 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 494 * @tk: Timekeeper to snapshot. 495 * 496 * It generally is unsafe to access the clocksource after timekeeping has been 497 * suspended, so take a snapshot of the readout base of @tk and use it as the 498 * fast timekeeper's readout base while suspended. It will return the same 499 * number of cycles every time until timekeeping is resumed at which time the 500 * proper readout base for the fast timekeeper will be restored automatically. 501 */ 502 static void halt_fast_timekeeper(struct timekeeper *tk) 503 { 504 static struct tk_read_base tkr_dummy; 505 struct tk_read_base *tkr = &tk->tkr_mono; 506 507 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 508 cycles_at_suspend = tk_clock_read(tkr); 509 tkr_dummy.clock = &dummy_clock; 510 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 511 512 tkr = &tk->tkr_raw; 513 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 514 tkr_dummy.clock = &dummy_clock; 515 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 516 } 517 518 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 519 #warning Please contact your maintainers, as GENERIC_TIME_VSYSCALL_OLD compatibity will disappear soon. 520 521 static inline void update_vsyscall(struct timekeeper *tk) 522 { 523 struct timespec xt, wm; 524 525 xt = timespec64_to_timespec(tk_xtime(tk)); 526 wm = timespec64_to_timespec(tk->wall_to_monotonic); 527 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 528 tk->tkr_mono.cycle_last); 529 } 530 531 static inline void old_vsyscall_fixup(struct timekeeper *tk) 532 { 533 s64 remainder; 534 535 /* 536 * Store only full nanoseconds into xtime_nsec after rounding 537 * it up and add the remainder to the error difference. 538 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 539 * by truncating the remainder in vsyscalls. However, it causes 540 * additional work to be done in timekeeping_adjust(). Once 541 * the vsyscall implementations are converted to use xtime_nsec 542 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 543 * users are removed, this can be killed. 544 */ 545 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 546 if (remainder != 0) { 547 tk->tkr_mono.xtime_nsec -= remainder; 548 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 549 tk->ntp_error += remainder << tk->ntp_error_shift; 550 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 551 } 552 } 553 #else 554 #define old_vsyscall_fixup(tk) 555 #endif 556 557 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 558 559 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 560 { 561 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 562 } 563 564 /** 565 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 566 */ 567 int pvclock_gtod_register_notifier(struct notifier_block *nb) 568 { 569 struct timekeeper *tk = &tk_core.timekeeper; 570 unsigned long flags; 571 int ret; 572 573 raw_spin_lock_irqsave(&timekeeper_lock, flags); 574 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 575 update_pvclock_gtod(tk, true); 576 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 577 578 return ret; 579 } 580 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 581 582 /** 583 * pvclock_gtod_unregister_notifier - unregister a pvclock 584 * timedata update listener 585 */ 586 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 587 { 588 unsigned long flags; 589 int ret; 590 591 raw_spin_lock_irqsave(&timekeeper_lock, flags); 592 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 593 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 594 595 return ret; 596 } 597 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 598 599 /* 600 * tk_update_leap_state - helper to update the next_leap_ktime 601 */ 602 static inline void tk_update_leap_state(struct timekeeper *tk) 603 { 604 tk->next_leap_ktime = ntp_get_next_leap(); 605 if (tk->next_leap_ktime != KTIME_MAX) 606 /* Convert to monotonic time */ 607 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 608 } 609 610 /* 611 * Update the ktime_t based scalar nsec members of the timekeeper 612 */ 613 static inline void tk_update_ktime_data(struct timekeeper *tk) 614 { 615 u64 seconds; 616 u32 nsec; 617 618 /* 619 * The xtime based monotonic readout is: 620 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 621 * The ktime based monotonic readout is: 622 * nsec = base_mono + now(); 623 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 624 */ 625 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 626 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 627 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 628 629 /* 630 * The sum of the nanoseconds portions of xtime and 631 * wall_to_monotonic can be greater/equal one second. Take 632 * this into account before updating tk->ktime_sec. 633 */ 634 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 635 if (nsec >= NSEC_PER_SEC) 636 seconds++; 637 tk->ktime_sec = seconds; 638 639 /* Update the monotonic raw base */ 640 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 641 } 642 643 /* must hold timekeeper_lock */ 644 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 645 { 646 if (action & TK_CLEAR_NTP) { 647 tk->ntp_error = 0; 648 ntp_clear(); 649 } 650 651 tk_update_leap_state(tk); 652 tk_update_ktime_data(tk); 653 654 update_vsyscall(tk); 655 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 656 657 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 658 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 659 660 if (action & TK_CLOCK_WAS_SET) 661 tk->clock_was_set_seq++; 662 /* 663 * The mirroring of the data to the shadow-timekeeper needs 664 * to happen last here to ensure we don't over-write the 665 * timekeeper structure on the next update with stale data 666 */ 667 if (action & TK_MIRROR) 668 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 669 sizeof(tk_core.timekeeper)); 670 } 671 672 /** 673 * timekeeping_forward_now - update clock to the current time 674 * 675 * Forward the current clock to update its state since the last call to 676 * update_wall_time(). This is useful before significant clock changes, 677 * as it avoids having to deal with this time offset explicitly. 678 */ 679 static void timekeeping_forward_now(struct timekeeper *tk) 680 { 681 u64 cycle_now, delta; 682 683 cycle_now = tk_clock_read(&tk->tkr_mono); 684 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 685 tk->tkr_mono.cycle_last = cycle_now; 686 tk->tkr_raw.cycle_last = cycle_now; 687 688 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 689 690 /* If arch requires, add in get_arch_timeoffset() */ 691 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 692 693 694 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 695 696 /* If arch requires, add in get_arch_timeoffset() */ 697 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 698 699 tk_normalize_xtime(tk); 700 } 701 702 /** 703 * __getnstimeofday64 - Returns the time of day in a timespec64. 704 * @ts: pointer to the timespec to be set 705 * 706 * Updates the time of day in the timespec. 707 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 708 */ 709 int __getnstimeofday64(struct timespec64 *ts) 710 { 711 struct timekeeper *tk = &tk_core.timekeeper; 712 unsigned long seq; 713 u64 nsecs; 714 715 do { 716 seq = read_seqcount_begin(&tk_core.seq); 717 718 ts->tv_sec = tk->xtime_sec; 719 nsecs = timekeeping_get_ns(&tk->tkr_mono); 720 721 } while (read_seqcount_retry(&tk_core.seq, seq)); 722 723 ts->tv_nsec = 0; 724 timespec64_add_ns(ts, nsecs); 725 726 /* 727 * Do not bail out early, in case there were callers still using 728 * the value, even in the face of the WARN_ON. 729 */ 730 if (unlikely(timekeeping_suspended)) 731 return -EAGAIN; 732 return 0; 733 } 734 EXPORT_SYMBOL(__getnstimeofday64); 735 736 /** 737 * getnstimeofday64 - Returns the time of day in a timespec64. 738 * @ts: pointer to the timespec64 to be set 739 * 740 * Returns the time of day in a timespec64 (WARN if suspended). 741 */ 742 void getnstimeofday64(struct timespec64 *ts) 743 { 744 WARN_ON(__getnstimeofday64(ts)); 745 } 746 EXPORT_SYMBOL(getnstimeofday64); 747 748 ktime_t ktime_get(void) 749 { 750 struct timekeeper *tk = &tk_core.timekeeper; 751 unsigned int seq; 752 ktime_t base; 753 u64 nsecs; 754 755 WARN_ON(timekeeping_suspended); 756 757 do { 758 seq = read_seqcount_begin(&tk_core.seq); 759 base = tk->tkr_mono.base; 760 nsecs = timekeeping_get_ns(&tk->tkr_mono); 761 762 } while (read_seqcount_retry(&tk_core.seq, seq)); 763 764 return ktime_add_ns(base, nsecs); 765 } 766 EXPORT_SYMBOL_GPL(ktime_get); 767 768 u32 ktime_get_resolution_ns(void) 769 { 770 struct timekeeper *tk = &tk_core.timekeeper; 771 unsigned int seq; 772 u32 nsecs; 773 774 WARN_ON(timekeeping_suspended); 775 776 do { 777 seq = read_seqcount_begin(&tk_core.seq); 778 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 779 } while (read_seqcount_retry(&tk_core.seq, seq)); 780 781 return nsecs; 782 } 783 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 784 785 static ktime_t *offsets[TK_OFFS_MAX] = { 786 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 787 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 788 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 789 }; 790 791 ktime_t ktime_get_with_offset(enum tk_offsets offs) 792 { 793 struct timekeeper *tk = &tk_core.timekeeper; 794 unsigned int seq; 795 ktime_t base, *offset = offsets[offs]; 796 u64 nsecs; 797 798 WARN_ON(timekeeping_suspended); 799 800 do { 801 seq = read_seqcount_begin(&tk_core.seq); 802 base = ktime_add(tk->tkr_mono.base, *offset); 803 nsecs = timekeeping_get_ns(&tk->tkr_mono); 804 805 } while (read_seqcount_retry(&tk_core.seq, seq)); 806 807 return ktime_add_ns(base, nsecs); 808 809 } 810 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 811 812 /** 813 * ktime_mono_to_any() - convert mononotic time to any other time 814 * @tmono: time to convert. 815 * @offs: which offset to use 816 */ 817 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 818 { 819 ktime_t *offset = offsets[offs]; 820 unsigned long seq; 821 ktime_t tconv; 822 823 do { 824 seq = read_seqcount_begin(&tk_core.seq); 825 tconv = ktime_add(tmono, *offset); 826 } while (read_seqcount_retry(&tk_core.seq, seq)); 827 828 return tconv; 829 } 830 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 831 832 /** 833 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 834 */ 835 ktime_t ktime_get_raw(void) 836 { 837 struct timekeeper *tk = &tk_core.timekeeper; 838 unsigned int seq; 839 ktime_t base; 840 u64 nsecs; 841 842 do { 843 seq = read_seqcount_begin(&tk_core.seq); 844 base = tk->tkr_raw.base; 845 nsecs = timekeeping_get_ns(&tk->tkr_raw); 846 847 } while (read_seqcount_retry(&tk_core.seq, seq)); 848 849 return ktime_add_ns(base, nsecs); 850 } 851 EXPORT_SYMBOL_GPL(ktime_get_raw); 852 853 /** 854 * ktime_get_ts64 - get the monotonic clock in timespec64 format 855 * @ts: pointer to timespec variable 856 * 857 * The function calculates the monotonic clock from the realtime 858 * clock and the wall_to_monotonic offset and stores the result 859 * in normalized timespec64 format in the variable pointed to by @ts. 860 */ 861 void ktime_get_ts64(struct timespec64 *ts) 862 { 863 struct timekeeper *tk = &tk_core.timekeeper; 864 struct timespec64 tomono; 865 unsigned int seq; 866 u64 nsec; 867 868 WARN_ON(timekeeping_suspended); 869 870 do { 871 seq = read_seqcount_begin(&tk_core.seq); 872 ts->tv_sec = tk->xtime_sec; 873 nsec = timekeeping_get_ns(&tk->tkr_mono); 874 tomono = tk->wall_to_monotonic; 875 876 } while (read_seqcount_retry(&tk_core.seq, seq)); 877 878 ts->tv_sec += tomono.tv_sec; 879 ts->tv_nsec = 0; 880 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 881 } 882 EXPORT_SYMBOL_GPL(ktime_get_ts64); 883 884 /** 885 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 886 * 887 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 888 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 889 * works on both 32 and 64 bit systems. On 32 bit systems the readout 890 * covers ~136 years of uptime which should be enough to prevent 891 * premature wrap arounds. 892 */ 893 time64_t ktime_get_seconds(void) 894 { 895 struct timekeeper *tk = &tk_core.timekeeper; 896 897 WARN_ON(timekeeping_suspended); 898 return tk->ktime_sec; 899 } 900 EXPORT_SYMBOL_GPL(ktime_get_seconds); 901 902 /** 903 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 904 * 905 * Returns the wall clock seconds since 1970. This replaces the 906 * get_seconds() interface which is not y2038 safe on 32bit systems. 907 * 908 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 909 * 32bit systems the access must be protected with the sequence 910 * counter to provide "atomic" access to the 64bit tk->xtime_sec 911 * value. 912 */ 913 time64_t ktime_get_real_seconds(void) 914 { 915 struct timekeeper *tk = &tk_core.timekeeper; 916 time64_t seconds; 917 unsigned int seq; 918 919 if (IS_ENABLED(CONFIG_64BIT)) 920 return tk->xtime_sec; 921 922 do { 923 seq = read_seqcount_begin(&tk_core.seq); 924 seconds = tk->xtime_sec; 925 926 } while (read_seqcount_retry(&tk_core.seq, seq)); 927 928 return seconds; 929 } 930 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 931 932 /** 933 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 934 * but without the sequence counter protect. This internal function 935 * is called just when timekeeping lock is already held. 936 */ 937 time64_t __ktime_get_real_seconds(void) 938 { 939 struct timekeeper *tk = &tk_core.timekeeper; 940 941 return tk->xtime_sec; 942 } 943 944 /** 945 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 946 * @systime_snapshot: pointer to struct receiving the system time snapshot 947 */ 948 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 949 { 950 struct timekeeper *tk = &tk_core.timekeeper; 951 unsigned long seq; 952 ktime_t base_raw; 953 ktime_t base_real; 954 u64 nsec_raw; 955 u64 nsec_real; 956 u64 now; 957 958 WARN_ON_ONCE(timekeeping_suspended); 959 960 do { 961 seq = read_seqcount_begin(&tk_core.seq); 962 now = tk_clock_read(&tk->tkr_mono); 963 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 964 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 965 base_real = ktime_add(tk->tkr_mono.base, 966 tk_core.timekeeper.offs_real); 967 base_raw = tk->tkr_raw.base; 968 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 969 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 970 } while (read_seqcount_retry(&tk_core.seq, seq)); 971 972 systime_snapshot->cycles = now; 973 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 974 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 975 } 976 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 977 978 /* Scale base by mult/div checking for overflow */ 979 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 980 { 981 u64 tmp, rem; 982 983 tmp = div64_u64_rem(*base, div, &rem); 984 985 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 986 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 987 return -EOVERFLOW; 988 tmp *= mult; 989 rem *= mult; 990 991 do_div(rem, div); 992 *base = tmp + rem; 993 return 0; 994 } 995 996 /** 997 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 998 * @history: Snapshot representing start of history 999 * @partial_history_cycles: Cycle offset into history (fractional part) 1000 * @total_history_cycles: Total history length in cycles 1001 * @discontinuity: True indicates clock was set on history period 1002 * @ts: Cross timestamp that should be adjusted using 1003 * partial/total ratio 1004 * 1005 * Helper function used by get_device_system_crosststamp() to correct the 1006 * crosstimestamp corresponding to the start of the current interval to the 1007 * system counter value (timestamp point) provided by the driver. The 1008 * total_history_* quantities are the total history starting at the provided 1009 * reference point and ending at the start of the current interval. The cycle 1010 * count between the driver timestamp point and the start of the current 1011 * interval is partial_history_cycles. 1012 */ 1013 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1014 u64 partial_history_cycles, 1015 u64 total_history_cycles, 1016 bool discontinuity, 1017 struct system_device_crosststamp *ts) 1018 { 1019 struct timekeeper *tk = &tk_core.timekeeper; 1020 u64 corr_raw, corr_real; 1021 bool interp_forward; 1022 int ret; 1023 1024 if (total_history_cycles == 0 || partial_history_cycles == 0) 1025 return 0; 1026 1027 /* Interpolate shortest distance from beginning or end of history */ 1028 interp_forward = partial_history_cycles > total_history_cycles / 2; 1029 partial_history_cycles = interp_forward ? 1030 total_history_cycles - partial_history_cycles : 1031 partial_history_cycles; 1032 1033 /* 1034 * Scale the monotonic raw time delta by: 1035 * partial_history_cycles / total_history_cycles 1036 */ 1037 corr_raw = (u64)ktime_to_ns( 1038 ktime_sub(ts->sys_monoraw, history->raw)); 1039 ret = scale64_check_overflow(partial_history_cycles, 1040 total_history_cycles, &corr_raw); 1041 if (ret) 1042 return ret; 1043 1044 /* 1045 * If there is a discontinuity in the history, scale monotonic raw 1046 * correction by: 1047 * mult(real)/mult(raw) yielding the realtime correction 1048 * Otherwise, calculate the realtime correction similar to monotonic 1049 * raw calculation 1050 */ 1051 if (discontinuity) { 1052 corr_real = mul_u64_u32_div 1053 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1054 } else { 1055 corr_real = (u64)ktime_to_ns( 1056 ktime_sub(ts->sys_realtime, history->real)); 1057 ret = scale64_check_overflow(partial_history_cycles, 1058 total_history_cycles, &corr_real); 1059 if (ret) 1060 return ret; 1061 } 1062 1063 /* Fixup monotonic raw and real time time values */ 1064 if (interp_forward) { 1065 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1066 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1067 } else { 1068 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1069 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1070 } 1071 1072 return 0; 1073 } 1074 1075 /* 1076 * cycle_between - true if test occurs chronologically between before and after 1077 */ 1078 static bool cycle_between(u64 before, u64 test, u64 after) 1079 { 1080 if (test > before && test < after) 1081 return true; 1082 if (test < before && before > after) 1083 return true; 1084 return false; 1085 } 1086 1087 /** 1088 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1089 * @get_time_fn: Callback to get simultaneous device time and 1090 * system counter from the device driver 1091 * @ctx: Context passed to get_time_fn() 1092 * @history_begin: Historical reference point used to interpolate system 1093 * time when counter provided by the driver is before the current interval 1094 * @xtstamp: Receives simultaneously captured system and device time 1095 * 1096 * Reads a timestamp from a device and correlates it to system time 1097 */ 1098 int get_device_system_crosststamp(int (*get_time_fn) 1099 (ktime_t *device_time, 1100 struct system_counterval_t *sys_counterval, 1101 void *ctx), 1102 void *ctx, 1103 struct system_time_snapshot *history_begin, 1104 struct system_device_crosststamp *xtstamp) 1105 { 1106 struct system_counterval_t system_counterval; 1107 struct timekeeper *tk = &tk_core.timekeeper; 1108 u64 cycles, now, interval_start; 1109 unsigned int clock_was_set_seq = 0; 1110 ktime_t base_real, base_raw; 1111 u64 nsec_real, nsec_raw; 1112 u8 cs_was_changed_seq; 1113 unsigned long seq; 1114 bool do_interp; 1115 int ret; 1116 1117 do { 1118 seq = read_seqcount_begin(&tk_core.seq); 1119 /* 1120 * Try to synchronously capture device time and a system 1121 * counter value calling back into the device driver 1122 */ 1123 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1124 if (ret) 1125 return ret; 1126 1127 /* 1128 * Verify that the clocksource associated with the captured 1129 * system counter value is the same as the currently installed 1130 * timekeeper clocksource 1131 */ 1132 if (tk->tkr_mono.clock != system_counterval.cs) 1133 return -ENODEV; 1134 cycles = system_counterval.cycles; 1135 1136 /* 1137 * Check whether the system counter value provided by the 1138 * device driver is on the current timekeeping interval. 1139 */ 1140 now = tk_clock_read(&tk->tkr_mono); 1141 interval_start = tk->tkr_mono.cycle_last; 1142 if (!cycle_between(interval_start, cycles, now)) { 1143 clock_was_set_seq = tk->clock_was_set_seq; 1144 cs_was_changed_seq = tk->cs_was_changed_seq; 1145 cycles = interval_start; 1146 do_interp = true; 1147 } else { 1148 do_interp = false; 1149 } 1150 1151 base_real = ktime_add(tk->tkr_mono.base, 1152 tk_core.timekeeper.offs_real); 1153 base_raw = tk->tkr_raw.base; 1154 1155 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1156 system_counterval.cycles); 1157 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1158 system_counterval.cycles); 1159 } while (read_seqcount_retry(&tk_core.seq, seq)); 1160 1161 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1162 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1163 1164 /* 1165 * Interpolate if necessary, adjusting back from the start of the 1166 * current interval 1167 */ 1168 if (do_interp) { 1169 u64 partial_history_cycles, total_history_cycles; 1170 bool discontinuity; 1171 1172 /* 1173 * Check that the counter value occurs after the provided 1174 * history reference and that the history doesn't cross a 1175 * clocksource change 1176 */ 1177 if (!history_begin || 1178 !cycle_between(history_begin->cycles, 1179 system_counterval.cycles, cycles) || 1180 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1181 return -EINVAL; 1182 partial_history_cycles = cycles - system_counterval.cycles; 1183 total_history_cycles = cycles - history_begin->cycles; 1184 discontinuity = 1185 history_begin->clock_was_set_seq != clock_was_set_seq; 1186 1187 ret = adjust_historical_crosststamp(history_begin, 1188 partial_history_cycles, 1189 total_history_cycles, 1190 discontinuity, xtstamp); 1191 if (ret) 1192 return ret; 1193 } 1194 1195 return 0; 1196 } 1197 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1198 1199 /** 1200 * do_gettimeofday - Returns the time of day in a timeval 1201 * @tv: pointer to the timeval to be set 1202 * 1203 * NOTE: Users should be converted to using getnstimeofday() 1204 */ 1205 void do_gettimeofday(struct timeval *tv) 1206 { 1207 struct timespec64 now; 1208 1209 getnstimeofday64(&now); 1210 tv->tv_sec = now.tv_sec; 1211 tv->tv_usec = now.tv_nsec/1000; 1212 } 1213 EXPORT_SYMBOL(do_gettimeofday); 1214 1215 /** 1216 * do_settimeofday64 - Sets the time of day. 1217 * @ts: pointer to the timespec64 variable containing the new time 1218 * 1219 * Sets the time of day to the new time and update NTP and notify hrtimers 1220 */ 1221 int do_settimeofday64(const struct timespec64 *ts) 1222 { 1223 struct timekeeper *tk = &tk_core.timekeeper; 1224 struct timespec64 ts_delta, xt; 1225 unsigned long flags; 1226 int ret = 0; 1227 1228 if (!timespec64_valid_strict(ts)) 1229 return -EINVAL; 1230 1231 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1232 write_seqcount_begin(&tk_core.seq); 1233 1234 timekeeping_forward_now(tk); 1235 1236 xt = tk_xtime(tk); 1237 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1238 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1239 1240 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1241 ret = -EINVAL; 1242 goto out; 1243 } 1244 1245 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1246 1247 tk_set_xtime(tk, ts); 1248 out: 1249 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1250 1251 write_seqcount_end(&tk_core.seq); 1252 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1253 1254 /* signal hrtimers about time change */ 1255 clock_was_set(); 1256 1257 return ret; 1258 } 1259 EXPORT_SYMBOL(do_settimeofday64); 1260 1261 /** 1262 * timekeeping_inject_offset - Adds or subtracts from the current time. 1263 * @tv: pointer to the timespec variable containing the offset 1264 * 1265 * Adds or subtracts an offset value from the current time. 1266 */ 1267 int timekeeping_inject_offset(struct timespec *ts) 1268 { 1269 struct timekeeper *tk = &tk_core.timekeeper; 1270 unsigned long flags; 1271 struct timespec64 ts64, tmp; 1272 int ret = 0; 1273 1274 if (!timespec_inject_offset_valid(ts)) 1275 return -EINVAL; 1276 1277 ts64 = timespec_to_timespec64(*ts); 1278 1279 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1280 write_seqcount_begin(&tk_core.seq); 1281 1282 timekeeping_forward_now(tk); 1283 1284 /* Make sure the proposed value is valid */ 1285 tmp = timespec64_add(tk_xtime(tk), ts64); 1286 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1287 !timespec64_valid_strict(&tmp)) { 1288 ret = -EINVAL; 1289 goto error; 1290 } 1291 1292 tk_xtime_add(tk, &ts64); 1293 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1294 1295 error: /* even if we error out, we forwarded the time, so call update */ 1296 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1297 1298 write_seqcount_end(&tk_core.seq); 1299 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1300 1301 /* signal hrtimers about time change */ 1302 clock_was_set(); 1303 1304 return ret; 1305 } 1306 EXPORT_SYMBOL(timekeeping_inject_offset); 1307 1308 /** 1309 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1310 * 1311 */ 1312 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1313 { 1314 tk->tai_offset = tai_offset; 1315 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1316 } 1317 1318 /** 1319 * change_clocksource - Swaps clocksources if a new one is available 1320 * 1321 * Accumulates current time interval and initializes new clocksource 1322 */ 1323 static int change_clocksource(void *data) 1324 { 1325 struct timekeeper *tk = &tk_core.timekeeper; 1326 struct clocksource *new, *old; 1327 unsigned long flags; 1328 1329 new = (struct clocksource *) data; 1330 1331 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1332 write_seqcount_begin(&tk_core.seq); 1333 1334 timekeeping_forward_now(tk); 1335 /* 1336 * If the cs is in module, get a module reference. Succeeds 1337 * for built-in code (owner == NULL) as well. 1338 */ 1339 if (try_module_get(new->owner)) { 1340 if (!new->enable || new->enable(new) == 0) { 1341 old = tk->tkr_mono.clock; 1342 tk_setup_internals(tk, new); 1343 if (old->disable) 1344 old->disable(old); 1345 module_put(old->owner); 1346 } else { 1347 module_put(new->owner); 1348 } 1349 } 1350 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1351 1352 write_seqcount_end(&tk_core.seq); 1353 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1354 1355 return 0; 1356 } 1357 1358 /** 1359 * timekeeping_notify - Install a new clock source 1360 * @clock: pointer to the clock source 1361 * 1362 * This function is called from clocksource.c after a new, better clock 1363 * source has been registered. The caller holds the clocksource_mutex. 1364 */ 1365 int timekeeping_notify(struct clocksource *clock) 1366 { 1367 struct timekeeper *tk = &tk_core.timekeeper; 1368 1369 if (tk->tkr_mono.clock == clock) 1370 return 0; 1371 stop_machine(change_clocksource, clock, NULL); 1372 tick_clock_notify(); 1373 return tk->tkr_mono.clock == clock ? 0 : -1; 1374 } 1375 1376 /** 1377 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1378 * @ts: pointer to the timespec64 to be set 1379 * 1380 * Returns the raw monotonic time (completely un-modified by ntp) 1381 */ 1382 void getrawmonotonic64(struct timespec64 *ts) 1383 { 1384 struct timekeeper *tk = &tk_core.timekeeper; 1385 unsigned long seq; 1386 u64 nsecs; 1387 1388 do { 1389 seq = read_seqcount_begin(&tk_core.seq); 1390 ts->tv_sec = tk->raw_sec; 1391 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1392 1393 } while (read_seqcount_retry(&tk_core.seq, seq)); 1394 1395 ts->tv_nsec = 0; 1396 timespec64_add_ns(ts, nsecs); 1397 } 1398 EXPORT_SYMBOL(getrawmonotonic64); 1399 1400 1401 /** 1402 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1403 */ 1404 int timekeeping_valid_for_hres(void) 1405 { 1406 struct timekeeper *tk = &tk_core.timekeeper; 1407 unsigned long seq; 1408 int ret; 1409 1410 do { 1411 seq = read_seqcount_begin(&tk_core.seq); 1412 1413 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1414 1415 } while (read_seqcount_retry(&tk_core.seq, seq)); 1416 1417 return ret; 1418 } 1419 1420 /** 1421 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1422 */ 1423 u64 timekeeping_max_deferment(void) 1424 { 1425 struct timekeeper *tk = &tk_core.timekeeper; 1426 unsigned long seq; 1427 u64 ret; 1428 1429 do { 1430 seq = read_seqcount_begin(&tk_core.seq); 1431 1432 ret = tk->tkr_mono.clock->max_idle_ns; 1433 1434 } while (read_seqcount_retry(&tk_core.seq, seq)); 1435 1436 return ret; 1437 } 1438 1439 /** 1440 * read_persistent_clock - Return time from the persistent clock. 1441 * 1442 * Weak dummy function for arches that do not yet support it. 1443 * Reads the time from the battery backed persistent clock. 1444 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1445 * 1446 * XXX - Do be sure to remove it once all arches implement it. 1447 */ 1448 void __weak read_persistent_clock(struct timespec *ts) 1449 { 1450 ts->tv_sec = 0; 1451 ts->tv_nsec = 0; 1452 } 1453 1454 void __weak read_persistent_clock64(struct timespec64 *ts64) 1455 { 1456 struct timespec ts; 1457 1458 read_persistent_clock(&ts); 1459 *ts64 = timespec_to_timespec64(ts); 1460 } 1461 1462 /** 1463 * read_boot_clock64 - Return time of the system start. 1464 * 1465 * Weak dummy function for arches that do not yet support it. 1466 * Function to read the exact time the system has been started. 1467 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1468 * 1469 * XXX - Do be sure to remove it once all arches implement it. 1470 */ 1471 void __weak read_boot_clock64(struct timespec64 *ts) 1472 { 1473 ts->tv_sec = 0; 1474 ts->tv_nsec = 0; 1475 } 1476 1477 /* Flag for if timekeeping_resume() has injected sleeptime */ 1478 static bool sleeptime_injected; 1479 1480 /* Flag for if there is a persistent clock on this platform */ 1481 static bool persistent_clock_exists; 1482 1483 /* 1484 * timekeeping_init - Initializes the clocksource and common timekeeping values 1485 */ 1486 void __init timekeeping_init(void) 1487 { 1488 struct timekeeper *tk = &tk_core.timekeeper; 1489 struct clocksource *clock; 1490 unsigned long flags; 1491 struct timespec64 now, boot, tmp; 1492 1493 read_persistent_clock64(&now); 1494 if (!timespec64_valid_strict(&now)) { 1495 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1496 " Check your CMOS/BIOS settings.\n"); 1497 now.tv_sec = 0; 1498 now.tv_nsec = 0; 1499 } else if (now.tv_sec || now.tv_nsec) 1500 persistent_clock_exists = true; 1501 1502 read_boot_clock64(&boot); 1503 if (!timespec64_valid_strict(&boot)) { 1504 pr_warn("WARNING: Boot clock returned invalid value!\n" 1505 " Check your CMOS/BIOS settings.\n"); 1506 boot.tv_sec = 0; 1507 boot.tv_nsec = 0; 1508 } 1509 1510 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1511 write_seqcount_begin(&tk_core.seq); 1512 ntp_init(); 1513 1514 clock = clocksource_default_clock(); 1515 if (clock->enable) 1516 clock->enable(clock); 1517 tk_setup_internals(tk, clock); 1518 1519 tk_set_xtime(tk, &now); 1520 tk->raw_sec = 0; 1521 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1522 boot = tk_xtime(tk); 1523 1524 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1525 tk_set_wall_to_mono(tk, tmp); 1526 1527 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1528 1529 write_seqcount_end(&tk_core.seq); 1530 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1531 } 1532 1533 /* time in seconds when suspend began for persistent clock */ 1534 static struct timespec64 timekeeping_suspend_time; 1535 1536 /** 1537 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1538 * @delta: pointer to a timespec delta value 1539 * 1540 * Takes a timespec offset measuring a suspend interval and properly 1541 * adds the sleep offset to the timekeeping variables. 1542 */ 1543 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1544 struct timespec64 *delta) 1545 { 1546 if (!timespec64_valid_strict(delta)) { 1547 printk_deferred(KERN_WARNING 1548 "__timekeeping_inject_sleeptime: Invalid " 1549 "sleep delta value!\n"); 1550 return; 1551 } 1552 tk_xtime_add(tk, delta); 1553 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1554 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1555 tk_debug_account_sleep_time(delta); 1556 } 1557 1558 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1559 /** 1560 * We have three kinds of time sources to use for sleep time 1561 * injection, the preference order is: 1562 * 1) non-stop clocksource 1563 * 2) persistent clock (ie: RTC accessible when irqs are off) 1564 * 3) RTC 1565 * 1566 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1567 * If system has neither 1) nor 2), 3) will be used finally. 1568 * 1569 * 1570 * If timekeeping has injected sleeptime via either 1) or 2), 1571 * 3) becomes needless, so in this case we don't need to call 1572 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1573 * means. 1574 */ 1575 bool timekeeping_rtc_skipresume(void) 1576 { 1577 return sleeptime_injected; 1578 } 1579 1580 /** 1581 * 1) can be determined whether to use or not only when doing 1582 * timekeeping_resume() which is invoked after rtc_suspend(), 1583 * so we can't skip rtc_suspend() surely if system has 1). 1584 * 1585 * But if system has 2), 2) will definitely be used, so in this 1586 * case we don't need to call rtc_suspend(), and this is what 1587 * timekeeping_rtc_skipsuspend() means. 1588 */ 1589 bool timekeeping_rtc_skipsuspend(void) 1590 { 1591 return persistent_clock_exists; 1592 } 1593 1594 /** 1595 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1596 * @delta: pointer to a timespec64 delta value 1597 * 1598 * This hook is for architectures that cannot support read_persistent_clock64 1599 * because their RTC/persistent clock is only accessible when irqs are enabled. 1600 * and also don't have an effective nonstop clocksource. 1601 * 1602 * This function should only be called by rtc_resume(), and allows 1603 * a suspend offset to be injected into the timekeeping values. 1604 */ 1605 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1606 { 1607 struct timekeeper *tk = &tk_core.timekeeper; 1608 unsigned long flags; 1609 1610 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1611 write_seqcount_begin(&tk_core.seq); 1612 1613 timekeeping_forward_now(tk); 1614 1615 __timekeeping_inject_sleeptime(tk, delta); 1616 1617 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1618 1619 write_seqcount_end(&tk_core.seq); 1620 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1621 1622 /* signal hrtimers about time change */ 1623 clock_was_set(); 1624 } 1625 #endif 1626 1627 /** 1628 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1629 */ 1630 void timekeeping_resume(void) 1631 { 1632 struct timekeeper *tk = &tk_core.timekeeper; 1633 struct clocksource *clock = tk->tkr_mono.clock; 1634 unsigned long flags; 1635 struct timespec64 ts_new, ts_delta; 1636 u64 cycle_now; 1637 1638 sleeptime_injected = false; 1639 read_persistent_clock64(&ts_new); 1640 1641 clockevents_resume(); 1642 clocksource_resume(); 1643 1644 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1645 write_seqcount_begin(&tk_core.seq); 1646 1647 /* 1648 * After system resumes, we need to calculate the suspended time and 1649 * compensate it for the OS time. There are 3 sources that could be 1650 * used: Nonstop clocksource during suspend, persistent clock and rtc 1651 * device. 1652 * 1653 * One specific platform may have 1 or 2 or all of them, and the 1654 * preference will be: 1655 * suspend-nonstop clocksource -> persistent clock -> rtc 1656 * The less preferred source will only be tried if there is no better 1657 * usable source. The rtc part is handled separately in rtc core code. 1658 */ 1659 cycle_now = tk_clock_read(&tk->tkr_mono); 1660 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1661 cycle_now > tk->tkr_mono.cycle_last) { 1662 u64 nsec, cyc_delta; 1663 1664 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1665 tk->tkr_mono.mask); 1666 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1667 ts_delta = ns_to_timespec64(nsec); 1668 sleeptime_injected = true; 1669 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1670 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1671 sleeptime_injected = true; 1672 } 1673 1674 if (sleeptime_injected) 1675 __timekeeping_inject_sleeptime(tk, &ts_delta); 1676 1677 /* Re-base the last cycle value */ 1678 tk->tkr_mono.cycle_last = cycle_now; 1679 tk->tkr_raw.cycle_last = cycle_now; 1680 1681 tk->ntp_error = 0; 1682 timekeeping_suspended = 0; 1683 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1684 write_seqcount_end(&tk_core.seq); 1685 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1686 1687 touch_softlockup_watchdog(); 1688 1689 tick_resume(); 1690 hrtimers_resume(); 1691 } 1692 1693 int timekeeping_suspend(void) 1694 { 1695 struct timekeeper *tk = &tk_core.timekeeper; 1696 unsigned long flags; 1697 struct timespec64 delta, delta_delta; 1698 static struct timespec64 old_delta; 1699 1700 read_persistent_clock64(&timekeeping_suspend_time); 1701 1702 /* 1703 * On some systems the persistent_clock can not be detected at 1704 * timekeeping_init by its return value, so if we see a valid 1705 * value returned, update the persistent_clock_exists flag. 1706 */ 1707 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1708 persistent_clock_exists = true; 1709 1710 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1711 write_seqcount_begin(&tk_core.seq); 1712 timekeeping_forward_now(tk); 1713 timekeeping_suspended = 1; 1714 1715 if (persistent_clock_exists) { 1716 /* 1717 * To avoid drift caused by repeated suspend/resumes, 1718 * which each can add ~1 second drift error, 1719 * try to compensate so the difference in system time 1720 * and persistent_clock time stays close to constant. 1721 */ 1722 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1723 delta_delta = timespec64_sub(delta, old_delta); 1724 if (abs(delta_delta.tv_sec) >= 2) { 1725 /* 1726 * if delta_delta is too large, assume time correction 1727 * has occurred and set old_delta to the current delta. 1728 */ 1729 old_delta = delta; 1730 } else { 1731 /* Otherwise try to adjust old_system to compensate */ 1732 timekeeping_suspend_time = 1733 timespec64_add(timekeeping_suspend_time, delta_delta); 1734 } 1735 } 1736 1737 timekeeping_update(tk, TK_MIRROR); 1738 halt_fast_timekeeper(tk); 1739 write_seqcount_end(&tk_core.seq); 1740 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1741 1742 tick_suspend(); 1743 clocksource_suspend(); 1744 clockevents_suspend(); 1745 1746 return 0; 1747 } 1748 1749 /* sysfs resume/suspend bits for timekeeping */ 1750 static struct syscore_ops timekeeping_syscore_ops = { 1751 .resume = timekeeping_resume, 1752 .suspend = timekeeping_suspend, 1753 }; 1754 1755 static int __init timekeeping_init_ops(void) 1756 { 1757 register_syscore_ops(&timekeeping_syscore_ops); 1758 return 0; 1759 } 1760 device_initcall(timekeeping_init_ops); 1761 1762 /* 1763 * Apply a multiplier adjustment to the timekeeper 1764 */ 1765 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1766 s64 offset, 1767 bool negative, 1768 int adj_scale) 1769 { 1770 s64 interval = tk->cycle_interval; 1771 s32 mult_adj = 1; 1772 1773 if (negative) { 1774 mult_adj = -mult_adj; 1775 interval = -interval; 1776 offset = -offset; 1777 } 1778 mult_adj <<= adj_scale; 1779 interval <<= adj_scale; 1780 offset <<= adj_scale; 1781 1782 /* 1783 * So the following can be confusing. 1784 * 1785 * To keep things simple, lets assume mult_adj == 1 for now. 1786 * 1787 * When mult_adj != 1, remember that the interval and offset values 1788 * have been appropriately scaled so the math is the same. 1789 * 1790 * The basic idea here is that we're increasing the multiplier 1791 * by one, this causes the xtime_interval to be incremented by 1792 * one cycle_interval. This is because: 1793 * xtime_interval = cycle_interval * mult 1794 * So if mult is being incremented by one: 1795 * xtime_interval = cycle_interval * (mult + 1) 1796 * Its the same as: 1797 * xtime_interval = (cycle_interval * mult) + cycle_interval 1798 * Which can be shortened to: 1799 * xtime_interval += cycle_interval 1800 * 1801 * So offset stores the non-accumulated cycles. Thus the current 1802 * time (in shifted nanoseconds) is: 1803 * now = (offset * adj) + xtime_nsec 1804 * Now, even though we're adjusting the clock frequency, we have 1805 * to keep time consistent. In other words, we can't jump back 1806 * in time, and we also want to avoid jumping forward in time. 1807 * 1808 * So given the same offset value, we need the time to be the same 1809 * both before and after the freq adjustment. 1810 * now = (offset * adj_1) + xtime_nsec_1 1811 * now = (offset * adj_2) + xtime_nsec_2 1812 * So: 1813 * (offset * adj_1) + xtime_nsec_1 = 1814 * (offset * adj_2) + xtime_nsec_2 1815 * And we know: 1816 * adj_2 = adj_1 + 1 1817 * So: 1818 * (offset * adj_1) + xtime_nsec_1 = 1819 * (offset * (adj_1+1)) + xtime_nsec_2 1820 * (offset * adj_1) + xtime_nsec_1 = 1821 * (offset * adj_1) + offset + xtime_nsec_2 1822 * Canceling the sides: 1823 * xtime_nsec_1 = offset + xtime_nsec_2 1824 * Which gives us: 1825 * xtime_nsec_2 = xtime_nsec_1 - offset 1826 * Which simplfies to: 1827 * xtime_nsec -= offset 1828 * 1829 * XXX - TODO: Doc ntp_error calculation. 1830 */ 1831 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1832 /* NTP adjustment caused clocksource mult overflow */ 1833 WARN_ON_ONCE(1); 1834 return; 1835 } 1836 1837 tk->tkr_mono.mult += mult_adj; 1838 tk->xtime_interval += interval; 1839 tk->tkr_mono.xtime_nsec -= offset; 1840 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1841 } 1842 1843 /* 1844 * Calculate the multiplier adjustment needed to match the frequency 1845 * specified by NTP 1846 */ 1847 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1848 s64 offset) 1849 { 1850 s64 interval = tk->cycle_interval; 1851 s64 xinterval = tk->xtime_interval; 1852 u32 base = tk->tkr_mono.clock->mult; 1853 u32 max = tk->tkr_mono.clock->maxadj; 1854 u32 cur_adj = tk->tkr_mono.mult; 1855 s64 tick_error; 1856 bool negative; 1857 u32 adj_scale; 1858 1859 /* Remove any current error adj from freq calculation */ 1860 if (tk->ntp_err_mult) 1861 xinterval -= tk->cycle_interval; 1862 1863 tk->ntp_tick = ntp_tick_length(); 1864 1865 /* Calculate current error per tick */ 1866 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1867 tick_error -= (xinterval + tk->xtime_remainder); 1868 1869 /* Don't worry about correcting it if its small */ 1870 if (likely((tick_error >= 0) && (tick_error <= interval))) 1871 return; 1872 1873 /* preserve the direction of correction */ 1874 negative = (tick_error < 0); 1875 1876 /* If any adjustment would pass the max, just return */ 1877 if (negative && (cur_adj - 1) <= (base - max)) 1878 return; 1879 if (!negative && (cur_adj + 1) >= (base + max)) 1880 return; 1881 /* 1882 * Sort out the magnitude of the correction, but 1883 * avoid making so large a correction that we go 1884 * over the max adjustment. 1885 */ 1886 adj_scale = 0; 1887 tick_error = abs(tick_error); 1888 while (tick_error > interval) { 1889 u32 adj = 1 << (adj_scale + 1); 1890 1891 /* Check if adjustment gets us within 1 unit from the max */ 1892 if (negative && (cur_adj - adj) <= (base - max)) 1893 break; 1894 if (!negative && (cur_adj + adj) >= (base + max)) 1895 break; 1896 1897 adj_scale++; 1898 tick_error >>= 1; 1899 } 1900 1901 /* scale the corrections */ 1902 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1903 } 1904 1905 /* 1906 * Adjust the timekeeper's multiplier to the correct frequency 1907 * and also to reduce the accumulated error value. 1908 */ 1909 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1910 { 1911 /* Correct for the current frequency error */ 1912 timekeeping_freqadjust(tk, offset); 1913 1914 /* Next make a small adjustment to fix any cumulative error */ 1915 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1916 tk->ntp_err_mult = 1; 1917 timekeeping_apply_adjustment(tk, offset, 0, 0); 1918 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1919 /* Undo any existing error adjustment */ 1920 timekeeping_apply_adjustment(tk, offset, 1, 0); 1921 tk->ntp_err_mult = 0; 1922 } 1923 1924 if (unlikely(tk->tkr_mono.clock->maxadj && 1925 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1926 > tk->tkr_mono.clock->maxadj))) { 1927 printk_once(KERN_WARNING 1928 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1929 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1930 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1931 } 1932 1933 /* 1934 * It may be possible that when we entered this function, xtime_nsec 1935 * was very small. Further, if we're slightly speeding the clocksource 1936 * in the code above, its possible the required corrective factor to 1937 * xtime_nsec could cause it to underflow. 1938 * 1939 * Now, since we already accumulated the second, cannot simply roll 1940 * the accumulated second back, since the NTP subsystem has been 1941 * notified via second_overflow. So instead we push xtime_nsec forward 1942 * by the amount we underflowed, and add that amount into the error. 1943 * 1944 * We'll correct this error next time through this function, when 1945 * xtime_nsec is not as small. 1946 */ 1947 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1948 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1949 tk->tkr_mono.xtime_nsec = 0; 1950 tk->ntp_error += neg << tk->ntp_error_shift; 1951 } 1952 } 1953 1954 /** 1955 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1956 * 1957 * Helper function that accumulates the nsecs greater than a second 1958 * from the xtime_nsec field to the xtime_secs field. 1959 * It also calls into the NTP code to handle leapsecond processing. 1960 * 1961 */ 1962 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1963 { 1964 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1965 unsigned int clock_set = 0; 1966 1967 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1968 int leap; 1969 1970 tk->tkr_mono.xtime_nsec -= nsecps; 1971 tk->xtime_sec++; 1972 1973 /* Figure out if its a leap sec and apply if needed */ 1974 leap = second_overflow(tk->xtime_sec); 1975 if (unlikely(leap)) { 1976 struct timespec64 ts; 1977 1978 tk->xtime_sec += leap; 1979 1980 ts.tv_sec = leap; 1981 ts.tv_nsec = 0; 1982 tk_set_wall_to_mono(tk, 1983 timespec64_sub(tk->wall_to_monotonic, ts)); 1984 1985 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1986 1987 clock_set = TK_CLOCK_WAS_SET; 1988 } 1989 } 1990 return clock_set; 1991 } 1992 1993 /** 1994 * logarithmic_accumulation - shifted accumulation of cycles 1995 * 1996 * This functions accumulates a shifted interval of cycles into 1997 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1998 * loop. 1999 * 2000 * Returns the unconsumed cycles. 2001 */ 2002 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2003 u32 shift, unsigned int *clock_set) 2004 { 2005 u64 interval = tk->cycle_interval << shift; 2006 u64 snsec_per_sec; 2007 2008 /* If the offset is smaller than a shifted interval, do nothing */ 2009 if (offset < interval) 2010 return offset; 2011 2012 /* Accumulate one shifted interval */ 2013 offset -= interval; 2014 tk->tkr_mono.cycle_last += interval; 2015 tk->tkr_raw.cycle_last += interval; 2016 2017 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2018 *clock_set |= accumulate_nsecs_to_secs(tk); 2019 2020 /* Accumulate raw time */ 2021 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2022 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2023 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2024 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2025 tk->raw_sec++; 2026 } 2027 2028 /* Accumulate error between NTP and clock interval */ 2029 tk->ntp_error += tk->ntp_tick << shift; 2030 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2031 (tk->ntp_error_shift + shift); 2032 2033 return offset; 2034 } 2035 2036 /** 2037 * update_wall_time - Uses the current clocksource to increment the wall time 2038 * 2039 */ 2040 void update_wall_time(void) 2041 { 2042 struct timekeeper *real_tk = &tk_core.timekeeper; 2043 struct timekeeper *tk = &shadow_timekeeper; 2044 u64 offset; 2045 int shift = 0, maxshift; 2046 unsigned int clock_set = 0; 2047 unsigned long flags; 2048 2049 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2050 2051 /* Make sure we're fully resumed: */ 2052 if (unlikely(timekeeping_suspended)) 2053 goto out; 2054 2055 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2056 offset = real_tk->cycle_interval; 2057 #else 2058 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2059 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2060 #endif 2061 2062 /* Check if there's really nothing to do */ 2063 if (offset < real_tk->cycle_interval) 2064 goto out; 2065 2066 /* Do some additional sanity checking */ 2067 timekeeping_check_update(tk, offset); 2068 2069 /* 2070 * With NO_HZ we may have to accumulate many cycle_intervals 2071 * (think "ticks") worth of time at once. To do this efficiently, 2072 * we calculate the largest doubling multiple of cycle_intervals 2073 * that is smaller than the offset. We then accumulate that 2074 * chunk in one go, and then try to consume the next smaller 2075 * doubled multiple. 2076 */ 2077 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2078 shift = max(0, shift); 2079 /* Bound shift to one less than what overflows tick_length */ 2080 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2081 shift = min(shift, maxshift); 2082 while (offset >= tk->cycle_interval) { 2083 offset = logarithmic_accumulation(tk, offset, shift, 2084 &clock_set); 2085 if (offset < tk->cycle_interval<<shift) 2086 shift--; 2087 } 2088 2089 /* correct the clock when NTP error is too big */ 2090 timekeeping_adjust(tk, offset); 2091 2092 /* 2093 * XXX This can be killed once everyone converts 2094 * to the new update_vsyscall. 2095 */ 2096 old_vsyscall_fixup(tk); 2097 2098 /* 2099 * Finally, make sure that after the rounding 2100 * xtime_nsec isn't larger than NSEC_PER_SEC 2101 */ 2102 clock_set |= accumulate_nsecs_to_secs(tk); 2103 2104 write_seqcount_begin(&tk_core.seq); 2105 /* 2106 * Update the real timekeeper. 2107 * 2108 * We could avoid this memcpy by switching pointers, but that 2109 * requires changes to all other timekeeper usage sites as 2110 * well, i.e. move the timekeeper pointer getter into the 2111 * spinlocked/seqcount protected sections. And we trade this 2112 * memcpy under the tk_core.seq against one before we start 2113 * updating. 2114 */ 2115 timekeeping_update(tk, clock_set); 2116 memcpy(real_tk, tk, sizeof(*tk)); 2117 /* The memcpy must come last. Do not put anything here! */ 2118 write_seqcount_end(&tk_core.seq); 2119 out: 2120 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2121 if (clock_set) 2122 /* Have to call _delayed version, since in irq context*/ 2123 clock_was_set_delayed(); 2124 } 2125 2126 /** 2127 * getboottime64 - Return the real time of system boot. 2128 * @ts: pointer to the timespec64 to be set 2129 * 2130 * Returns the wall-time of boot in a timespec64. 2131 * 2132 * This is based on the wall_to_monotonic offset and the total suspend 2133 * time. Calls to settimeofday will affect the value returned (which 2134 * basically means that however wrong your real time clock is at boot time, 2135 * you get the right time here). 2136 */ 2137 void getboottime64(struct timespec64 *ts) 2138 { 2139 struct timekeeper *tk = &tk_core.timekeeper; 2140 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2141 2142 *ts = ktime_to_timespec64(t); 2143 } 2144 EXPORT_SYMBOL_GPL(getboottime64); 2145 2146 unsigned long get_seconds(void) 2147 { 2148 struct timekeeper *tk = &tk_core.timekeeper; 2149 2150 return tk->xtime_sec; 2151 } 2152 EXPORT_SYMBOL(get_seconds); 2153 2154 struct timespec __current_kernel_time(void) 2155 { 2156 struct timekeeper *tk = &tk_core.timekeeper; 2157 2158 return timespec64_to_timespec(tk_xtime(tk)); 2159 } 2160 2161 struct timespec64 current_kernel_time64(void) 2162 { 2163 struct timekeeper *tk = &tk_core.timekeeper; 2164 struct timespec64 now; 2165 unsigned long seq; 2166 2167 do { 2168 seq = read_seqcount_begin(&tk_core.seq); 2169 2170 now = tk_xtime(tk); 2171 } while (read_seqcount_retry(&tk_core.seq, seq)); 2172 2173 return now; 2174 } 2175 EXPORT_SYMBOL(current_kernel_time64); 2176 2177 struct timespec64 get_monotonic_coarse64(void) 2178 { 2179 struct timekeeper *tk = &tk_core.timekeeper; 2180 struct timespec64 now, mono; 2181 unsigned long seq; 2182 2183 do { 2184 seq = read_seqcount_begin(&tk_core.seq); 2185 2186 now = tk_xtime(tk); 2187 mono = tk->wall_to_monotonic; 2188 } while (read_seqcount_retry(&tk_core.seq, seq)); 2189 2190 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2191 now.tv_nsec + mono.tv_nsec); 2192 2193 return now; 2194 } 2195 EXPORT_SYMBOL(get_monotonic_coarse64); 2196 2197 /* 2198 * Must hold jiffies_lock 2199 */ 2200 void do_timer(unsigned long ticks) 2201 { 2202 jiffies_64 += ticks; 2203 calc_global_load(ticks); 2204 } 2205 2206 /** 2207 * ktime_get_update_offsets_now - hrtimer helper 2208 * @cwsseq: pointer to check and store the clock was set sequence number 2209 * @offs_real: pointer to storage for monotonic -> realtime offset 2210 * @offs_boot: pointer to storage for monotonic -> boottime offset 2211 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2212 * 2213 * Returns current monotonic time and updates the offsets if the 2214 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2215 * different. 2216 * 2217 * Called from hrtimer_interrupt() or retrigger_next_event() 2218 */ 2219 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2220 ktime_t *offs_boot, ktime_t *offs_tai) 2221 { 2222 struct timekeeper *tk = &tk_core.timekeeper; 2223 unsigned int seq; 2224 ktime_t base; 2225 u64 nsecs; 2226 2227 do { 2228 seq = read_seqcount_begin(&tk_core.seq); 2229 2230 base = tk->tkr_mono.base; 2231 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2232 base = ktime_add_ns(base, nsecs); 2233 2234 if (*cwsseq != tk->clock_was_set_seq) { 2235 *cwsseq = tk->clock_was_set_seq; 2236 *offs_real = tk->offs_real; 2237 *offs_boot = tk->offs_boot; 2238 *offs_tai = tk->offs_tai; 2239 } 2240 2241 /* Handle leapsecond insertion adjustments */ 2242 if (unlikely(base >= tk->next_leap_ktime)) 2243 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2244 2245 } while (read_seqcount_retry(&tk_core.seq, seq)); 2246 2247 return base; 2248 } 2249 2250 /** 2251 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2252 */ 2253 int do_adjtimex(struct timex *txc) 2254 { 2255 struct timekeeper *tk = &tk_core.timekeeper; 2256 unsigned long flags; 2257 struct timespec64 ts; 2258 s32 orig_tai, tai; 2259 int ret; 2260 2261 /* Validate the data before disabling interrupts */ 2262 ret = ntp_validate_timex(txc); 2263 if (ret) 2264 return ret; 2265 2266 if (txc->modes & ADJ_SETOFFSET) { 2267 struct timespec delta; 2268 delta.tv_sec = txc->time.tv_sec; 2269 delta.tv_nsec = txc->time.tv_usec; 2270 if (!(txc->modes & ADJ_NANO)) 2271 delta.tv_nsec *= 1000; 2272 ret = timekeeping_inject_offset(&delta); 2273 if (ret) 2274 return ret; 2275 } 2276 2277 getnstimeofday64(&ts); 2278 2279 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2280 write_seqcount_begin(&tk_core.seq); 2281 2282 orig_tai = tai = tk->tai_offset; 2283 ret = __do_adjtimex(txc, &ts, &tai); 2284 2285 if (tai != orig_tai) { 2286 __timekeeping_set_tai_offset(tk, tai); 2287 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2288 } 2289 tk_update_leap_state(tk); 2290 2291 write_seqcount_end(&tk_core.seq); 2292 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2293 2294 if (tai != orig_tai) 2295 clock_was_set(); 2296 2297 ntp_notify_cmos_timer(); 2298 2299 return ret; 2300 } 2301 2302 #ifdef CONFIG_NTP_PPS 2303 /** 2304 * hardpps() - Accessor function to NTP __hardpps function 2305 */ 2306 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2307 { 2308 unsigned long flags; 2309 2310 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2311 write_seqcount_begin(&tk_core.seq); 2312 2313 __hardpps(phase_ts, raw_ts); 2314 2315 write_seqcount_end(&tk_core.seq); 2316 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2317 } 2318 EXPORT_SYMBOL(hardpps); 2319 #endif /* CONFIG_NTP_PPS */ 2320 2321 /** 2322 * xtime_update() - advances the timekeeping infrastructure 2323 * @ticks: number of ticks, that have elapsed since the last call. 2324 * 2325 * Must be called with interrupts disabled. 2326 */ 2327 void xtime_update(unsigned long ticks) 2328 { 2329 write_seqlock(&jiffies_lock); 2330 do_timer(ticks); 2331 write_sequnlock(&jiffies_lock); 2332 update_wall_time(); 2333 } 2334