1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/nmi.h> 18 #include <linux/sched.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/syscore_ops.h> 21 #include <linux/clocksource.h> 22 #include <linux/jiffies.h> 23 #include <linux/time.h> 24 #include <linux/tick.h> 25 #include <linux/stop_machine.h> 26 #include <linux/pvclock_gtod.h> 27 #include <linux/compiler.h> 28 29 #include "tick-internal.h" 30 #include "ntp_internal.h" 31 #include "timekeeping_internal.h" 32 33 #define TK_CLEAR_NTP (1 << 0) 34 #define TK_MIRROR (1 << 1) 35 #define TK_CLOCK_WAS_SET (1 << 2) 36 37 /* 38 * The most important data for readout fits into a single 64 byte 39 * cache line. 40 */ 41 static struct { 42 seqcount_t seq; 43 struct timekeeper timekeeper; 44 } tk_core ____cacheline_aligned; 45 46 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 47 static struct timekeeper shadow_timekeeper; 48 49 /** 50 * struct tk_fast - NMI safe timekeeper 51 * @seq: Sequence counter for protecting updates. The lowest bit 52 * is the index for the tk_read_base array 53 * @base: tk_read_base array. Access is indexed by the lowest bit of 54 * @seq. 55 * 56 * See @update_fast_timekeeper() below. 57 */ 58 struct tk_fast { 59 seqcount_t seq; 60 struct tk_read_base base[2]; 61 }; 62 63 /* Suspend-time cycles value for halted fast timekeeper. */ 64 static u64 cycles_at_suspend; 65 66 static u64 dummy_clock_read(struct clocksource *cs) 67 { 68 return cycles_at_suspend; 69 } 70 71 static struct clocksource dummy_clock = { 72 .read = dummy_clock_read, 73 }; 74 75 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 76 .base[0] = { .clock = &dummy_clock, }, 77 .base[1] = { .clock = &dummy_clock, }, 78 }; 79 80 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 81 .base[0] = { .clock = &dummy_clock, }, 82 .base[1] = { .clock = &dummy_clock, }, 83 }; 84 85 /* flag for if timekeeping is suspended */ 86 int __read_mostly timekeeping_suspended; 87 88 static inline void tk_normalize_xtime(struct timekeeper *tk) 89 { 90 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 91 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 92 tk->xtime_sec++; 93 } 94 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 95 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 96 tk->raw_sec++; 97 } 98 } 99 100 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 101 { 102 struct timespec64 ts; 103 104 ts.tv_sec = tk->xtime_sec; 105 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 106 return ts; 107 } 108 109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 110 { 111 tk->xtime_sec = ts->tv_sec; 112 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 113 } 114 115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 116 { 117 tk->xtime_sec += ts->tv_sec; 118 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 119 tk_normalize_xtime(tk); 120 } 121 122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 123 { 124 struct timespec64 tmp; 125 126 /* 127 * Verify consistency of: offset_real = -wall_to_monotonic 128 * before modifying anything 129 */ 130 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 131 -tk->wall_to_monotonic.tv_nsec); 132 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 133 tk->wall_to_monotonic = wtm; 134 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 135 tk->offs_real = timespec64_to_ktime(tmp); 136 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 137 } 138 139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 140 { 141 tk->offs_boot = ktime_add(tk->offs_boot, delta); 142 } 143 144 /* 145 * tk_clock_read - atomic clocksource read() helper 146 * 147 * This helper is necessary to use in the read paths because, while the 148 * seqlock ensures we don't return a bad value while structures are updated, 149 * it doesn't protect from potential crashes. There is the possibility that 150 * the tkr's clocksource may change between the read reference, and the 151 * clock reference passed to the read function. This can cause crashes if 152 * the wrong clocksource is passed to the wrong read function. 153 * This isn't necessary to use when holding the timekeeper_lock or doing 154 * a read of the fast-timekeeper tkrs (which is protected by its own locking 155 * and update logic). 156 */ 157 static inline u64 tk_clock_read(struct tk_read_base *tkr) 158 { 159 struct clocksource *clock = READ_ONCE(tkr->clock); 160 161 return clock->read(clock); 162 } 163 164 #ifdef CONFIG_DEBUG_TIMEKEEPING 165 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 166 167 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 168 { 169 170 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 171 const char *name = tk->tkr_mono.clock->name; 172 173 if (offset > max_cycles) { 174 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 175 offset, name, max_cycles); 176 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 177 } else { 178 if (offset > (max_cycles >> 1)) { 179 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 180 offset, name, max_cycles >> 1); 181 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 182 } 183 } 184 185 if (tk->underflow_seen) { 186 if (jiffies - tk->last_warning > WARNING_FREQ) { 187 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 188 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 189 printk_deferred(" Your kernel is probably still fine.\n"); 190 tk->last_warning = jiffies; 191 } 192 tk->underflow_seen = 0; 193 } 194 195 if (tk->overflow_seen) { 196 if (jiffies - tk->last_warning > WARNING_FREQ) { 197 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 198 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 199 printk_deferred(" Your kernel is probably still fine.\n"); 200 tk->last_warning = jiffies; 201 } 202 tk->overflow_seen = 0; 203 } 204 } 205 206 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 207 { 208 struct timekeeper *tk = &tk_core.timekeeper; 209 u64 now, last, mask, max, delta; 210 unsigned int seq; 211 212 /* 213 * Since we're called holding a seqlock, the data may shift 214 * under us while we're doing the calculation. This can cause 215 * false positives, since we'd note a problem but throw the 216 * results away. So nest another seqlock here to atomically 217 * grab the points we are checking with. 218 */ 219 do { 220 seq = read_seqcount_begin(&tk_core.seq); 221 now = tk_clock_read(tkr); 222 last = tkr->cycle_last; 223 mask = tkr->mask; 224 max = tkr->clock->max_cycles; 225 } while (read_seqcount_retry(&tk_core.seq, seq)); 226 227 delta = clocksource_delta(now, last, mask); 228 229 /* 230 * Try to catch underflows by checking if we are seeing small 231 * mask-relative negative values. 232 */ 233 if (unlikely((~delta & mask) < (mask >> 3))) { 234 tk->underflow_seen = 1; 235 delta = 0; 236 } 237 238 /* Cap delta value to the max_cycles values to avoid mult overflows */ 239 if (unlikely(delta > max)) { 240 tk->overflow_seen = 1; 241 delta = tkr->clock->max_cycles; 242 } 243 244 return delta; 245 } 246 #else 247 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 248 { 249 } 250 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 251 { 252 u64 cycle_now, delta; 253 254 /* read clocksource */ 255 cycle_now = tk_clock_read(tkr); 256 257 /* calculate the delta since the last update_wall_time */ 258 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 259 260 return delta; 261 } 262 #endif 263 264 /** 265 * tk_setup_internals - Set up internals to use clocksource clock. 266 * 267 * @tk: The target timekeeper to setup. 268 * @clock: Pointer to clocksource. 269 * 270 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 271 * pair and interval request. 272 * 273 * Unless you're the timekeeping code, you should not be using this! 274 */ 275 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 276 { 277 u64 interval; 278 u64 tmp, ntpinterval; 279 struct clocksource *old_clock; 280 281 ++tk->cs_was_changed_seq; 282 old_clock = tk->tkr_mono.clock; 283 tk->tkr_mono.clock = clock; 284 tk->tkr_mono.mask = clock->mask; 285 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 286 287 tk->tkr_raw.clock = clock; 288 tk->tkr_raw.mask = clock->mask; 289 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 290 291 /* Do the ns -> cycle conversion first, using original mult */ 292 tmp = NTP_INTERVAL_LENGTH; 293 tmp <<= clock->shift; 294 ntpinterval = tmp; 295 tmp += clock->mult/2; 296 do_div(tmp, clock->mult); 297 if (tmp == 0) 298 tmp = 1; 299 300 interval = (u64) tmp; 301 tk->cycle_interval = interval; 302 303 /* Go back from cycles -> shifted ns */ 304 tk->xtime_interval = interval * clock->mult; 305 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 306 tk->raw_interval = interval * clock->mult; 307 308 /* if changing clocks, convert xtime_nsec shift units */ 309 if (old_clock) { 310 int shift_change = clock->shift - old_clock->shift; 311 if (shift_change < 0) { 312 tk->tkr_mono.xtime_nsec >>= -shift_change; 313 tk->tkr_raw.xtime_nsec >>= -shift_change; 314 } else { 315 tk->tkr_mono.xtime_nsec <<= shift_change; 316 tk->tkr_raw.xtime_nsec <<= shift_change; 317 } 318 } 319 320 tk->tkr_mono.shift = clock->shift; 321 tk->tkr_raw.shift = clock->shift; 322 323 tk->ntp_error = 0; 324 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 325 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 326 327 /* 328 * The timekeeper keeps its own mult values for the currently 329 * active clocksource. These value will be adjusted via NTP 330 * to counteract clock drifting. 331 */ 332 tk->tkr_mono.mult = clock->mult; 333 tk->tkr_raw.mult = clock->mult; 334 tk->ntp_err_mult = 0; 335 tk->skip_second_overflow = 0; 336 } 337 338 /* Timekeeper helper functions. */ 339 340 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 341 static u32 default_arch_gettimeoffset(void) { return 0; } 342 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 343 #else 344 static inline u32 arch_gettimeoffset(void) { return 0; } 345 #endif 346 347 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) 348 { 349 u64 nsec; 350 351 nsec = delta * tkr->mult + tkr->xtime_nsec; 352 nsec >>= tkr->shift; 353 354 /* If arch requires, add in get_arch_timeoffset() */ 355 return nsec + arch_gettimeoffset(); 356 } 357 358 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 359 { 360 u64 delta; 361 362 delta = timekeeping_get_delta(tkr); 363 return timekeeping_delta_to_ns(tkr, delta); 364 } 365 366 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) 367 { 368 u64 delta; 369 370 /* calculate the delta since the last update_wall_time */ 371 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 372 return timekeeping_delta_to_ns(tkr, delta); 373 } 374 375 /** 376 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 377 * @tkr: Timekeeping readout base from which we take the update 378 * 379 * We want to use this from any context including NMI and tracing / 380 * instrumenting the timekeeping code itself. 381 * 382 * Employ the latch technique; see @raw_write_seqcount_latch. 383 * 384 * So if a NMI hits the update of base[0] then it will use base[1] 385 * which is still consistent. In the worst case this can result is a 386 * slightly wrong timestamp (a few nanoseconds). See 387 * @ktime_get_mono_fast_ns. 388 */ 389 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 390 { 391 struct tk_read_base *base = tkf->base; 392 393 /* Force readers off to base[1] */ 394 raw_write_seqcount_latch(&tkf->seq); 395 396 /* Update base[0] */ 397 memcpy(base, tkr, sizeof(*base)); 398 399 /* Force readers back to base[0] */ 400 raw_write_seqcount_latch(&tkf->seq); 401 402 /* Update base[1] */ 403 memcpy(base + 1, base, sizeof(*base)); 404 } 405 406 /** 407 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 408 * 409 * This timestamp is not guaranteed to be monotonic across an update. 410 * The timestamp is calculated by: 411 * 412 * now = base_mono + clock_delta * slope 413 * 414 * So if the update lowers the slope, readers who are forced to the 415 * not yet updated second array are still using the old steeper slope. 416 * 417 * tmono 418 * ^ 419 * | o n 420 * | o n 421 * | u 422 * | o 423 * |o 424 * |12345678---> reader order 425 * 426 * o = old slope 427 * u = update 428 * n = new slope 429 * 430 * So reader 6 will observe time going backwards versus reader 5. 431 * 432 * While other CPUs are likely to be able observe that, the only way 433 * for a CPU local observation is when an NMI hits in the middle of 434 * the update. Timestamps taken from that NMI context might be ahead 435 * of the following timestamps. Callers need to be aware of that and 436 * deal with it. 437 */ 438 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 439 { 440 struct tk_read_base *tkr; 441 unsigned int seq; 442 u64 now; 443 444 do { 445 seq = raw_read_seqcount_latch(&tkf->seq); 446 tkr = tkf->base + (seq & 0x01); 447 now = ktime_to_ns(tkr->base); 448 449 now += timekeeping_delta_to_ns(tkr, 450 clocksource_delta( 451 tk_clock_read(tkr), 452 tkr->cycle_last, 453 tkr->mask)); 454 } while (read_seqcount_retry(&tkf->seq, seq)); 455 456 return now; 457 } 458 459 u64 ktime_get_mono_fast_ns(void) 460 { 461 return __ktime_get_fast_ns(&tk_fast_mono); 462 } 463 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 464 465 u64 ktime_get_raw_fast_ns(void) 466 { 467 return __ktime_get_fast_ns(&tk_fast_raw); 468 } 469 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 470 471 /** 472 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 473 * 474 * To keep it NMI safe since we're accessing from tracing, we're not using a 475 * separate timekeeper with updates to monotonic clock and boot offset 476 * protected with seqlocks. This has the following minor side effects: 477 * 478 * (1) Its possible that a timestamp be taken after the boot offset is updated 479 * but before the timekeeper is updated. If this happens, the new boot offset 480 * is added to the old timekeeping making the clock appear to update slightly 481 * earlier: 482 * CPU 0 CPU 1 483 * timekeeping_inject_sleeptime64() 484 * __timekeeping_inject_sleeptime(tk, delta); 485 * timestamp(); 486 * timekeeping_update(tk, TK_CLEAR_NTP...); 487 * 488 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 489 * partially updated. Since the tk->offs_boot update is a rare event, this 490 * should be a rare occurrence which postprocessing should be able to handle. 491 */ 492 u64 notrace ktime_get_boot_fast_ns(void) 493 { 494 struct timekeeper *tk = &tk_core.timekeeper; 495 496 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 497 } 498 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 499 500 501 /* 502 * See comment for __ktime_get_fast_ns() vs. timestamp ordering 503 */ 504 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf) 505 { 506 struct tk_read_base *tkr; 507 unsigned int seq; 508 u64 now; 509 510 do { 511 seq = raw_read_seqcount_latch(&tkf->seq); 512 tkr = tkf->base + (seq & 0x01); 513 now = ktime_to_ns(tkr->base_real); 514 515 now += timekeeping_delta_to_ns(tkr, 516 clocksource_delta( 517 tk_clock_read(tkr), 518 tkr->cycle_last, 519 tkr->mask)); 520 } while (read_seqcount_retry(&tkf->seq, seq)); 521 522 return now; 523 } 524 525 /** 526 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 527 */ 528 u64 ktime_get_real_fast_ns(void) 529 { 530 return __ktime_get_real_fast_ns(&tk_fast_mono); 531 } 532 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 533 534 /** 535 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 536 * @tk: Timekeeper to snapshot. 537 * 538 * It generally is unsafe to access the clocksource after timekeeping has been 539 * suspended, so take a snapshot of the readout base of @tk and use it as the 540 * fast timekeeper's readout base while suspended. It will return the same 541 * number of cycles every time until timekeeping is resumed at which time the 542 * proper readout base for the fast timekeeper will be restored automatically. 543 */ 544 static void halt_fast_timekeeper(struct timekeeper *tk) 545 { 546 static struct tk_read_base tkr_dummy; 547 struct tk_read_base *tkr = &tk->tkr_mono; 548 549 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 550 cycles_at_suspend = tk_clock_read(tkr); 551 tkr_dummy.clock = &dummy_clock; 552 tkr_dummy.base_real = tkr->base + tk->offs_real; 553 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 554 555 tkr = &tk->tkr_raw; 556 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 557 tkr_dummy.clock = &dummy_clock; 558 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 559 } 560 561 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 562 563 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 564 { 565 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 566 } 567 568 /** 569 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 570 */ 571 int pvclock_gtod_register_notifier(struct notifier_block *nb) 572 { 573 struct timekeeper *tk = &tk_core.timekeeper; 574 unsigned long flags; 575 int ret; 576 577 raw_spin_lock_irqsave(&timekeeper_lock, flags); 578 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 579 update_pvclock_gtod(tk, true); 580 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 581 582 return ret; 583 } 584 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 585 586 /** 587 * pvclock_gtod_unregister_notifier - unregister a pvclock 588 * timedata update listener 589 */ 590 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 591 { 592 unsigned long flags; 593 int ret; 594 595 raw_spin_lock_irqsave(&timekeeper_lock, flags); 596 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 597 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 598 599 return ret; 600 } 601 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 602 603 /* 604 * tk_update_leap_state - helper to update the next_leap_ktime 605 */ 606 static inline void tk_update_leap_state(struct timekeeper *tk) 607 { 608 tk->next_leap_ktime = ntp_get_next_leap(); 609 if (tk->next_leap_ktime != KTIME_MAX) 610 /* Convert to monotonic time */ 611 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 612 } 613 614 /* 615 * Update the ktime_t based scalar nsec members of the timekeeper 616 */ 617 static inline void tk_update_ktime_data(struct timekeeper *tk) 618 { 619 u64 seconds; 620 u32 nsec; 621 622 /* 623 * The xtime based monotonic readout is: 624 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 625 * The ktime based monotonic readout is: 626 * nsec = base_mono + now(); 627 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 628 */ 629 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 630 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 631 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 632 633 /* 634 * The sum of the nanoseconds portions of xtime and 635 * wall_to_monotonic can be greater/equal one second. Take 636 * this into account before updating tk->ktime_sec. 637 */ 638 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 639 if (nsec >= NSEC_PER_SEC) 640 seconds++; 641 tk->ktime_sec = seconds; 642 643 /* Update the monotonic raw base */ 644 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 645 } 646 647 /* must hold timekeeper_lock */ 648 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 649 { 650 if (action & TK_CLEAR_NTP) { 651 tk->ntp_error = 0; 652 ntp_clear(); 653 } 654 655 tk_update_leap_state(tk); 656 tk_update_ktime_data(tk); 657 658 update_vsyscall(tk); 659 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 660 661 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 662 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 663 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 664 665 if (action & TK_CLOCK_WAS_SET) 666 tk->clock_was_set_seq++; 667 /* 668 * The mirroring of the data to the shadow-timekeeper needs 669 * to happen last here to ensure we don't over-write the 670 * timekeeper structure on the next update with stale data 671 */ 672 if (action & TK_MIRROR) 673 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 674 sizeof(tk_core.timekeeper)); 675 } 676 677 /** 678 * timekeeping_forward_now - update clock to the current time 679 * 680 * Forward the current clock to update its state since the last call to 681 * update_wall_time(). This is useful before significant clock changes, 682 * as it avoids having to deal with this time offset explicitly. 683 */ 684 static void timekeeping_forward_now(struct timekeeper *tk) 685 { 686 u64 cycle_now, delta; 687 688 cycle_now = tk_clock_read(&tk->tkr_mono); 689 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 690 tk->tkr_mono.cycle_last = cycle_now; 691 tk->tkr_raw.cycle_last = cycle_now; 692 693 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 694 695 /* If arch requires, add in get_arch_timeoffset() */ 696 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 697 698 699 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; 700 701 /* If arch requires, add in get_arch_timeoffset() */ 702 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; 703 704 tk_normalize_xtime(tk); 705 } 706 707 /** 708 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 709 * @ts: pointer to the timespec to be set 710 * 711 * Returns the time of day in a timespec64 (WARN if suspended). 712 */ 713 void ktime_get_real_ts64(struct timespec64 *ts) 714 { 715 struct timekeeper *tk = &tk_core.timekeeper; 716 unsigned long seq; 717 u64 nsecs; 718 719 WARN_ON(timekeeping_suspended); 720 721 do { 722 seq = read_seqcount_begin(&tk_core.seq); 723 724 ts->tv_sec = tk->xtime_sec; 725 nsecs = timekeeping_get_ns(&tk->tkr_mono); 726 727 } while (read_seqcount_retry(&tk_core.seq, seq)); 728 729 ts->tv_nsec = 0; 730 timespec64_add_ns(ts, nsecs); 731 } 732 EXPORT_SYMBOL(ktime_get_real_ts64); 733 734 ktime_t ktime_get(void) 735 { 736 struct timekeeper *tk = &tk_core.timekeeper; 737 unsigned int seq; 738 ktime_t base; 739 u64 nsecs; 740 741 WARN_ON(timekeeping_suspended); 742 743 do { 744 seq = read_seqcount_begin(&tk_core.seq); 745 base = tk->tkr_mono.base; 746 nsecs = timekeeping_get_ns(&tk->tkr_mono); 747 748 } while (read_seqcount_retry(&tk_core.seq, seq)); 749 750 return ktime_add_ns(base, nsecs); 751 } 752 EXPORT_SYMBOL_GPL(ktime_get); 753 754 u32 ktime_get_resolution_ns(void) 755 { 756 struct timekeeper *tk = &tk_core.timekeeper; 757 unsigned int seq; 758 u32 nsecs; 759 760 WARN_ON(timekeeping_suspended); 761 762 do { 763 seq = read_seqcount_begin(&tk_core.seq); 764 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 765 } while (read_seqcount_retry(&tk_core.seq, seq)); 766 767 return nsecs; 768 } 769 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 770 771 static ktime_t *offsets[TK_OFFS_MAX] = { 772 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 773 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 774 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 775 }; 776 777 ktime_t ktime_get_with_offset(enum tk_offsets offs) 778 { 779 struct timekeeper *tk = &tk_core.timekeeper; 780 unsigned int seq; 781 ktime_t base, *offset = offsets[offs]; 782 u64 nsecs; 783 784 WARN_ON(timekeeping_suspended); 785 786 do { 787 seq = read_seqcount_begin(&tk_core.seq); 788 base = ktime_add(tk->tkr_mono.base, *offset); 789 nsecs = timekeeping_get_ns(&tk->tkr_mono); 790 791 } while (read_seqcount_retry(&tk_core.seq, seq)); 792 793 return ktime_add_ns(base, nsecs); 794 795 } 796 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 797 798 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 799 { 800 struct timekeeper *tk = &tk_core.timekeeper; 801 unsigned int seq; 802 ktime_t base, *offset = offsets[offs]; 803 804 WARN_ON(timekeeping_suspended); 805 806 do { 807 seq = read_seqcount_begin(&tk_core.seq); 808 base = ktime_add(tk->tkr_mono.base, *offset); 809 810 } while (read_seqcount_retry(&tk_core.seq, seq)); 811 812 return base; 813 814 } 815 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 816 817 /** 818 * ktime_mono_to_any() - convert mononotic time to any other time 819 * @tmono: time to convert. 820 * @offs: which offset to use 821 */ 822 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 823 { 824 ktime_t *offset = offsets[offs]; 825 unsigned long seq; 826 ktime_t tconv; 827 828 do { 829 seq = read_seqcount_begin(&tk_core.seq); 830 tconv = ktime_add(tmono, *offset); 831 } while (read_seqcount_retry(&tk_core.seq, seq)); 832 833 return tconv; 834 } 835 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 836 837 /** 838 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 839 */ 840 ktime_t ktime_get_raw(void) 841 { 842 struct timekeeper *tk = &tk_core.timekeeper; 843 unsigned int seq; 844 ktime_t base; 845 u64 nsecs; 846 847 do { 848 seq = read_seqcount_begin(&tk_core.seq); 849 base = tk->tkr_raw.base; 850 nsecs = timekeeping_get_ns(&tk->tkr_raw); 851 852 } while (read_seqcount_retry(&tk_core.seq, seq)); 853 854 return ktime_add_ns(base, nsecs); 855 } 856 EXPORT_SYMBOL_GPL(ktime_get_raw); 857 858 /** 859 * ktime_get_ts64 - get the monotonic clock in timespec64 format 860 * @ts: pointer to timespec variable 861 * 862 * The function calculates the monotonic clock from the realtime 863 * clock and the wall_to_monotonic offset and stores the result 864 * in normalized timespec64 format in the variable pointed to by @ts. 865 */ 866 void ktime_get_ts64(struct timespec64 *ts) 867 { 868 struct timekeeper *tk = &tk_core.timekeeper; 869 struct timespec64 tomono; 870 unsigned int seq; 871 u64 nsec; 872 873 WARN_ON(timekeeping_suspended); 874 875 do { 876 seq = read_seqcount_begin(&tk_core.seq); 877 ts->tv_sec = tk->xtime_sec; 878 nsec = timekeeping_get_ns(&tk->tkr_mono); 879 tomono = tk->wall_to_monotonic; 880 881 } while (read_seqcount_retry(&tk_core.seq, seq)); 882 883 ts->tv_sec += tomono.tv_sec; 884 ts->tv_nsec = 0; 885 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 886 } 887 EXPORT_SYMBOL_GPL(ktime_get_ts64); 888 889 /** 890 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 891 * 892 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 893 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 894 * works on both 32 and 64 bit systems. On 32 bit systems the readout 895 * covers ~136 years of uptime which should be enough to prevent 896 * premature wrap arounds. 897 */ 898 time64_t ktime_get_seconds(void) 899 { 900 struct timekeeper *tk = &tk_core.timekeeper; 901 902 WARN_ON(timekeeping_suspended); 903 return tk->ktime_sec; 904 } 905 EXPORT_SYMBOL_GPL(ktime_get_seconds); 906 907 /** 908 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 909 * 910 * Returns the wall clock seconds since 1970. This replaces the 911 * get_seconds() interface which is not y2038 safe on 32bit systems. 912 * 913 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 914 * 32bit systems the access must be protected with the sequence 915 * counter to provide "atomic" access to the 64bit tk->xtime_sec 916 * value. 917 */ 918 time64_t ktime_get_real_seconds(void) 919 { 920 struct timekeeper *tk = &tk_core.timekeeper; 921 time64_t seconds; 922 unsigned int seq; 923 924 if (IS_ENABLED(CONFIG_64BIT)) 925 return tk->xtime_sec; 926 927 do { 928 seq = read_seqcount_begin(&tk_core.seq); 929 seconds = tk->xtime_sec; 930 931 } while (read_seqcount_retry(&tk_core.seq, seq)); 932 933 return seconds; 934 } 935 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 936 937 /** 938 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 939 * but without the sequence counter protect. This internal function 940 * is called just when timekeeping lock is already held. 941 */ 942 time64_t __ktime_get_real_seconds(void) 943 { 944 struct timekeeper *tk = &tk_core.timekeeper; 945 946 return tk->xtime_sec; 947 } 948 949 /** 950 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 951 * @systime_snapshot: pointer to struct receiving the system time snapshot 952 */ 953 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 954 { 955 struct timekeeper *tk = &tk_core.timekeeper; 956 unsigned long seq; 957 ktime_t base_raw; 958 ktime_t base_real; 959 u64 nsec_raw; 960 u64 nsec_real; 961 u64 now; 962 963 WARN_ON_ONCE(timekeeping_suspended); 964 965 do { 966 seq = read_seqcount_begin(&tk_core.seq); 967 now = tk_clock_read(&tk->tkr_mono); 968 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 969 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 970 base_real = ktime_add(tk->tkr_mono.base, 971 tk_core.timekeeper.offs_real); 972 base_raw = tk->tkr_raw.base; 973 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 974 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 975 } while (read_seqcount_retry(&tk_core.seq, seq)); 976 977 systime_snapshot->cycles = now; 978 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 979 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 980 } 981 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 982 983 /* Scale base by mult/div checking for overflow */ 984 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 985 { 986 u64 tmp, rem; 987 988 tmp = div64_u64_rem(*base, div, &rem); 989 990 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 991 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 992 return -EOVERFLOW; 993 tmp *= mult; 994 rem *= mult; 995 996 do_div(rem, div); 997 *base = tmp + rem; 998 return 0; 999 } 1000 1001 /** 1002 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1003 * @history: Snapshot representing start of history 1004 * @partial_history_cycles: Cycle offset into history (fractional part) 1005 * @total_history_cycles: Total history length in cycles 1006 * @discontinuity: True indicates clock was set on history period 1007 * @ts: Cross timestamp that should be adjusted using 1008 * partial/total ratio 1009 * 1010 * Helper function used by get_device_system_crosststamp() to correct the 1011 * crosstimestamp corresponding to the start of the current interval to the 1012 * system counter value (timestamp point) provided by the driver. The 1013 * total_history_* quantities are the total history starting at the provided 1014 * reference point and ending at the start of the current interval. The cycle 1015 * count between the driver timestamp point and the start of the current 1016 * interval is partial_history_cycles. 1017 */ 1018 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1019 u64 partial_history_cycles, 1020 u64 total_history_cycles, 1021 bool discontinuity, 1022 struct system_device_crosststamp *ts) 1023 { 1024 struct timekeeper *tk = &tk_core.timekeeper; 1025 u64 corr_raw, corr_real; 1026 bool interp_forward; 1027 int ret; 1028 1029 if (total_history_cycles == 0 || partial_history_cycles == 0) 1030 return 0; 1031 1032 /* Interpolate shortest distance from beginning or end of history */ 1033 interp_forward = partial_history_cycles > total_history_cycles / 2; 1034 partial_history_cycles = interp_forward ? 1035 total_history_cycles - partial_history_cycles : 1036 partial_history_cycles; 1037 1038 /* 1039 * Scale the monotonic raw time delta by: 1040 * partial_history_cycles / total_history_cycles 1041 */ 1042 corr_raw = (u64)ktime_to_ns( 1043 ktime_sub(ts->sys_monoraw, history->raw)); 1044 ret = scale64_check_overflow(partial_history_cycles, 1045 total_history_cycles, &corr_raw); 1046 if (ret) 1047 return ret; 1048 1049 /* 1050 * If there is a discontinuity in the history, scale monotonic raw 1051 * correction by: 1052 * mult(real)/mult(raw) yielding the realtime correction 1053 * Otherwise, calculate the realtime correction similar to monotonic 1054 * raw calculation 1055 */ 1056 if (discontinuity) { 1057 corr_real = mul_u64_u32_div 1058 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1059 } else { 1060 corr_real = (u64)ktime_to_ns( 1061 ktime_sub(ts->sys_realtime, history->real)); 1062 ret = scale64_check_overflow(partial_history_cycles, 1063 total_history_cycles, &corr_real); 1064 if (ret) 1065 return ret; 1066 } 1067 1068 /* Fixup monotonic raw and real time time values */ 1069 if (interp_forward) { 1070 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1071 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1072 } else { 1073 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1074 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1075 } 1076 1077 return 0; 1078 } 1079 1080 /* 1081 * cycle_between - true if test occurs chronologically between before and after 1082 */ 1083 static bool cycle_between(u64 before, u64 test, u64 after) 1084 { 1085 if (test > before && test < after) 1086 return true; 1087 if (test < before && before > after) 1088 return true; 1089 return false; 1090 } 1091 1092 /** 1093 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1094 * @get_time_fn: Callback to get simultaneous device time and 1095 * system counter from the device driver 1096 * @ctx: Context passed to get_time_fn() 1097 * @history_begin: Historical reference point used to interpolate system 1098 * time when counter provided by the driver is before the current interval 1099 * @xtstamp: Receives simultaneously captured system and device time 1100 * 1101 * Reads a timestamp from a device and correlates it to system time 1102 */ 1103 int get_device_system_crosststamp(int (*get_time_fn) 1104 (ktime_t *device_time, 1105 struct system_counterval_t *sys_counterval, 1106 void *ctx), 1107 void *ctx, 1108 struct system_time_snapshot *history_begin, 1109 struct system_device_crosststamp *xtstamp) 1110 { 1111 struct system_counterval_t system_counterval; 1112 struct timekeeper *tk = &tk_core.timekeeper; 1113 u64 cycles, now, interval_start; 1114 unsigned int clock_was_set_seq = 0; 1115 ktime_t base_real, base_raw; 1116 u64 nsec_real, nsec_raw; 1117 u8 cs_was_changed_seq; 1118 unsigned long seq; 1119 bool do_interp; 1120 int ret; 1121 1122 do { 1123 seq = read_seqcount_begin(&tk_core.seq); 1124 /* 1125 * Try to synchronously capture device time and a system 1126 * counter value calling back into the device driver 1127 */ 1128 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1129 if (ret) 1130 return ret; 1131 1132 /* 1133 * Verify that the clocksource associated with the captured 1134 * system counter value is the same as the currently installed 1135 * timekeeper clocksource 1136 */ 1137 if (tk->tkr_mono.clock != system_counterval.cs) 1138 return -ENODEV; 1139 cycles = system_counterval.cycles; 1140 1141 /* 1142 * Check whether the system counter value provided by the 1143 * device driver is on the current timekeeping interval. 1144 */ 1145 now = tk_clock_read(&tk->tkr_mono); 1146 interval_start = tk->tkr_mono.cycle_last; 1147 if (!cycle_between(interval_start, cycles, now)) { 1148 clock_was_set_seq = tk->clock_was_set_seq; 1149 cs_was_changed_seq = tk->cs_was_changed_seq; 1150 cycles = interval_start; 1151 do_interp = true; 1152 } else { 1153 do_interp = false; 1154 } 1155 1156 base_real = ktime_add(tk->tkr_mono.base, 1157 tk_core.timekeeper.offs_real); 1158 base_raw = tk->tkr_raw.base; 1159 1160 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1161 system_counterval.cycles); 1162 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1163 system_counterval.cycles); 1164 } while (read_seqcount_retry(&tk_core.seq, seq)); 1165 1166 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1167 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1168 1169 /* 1170 * Interpolate if necessary, adjusting back from the start of the 1171 * current interval 1172 */ 1173 if (do_interp) { 1174 u64 partial_history_cycles, total_history_cycles; 1175 bool discontinuity; 1176 1177 /* 1178 * Check that the counter value occurs after the provided 1179 * history reference and that the history doesn't cross a 1180 * clocksource change 1181 */ 1182 if (!history_begin || 1183 !cycle_between(history_begin->cycles, 1184 system_counterval.cycles, cycles) || 1185 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1186 return -EINVAL; 1187 partial_history_cycles = cycles - system_counterval.cycles; 1188 total_history_cycles = cycles - history_begin->cycles; 1189 discontinuity = 1190 history_begin->clock_was_set_seq != clock_was_set_seq; 1191 1192 ret = adjust_historical_crosststamp(history_begin, 1193 partial_history_cycles, 1194 total_history_cycles, 1195 discontinuity, xtstamp); 1196 if (ret) 1197 return ret; 1198 } 1199 1200 return 0; 1201 } 1202 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1203 1204 /** 1205 * do_gettimeofday - Returns the time of day in a timeval 1206 * @tv: pointer to the timeval to be set 1207 * 1208 * NOTE: Users should be converted to using getnstimeofday() 1209 */ 1210 void do_gettimeofday(struct timeval *tv) 1211 { 1212 struct timespec64 now; 1213 1214 getnstimeofday64(&now); 1215 tv->tv_sec = now.tv_sec; 1216 tv->tv_usec = now.tv_nsec/1000; 1217 } 1218 EXPORT_SYMBOL(do_gettimeofday); 1219 1220 /** 1221 * do_settimeofday64 - Sets the time of day. 1222 * @ts: pointer to the timespec64 variable containing the new time 1223 * 1224 * Sets the time of day to the new time and update NTP and notify hrtimers 1225 */ 1226 int do_settimeofday64(const struct timespec64 *ts) 1227 { 1228 struct timekeeper *tk = &tk_core.timekeeper; 1229 struct timespec64 ts_delta, xt; 1230 unsigned long flags; 1231 int ret = 0; 1232 1233 if (!timespec64_valid_strict(ts)) 1234 return -EINVAL; 1235 1236 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1237 write_seqcount_begin(&tk_core.seq); 1238 1239 timekeeping_forward_now(tk); 1240 1241 xt = tk_xtime(tk); 1242 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1243 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1244 1245 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1246 ret = -EINVAL; 1247 goto out; 1248 } 1249 1250 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1251 1252 tk_set_xtime(tk, ts); 1253 out: 1254 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1255 1256 write_seqcount_end(&tk_core.seq); 1257 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1258 1259 /* signal hrtimers about time change */ 1260 clock_was_set(); 1261 1262 return ret; 1263 } 1264 EXPORT_SYMBOL(do_settimeofday64); 1265 1266 /** 1267 * timekeeping_inject_offset - Adds or subtracts from the current time. 1268 * @tv: pointer to the timespec variable containing the offset 1269 * 1270 * Adds or subtracts an offset value from the current time. 1271 */ 1272 static int timekeeping_inject_offset(struct timespec64 *ts) 1273 { 1274 struct timekeeper *tk = &tk_core.timekeeper; 1275 unsigned long flags; 1276 struct timespec64 tmp; 1277 int ret = 0; 1278 1279 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1280 return -EINVAL; 1281 1282 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1283 write_seqcount_begin(&tk_core.seq); 1284 1285 timekeeping_forward_now(tk); 1286 1287 /* Make sure the proposed value is valid */ 1288 tmp = timespec64_add(tk_xtime(tk), *ts); 1289 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1290 !timespec64_valid_strict(&tmp)) { 1291 ret = -EINVAL; 1292 goto error; 1293 } 1294 1295 tk_xtime_add(tk, ts); 1296 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1297 1298 error: /* even if we error out, we forwarded the time, so call update */ 1299 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1300 1301 write_seqcount_end(&tk_core.seq); 1302 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1303 1304 /* signal hrtimers about time change */ 1305 clock_was_set(); 1306 1307 return ret; 1308 } 1309 1310 /* 1311 * Indicates if there is an offset between the system clock and the hardware 1312 * clock/persistent clock/rtc. 1313 */ 1314 int persistent_clock_is_local; 1315 1316 /* 1317 * Adjust the time obtained from the CMOS to be UTC time instead of 1318 * local time. 1319 * 1320 * This is ugly, but preferable to the alternatives. Otherwise we 1321 * would either need to write a program to do it in /etc/rc (and risk 1322 * confusion if the program gets run more than once; it would also be 1323 * hard to make the program warp the clock precisely n hours) or 1324 * compile in the timezone information into the kernel. Bad, bad.... 1325 * 1326 * - TYT, 1992-01-01 1327 * 1328 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1329 * as real UNIX machines always do it. This avoids all headaches about 1330 * daylight saving times and warping kernel clocks. 1331 */ 1332 void timekeeping_warp_clock(void) 1333 { 1334 if (sys_tz.tz_minuteswest != 0) { 1335 struct timespec64 adjust; 1336 1337 persistent_clock_is_local = 1; 1338 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1339 adjust.tv_nsec = 0; 1340 timekeeping_inject_offset(&adjust); 1341 } 1342 } 1343 1344 /** 1345 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1346 * 1347 */ 1348 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1349 { 1350 tk->tai_offset = tai_offset; 1351 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1352 } 1353 1354 /** 1355 * change_clocksource - Swaps clocksources if a new one is available 1356 * 1357 * Accumulates current time interval and initializes new clocksource 1358 */ 1359 static int change_clocksource(void *data) 1360 { 1361 struct timekeeper *tk = &tk_core.timekeeper; 1362 struct clocksource *new, *old; 1363 unsigned long flags; 1364 1365 new = (struct clocksource *) data; 1366 1367 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1368 write_seqcount_begin(&tk_core.seq); 1369 1370 timekeeping_forward_now(tk); 1371 /* 1372 * If the cs is in module, get a module reference. Succeeds 1373 * for built-in code (owner == NULL) as well. 1374 */ 1375 if (try_module_get(new->owner)) { 1376 if (!new->enable || new->enable(new) == 0) { 1377 old = tk->tkr_mono.clock; 1378 tk_setup_internals(tk, new); 1379 if (old->disable) 1380 old->disable(old); 1381 module_put(old->owner); 1382 } else { 1383 module_put(new->owner); 1384 } 1385 } 1386 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1387 1388 write_seqcount_end(&tk_core.seq); 1389 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * timekeeping_notify - Install a new clock source 1396 * @clock: pointer to the clock source 1397 * 1398 * This function is called from clocksource.c after a new, better clock 1399 * source has been registered. The caller holds the clocksource_mutex. 1400 */ 1401 int timekeeping_notify(struct clocksource *clock) 1402 { 1403 struct timekeeper *tk = &tk_core.timekeeper; 1404 1405 if (tk->tkr_mono.clock == clock) 1406 return 0; 1407 stop_machine(change_clocksource, clock, NULL); 1408 tick_clock_notify(); 1409 return tk->tkr_mono.clock == clock ? 0 : -1; 1410 } 1411 1412 /** 1413 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1414 * @ts: pointer to the timespec64 to be set 1415 * 1416 * Returns the raw monotonic time (completely un-modified by ntp) 1417 */ 1418 void ktime_get_raw_ts64(struct timespec64 *ts) 1419 { 1420 struct timekeeper *tk = &tk_core.timekeeper; 1421 unsigned long seq; 1422 u64 nsecs; 1423 1424 do { 1425 seq = read_seqcount_begin(&tk_core.seq); 1426 ts->tv_sec = tk->raw_sec; 1427 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1428 1429 } while (read_seqcount_retry(&tk_core.seq, seq)); 1430 1431 ts->tv_nsec = 0; 1432 timespec64_add_ns(ts, nsecs); 1433 } 1434 EXPORT_SYMBOL(ktime_get_raw_ts64); 1435 1436 1437 /** 1438 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1439 */ 1440 int timekeeping_valid_for_hres(void) 1441 { 1442 struct timekeeper *tk = &tk_core.timekeeper; 1443 unsigned long seq; 1444 int ret; 1445 1446 do { 1447 seq = read_seqcount_begin(&tk_core.seq); 1448 1449 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1450 1451 } while (read_seqcount_retry(&tk_core.seq, seq)); 1452 1453 return ret; 1454 } 1455 1456 /** 1457 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1458 */ 1459 u64 timekeeping_max_deferment(void) 1460 { 1461 struct timekeeper *tk = &tk_core.timekeeper; 1462 unsigned long seq; 1463 u64 ret; 1464 1465 do { 1466 seq = read_seqcount_begin(&tk_core.seq); 1467 1468 ret = tk->tkr_mono.clock->max_idle_ns; 1469 1470 } while (read_seqcount_retry(&tk_core.seq, seq)); 1471 1472 return ret; 1473 } 1474 1475 /** 1476 * read_persistent_clock - Return time from the persistent clock. 1477 * 1478 * Weak dummy function for arches that do not yet support it. 1479 * Reads the time from the battery backed persistent clock. 1480 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1481 * 1482 * XXX - Do be sure to remove it once all arches implement it. 1483 */ 1484 void __weak read_persistent_clock(struct timespec *ts) 1485 { 1486 ts->tv_sec = 0; 1487 ts->tv_nsec = 0; 1488 } 1489 1490 void __weak read_persistent_clock64(struct timespec64 *ts64) 1491 { 1492 struct timespec ts; 1493 1494 read_persistent_clock(&ts); 1495 *ts64 = timespec_to_timespec64(ts); 1496 } 1497 1498 /** 1499 * read_boot_clock64 - Return time of the system start. 1500 * 1501 * Weak dummy function for arches that do not yet support it. 1502 * Function to read the exact time the system has been started. 1503 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1504 * 1505 * XXX - Do be sure to remove it once all arches implement it. 1506 */ 1507 void __weak read_boot_clock64(struct timespec64 *ts) 1508 { 1509 ts->tv_sec = 0; 1510 ts->tv_nsec = 0; 1511 } 1512 1513 /* Flag for if timekeeping_resume() has injected sleeptime */ 1514 static bool sleeptime_injected; 1515 1516 /* Flag for if there is a persistent clock on this platform */ 1517 static bool persistent_clock_exists; 1518 1519 /* 1520 * timekeeping_init - Initializes the clocksource and common timekeeping values 1521 */ 1522 void __init timekeeping_init(void) 1523 { 1524 struct timekeeper *tk = &tk_core.timekeeper; 1525 struct clocksource *clock; 1526 unsigned long flags; 1527 struct timespec64 now, boot, tmp; 1528 1529 read_persistent_clock64(&now); 1530 if (!timespec64_valid_strict(&now)) { 1531 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1532 " Check your CMOS/BIOS settings.\n"); 1533 now.tv_sec = 0; 1534 now.tv_nsec = 0; 1535 } else if (now.tv_sec || now.tv_nsec) 1536 persistent_clock_exists = true; 1537 1538 read_boot_clock64(&boot); 1539 if (!timespec64_valid_strict(&boot)) { 1540 pr_warn("WARNING: Boot clock returned invalid value!\n" 1541 " Check your CMOS/BIOS settings.\n"); 1542 boot.tv_sec = 0; 1543 boot.tv_nsec = 0; 1544 } 1545 1546 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1547 write_seqcount_begin(&tk_core.seq); 1548 ntp_init(); 1549 1550 clock = clocksource_default_clock(); 1551 if (clock->enable) 1552 clock->enable(clock); 1553 tk_setup_internals(tk, clock); 1554 1555 tk_set_xtime(tk, &now); 1556 tk->raw_sec = 0; 1557 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1558 boot = tk_xtime(tk); 1559 1560 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1561 tk_set_wall_to_mono(tk, tmp); 1562 1563 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1564 1565 write_seqcount_end(&tk_core.seq); 1566 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1567 } 1568 1569 /* time in seconds when suspend began for persistent clock */ 1570 static struct timespec64 timekeeping_suspend_time; 1571 1572 /** 1573 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1574 * @delta: pointer to a timespec delta value 1575 * 1576 * Takes a timespec offset measuring a suspend interval and properly 1577 * adds the sleep offset to the timekeeping variables. 1578 */ 1579 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1580 struct timespec64 *delta) 1581 { 1582 if (!timespec64_valid_strict(delta)) { 1583 printk_deferred(KERN_WARNING 1584 "__timekeeping_inject_sleeptime: Invalid " 1585 "sleep delta value!\n"); 1586 return; 1587 } 1588 tk_xtime_add(tk, delta); 1589 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1590 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1591 tk_debug_account_sleep_time(delta); 1592 } 1593 1594 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1595 /** 1596 * We have three kinds of time sources to use for sleep time 1597 * injection, the preference order is: 1598 * 1) non-stop clocksource 1599 * 2) persistent clock (ie: RTC accessible when irqs are off) 1600 * 3) RTC 1601 * 1602 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1603 * If system has neither 1) nor 2), 3) will be used finally. 1604 * 1605 * 1606 * If timekeeping has injected sleeptime via either 1) or 2), 1607 * 3) becomes needless, so in this case we don't need to call 1608 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1609 * means. 1610 */ 1611 bool timekeeping_rtc_skipresume(void) 1612 { 1613 return sleeptime_injected; 1614 } 1615 1616 /** 1617 * 1) can be determined whether to use or not only when doing 1618 * timekeeping_resume() which is invoked after rtc_suspend(), 1619 * so we can't skip rtc_suspend() surely if system has 1). 1620 * 1621 * But if system has 2), 2) will definitely be used, so in this 1622 * case we don't need to call rtc_suspend(), and this is what 1623 * timekeeping_rtc_skipsuspend() means. 1624 */ 1625 bool timekeeping_rtc_skipsuspend(void) 1626 { 1627 return persistent_clock_exists; 1628 } 1629 1630 /** 1631 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1632 * @delta: pointer to a timespec64 delta value 1633 * 1634 * This hook is for architectures that cannot support read_persistent_clock64 1635 * because their RTC/persistent clock is only accessible when irqs are enabled. 1636 * and also don't have an effective nonstop clocksource. 1637 * 1638 * This function should only be called by rtc_resume(), and allows 1639 * a suspend offset to be injected into the timekeeping values. 1640 */ 1641 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1642 { 1643 struct timekeeper *tk = &tk_core.timekeeper; 1644 unsigned long flags; 1645 1646 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1647 write_seqcount_begin(&tk_core.seq); 1648 1649 timekeeping_forward_now(tk); 1650 1651 __timekeeping_inject_sleeptime(tk, delta); 1652 1653 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1654 1655 write_seqcount_end(&tk_core.seq); 1656 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1657 1658 /* signal hrtimers about time change */ 1659 clock_was_set(); 1660 } 1661 #endif 1662 1663 /** 1664 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1665 */ 1666 void timekeeping_resume(void) 1667 { 1668 struct timekeeper *tk = &tk_core.timekeeper; 1669 struct clocksource *clock = tk->tkr_mono.clock; 1670 unsigned long flags; 1671 struct timespec64 ts_new, ts_delta; 1672 u64 cycle_now; 1673 1674 sleeptime_injected = false; 1675 read_persistent_clock64(&ts_new); 1676 1677 clockevents_resume(); 1678 clocksource_resume(); 1679 1680 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1681 write_seqcount_begin(&tk_core.seq); 1682 1683 /* 1684 * After system resumes, we need to calculate the suspended time and 1685 * compensate it for the OS time. There are 3 sources that could be 1686 * used: Nonstop clocksource during suspend, persistent clock and rtc 1687 * device. 1688 * 1689 * One specific platform may have 1 or 2 or all of them, and the 1690 * preference will be: 1691 * suspend-nonstop clocksource -> persistent clock -> rtc 1692 * The less preferred source will only be tried if there is no better 1693 * usable source. The rtc part is handled separately in rtc core code. 1694 */ 1695 cycle_now = tk_clock_read(&tk->tkr_mono); 1696 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1697 cycle_now > tk->tkr_mono.cycle_last) { 1698 u64 nsec, cyc_delta; 1699 1700 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1701 tk->tkr_mono.mask); 1702 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1703 ts_delta = ns_to_timespec64(nsec); 1704 sleeptime_injected = true; 1705 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1706 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1707 sleeptime_injected = true; 1708 } 1709 1710 if (sleeptime_injected) 1711 __timekeeping_inject_sleeptime(tk, &ts_delta); 1712 1713 /* Re-base the last cycle value */ 1714 tk->tkr_mono.cycle_last = cycle_now; 1715 tk->tkr_raw.cycle_last = cycle_now; 1716 1717 tk->ntp_error = 0; 1718 timekeeping_suspended = 0; 1719 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1720 write_seqcount_end(&tk_core.seq); 1721 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1722 1723 touch_softlockup_watchdog(); 1724 1725 tick_resume(); 1726 hrtimers_resume(); 1727 } 1728 1729 int timekeeping_suspend(void) 1730 { 1731 struct timekeeper *tk = &tk_core.timekeeper; 1732 unsigned long flags; 1733 struct timespec64 delta, delta_delta; 1734 static struct timespec64 old_delta; 1735 1736 read_persistent_clock64(&timekeeping_suspend_time); 1737 1738 /* 1739 * On some systems the persistent_clock can not be detected at 1740 * timekeeping_init by its return value, so if we see a valid 1741 * value returned, update the persistent_clock_exists flag. 1742 */ 1743 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1744 persistent_clock_exists = true; 1745 1746 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1747 write_seqcount_begin(&tk_core.seq); 1748 timekeeping_forward_now(tk); 1749 timekeeping_suspended = 1; 1750 1751 if (persistent_clock_exists) { 1752 /* 1753 * To avoid drift caused by repeated suspend/resumes, 1754 * which each can add ~1 second drift error, 1755 * try to compensate so the difference in system time 1756 * and persistent_clock time stays close to constant. 1757 */ 1758 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1759 delta_delta = timespec64_sub(delta, old_delta); 1760 if (abs(delta_delta.tv_sec) >= 2) { 1761 /* 1762 * if delta_delta is too large, assume time correction 1763 * has occurred and set old_delta to the current delta. 1764 */ 1765 old_delta = delta; 1766 } else { 1767 /* Otherwise try to adjust old_system to compensate */ 1768 timekeeping_suspend_time = 1769 timespec64_add(timekeeping_suspend_time, delta_delta); 1770 } 1771 } 1772 1773 timekeeping_update(tk, TK_MIRROR); 1774 halt_fast_timekeeper(tk); 1775 write_seqcount_end(&tk_core.seq); 1776 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1777 1778 tick_suspend(); 1779 clocksource_suspend(); 1780 clockevents_suspend(); 1781 1782 return 0; 1783 } 1784 1785 /* sysfs resume/suspend bits for timekeeping */ 1786 static struct syscore_ops timekeeping_syscore_ops = { 1787 .resume = timekeeping_resume, 1788 .suspend = timekeeping_suspend, 1789 }; 1790 1791 static int __init timekeeping_init_ops(void) 1792 { 1793 register_syscore_ops(&timekeeping_syscore_ops); 1794 return 0; 1795 } 1796 device_initcall(timekeeping_init_ops); 1797 1798 /* 1799 * Apply a multiplier adjustment to the timekeeper 1800 */ 1801 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1802 s64 offset, 1803 s32 mult_adj) 1804 { 1805 s64 interval = tk->cycle_interval; 1806 1807 if (mult_adj == 0) { 1808 return; 1809 } else if (mult_adj == -1) { 1810 interval = -interval; 1811 offset = -offset; 1812 } else if (mult_adj != 1) { 1813 interval *= mult_adj; 1814 offset *= mult_adj; 1815 } 1816 1817 /* 1818 * So the following can be confusing. 1819 * 1820 * To keep things simple, lets assume mult_adj == 1 for now. 1821 * 1822 * When mult_adj != 1, remember that the interval and offset values 1823 * have been appropriately scaled so the math is the same. 1824 * 1825 * The basic idea here is that we're increasing the multiplier 1826 * by one, this causes the xtime_interval to be incremented by 1827 * one cycle_interval. This is because: 1828 * xtime_interval = cycle_interval * mult 1829 * So if mult is being incremented by one: 1830 * xtime_interval = cycle_interval * (mult + 1) 1831 * Its the same as: 1832 * xtime_interval = (cycle_interval * mult) + cycle_interval 1833 * Which can be shortened to: 1834 * xtime_interval += cycle_interval 1835 * 1836 * So offset stores the non-accumulated cycles. Thus the current 1837 * time (in shifted nanoseconds) is: 1838 * now = (offset * adj) + xtime_nsec 1839 * Now, even though we're adjusting the clock frequency, we have 1840 * to keep time consistent. In other words, we can't jump back 1841 * in time, and we also want to avoid jumping forward in time. 1842 * 1843 * So given the same offset value, we need the time to be the same 1844 * both before and after the freq adjustment. 1845 * now = (offset * adj_1) + xtime_nsec_1 1846 * now = (offset * adj_2) + xtime_nsec_2 1847 * So: 1848 * (offset * adj_1) + xtime_nsec_1 = 1849 * (offset * adj_2) + xtime_nsec_2 1850 * And we know: 1851 * adj_2 = adj_1 + 1 1852 * So: 1853 * (offset * adj_1) + xtime_nsec_1 = 1854 * (offset * (adj_1+1)) + xtime_nsec_2 1855 * (offset * adj_1) + xtime_nsec_1 = 1856 * (offset * adj_1) + offset + xtime_nsec_2 1857 * Canceling the sides: 1858 * xtime_nsec_1 = offset + xtime_nsec_2 1859 * Which gives us: 1860 * xtime_nsec_2 = xtime_nsec_1 - offset 1861 * Which simplfies to: 1862 * xtime_nsec -= offset 1863 */ 1864 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1865 /* NTP adjustment caused clocksource mult overflow */ 1866 WARN_ON_ONCE(1); 1867 return; 1868 } 1869 1870 tk->tkr_mono.mult += mult_adj; 1871 tk->xtime_interval += interval; 1872 tk->tkr_mono.xtime_nsec -= offset; 1873 } 1874 1875 /* 1876 * Adjust the timekeeper's multiplier to the correct frequency 1877 * and also to reduce the accumulated error value. 1878 */ 1879 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1880 { 1881 u32 mult; 1882 1883 /* 1884 * Determine the multiplier from the current NTP tick length. 1885 * Avoid expensive division when the tick length doesn't change. 1886 */ 1887 if (likely(tk->ntp_tick == ntp_tick_length())) { 1888 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 1889 } else { 1890 tk->ntp_tick = ntp_tick_length(); 1891 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 1892 tk->xtime_remainder, tk->cycle_interval); 1893 } 1894 1895 /* 1896 * If the clock is behind the NTP time, increase the multiplier by 1 1897 * to catch up with it. If it's ahead and there was a remainder in the 1898 * tick division, the clock will slow down. Otherwise it will stay 1899 * ahead until the tick length changes to a non-divisible value. 1900 */ 1901 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 1902 mult += tk->ntp_err_mult; 1903 1904 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 1905 1906 if (unlikely(tk->tkr_mono.clock->maxadj && 1907 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1908 > tk->tkr_mono.clock->maxadj))) { 1909 printk_once(KERN_WARNING 1910 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1911 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1912 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1913 } 1914 1915 /* 1916 * It may be possible that when we entered this function, xtime_nsec 1917 * was very small. Further, if we're slightly speeding the clocksource 1918 * in the code above, its possible the required corrective factor to 1919 * xtime_nsec could cause it to underflow. 1920 * 1921 * Now, since we have already accumulated the second and the NTP 1922 * subsystem has been notified via second_overflow(), we need to skip 1923 * the next update. 1924 */ 1925 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1926 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 1927 tk->tkr_mono.shift; 1928 tk->xtime_sec--; 1929 tk->skip_second_overflow = 1; 1930 } 1931 } 1932 1933 /** 1934 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1935 * 1936 * Helper function that accumulates the nsecs greater than a second 1937 * from the xtime_nsec field to the xtime_secs field. 1938 * It also calls into the NTP code to handle leapsecond processing. 1939 * 1940 */ 1941 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1942 { 1943 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1944 unsigned int clock_set = 0; 1945 1946 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1947 int leap; 1948 1949 tk->tkr_mono.xtime_nsec -= nsecps; 1950 tk->xtime_sec++; 1951 1952 /* 1953 * Skip NTP update if this second was accumulated before, 1954 * i.e. xtime_nsec underflowed in timekeeping_adjust() 1955 */ 1956 if (unlikely(tk->skip_second_overflow)) { 1957 tk->skip_second_overflow = 0; 1958 continue; 1959 } 1960 1961 /* Figure out if its a leap sec and apply if needed */ 1962 leap = second_overflow(tk->xtime_sec); 1963 if (unlikely(leap)) { 1964 struct timespec64 ts; 1965 1966 tk->xtime_sec += leap; 1967 1968 ts.tv_sec = leap; 1969 ts.tv_nsec = 0; 1970 tk_set_wall_to_mono(tk, 1971 timespec64_sub(tk->wall_to_monotonic, ts)); 1972 1973 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1974 1975 clock_set = TK_CLOCK_WAS_SET; 1976 } 1977 } 1978 return clock_set; 1979 } 1980 1981 /** 1982 * logarithmic_accumulation - shifted accumulation of cycles 1983 * 1984 * This functions accumulates a shifted interval of cycles into 1985 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1986 * loop. 1987 * 1988 * Returns the unconsumed cycles. 1989 */ 1990 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 1991 u32 shift, unsigned int *clock_set) 1992 { 1993 u64 interval = tk->cycle_interval << shift; 1994 u64 snsec_per_sec; 1995 1996 /* If the offset is smaller than a shifted interval, do nothing */ 1997 if (offset < interval) 1998 return offset; 1999 2000 /* Accumulate one shifted interval */ 2001 offset -= interval; 2002 tk->tkr_mono.cycle_last += interval; 2003 tk->tkr_raw.cycle_last += interval; 2004 2005 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2006 *clock_set |= accumulate_nsecs_to_secs(tk); 2007 2008 /* Accumulate raw time */ 2009 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2010 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2011 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2012 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2013 tk->raw_sec++; 2014 } 2015 2016 /* Accumulate error between NTP and clock interval */ 2017 tk->ntp_error += tk->ntp_tick << shift; 2018 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2019 (tk->ntp_error_shift + shift); 2020 2021 return offset; 2022 } 2023 2024 /** 2025 * update_wall_time - Uses the current clocksource to increment the wall time 2026 * 2027 */ 2028 void update_wall_time(void) 2029 { 2030 struct timekeeper *real_tk = &tk_core.timekeeper; 2031 struct timekeeper *tk = &shadow_timekeeper; 2032 u64 offset; 2033 int shift = 0, maxshift; 2034 unsigned int clock_set = 0; 2035 unsigned long flags; 2036 2037 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2038 2039 /* Make sure we're fully resumed: */ 2040 if (unlikely(timekeeping_suspended)) 2041 goto out; 2042 2043 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2044 offset = real_tk->cycle_interval; 2045 #else 2046 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2047 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2048 #endif 2049 2050 /* Check if there's really nothing to do */ 2051 if (offset < real_tk->cycle_interval) 2052 goto out; 2053 2054 /* Do some additional sanity checking */ 2055 timekeeping_check_update(tk, offset); 2056 2057 /* 2058 * With NO_HZ we may have to accumulate many cycle_intervals 2059 * (think "ticks") worth of time at once. To do this efficiently, 2060 * we calculate the largest doubling multiple of cycle_intervals 2061 * that is smaller than the offset. We then accumulate that 2062 * chunk in one go, and then try to consume the next smaller 2063 * doubled multiple. 2064 */ 2065 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2066 shift = max(0, shift); 2067 /* Bound shift to one less than what overflows tick_length */ 2068 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2069 shift = min(shift, maxshift); 2070 while (offset >= tk->cycle_interval) { 2071 offset = logarithmic_accumulation(tk, offset, shift, 2072 &clock_set); 2073 if (offset < tk->cycle_interval<<shift) 2074 shift--; 2075 } 2076 2077 /* Adjust the multiplier to correct NTP error */ 2078 timekeeping_adjust(tk, offset); 2079 2080 /* 2081 * Finally, make sure that after the rounding 2082 * xtime_nsec isn't larger than NSEC_PER_SEC 2083 */ 2084 clock_set |= accumulate_nsecs_to_secs(tk); 2085 2086 write_seqcount_begin(&tk_core.seq); 2087 /* 2088 * Update the real timekeeper. 2089 * 2090 * We could avoid this memcpy by switching pointers, but that 2091 * requires changes to all other timekeeper usage sites as 2092 * well, i.e. move the timekeeper pointer getter into the 2093 * spinlocked/seqcount protected sections. And we trade this 2094 * memcpy under the tk_core.seq against one before we start 2095 * updating. 2096 */ 2097 timekeeping_update(tk, clock_set); 2098 memcpy(real_tk, tk, sizeof(*tk)); 2099 /* The memcpy must come last. Do not put anything here! */ 2100 write_seqcount_end(&tk_core.seq); 2101 out: 2102 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2103 if (clock_set) 2104 /* Have to call _delayed version, since in irq context*/ 2105 clock_was_set_delayed(); 2106 } 2107 2108 /** 2109 * getboottime64 - Return the real time of system boot. 2110 * @ts: pointer to the timespec64 to be set 2111 * 2112 * Returns the wall-time of boot in a timespec64. 2113 * 2114 * This is based on the wall_to_monotonic offset and the total suspend 2115 * time. Calls to settimeofday will affect the value returned (which 2116 * basically means that however wrong your real time clock is at boot time, 2117 * you get the right time here). 2118 */ 2119 void getboottime64(struct timespec64 *ts) 2120 { 2121 struct timekeeper *tk = &tk_core.timekeeper; 2122 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2123 2124 *ts = ktime_to_timespec64(t); 2125 } 2126 EXPORT_SYMBOL_GPL(getboottime64); 2127 2128 unsigned long get_seconds(void) 2129 { 2130 struct timekeeper *tk = &tk_core.timekeeper; 2131 2132 return tk->xtime_sec; 2133 } 2134 EXPORT_SYMBOL(get_seconds); 2135 2136 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2137 { 2138 struct timekeeper *tk = &tk_core.timekeeper; 2139 unsigned long seq; 2140 2141 do { 2142 seq = read_seqcount_begin(&tk_core.seq); 2143 2144 *ts = tk_xtime(tk); 2145 } while (read_seqcount_retry(&tk_core.seq, seq)); 2146 } 2147 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2148 2149 void ktime_get_coarse_ts64(struct timespec64 *ts) 2150 { 2151 struct timekeeper *tk = &tk_core.timekeeper; 2152 struct timespec64 now, mono; 2153 unsigned long seq; 2154 2155 do { 2156 seq = read_seqcount_begin(&tk_core.seq); 2157 2158 now = tk_xtime(tk); 2159 mono = tk->wall_to_monotonic; 2160 } while (read_seqcount_retry(&tk_core.seq, seq)); 2161 2162 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2163 now.tv_nsec + mono.tv_nsec); 2164 } 2165 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2166 2167 /* 2168 * Must hold jiffies_lock 2169 */ 2170 void do_timer(unsigned long ticks) 2171 { 2172 jiffies_64 += ticks; 2173 calc_global_load(ticks); 2174 } 2175 2176 /** 2177 * ktime_get_update_offsets_now - hrtimer helper 2178 * @cwsseq: pointer to check and store the clock was set sequence number 2179 * @offs_real: pointer to storage for monotonic -> realtime offset 2180 * @offs_boot: pointer to storage for monotonic -> boottime offset 2181 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2182 * 2183 * Returns current monotonic time and updates the offsets if the 2184 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2185 * different. 2186 * 2187 * Called from hrtimer_interrupt() or retrigger_next_event() 2188 */ 2189 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2190 ktime_t *offs_boot, ktime_t *offs_tai) 2191 { 2192 struct timekeeper *tk = &tk_core.timekeeper; 2193 unsigned int seq; 2194 ktime_t base; 2195 u64 nsecs; 2196 2197 do { 2198 seq = read_seqcount_begin(&tk_core.seq); 2199 2200 base = tk->tkr_mono.base; 2201 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2202 base = ktime_add_ns(base, nsecs); 2203 2204 if (*cwsseq != tk->clock_was_set_seq) { 2205 *cwsseq = tk->clock_was_set_seq; 2206 *offs_real = tk->offs_real; 2207 *offs_boot = tk->offs_boot; 2208 *offs_tai = tk->offs_tai; 2209 } 2210 2211 /* Handle leapsecond insertion adjustments */ 2212 if (unlikely(base >= tk->next_leap_ktime)) 2213 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2214 2215 } while (read_seqcount_retry(&tk_core.seq, seq)); 2216 2217 return base; 2218 } 2219 2220 /** 2221 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2222 */ 2223 static int timekeeping_validate_timex(struct timex *txc) 2224 { 2225 if (txc->modes & ADJ_ADJTIME) { 2226 /* singleshot must not be used with any other mode bits */ 2227 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2228 return -EINVAL; 2229 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2230 !capable(CAP_SYS_TIME)) 2231 return -EPERM; 2232 } else { 2233 /* In order to modify anything, you gotta be super-user! */ 2234 if (txc->modes && !capable(CAP_SYS_TIME)) 2235 return -EPERM; 2236 /* 2237 * if the quartz is off by more than 10% then 2238 * something is VERY wrong! 2239 */ 2240 if (txc->modes & ADJ_TICK && 2241 (txc->tick < 900000/USER_HZ || 2242 txc->tick > 1100000/USER_HZ)) 2243 return -EINVAL; 2244 } 2245 2246 if (txc->modes & ADJ_SETOFFSET) { 2247 /* In order to inject time, you gotta be super-user! */ 2248 if (!capable(CAP_SYS_TIME)) 2249 return -EPERM; 2250 2251 /* 2252 * Validate if a timespec/timeval used to inject a time 2253 * offset is valid. Offsets can be postive or negative, so 2254 * we don't check tv_sec. The value of the timeval/timespec 2255 * is the sum of its fields,but *NOTE*: 2256 * The field tv_usec/tv_nsec must always be non-negative and 2257 * we can't have more nanoseconds/microseconds than a second. 2258 */ 2259 if (txc->time.tv_usec < 0) 2260 return -EINVAL; 2261 2262 if (txc->modes & ADJ_NANO) { 2263 if (txc->time.tv_usec >= NSEC_PER_SEC) 2264 return -EINVAL; 2265 } else { 2266 if (txc->time.tv_usec >= USEC_PER_SEC) 2267 return -EINVAL; 2268 } 2269 } 2270 2271 /* 2272 * Check for potential multiplication overflows that can 2273 * only happen on 64-bit systems: 2274 */ 2275 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2276 if (LLONG_MIN / PPM_SCALE > txc->freq) 2277 return -EINVAL; 2278 if (LLONG_MAX / PPM_SCALE < txc->freq) 2279 return -EINVAL; 2280 } 2281 2282 return 0; 2283 } 2284 2285 2286 /** 2287 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2288 */ 2289 int do_adjtimex(struct timex *txc) 2290 { 2291 struct timekeeper *tk = &tk_core.timekeeper; 2292 unsigned long flags; 2293 struct timespec64 ts; 2294 s32 orig_tai, tai; 2295 int ret; 2296 2297 /* Validate the data before disabling interrupts */ 2298 ret = timekeeping_validate_timex(txc); 2299 if (ret) 2300 return ret; 2301 2302 if (txc->modes & ADJ_SETOFFSET) { 2303 struct timespec64 delta; 2304 delta.tv_sec = txc->time.tv_sec; 2305 delta.tv_nsec = txc->time.tv_usec; 2306 if (!(txc->modes & ADJ_NANO)) 2307 delta.tv_nsec *= 1000; 2308 ret = timekeeping_inject_offset(&delta); 2309 if (ret) 2310 return ret; 2311 } 2312 2313 getnstimeofday64(&ts); 2314 2315 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2316 write_seqcount_begin(&tk_core.seq); 2317 2318 orig_tai = tai = tk->tai_offset; 2319 ret = __do_adjtimex(txc, &ts, &tai); 2320 2321 if (tai != orig_tai) { 2322 __timekeeping_set_tai_offset(tk, tai); 2323 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2324 } 2325 tk_update_leap_state(tk); 2326 2327 write_seqcount_end(&tk_core.seq); 2328 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2329 2330 if (tai != orig_tai) 2331 clock_was_set(); 2332 2333 ntp_notify_cmos_timer(); 2334 2335 return ret; 2336 } 2337 2338 #ifdef CONFIG_NTP_PPS 2339 /** 2340 * hardpps() - Accessor function to NTP __hardpps function 2341 */ 2342 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2343 { 2344 unsigned long flags; 2345 2346 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2347 write_seqcount_begin(&tk_core.seq); 2348 2349 __hardpps(phase_ts, raw_ts); 2350 2351 write_seqcount_end(&tk_core.seq); 2352 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2353 } 2354 EXPORT_SYMBOL(hardpps); 2355 #endif /* CONFIG_NTP_PPS */ 2356 2357 /** 2358 * xtime_update() - advances the timekeeping infrastructure 2359 * @ticks: number of ticks, that have elapsed since the last call. 2360 * 2361 * Must be called with interrupts disabled. 2362 */ 2363 void xtime_update(unsigned long ticks) 2364 { 2365 write_seqlock(&jiffies_lock); 2366 do_timer(ticks); 2367 write_sequnlock(&jiffies_lock); 2368 update_wall_time(); 2369 } 2370