1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 26 #include "tick-internal.h" 27 #include "ntp_internal.h" 28 #include "timekeeping_internal.h" 29 30 #define TK_CLEAR_NTP (1 << 0) 31 #define TK_MIRROR (1 << 1) 32 #define TK_CLOCK_WAS_SET (1 << 2) 33 34 static struct timekeeper timekeeper; 35 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 36 static seqcount_t timekeeper_seq; 37 static struct timekeeper shadow_timekeeper; 38 39 /* flag for if timekeeping is suspended */ 40 int __read_mostly timekeeping_suspended; 41 42 /* Flag for if there is a persistent clock on this platform */ 43 bool __read_mostly persistent_clock_exist = false; 44 45 static inline void tk_normalize_xtime(struct timekeeper *tk) 46 { 47 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) { 48 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift; 49 tk->xtime_sec++; 50 } 51 } 52 53 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts) 54 { 55 tk->xtime_sec = ts->tv_sec; 56 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift; 57 } 58 59 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts) 60 { 61 tk->xtime_sec += ts->tv_sec; 62 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift; 63 tk_normalize_xtime(tk); 64 } 65 66 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm) 67 { 68 struct timespec tmp; 69 70 /* 71 * Verify consistency of: offset_real = -wall_to_monotonic 72 * before modifying anything 73 */ 74 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec, 75 -tk->wall_to_monotonic.tv_nsec); 76 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64); 77 tk->wall_to_monotonic = wtm; 78 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 79 tk->offs_real = timespec_to_ktime(tmp); 80 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 81 } 82 83 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t) 84 { 85 /* Verify consistency before modifying */ 86 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64); 87 88 tk->total_sleep_time = t; 89 tk->offs_boot = timespec_to_ktime(t); 90 } 91 92 /** 93 * tk_setup_internals - Set up internals to use clocksource clock. 94 * 95 * @tk: The target timekeeper to setup. 96 * @clock: Pointer to clocksource. 97 * 98 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 99 * pair and interval request. 100 * 101 * Unless you're the timekeeping code, you should not be using this! 102 */ 103 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 104 { 105 cycle_t interval; 106 u64 tmp, ntpinterval; 107 struct clocksource *old_clock; 108 109 old_clock = tk->clock; 110 tk->clock = clock; 111 tk->cycle_last = clock->cycle_last = clock->read(clock); 112 113 /* Do the ns -> cycle conversion first, using original mult */ 114 tmp = NTP_INTERVAL_LENGTH; 115 tmp <<= clock->shift; 116 ntpinterval = tmp; 117 tmp += clock->mult/2; 118 do_div(tmp, clock->mult); 119 if (tmp == 0) 120 tmp = 1; 121 122 interval = (cycle_t) tmp; 123 tk->cycle_interval = interval; 124 125 /* Go back from cycles -> shifted ns */ 126 tk->xtime_interval = (u64) interval * clock->mult; 127 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 128 tk->raw_interval = 129 ((u64) interval * clock->mult) >> clock->shift; 130 131 /* if changing clocks, convert xtime_nsec shift units */ 132 if (old_clock) { 133 int shift_change = clock->shift - old_clock->shift; 134 if (shift_change < 0) 135 tk->xtime_nsec >>= -shift_change; 136 else 137 tk->xtime_nsec <<= shift_change; 138 } 139 tk->shift = clock->shift; 140 141 tk->ntp_error = 0; 142 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 143 144 /* 145 * The timekeeper keeps its own mult values for the currently 146 * active clocksource. These value will be adjusted via NTP 147 * to counteract clock drifting. 148 */ 149 tk->mult = clock->mult; 150 } 151 152 /* Timekeeper helper functions. */ 153 154 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 155 u32 (*arch_gettimeoffset)(void); 156 157 u32 get_arch_timeoffset(void) 158 { 159 if (likely(arch_gettimeoffset)) 160 return arch_gettimeoffset(); 161 return 0; 162 } 163 #else 164 static inline u32 get_arch_timeoffset(void) { return 0; } 165 #endif 166 167 static inline s64 timekeeping_get_ns(struct timekeeper *tk) 168 { 169 cycle_t cycle_now, cycle_delta; 170 struct clocksource *clock; 171 s64 nsec; 172 173 /* read clocksource: */ 174 clock = tk->clock; 175 cycle_now = clock->read(clock); 176 177 /* calculate the delta since the last update_wall_time: */ 178 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 179 180 nsec = cycle_delta * tk->mult + tk->xtime_nsec; 181 nsec >>= tk->shift; 182 183 /* If arch requires, add in get_arch_timeoffset() */ 184 return nsec + get_arch_timeoffset(); 185 } 186 187 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 188 { 189 cycle_t cycle_now, cycle_delta; 190 struct clocksource *clock; 191 s64 nsec; 192 193 /* read clocksource: */ 194 clock = tk->clock; 195 cycle_now = clock->read(clock); 196 197 /* calculate the delta since the last update_wall_time: */ 198 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 199 200 /* convert delta to nanoseconds. */ 201 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 202 203 /* If arch requires, add in get_arch_timeoffset() */ 204 return nsec + get_arch_timeoffset(); 205 } 206 207 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 208 209 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 210 { 211 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 212 } 213 214 /** 215 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 216 */ 217 int pvclock_gtod_register_notifier(struct notifier_block *nb) 218 { 219 struct timekeeper *tk = &timekeeper; 220 unsigned long flags; 221 int ret; 222 223 raw_spin_lock_irqsave(&timekeeper_lock, flags); 224 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 225 update_pvclock_gtod(tk, true); 226 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 227 228 return ret; 229 } 230 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 231 232 /** 233 * pvclock_gtod_unregister_notifier - unregister a pvclock 234 * timedata update listener 235 */ 236 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 237 { 238 unsigned long flags; 239 int ret; 240 241 raw_spin_lock_irqsave(&timekeeper_lock, flags); 242 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 243 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 244 245 return ret; 246 } 247 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 248 249 /* must hold timekeeper_lock */ 250 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 251 { 252 if (action & TK_CLEAR_NTP) { 253 tk->ntp_error = 0; 254 ntp_clear(); 255 } 256 update_vsyscall(tk); 257 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 258 259 if (action & TK_MIRROR) 260 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper)); 261 } 262 263 /** 264 * timekeeping_forward_now - update clock to the current time 265 * 266 * Forward the current clock to update its state since the last call to 267 * update_wall_time(). This is useful before significant clock changes, 268 * as it avoids having to deal with this time offset explicitly. 269 */ 270 static void timekeeping_forward_now(struct timekeeper *tk) 271 { 272 cycle_t cycle_now, cycle_delta; 273 struct clocksource *clock; 274 s64 nsec; 275 276 clock = tk->clock; 277 cycle_now = clock->read(clock); 278 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 279 tk->cycle_last = clock->cycle_last = cycle_now; 280 281 tk->xtime_nsec += cycle_delta * tk->mult; 282 283 /* If arch requires, add in get_arch_timeoffset() */ 284 tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift; 285 286 tk_normalize_xtime(tk); 287 288 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); 289 timespec_add_ns(&tk->raw_time, nsec); 290 } 291 292 /** 293 * __getnstimeofday - Returns the time of day in a timespec. 294 * @ts: pointer to the timespec to be set 295 * 296 * Updates the time of day in the timespec. 297 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 298 */ 299 int __getnstimeofday(struct timespec *ts) 300 { 301 struct timekeeper *tk = &timekeeper; 302 unsigned long seq; 303 s64 nsecs = 0; 304 305 do { 306 seq = read_seqcount_begin(&timekeeper_seq); 307 308 ts->tv_sec = tk->xtime_sec; 309 nsecs = timekeeping_get_ns(tk); 310 311 } while (read_seqcount_retry(&timekeeper_seq, seq)); 312 313 ts->tv_nsec = 0; 314 timespec_add_ns(ts, nsecs); 315 316 /* 317 * Do not bail out early, in case there were callers still using 318 * the value, even in the face of the WARN_ON. 319 */ 320 if (unlikely(timekeeping_suspended)) 321 return -EAGAIN; 322 return 0; 323 } 324 EXPORT_SYMBOL(__getnstimeofday); 325 326 /** 327 * getnstimeofday - Returns the time of day in a timespec. 328 * @ts: pointer to the timespec to be set 329 * 330 * Returns the time of day in a timespec (WARN if suspended). 331 */ 332 void getnstimeofday(struct timespec *ts) 333 { 334 WARN_ON(__getnstimeofday(ts)); 335 } 336 EXPORT_SYMBOL(getnstimeofday); 337 338 ktime_t ktime_get(void) 339 { 340 struct timekeeper *tk = &timekeeper; 341 unsigned int seq; 342 s64 secs, nsecs; 343 344 WARN_ON(timekeeping_suspended); 345 346 do { 347 seq = read_seqcount_begin(&timekeeper_seq); 348 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 349 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec; 350 351 } while (read_seqcount_retry(&timekeeper_seq, seq)); 352 /* 353 * Use ktime_set/ktime_add_ns to create a proper ktime on 354 * 32-bit architectures without CONFIG_KTIME_SCALAR. 355 */ 356 return ktime_add_ns(ktime_set(secs, 0), nsecs); 357 } 358 EXPORT_SYMBOL_GPL(ktime_get); 359 360 /** 361 * ktime_get_ts - get the monotonic clock in timespec format 362 * @ts: pointer to timespec variable 363 * 364 * The function calculates the monotonic clock from the realtime 365 * clock and the wall_to_monotonic offset and stores the result 366 * in normalized timespec format in the variable pointed to by @ts. 367 */ 368 void ktime_get_ts(struct timespec *ts) 369 { 370 struct timekeeper *tk = &timekeeper; 371 struct timespec tomono; 372 s64 nsec; 373 unsigned int seq; 374 375 WARN_ON(timekeeping_suspended); 376 377 do { 378 seq = read_seqcount_begin(&timekeeper_seq); 379 ts->tv_sec = tk->xtime_sec; 380 nsec = timekeeping_get_ns(tk); 381 tomono = tk->wall_to_monotonic; 382 383 } while (read_seqcount_retry(&timekeeper_seq, seq)); 384 385 ts->tv_sec += tomono.tv_sec; 386 ts->tv_nsec = 0; 387 timespec_add_ns(ts, nsec + tomono.tv_nsec); 388 } 389 EXPORT_SYMBOL_GPL(ktime_get_ts); 390 391 392 /** 393 * timekeeping_clocktai - Returns the TAI time of day in a timespec 394 * @ts: pointer to the timespec to be set 395 * 396 * Returns the time of day in a timespec. 397 */ 398 void timekeeping_clocktai(struct timespec *ts) 399 { 400 struct timekeeper *tk = &timekeeper; 401 unsigned long seq; 402 u64 nsecs; 403 404 WARN_ON(timekeeping_suspended); 405 406 do { 407 seq = read_seqcount_begin(&timekeeper_seq); 408 409 ts->tv_sec = tk->xtime_sec + tk->tai_offset; 410 nsecs = timekeeping_get_ns(tk); 411 412 } while (read_seqcount_retry(&timekeeper_seq, seq)); 413 414 ts->tv_nsec = 0; 415 timespec_add_ns(ts, nsecs); 416 417 } 418 EXPORT_SYMBOL(timekeeping_clocktai); 419 420 421 /** 422 * ktime_get_clocktai - Returns the TAI time of day in a ktime 423 * 424 * Returns the time of day in a ktime. 425 */ 426 ktime_t ktime_get_clocktai(void) 427 { 428 struct timespec ts; 429 430 timekeeping_clocktai(&ts); 431 return timespec_to_ktime(ts); 432 } 433 EXPORT_SYMBOL(ktime_get_clocktai); 434 435 #ifdef CONFIG_NTP_PPS 436 437 /** 438 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 439 * @ts_raw: pointer to the timespec to be set to raw monotonic time 440 * @ts_real: pointer to the timespec to be set to the time of day 441 * 442 * This function reads both the time of day and raw monotonic time at the 443 * same time atomically and stores the resulting timestamps in timespec 444 * format. 445 */ 446 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 447 { 448 struct timekeeper *tk = &timekeeper; 449 unsigned long seq; 450 s64 nsecs_raw, nsecs_real; 451 452 WARN_ON_ONCE(timekeeping_suspended); 453 454 do { 455 seq = read_seqcount_begin(&timekeeper_seq); 456 457 *ts_raw = tk->raw_time; 458 ts_real->tv_sec = tk->xtime_sec; 459 ts_real->tv_nsec = 0; 460 461 nsecs_raw = timekeeping_get_ns_raw(tk); 462 nsecs_real = timekeeping_get_ns(tk); 463 464 } while (read_seqcount_retry(&timekeeper_seq, seq)); 465 466 timespec_add_ns(ts_raw, nsecs_raw); 467 timespec_add_ns(ts_real, nsecs_real); 468 } 469 EXPORT_SYMBOL(getnstime_raw_and_real); 470 471 #endif /* CONFIG_NTP_PPS */ 472 473 /** 474 * do_gettimeofday - Returns the time of day in a timeval 475 * @tv: pointer to the timeval to be set 476 * 477 * NOTE: Users should be converted to using getnstimeofday() 478 */ 479 void do_gettimeofday(struct timeval *tv) 480 { 481 struct timespec now; 482 483 getnstimeofday(&now); 484 tv->tv_sec = now.tv_sec; 485 tv->tv_usec = now.tv_nsec/1000; 486 } 487 EXPORT_SYMBOL(do_gettimeofday); 488 489 /** 490 * do_settimeofday - Sets the time of day 491 * @tv: pointer to the timespec variable containing the new time 492 * 493 * Sets the time of day to the new time and update NTP and notify hrtimers 494 */ 495 int do_settimeofday(const struct timespec *tv) 496 { 497 struct timekeeper *tk = &timekeeper; 498 struct timespec ts_delta, xt; 499 unsigned long flags; 500 501 if (!timespec_valid_strict(tv)) 502 return -EINVAL; 503 504 raw_spin_lock_irqsave(&timekeeper_lock, flags); 505 write_seqcount_begin(&timekeeper_seq); 506 507 timekeeping_forward_now(tk); 508 509 xt = tk_xtime(tk); 510 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec; 511 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec; 512 513 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta)); 514 515 tk_set_xtime(tk, tv); 516 517 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 518 519 write_seqcount_end(&timekeeper_seq); 520 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 521 522 /* signal hrtimers about time change */ 523 clock_was_set(); 524 525 return 0; 526 } 527 EXPORT_SYMBOL(do_settimeofday); 528 529 /** 530 * timekeeping_inject_offset - Adds or subtracts from the current time. 531 * @tv: pointer to the timespec variable containing the offset 532 * 533 * Adds or subtracts an offset value from the current time. 534 */ 535 int timekeeping_inject_offset(struct timespec *ts) 536 { 537 struct timekeeper *tk = &timekeeper; 538 unsigned long flags; 539 struct timespec tmp; 540 int ret = 0; 541 542 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 543 return -EINVAL; 544 545 raw_spin_lock_irqsave(&timekeeper_lock, flags); 546 write_seqcount_begin(&timekeeper_seq); 547 548 timekeeping_forward_now(tk); 549 550 /* Make sure the proposed value is valid */ 551 tmp = timespec_add(tk_xtime(tk), *ts); 552 if (!timespec_valid_strict(&tmp)) { 553 ret = -EINVAL; 554 goto error; 555 } 556 557 tk_xtime_add(tk, ts); 558 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts)); 559 560 error: /* even if we error out, we forwarded the time, so call update */ 561 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 562 563 write_seqcount_end(&timekeeper_seq); 564 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 565 566 /* signal hrtimers about time change */ 567 clock_was_set(); 568 569 return ret; 570 } 571 EXPORT_SYMBOL(timekeeping_inject_offset); 572 573 574 /** 575 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 576 * 577 */ 578 s32 timekeeping_get_tai_offset(void) 579 { 580 struct timekeeper *tk = &timekeeper; 581 unsigned int seq; 582 s32 ret; 583 584 do { 585 seq = read_seqcount_begin(&timekeeper_seq); 586 ret = tk->tai_offset; 587 } while (read_seqcount_retry(&timekeeper_seq, seq)); 588 589 return ret; 590 } 591 592 /** 593 * __timekeeping_set_tai_offset - Lock free worker function 594 * 595 */ 596 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 597 { 598 tk->tai_offset = tai_offset; 599 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 600 } 601 602 /** 603 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 604 * 605 */ 606 void timekeeping_set_tai_offset(s32 tai_offset) 607 { 608 struct timekeeper *tk = &timekeeper; 609 unsigned long flags; 610 611 raw_spin_lock_irqsave(&timekeeper_lock, flags); 612 write_seqcount_begin(&timekeeper_seq); 613 __timekeeping_set_tai_offset(tk, tai_offset); 614 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 615 write_seqcount_end(&timekeeper_seq); 616 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 617 clock_was_set(); 618 } 619 620 /** 621 * change_clocksource - Swaps clocksources if a new one is available 622 * 623 * Accumulates current time interval and initializes new clocksource 624 */ 625 static int change_clocksource(void *data) 626 { 627 struct timekeeper *tk = &timekeeper; 628 struct clocksource *new, *old; 629 unsigned long flags; 630 631 new = (struct clocksource *) data; 632 633 raw_spin_lock_irqsave(&timekeeper_lock, flags); 634 write_seqcount_begin(&timekeeper_seq); 635 636 timekeeping_forward_now(tk); 637 /* 638 * If the cs is in module, get a module reference. Succeeds 639 * for built-in code (owner == NULL) as well. 640 */ 641 if (try_module_get(new->owner)) { 642 if (!new->enable || new->enable(new) == 0) { 643 old = tk->clock; 644 tk_setup_internals(tk, new); 645 if (old->disable) 646 old->disable(old); 647 module_put(old->owner); 648 } else { 649 module_put(new->owner); 650 } 651 } 652 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 653 654 write_seqcount_end(&timekeeper_seq); 655 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 656 657 return 0; 658 } 659 660 /** 661 * timekeeping_notify - Install a new clock source 662 * @clock: pointer to the clock source 663 * 664 * This function is called from clocksource.c after a new, better clock 665 * source has been registered. The caller holds the clocksource_mutex. 666 */ 667 int timekeeping_notify(struct clocksource *clock) 668 { 669 struct timekeeper *tk = &timekeeper; 670 671 if (tk->clock == clock) 672 return 0; 673 stop_machine(change_clocksource, clock, NULL); 674 tick_clock_notify(); 675 return tk->clock == clock ? 0 : -1; 676 } 677 678 /** 679 * ktime_get_real - get the real (wall-) time in ktime_t format 680 * 681 * returns the time in ktime_t format 682 */ 683 ktime_t ktime_get_real(void) 684 { 685 struct timespec now; 686 687 getnstimeofday(&now); 688 689 return timespec_to_ktime(now); 690 } 691 EXPORT_SYMBOL_GPL(ktime_get_real); 692 693 /** 694 * getrawmonotonic - Returns the raw monotonic time in a timespec 695 * @ts: pointer to the timespec to be set 696 * 697 * Returns the raw monotonic time (completely un-modified by ntp) 698 */ 699 void getrawmonotonic(struct timespec *ts) 700 { 701 struct timekeeper *tk = &timekeeper; 702 unsigned long seq; 703 s64 nsecs; 704 705 do { 706 seq = read_seqcount_begin(&timekeeper_seq); 707 nsecs = timekeeping_get_ns_raw(tk); 708 *ts = tk->raw_time; 709 710 } while (read_seqcount_retry(&timekeeper_seq, seq)); 711 712 timespec_add_ns(ts, nsecs); 713 } 714 EXPORT_SYMBOL(getrawmonotonic); 715 716 /** 717 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 718 */ 719 int timekeeping_valid_for_hres(void) 720 { 721 struct timekeeper *tk = &timekeeper; 722 unsigned long seq; 723 int ret; 724 725 do { 726 seq = read_seqcount_begin(&timekeeper_seq); 727 728 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 729 730 } while (read_seqcount_retry(&timekeeper_seq, seq)); 731 732 return ret; 733 } 734 735 /** 736 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 737 */ 738 u64 timekeeping_max_deferment(void) 739 { 740 struct timekeeper *tk = &timekeeper; 741 unsigned long seq; 742 u64 ret; 743 744 do { 745 seq = read_seqcount_begin(&timekeeper_seq); 746 747 ret = tk->clock->max_idle_ns; 748 749 } while (read_seqcount_retry(&timekeeper_seq, seq)); 750 751 return ret; 752 } 753 754 /** 755 * read_persistent_clock - Return time from the persistent clock. 756 * 757 * Weak dummy function for arches that do not yet support it. 758 * Reads the time from the battery backed persistent clock. 759 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 760 * 761 * XXX - Do be sure to remove it once all arches implement it. 762 */ 763 void __attribute__((weak)) read_persistent_clock(struct timespec *ts) 764 { 765 ts->tv_sec = 0; 766 ts->tv_nsec = 0; 767 } 768 769 /** 770 * read_boot_clock - Return time of the system start. 771 * 772 * Weak dummy function for arches that do not yet support it. 773 * Function to read the exact time the system has been started. 774 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 775 * 776 * XXX - Do be sure to remove it once all arches implement it. 777 */ 778 void __attribute__((weak)) read_boot_clock(struct timespec *ts) 779 { 780 ts->tv_sec = 0; 781 ts->tv_nsec = 0; 782 } 783 784 /* 785 * timekeeping_init - Initializes the clocksource and common timekeeping values 786 */ 787 void __init timekeeping_init(void) 788 { 789 struct timekeeper *tk = &timekeeper; 790 struct clocksource *clock; 791 unsigned long flags; 792 struct timespec now, boot, tmp; 793 794 read_persistent_clock(&now); 795 796 if (!timespec_valid_strict(&now)) { 797 pr_warn("WARNING: Persistent clock returned invalid value!\n" 798 " Check your CMOS/BIOS settings.\n"); 799 now.tv_sec = 0; 800 now.tv_nsec = 0; 801 } else if (now.tv_sec || now.tv_nsec) 802 persistent_clock_exist = true; 803 804 read_boot_clock(&boot); 805 if (!timespec_valid_strict(&boot)) { 806 pr_warn("WARNING: Boot clock returned invalid value!\n" 807 " Check your CMOS/BIOS settings.\n"); 808 boot.tv_sec = 0; 809 boot.tv_nsec = 0; 810 } 811 812 raw_spin_lock_irqsave(&timekeeper_lock, flags); 813 write_seqcount_begin(&timekeeper_seq); 814 ntp_init(); 815 816 clock = clocksource_default_clock(); 817 if (clock->enable) 818 clock->enable(clock); 819 tk_setup_internals(tk, clock); 820 821 tk_set_xtime(tk, &now); 822 tk->raw_time.tv_sec = 0; 823 tk->raw_time.tv_nsec = 0; 824 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 825 boot = tk_xtime(tk); 826 827 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec); 828 tk_set_wall_to_mono(tk, tmp); 829 830 tmp.tv_sec = 0; 831 tmp.tv_nsec = 0; 832 tk_set_sleep_time(tk, tmp); 833 834 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper)); 835 836 write_seqcount_end(&timekeeper_seq); 837 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 838 } 839 840 /* time in seconds when suspend began */ 841 static struct timespec timekeeping_suspend_time; 842 843 /** 844 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 845 * @delta: pointer to a timespec delta value 846 * 847 * Takes a timespec offset measuring a suspend interval and properly 848 * adds the sleep offset to the timekeeping variables. 849 */ 850 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 851 struct timespec *delta) 852 { 853 if (!timespec_valid_strict(delta)) { 854 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " 855 "sleep delta value!\n"); 856 return; 857 } 858 tk_xtime_add(tk, delta); 859 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta)); 860 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta)); 861 tk_debug_account_sleep_time(delta); 862 } 863 864 /** 865 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values 866 * @delta: pointer to a timespec delta value 867 * 868 * This hook is for architectures that cannot support read_persistent_clock 869 * because their RTC/persistent clock is only accessible when irqs are enabled. 870 * 871 * This function should only be called by rtc_resume(), and allows 872 * a suspend offset to be injected into the timekeeping values. 873 */ 874 void timekeeping_inject_sleeptime(struct timespec *delta) 875 { 876 struct timekeeper *tk = &timekeeper; 877 unsigned long flags; 878 879 /* 880 * Make sure we don't set the clock twice, as timekeeping_resume() 881 * already did it 882 */ 883 if (has_persistent_clock()) 884 return; 885 886 raw_spin_lock_irqsave(&timekeeper_lock, flags); 887 write_seqcount_begin(&timekeeper_seq); 888 889 timekeeping_forward_now(tk); 890 891 __timekeeping_inject_sleeptime(tk, delta); 892 893 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 894 895 write_seqcount_end(&timekeeper_seq); 896 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 897 898 /* signal hrtimers about time change */ 899 clock_was_set(); 900 } 901 902 /** 903 * timekeeping_resume - Resumes the generic timekeeping subsystem. 904 * 905 * This is for the generic clocksource timekeeping. 906 * xtime/wall_to_monotonic/jiffies/etc are 907 * still managed by arch specific suspend/resume code. 908 */ 909 static void timekeeping_resume(void) 910 { 911 struct timekeeper *tk = &timekeeper; 912 struct clocksource *clock = tk->clock; 913 unsigned long flags; 914 struct timespec ts_new, ts_delta; 915 cycle_t cycle_now, cycle_delta; 916 bool suspendtime_found = false; 917 918 read_persistent_clock(&ts_new); 919 920 clockevents_resume(); 921 clocksource_resume(); 922 923 raw_spin_lock_irqsave(&timekeeper_lock, flags); 924 write_seqcount_begin(&timekeeper_seq); 925 926 /* 927 * After system resumes, we need to calculate the suspended time and 928 * compensate it for the OS time. There are 3 sources that could be 929 * used: Nonstop clocksource during suspend, persistent clock and rtc 930 * device. 931 * 932 * One specific platform may have 1 or 2 or all of them, and the 933 * preference will be: 934 * suspend-nonstop clocksource -> persistent clock -> rtc 935 * The less preferred source will only be tried if there is no better 936 * usable source. The rtc part is handled separately in rtc core code. 937 */ 938 cycle_now = clock->read(clock); 939 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 940 cycle_now > clock->cycle_last) { 941 u64 num, max = ULLONG_MAX; 942 u32 mult = clock->mult; 943 u32 shift = clock->shift; 944 s64 nsec = 0; 945 946 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 947 948 /* 949 * "cycle_delta * mutl" may cause 64 bits overflow, if the 950 * suspended time is too long. In that case we need do the 951 * 64 bits math carefully 952 */ 953 do_div(max, mult); 954 if (cycle_delta > max) { 955 num = div64_u64(cycle_delta, max); 956 nsec = (((u64) max * mult) >> shift) * num; 957 cycle_delta -= num * max; 958 } 959 nsec += ((u64) cycle_delta * mult) >> shift; 960 961 ts_delta = ns_to_timespec(nsec); 962 suspendtime_found = true; 963 } else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) { 964 ts_delta = timespec_sub(ts_new, timekeeping_suspend_time); 965 suspendtime_found = true; 966 } 967 968 if (suspendtime_found) 969 __timekeeping_inject_sleeptime(tk, &ts_delta); 970 971 /* Re-base the last cycle value */ 972 tk->cycle_last = clock->cycle_last = cycle_now; 973 tk->ntp_error = 0; 974 timekeeping_suspended = 0; 975 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 976 write_seqcount_end(&timekeeper_seq); 977 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 978 979 touch_softlockup_watchdog(); 980 981 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 982 983 /* Resume hrtimers */ 984 hrtimers_resume(); 985 } 986 987 static int timekeeping_suspend(void) 988 { 989 struct timekeeper *tk = &timekeeper; 990 unsigned long flags; 991 struct timespec delta, delta_delta; 992 static struct timespec old_delta; 993 994 read_persistent_clock(&timekeeping_suspend_time); 995 996 /* 997 * On some systems the persistent_clock can not be detected at 998 * timekeeping_init by its return value, so if we see a valid 999 * value returned, update the persistent_clock_exists flag. 1000 */ 1001 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1002 persistent_clock_exist = true; 1003 1004 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1005 write_seqcount_begin(&timekeeper_seq); 1006 timekeeping_forward_now(tk); 1007 timekeeping_suspended = 1; 1008 1009 /* 1010 * To avoid drift caused by repeated suspend/resumes, 1011 * which each can add ~1 second drift error, 1012 * try to compensate so the difference in system time 1013 * and persistent_clock time stays close to constant. 1014 */ 1015 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time); 1016 delta_delta = timespec_sub(delta, old_delta); 1017 if (abs(delta_delta.tv_sec) >= 2) { 1018 /* 1019 * if delta_delta is too large, assume time correction 1020 * has occured and set old_delta to the current delta. 1021 */ 1022 old_delta = delta; 1023 } else { 1024 /* Otherwise try to adjust old_system to compensate */ 1025 timekeeping_suspend_time = 1026 timespec_add(timekeeping_suspend_time, delta_delta); 1027 } 1028 1029 timekeeping_update(tk, TK_MIRROR); 1030 write_seqcount_end(&timekeeper_seq); 1031 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1032 1033 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 1034 clocksource_suspend(); 1035 clockevents_suspend(); 1036 1037 return 0; 1038 } 1039 1040 /* sysfs resume/suspend bits for timekeeping */ 1041 static struct syscore_ops timekeeping_syscore_ops = { 1042 .resume = timekeeping_resume, 1043 .suspend = timekeeping_suspend, 1044 }; 1045 1046 static int __init timekeeping_init_ops(void) 1047 { 1048 register_syscore_ops(&timekeeping_syscore_ops); 1049 return 0; 1050 } 1051 1052 device_initcall(timekeeping_init_ops); 1053 1054 /* 1055 * If the error is already larger, we look ahead even further 1056 * to compensate for late or lost adjustments. 1057 */ 1058 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk, 1059 s64 error, s64 *interval, 1060 s64 *offset) 1061 { 1062 s64 tick_error, i; 1063 u32 look_ahead, adj; 1064 s32 error2, mult; 1065 1066 /* 1067 * Use the current error value to determine how much to look ahead. 1068 * The larger the error the slower we adjust for it to avoid problems 1069 * with losing too many ticks, otherwise we would overadjust and 1070 * produce an even larger error. The smaller the adjustment the 1071 * faster we try to adjust for it, as lost ticks can do less harm 1072 * here. This is tuned so that an error of about 1 msec is adjusted 1073 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 1074 */ 1075 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 1076 error2 = abs(error2); 1077 for (look_ahead = 0; error2 > 0; look_ahead++) 1078 error2 >>= 2; 1079 1080 /* 1081 * Now calculate the error in (1 << look_ahead) ticks, but first 1082 * remove the single look ahead already included in the error. 1083 */ 1084 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1); 1085 tick_error -= tk->xtime_interval >> 1; 1086 error = ((error - tick_error) >> look_ahead) + tick_error; 1087 1088 /* Finally calculate the adjustment shift value. */ 1089 i = *interval; 1090 mult = 1; 1091 if (error < 0) { 1092 error = -error; 1093 *interval = -*interval; 1094 *offset = -*offset; 1095 mult = -1; 1096 } 1097 for (adj = 0; error > i; adj++) 1098 error >>= 1; 1099 1100 *interval <<= adj; 1101 *offset <<= adj; 1102 return mult << adj; 1103 } 1104 1105 /* 1106 * Adjust the multiplier to reduce the error value, 1107 * this is optimized for the most common adjustments of -1,0,1, 1108 * for other values we can do a bit more work. 1109 */ 1110 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1111 { 1112 s64 error, interval = tk->cycle_interval; 1113 int adj; 1114 1115 /* 1116 * The point of this is to check if the error is greater than half 1117 * an interval. 1118 * 1119 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. 1120 * 1121 * Note we subtract one in the shift, so that error is really error*2. 1122 * This "saves" dividing(shifting) interval twice, but keeps the 1123 * (error > interval) comparison as still measuring if error is 1124 * larger than half an interval. 1125 * 1126 * Note: It does not "save" on aggravation when reading the code. 1127 */ 1128 error = tk->ntp_error >> (tk->ntp_error_shift - 1); 1129 if (error > interval) { 1130 /* 1131 * We now divide error by 4(via shift), which checks if 1132 * the error is greater than twice the interval. 1133 * If it is greater, we need a bigadjust, if its smaller, 1134 * we can adjust by 1. 1135 */ 1136 error >>= 2; 1137 if (likely(error <= interval)) 1138 adj = 1; 1139 else 1140 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 1141 } else { 1142 if (error < -interval) { 1143 /* See comment above, this is just switched for the negative */ 1144 error >>= 2; 1145 if (likely(error >= -interval)) { 1146 adj = -1; 1147 interval = -interval; 1148 offset = -offset; 1149 } else { 1150 adj = timekeeping_bigadjust(tk, error, &interval, &offset); 1151 } 1152 } else { 1153 goto out_adjust; 1154 } 1155 } 1156 1157 if (unlikely(tk->clock->maxadj && 1158 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) { 1159 printk_once(KERN_WARNING 1160 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1161 tk->clock->name, (long)tk->mult + adj, 1162 (long)tk->clock->mult + tk->clock->maxadj); 1163 } 1164 /* 1165 * So the following can be confusing. 1166 * 1167 * To keep things simple, lets assume adj == 1 for now. 1168 * 1169 * When adj != 1, remember that the interval and offset values 1170 * have been appropriately scaled so the math is the same. 1171 * 1172 * The basic idea here is that we're increasing the multiplier 1173 * by one, this causes the xtime_interval to be incremented by 1174 * one cycle_interval. This is because: 1175 * xtime_interval = cycle_interval * mult 1176 * So if mult is being incremented by one: 1177 * xtime_interval = cycle_interval * (mult + 1) 1178 * Its the same as: 1179 * xtime_interval = (cycle_interval * mult) + cycle_interval 1180 * Which can be shortened to: 1181 * xtime_interval += cycle_interval 1182 * 1183 * So offset stores the non-accumulated cycles. Thus the current 1184 * time (in shifted nanoseconds) is: 1185 * now = (offset * adj) + xtime_nsec 1186 * Now, even though we're adjusting the clock frequency, we have 1187 * to keep time consistent. In other words, we can't jump back 1188 * in time, and we also want to avoid jumping forward in time. 1189 * 1190 * So given the same offset value, we need the time to be the same 1191 * both before and after the freq adjustment. 1192 * now = (offset * adj_1) + xtime_nsec_1 1193 * now = (offset * adj_2) + xtime_nsec_2 1194 * So: 1195 * (offset * adj_1) + xtime_nsec_1 = 1196 * (offset * adj_2) + xtime_nsec_2 1197 * And we know: 1198 * adj_2 = adj_1 + 1 1199 * So: 1200 * (offset * adj_1) + xtime_nsec_1 = 1201 * (offset * (adj_1+1)) + xtime_nsec_2 1202 * (offset * adj_1) + xtime_nsec_1 = 1203 * (offset * adj_1) + offset + xtime_nsec_2 1204 * Canceling the sides: 1205 * xtime_nsec_1 = offset + xtime_nsec_2 1206 * Which gives us: 1207 * xtime_nsec_2 = xtime_nsec_1 - offset 1208 * Which simplfies to: 1209 * xtime_nsec -= offset 1210 * 1211 * XXX - TODO: Doc ntp_error calculation. 1212 */ 1213 tk->mult += adj; 1214 tk->xtime_interval += interval; 1215 tk->xtime_nsec -= offset; 1216 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1217 1218 out_adjust: 1219 /* 1220 * It may be possible that when we entered this function, xtime_nsec 1221 * was very small. Further, if we're slightly speeding the clocksource 1222 * in the code above, its possible the required corrective factor to 1223 * xtime_nsec could cause it to underflow. 1224 * 1225 * Now, since we already accumulated the second, cannot simply roll 1226 * the accumulated second back, since the NTP subsystem has been 1227 * notified via second_overflow. So instead we push xtime_nsec forward 1228 * by the amount we underflowed, and add that amount into the error. 1229 * 1230 * We'll correct this error next time through this function, when 1231 * xtime_nsec is not as small. 1232 */ 1233 if (unlikely((s64)tk->xtime_nsec < 0)) { 1234 s64 neg = -(s64)tk->xtime_nsec; 1235 tk->xtime_nsec = 0; 1236 tk->ntp_error += neg << tk->ntp_error_shift; 1237 } 1238 1239 } 1240 1241 /** 1242 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1243 * 1244 * Helper function that accumulates a the nsecs greater then a second 1245 * from the xtime_nsec field to the xtime_secs field. 1246 * It also calls into the NTP code to handle leapsecond processing. 1247 * 1248 */ 1249 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1250 { 1251 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift; 1252 unsigned int clock_set = 0; 1253 1254 while (tk->xtime_nsec >= nsecps) { 1255 int leap; 1256 1257 tk->xtime_nsec -= nsecps; 1258 tk->xtime_sec++; 1259 1260 /* Figure out if its a leap sec and apply if needed */ 1261 leap = second_overflow(tk->xtime_sec); 1262 if (unlikely(leap)) { 1263 struct timespec ts; 1264 1265 tk->xtime_sec += leap; 1266 1267 ts.tv_sec = leap; 1268 ts.tv_nsec = 0; 1269 tk_set_wall_to_mono(tk, 1270 timespec_sub(tk->wall_to_monotonic, ts)); 1271 1272 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1273 1274 clock_set = TK_CLOCK_WAS_SET; 1275 } 1276 } 1277 return clock_set; 1278 } 1279 1280 /** 1281 * logarithmic_accumulation - shifted accumulation of cycles 1282 * 1283 * This functions accumulates a shifted interval of cycles into 1284 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1285 * loop. 1286 * 1287 * Returns the unconsumed cycles. 1288 */ 1289 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1290 u32 shift, 1291 unsigned int *clock_set) 1292 { 1293 cycle_t interval = tk->cycle_interval << shift; 1294 u64 raw_nsecs; 1295 1296 /* If the offset is smaller then a shifted interval, do nothing */ 1297 if (offset < interval) 1298 return offset; 1299 1300 /* Accumulate one shifted interval */ 1301 offset -= interval; 1302 tk->cycle_last += interval; 1303 1304 tk->xtime_nsec += tk->xtime_interval << shift; 1305 *clock_set |= accumulate_nsecs_to_secs(tk); 1306 1307 /* Accumulate raw time */ 1308 raw_nsecs = (u64)tk->raw_interval << shift; 1309 raw_nsecs += tk->raw_time.tv_nsec; 1310 if (raw_nsecs >= NSEC_PER_SEC) { 1311 u64 raw_secs = raw_nsecs; 1312 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1313 tk->raw_time.tv_sec += raw_secs; 1314 } 1315 tk->raw_time.tv_nsec = raw_nsecs; 1316 1317 /* Accumulate error between NTP and clock interval */ 1318 tk->ntp_error += ntp_tick_length() << shift; 1319 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1320 (tk->ntp_error_shift + shift); 1321 1322 return offset; 1323 } 1324 1325 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 1326 static inline void old_vsyscall_fixup(struct timekeeper *tk) 1327 { 1328 s64 remainder; 1329 1330 /* 1331 * Store only full nanoseconds into xtime_nsec after rounding 1332 * it up and add the remainder to the error difference. 1333 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 1334 * by truncating the remainder in vsyscalls. However, it causes 1335 * additional work to be done in timekeeping_adjust(). Once 1336 * the vsyscall implementations are converted to use xtime_nsec 1337 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 1338 * users are removed, this can be killed. 1339 */ 1340 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1); 1341 tk->xtime_nsec -= remainder; 1342 tk->xtime_nsec += 1ULL << tk->shift; 1343 tk->ntp_error += remainder << tk->ntp_error_shift; 1344 tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift; 1345 } 1346 #else 1347 #define old_vsyscall_fixup(tk) 1348 #endif 1349 1350 1351 1352 /** 1353 * update_wall_time - Uses the current clocksource to increment the wall time 1354 * 1355 */ 1356 void update_wall_time(void) 1357 { 1358 struct clocksource *clock; 1359 struct timekeeper *real_tk = &timekeeper; 1360 struct timekeeper *tk = &shadow_timekeeper; 1361 cycle_t offset; 1362 int shift = 0, maxshift; 1363 unsigned int clock_set = 0; 1364 unsigned long flags; 1365 1366 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1367 1368 /* Make sure we're fully resumed: */ 1369 if (unlikely(timekeeping_suspended)) 1370 goto out; 1371 1372 clock = real_tk->clock; 1373 1374 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1375 offset = real_tk->cycle_interval; 1376 #else 1377 offset = (clock->read(clock) - clock->cycle_last) & clock->mask; 1378 #endif 1379 1380 /* Check if there's really nothing to do */ 1381 if (offset < real_tk->cycle_interval) 1382 goto out; 1383 1384 /* 1385 * With NO_HZ we may have to accumulate many cycle_intervals 1386 * (think "ticks") worth of time at once. To do this efficiently, 1387 * we calculate the largest doubling multiple of cycle_intervals 1388 * that is smaller than the offset. We then accumulate that 1389 * chunk in one go, and then try to consume the next smaller 1390 * doubled multiple. 1391 */ 1392 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1393 shift = max(0, shift); 1394 /* Bound shift to one less than what overflows tick_length */ 1395 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1396 shift = min(shift, maxshift); 1397 while (offset >= tk->cycle_interval) { 1398 offset = logarithmic_accumulation(tk, offset, shift, 1399 &clock_set); 1400 if (offset < tk->cycle_interval<<shift) 1401 shift--; 1402 } 1403 1404 /* correct the clock when NTP error is too big */ 1405 timekeeping_adjust(tk, offset); 1406 1407 /* 1408 * XXX This can be killed once everyone converts 1409 * to the new update_vsyscall. 1410 */ 1411 old_vsyscall_fixup(tk); 1412 1413 /* 1414 * Finally, make sure that after the rounding 1415 * xtime_nsec isn't larger than NSEC_PER_SEC 1416 */ 1417 clock_set |= accumulate_nsecs_to_secs(tk); 1418 1419 write_seqcount_begin(&timekeeper_seq); 1420 /* Update clock->cycle_last with the new value */ 1421 clock->cycle_last = tk->cycle_last; 1422 /* 1423 * Update the real timekeeper. 1424 * 1425 * We could avoid this memcpy by switching pointers, but that 1426 * requires changes to all other timekeeper usage sites as 1427 * well, i.e. move the timekeeper pointer getter into the 1428 * spinlocked/seqcount protected sections. And we trade this 1429 * memcpy under the timekeeper_seq against one before we start 1430 * updating. 1431 */ 1432 memcpy(real_tk, tk, sizeof(*tk)); 1433 timekeeping_update(real_tk, clock_set); 1434 write_seqcount_end(&timekeeper_seq); 1435 out: 1436 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1437 if (clock_set) 1438 clock_was_set(); 1439 } 1440 1441 /** 1442 * getboottime - Return the real time of system boot. 1443 * @ts: pointer to the timespec to be set 1444 * 1445 * Returns the wall-time of boot in a timespec. 1446 * 1447 * This is based on the wall_to_monotonic offset and the total suspend 1448 * time. Calls to settimeofday will affect the value returned (which 1449 * basically means that however wrong your real time clock is at boot time, 1450 * you get the right time here). 1451 */ 1452 void getboottime(struct timespec *ts) 1453 { 1454 struct timekeeper *tk = &timekeeper; 1455 struct timespec boottime = { 1456 .tv_sec = tk->wall_to_monotonic.tv_sec + 1457 tk->total_sleep_time.tv_sec, 1458 .tv_nsec = tk->wall_to_monotonic.tv_nsec + 1459 tk->total_sleep_time.tv_nsec 1460 }; 1461 1462 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); 1463 } 1464 EXPORT_SYMBOL_GPL(getboottime); 1465 1466 /** 1467 * get_monotonic_boottime - Returns monotonic time since boot 1468 * @ts: pointer to the timespec to be set 1469 * 1470 * Returns the monotonic time since boot in a timespec. 1471 * 1472 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also 1473 * includes the time spent in suspend. 1474 */ 1475 void get_monotonic_boottime(struct timespec *ts) 1476 { 1477 struct timekeeper *tk = &timekeeper; 1478 struct timespec tomono, sleep; 1479 s64 nsec; 1480 unsigned int seq; 1481 1482 WARN_ON(timekeeping_suspended); 1483 1484 do { 1485 seq = read_seqcount_begin(&timekeeper_seq); 1486 ts->tv_sec = tk->xtime_sec; 1487 nsec = timekeeping_get_ns(tk); 1488 tomono = tk->wall_to_monotonic; 1489 sleep = tk->total_sleep_time; 1490 1491 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1492 1493 ts->tv_sec += tomono.tv_sec + sleep.tv_sec; 1494 ts->tv_nsec = 0; 1495 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec); 1496 } 1497 EXPORT_SYMBOL_GPL(get_monotonic_boottime); 1498 1499 /** 1500 * ktime_get_boottime - Returns monotonic time since boot in a ktime 1501 * 1502 * Returns the monotonic time since boot in a ktime 1503 * 1504 * This is similar to CLOCK_MONTONIC/ktime_get, but also 1505 * includes the time spent in suspend. 1506 */ 1507 ktime_t ktime_get_boottime(void) 1508 { 1509 struct timespec ts; 1510 1511 get_monotonic_boottime(&ts); 1512 return timespec_to_ktime(ts); 1513 } 1514 EXPORT_SYMBOL_GPL(ktime_get_boottime); 1515 1516 /** 1517 * monotonic_to_bootbased - Convert the monotonic time to boot based. 1518 * @ts: pointer to the timespec to be converted 1519 */ 1520 void monotonic_to_bootbased(struct timespec *ts) 1521 { 1522 struct timekeeper *tk = &timekeeper; 1523 1524 *ts = timespec_add(*ts, tk->total_sleep_time); 1525 } 1526 EXPORT_SYMBOL_GPL(monotonic_to_bootbased); 1527 1528 unsigned long get_seconds(void) 1529 { 1530 struct timekeeper *tk = &timekeeper; 1531 1532 return tk->xtime_sec; 1533 } 1534 EXPORT_SYMBOL(get_seconds); 1535 1536 struct timespec __current_kernel_time(void) 1537 { 1538 struct timekeeper *tk = &timekeeper; 1539 1540 return tk_xtime(tk); 1541 } 1542 1543 struct timespec current_kernel_time(void) 1544 { 1545 struct timekeeper *tk = &timekeeper; 1546 struct timespec now; 1547 unsigned long seq; 1548 1549 do { 1550 seq = read_seqcount_begin(&timekeeper_seq); 1551 1552 now = tk_xtime(tk); 1553 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1554 1555 return now; 1556 } 1557 EXPORT_SYMBOL(current_kernel_time); 1558 1559 struct timespec get_monotonic_coarse(void) 1560 { 1561 struct timekeeper *tk = &timekeeper; 1562 struct timespec now, mono; 1563 unsigned long seq; 1564 1565 do { 1566 seq = read_seqcount_begin(&timekeeper_seq); 1567 1568 now = tk_xtime(tk); 1569 mono = tk->wall_to_monotonic; 1570 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1571 1572 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, 1573 now.tv_nsec + mono.tv_nsec); 1574 return now; 1575 } 1576 1577 /* 1578 * Must hold jiffies_lock 1579 */ 1580 void do_timer(unsigned long ticks) 1581 { 1582 jiffies_64 += ticks; 1583 calc_global_load(ticks); 1584 } 1585 1586 /** 1587 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, 1588 * and sleep offsets. 1589 * @xtim: pointer to timespec to be set with xtime 1590 * @wtom: pointer to timespec to be set with wall_to_monotonic 1591 * @sleep: pointer to timespec to be set with time in suspend 1592 */ 1593 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, 1594 struct timespec *wtom, struct timespec *sleep) 1595 { 1596 struct timekeeper *tk = &timekeeper; 1597 unsigned long seq; 1598 1599 do { 1600 seq = read_seqcount_begin(&timekeeper_seq); 1601 *xtim = tk_xtime(tk); 1602 *wtom = tk->wall_to_monotonic; 1603 *sleep = tk->total_sleep_time; 1604 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1605 } 1606 1607 #ifdef CONFIG_HIGH_RES_TIMERS 1608 /** 1609 * ktime_get_update_offsets - hrtimer helper 1610 * @offs_real: pointer to storage for monotonic -> realtime offset 1611 * @offs_boot: pointer to storage for monotonic -> boottime offset 1612 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1613 * 1614 * Returns current monotonic time and updates the offsets 1615 * Called from hrtimer_interrupt() or retrigger_next_event() 1616 */ 1617 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot, 1618 ktime_t *offs_tai) 1619 { 1620 struct timekeeper *tk = &timekeeper; 1621 ktime_t now; 1622 unsigned int seq; 1623 u64 secs, nsecs; 1624 1625 do { 1626 seq = read_seqcount_begin(&timekeeper_seq); 1627 1628 secs = tk->xtime_sec; 1629 nsecs = timekeeping_get_ns(tk); 1630 1631 *offs_real = tk->offs_real; 1632 *offs_boot = tk->offs_boot; 1633 *offs_tai = tk->offs_tai; 1634 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1635 1636 now = ktime_add_ns(ktime_set(secs, 0), nsecs); 1637 now = ktime_sub(now, *offs_real); 1638 return now; 1639 } 1640 #endif 1641 1642 /** 1643 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format 1644 */ 1645 ktime_t ktime_get_monotonic_offset(void) 1646 { 1647 struct timekeeper *tk = &timekeeper; 1648 unsigned long seq; 1649 struct timespec wtom; 1650 1651 do { 1652 seq = read_seqcount_begin(&timekeeper_seq); 1653 wtom = tk->wall_to_monotonic; 1654 } while (read_seqcount_retry(&timekeeper_seq, seq)); 1655 1656 return timespec_to_ktime(wtom); 1657 } 1658 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); 1659 1660 /** 1661 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1662 */ 1663 int do_adjtimex(struct timex *txc) 1664 { 1665 struct timekeeper *tk = &timekeeper; 1666 unsigned long flags; 1667 struct timespec ts; 1668 s32 orig_tai, tai; 1669 int ret; 1670 1671 /* Validate the data before disabling interrupts */ 1672 ret = ntp_validate_timex(txc); 1673 if (ret) 1674 return ret; 1675 1676 if (txc->modes & ADJ_SETOFFSET) { 1677 struct timespec delta; 1678 delta.tv_sec = txc->time.tv_sec; 1679 delta.tv_nsec = txc->time.tv_usec; 1680 if (!(txc->modes & ADJ_NANO)) 1681 delta.tv_nsec *= 1000; 1682 ret = timekeeping_inject_offset(&delta); 1683 if (ret) 1684 return ret; 1685 } 1686 1687 getnstimeofday(&ts); 1688 1689 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1690 write_seqcount_begin(&timekeeper_seq); 1691 1692 orig_tai = tai = tk->tai_offset; 1693 ret = __do_adjtimex(txc, &ts, &tai); 1694 1695 if (tai != orig_tai) { 1696 __timekeeping_set_tai_offset(tk, tai); 1697 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1698 } 1699 write_seqcount_end(&timekeeper_seq); 1700 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1701 1702 if (tai != orig_tai) 1703 clock_was_set(); 1704 1705 ntp_notify_cmos_timer(); 1706 1707 return ret; 1708 } 1709 1710 #ifdef CONFIG_NTP_PPS 1711 /** 1712 * hardpps() - Accessor function to NTP __hardpps function 1713 */ 1714 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 1715 { 1716 unsigned long flags; 1717 1718 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1719 write_seqcount_begin(&timekeeper_seq); 1720 1721 __hardpps(phase_ts, raw_ts); 1722 1723 write_seqcount_end(&timekeeper_seq); 1724 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1725 } 1726 EXPORT_SYMBOL(hardpps); 1727 #endif 1728 1729 /** 1730 * xtime_update() - advances the timekeeping infrastructure 1731 * @ticks: number of ticks, that have elapsed since the last call. 1732 * 1733 * Must be called with interrupts disabled. 1734 */ 1735 void xtime_update(unsigned long ticks) 1736 { 1737 write_seqlock(&jiffies_lock); 1738 do_timer(ticks); 1739 write_sequnlock(&jiffies_lock); 1740 update_wall_time(); 1741 } 1742