xref: /openbmc/linux/kernel/time/timekeeping.c (revision 8730046c)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 
122 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
123 {
124 
125 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
126 	const char *name = tk->tkr_mono.clock->name;
127 
128 	if (offset > max_cycles) {
129 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 				offset, name, max_cycles);
131 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 	} else {
133 		if (offset > (max_cycles >> 1)) {
134 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 					offset, name, max_cycles >> 1);
136 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 		}
138 	}
139 
140 	if (tk->underflow_seen) {
141 		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144 			printk_deferred("         Your kernel is probably still fine.\n");
145 			tk->last_warning = jiffies;
146 		}
147 		tk->underflow_seen = 0;
148 	}
149 
150 	if (tk->overflow_seen) {
151 		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154 			printk_deferred("         Your kernel is probably still fine.\n");
155 			tk->last_warning = jiffies;
156 		}
157 		tk->overflow_seen = 0;
158 	}
159 }
160 
161 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 	struct timekeeper *tk = &tk_core.timekeeper;
164 	u64 now, last, mask, max, delta;
165 	unsigned int seq;
166 
167 	/*
168 	 * Since we're called holding a seqlock, the data may shift
169 	 * under us while we're doing the calculation. This can cause
170 	 * false positives, since we'd note a problem but throw the
171 	 * results away. So nest another seqlock here to atomically
172 	 * grab the points we are checking with.
173 	 */
174 	do {
175 		seq = read_seqcount_begin(&tk_core.seq);
176 		now = tkr->read(tkr->clock);
177 		last = tkr->cycle_last;
178 		mask = tkr->mask;
179 		max = tkr->clock->max_cycles;
180 	} while (read_seqcount_retry(&tk_core.seq, seq));
181 
182 	delta = clocksource_delta(now, last, mask);
183 
184 	/*
185 	 * Try to catch underflows by checking if we are seeing small
186 	 * mask-relative negative values.
187 	 */
188 	if (unlikely((~delta & mask) < (mask >> 3))) {
189 		tk->underflow_seen = 1;
190 		delta = 0;
191 	}
192 
193 	/* Cap delta value to the max_cycles values to avoid mult overflows */
194 	if (unlikely(delta > max)) {
195 		tk->overflow_seen = 1;
196 		delta = tkr->clock->max_cycles;
197 	}
198 
199 	return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
203 {
204 }
205 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 	u64 cycle_now, delta;
208 
209 	/* read clocksource */
210 	cycle_now = tkr->read(tkr->clock);
211 
212 	/* calculate the delta since the last update_wall_time */
213 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214 
215 	return delta;
216 }
217 #endif
218 
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:		The target timekeeper to setup.
223  * @clock:		Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 	u64 interval;
233 	u64 tmp, ntpinterval;
234 	struct clocksource *old_clock;
235 
236 	++tk->cs_was_changed_seq;
237 	old_clock = tk->tkr_mono.clock;
238 	tk->tkr_mono.clock = clock;
239 	tk->tkr_mono.read = clock->read;
240 	tk->tkr_mono.mask = clock->mask;
241 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242 
243 	tk->tkr_raw.clock = clock;
244 	tk->tkr_raw.read = clock->read;
245 	tk->tkr_raw.mask = clock->mask;
246 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247 
248 	/* Do the ns -> cycle conversion first, using original mult */
249 	tmp = NTP_INTERVAL_LENGTH;
250 	tmp <<= clock->shift;
251 	ntpinterval = tmp;
252 	tmp += clock->mult/2;
253 	do_div(tmp, clock->mult);
254 	if (tmp == 0)
255 		tmp = 1;
256 
257 	interval = (u64) tmp;
258 	tk->cycle_interval = interval;
259 
260 	/* Go back from cycles -> shifted ns */
261 	tk->xtime_interval = interval * clock->mult;
262 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 	tk->raw_interval = (interval * clock->mult) >> clock->shift;
264 
265 	 /* if changing clocks, convert xtime_nsec shift units */
266 	if (old_clock) {
267 		int shift_change = clock->shift - old_clock->shift;
268 		if (shift_change < 0)
269 			tk->tkr_mono.xtime_nsec >>= -shift_change;
270 		else
271 			tk->tkr_mono.xtime_nsec <<= shift_change;
272 	}
273 	tk->tkr_raw.xtime_nsec = 0;
274 
275 	tk->tkr_mono.shift = clock->shift;
276 	tk->tkr_raw.shift = clock->shift;
277 
278 	tk->ntp_error = 0;
279 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 
282 	/*
283 	 * The timekeeper keeps its own mult values for the currently
284 	 * active clocksource. These value will be adjusted via NTP
285 	 * to counteract clock drifting.
286 	 */
287 	tk->tkr_mono.mult = clock->mult;
288 	tk->tkr_raw.mult = clock->mult;
289 	tk->ntp_err_mult = 0;
290 }
291 
292 /* Timekeeper helper functions. */
293 
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300 
301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
302 {
303 	u64 nsec;
304 
305 	nsec = delta * tkr->mult + tkr->xtime_nsec;
306 	nsec >>= tkr->shift;
307 
308 	/* If arch requires, add in get_arch_timeoffset() */
309 	return nsec + arch_gettimeoffset();
310 }
311 
312 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314 	u64 delta;
315 
316 	delta = timekeeping_get_delta(tkr);
317 	return timekeeping_delta_to_ns(tkr, delta);
318 }
319 
320 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
321 {
322 	u64 delta;
323 
324 	/* calculate the delta since the last update_wall_time */
325 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
326 	return timekeeping_delta_to_ns(tkr, delta);
327 }
328 
329 /**
330  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331  * @tkr: Timekeeping readout base from which we take the update
332  *
333  * We want to use this from any context including NMI and tracing /
334  * instrumenting the timekeeping code itself.
335  *
336  * Employ the latch technique; see @raw_write_seqcount_latch.
337  *
338  * So if a NMI hits the update of base[0] then it will use base[1]
339  * which is still consistent. In the worst case this can result is a
340  * slightly wrong timestamp (a few nanoseconds). See
341  * @ktime_get_mono_fast_ns.
342  */
343 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
344 {
345 	struct tk_read_base *base = tkf->base;
346 
347 	/* Force readers off to base[1] */
348 	raw_write_seqcount_latch(&tkf->seq);
349 
350 	/* Update base[0] */
351 	memcpy(base, tkr, sizeof(*base));
352 
353 	/* Force readers back to base[0] */
354 	raw_write_seqcount_latch(&tkf->seq);
355 
356 	/* Update base[1] */
357 	memcpy(base + 1, base, sizeof(*base));
358 }
359 
360 /**
361  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
362  *
363  * This timestamp is not guaranteed to be monotonic across an update.
364  * The timestamp is calculated by:
365  *
366  *	now = base_mono + clock_delta * slope
367  *
368  * So if the update lowers the slope, readers who are forced to the
369  * not yet updated second array are still using the old steeper slope.
370  *
371  * tmono
372  * ^
373  * |    o  n
374  * |   o n
375  * |  u
376  * | o
377  * |o
378  * |12345678---> reader order
379  *
380  * o = old slope
381  * u = update
382  * n = new slope
383  *
384  * So reader 6 will observe time going backwards versus reader 5.
385  *
386  * While other CPUs are likely to be able observe that, the only way
387  * for a CPU local observation is when an NMI hits in the middle of
388  * the update. Timestamps taken from that NMI context might be ahead
389  * of the following timestamps. Callers need to be aware of that and
390  * deal with it.
391  */
392 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
393 {
394 	struct tk_read_base *tkr;
395 	unsigned int seq;
396 	u64 now;
397 
398 	do {
399 		seq = raw_read_seqcount_latch(&tkf->seq);
400 		tkr = tkf->base + (seq & 0x01);
401 		now = ktime_to_ns(tkr->base);
402 
403 		now += timekeeping_delta_to_ns(tkr,
404 				clocksource_delta(
405 					tkr->read(tkr->clock),
406 					tkr->cycle_last,
407 					tkr->mask));
408 	} while (read_seqcount_retry(&tkf->seq, seq));
409 
410 	return now;
411 }
412 
413 u64 ktime_get_mono_fast_ns(void)
414 {
415 	return __ktime_get_fast_ns(&tk_fast_mono);
416 }
417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
418 
419 u64 ktime_get_raw_fast_ns(void)
420 {
421 	return __ktime_get_fast_ns(&tk_fast_raw);
422 }
423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
424 
425 /**
426  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
427  *
428  * To keep it NMI safe since we're accessing from tracing, we're not using a
429  * separate timekeeper with updates to monotonic clock and boot offset
430  * protected with seqlocks. This has the following minor side effects:
431  *
432  * (1) Its possible that a timestamp be taken after the boot offset is updated
433  * but before the timekeeper is updated. If this happens, the new boot offset
434  * is added to the old timekeeping making the clock appear to update slightly
435  * earlier:
436  *    CPU 0                                        CPU 1
437  *    timekeeping_inject_sleeptime64()
438  *    __timekeeping_inject_sleeptime(tk, delta);
439  *                                                 timestamp();
440  *    timekeeping_update(tk, TK_CLEAR_NTP...);
441  *
442  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
443  * partially updated.  Since the tk->offs_boot update is a rare event, this
444  * should be a rare occurrence which postprocessing should be able to handle.
445  */
446 u64 notrace ktime_get_boot_fast_ns(void)
447 {
448 	struct timekeeper *tk = &tk_core.timekeeper;
449 
450 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
451 }
452 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
453 
454 /* Suspend-time cycles value for halted fast timekeeper. */
455 static u64 cycles_at_suspend;
456 
457 static u64 dummy_clock_read(struct clocksource *cs)
458 {
459 	return cycles_at_suspend;
460 }
461 
462 /**
463  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
464  * @tk: Timekeeper to snapshot.
465  *
466  * It generally is unsafe to access the clocksource after timekeeping has been
467  * suspended, so take a snapshot of the readout base of @tk and use it as the
468  * fast timekeeper's readout base while suspended.  It will return the same
469  * number of cycles every time until timekeeping is resumed at which time the
470  * proper readout base for the fast timekeeper will be restored automatically.
471  */
472 static void halt_fast_timekeeper(struct timekeeper *tk)
473 {
474 	static struct tk_read_base tkr_dummy;
475 	struct tk_read_base *tkr = &tk->tkr_mono;
476 
477 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
478 	cycles_at_suspend = tkr->read(tkr->clock);
479 	tkr_dummy.read = dummy_clock_read;
480 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
481 
482 	tkr = &tk->tkr_raw;
483 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
484 	tkr_dummy.read = dummy_clock_read;
485 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
486 }
487 
488 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
489 
490 static inline void update_vsyscall(struct timekeeper *tk)
491 {
492 	struct timespec xt, wm;
493 
494 	xt = timespec64_to_timespec(tk_xtime(tk));
495 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
496 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
497 			    tk->tkr_mono.cycle_last);
498 }
499 
500 static inline void old_vsyscall_fixup(struct timekeeper *tk)
501 {
502 	s64 remainder;
503 
504 	/*
505 	* Store only full nanoseconds into xtime_nsec after rounding
506 	* it up and add the remainder to the error difference.
507 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
508 	* by truncating the remainder in vsyscalls. However, it causes
509 	* additional work to be done in timekeeping_adjust(). Once
510 	* the vsyscall implementations are converted to use xtime_nsec
511 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
512 	* users are removed, this can be killed.
513 	*/
514 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
515 	if (remainder != 0) {
516 		tk->tkr_mono.xtime_nsec -= remainder;
517 		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
518 		tk->ntp_error += remainder << tk->ntp_error_shift;
519 		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
520 	}
521 }
522 #else
523 #define old_vsyscall_fixup(tk)
524 #endif
525 
526 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
527 
528 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
529 {
530 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
531 }
532 
533 /**
534  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
535  */
536 int pvclock_gtod_register_notifier(struct notifier_block *nb)
537 {
538 	struct timekeeper *tk = &tk_core.timekeeper;
539 	unsigned long flags;
540 	int ret;
541 
542 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
543 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
544 	update_pvclock_gtod(tk, true);
545 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
546 
547 	return ret;
548 }
549 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
550 
551 /**
552  * pvclock_gtod_unregister_notifier - unregister a pvclock
553  * timedata update listener
554  */
555 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
556 {
557 	unsigned long flags;
558 	int ret;
559 
560 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
561 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
562 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
563 
564 	return ret;
565 }
566 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
567 
568 /*
569  * tk_update_leap_state - helper to update the next_leap_ktime
570  */
571 static inline void tk_update_leap_state(struct timekeeper *tk)
572 {
573 	tk->next_leap_ktime = ntp_get_next_leap();
574 	if (tk->next_leap_ktime != KTIME_MAX)
575 		/* Convert to monotonic time */
576 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
577 }
578 
579 /*
580  * Update the ktime_t based scalar nsec members of the timekeeper
581  */
582 static inline void tk_update_ktime_data(struct timekeeper *tk)
583 {
584 	u64 seconds;
585 	u32 nsec;
586 
587 	/*
588 	 * The xtime based monotonic readout is:
589 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
590 	 * The ktime based monotonic readout is:
591 	 *	nsec = base_mono + now();
592 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
593 	 */
594 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
595 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
596 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
597 
598 	/* Update the monotonic raw base */
599 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
600 
601 	/*
602 	 * The sum of the nanoseconds portions of xtime and
603 	 * wall_to_monotonic can be greater/equal one second. Take
604 	 * this into account before updating tk->ktime_sec.
605 	 */
606 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
607 	if (nsec >= NSEC_PER_SEC)
608 		seconds++;
609 	tk->ktime_sec = seconds;
610 }
611 
612 /* must hold timekeeper_lock */
613 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
614 {
615 	if (action & TK_CLEAR_NTP) {
616 		tk->ntp_error = 0;
617 		ntp_clear();
618 	}
619 
620 	tk_update_leap_state(tk);
621 	tk_update_ktime_data(tk);
622 
623 	update_vsyscall(tk);
624 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
625 
626 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
627 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
628 
629 	if (action & TK_CLOCK_WAS_SET)
630 		tk->clock_was_set_seq++;
631 	/*
632 	 * The mirroring of the data to the shadow-timekeeper needs
633 	 * to happen last here to ensure we don't over-write the
634 	 * timekeeper structure on the next update with stale data
635 	 */
636 	if (action & TK_MIRROR)
637 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
638 		       sizeof(tk_core.timekeeper));
639 }
640 
641 /**
642  * timekeeping_forward_now - update clock to the current time
643  *
644  * Forward the current clock to update its state since the last call to
645  * update_wall_time(). This is useful before significant clock changes,
646  * as it avoids having to deal with this time offset explicitly.
647  */
648 static void timekeeping_forward_now(struct timekeeper *tk)
649 {
650 	struct clocksource *clock = tk->tkr_mono.clock;
651 	u64 cycle_now, delta;
652 	u64 nsec;
653 
654 	cycle_now = tk->tkr_mono.read(clock);
655 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
656 	tk->tkr_mono.cycle_last = cycle_now;
657 	tk->tkr_raw.cycle_last  = cycle_now;
658 
659 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
660 
661 	/* If arch requires, add in get_arch_timeoffset() */
662 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
663 
664 	tk_normalize_xtime(tk);
665 
666 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
667 	timespec64_add_ns(&tk->raw_time, nsec);
668 }
669 
670 /**
671  * __getnstimeofday64 - Returns the time of day in a timespec64.
672  * @ts:		pointer to the timespec to be set
673  *
674  * Updates the time of day in the timespec.
675  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
676  */
677 int __getnstimeofday64(struct timespec64 *ts)
678 {
679 	struct timekeeper *tk = &tk_core.timekeeper;
680 	unsigned long seq;
681 	u64 nsecs;
682 
683 	do {
684 		seq = read_seqcount_begin(&tk_core.seq);
685 
686 		ts->tv_sec = tk->xtime_sec;
687 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
688 
689 	} while (read_seqcount_retry(&tk_core.seq, seq));
690 
691 	ts->tv_nsec = 0;
692 	timespec64_add_ns(ts, nsecs);
693 
694 	/*
695 	 * Do not bail out early, in case there were callers still using
696 	 * the value, even in the face of the WARN_ON.
697 	 */
698 	if (unlikely(timekeeping_suspended))
699 		return -EAGAIN;
700 	return 0;
701 }
702 EXPORT_SYMBOL(__getnstimeofday64);
703 
704 /**
705  * getnstimeofday64 - Returns the time of day in a timespec64.
706  * @ts:		pointer to the timespec64 to be set
707  *
708  * Returns the time of day in a timespec64 (WARN if suspended).
709  */
710 void getnstimeofday64(struct timespec64 *ts)
711 {
712 	WARN_ON(__getnstimeofday64(ts));
713 }
714 EXPORT_SYMBOL(getnstimeofday64);
715 
716 ktime_t ktime_get(void)
717 {
718 	struct timekeeper *tk = &tk_core.timekeeper;
719 	unsigned int seq;
720 	ktime_t base;
721 	u64 nsecs;
722 
723 	WARN_ON(timekeeping_suspended);
724 
725 	do {
726 		seq = read_seqcount_begin(&tk_core.seq);
727 		base = tk->tkr_mono.base;
728 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
729 
730 	} while (read_seqcount_retry(&tk_core.seq, seq));
731 
732 	return ktime_add_ns(base, nsecs);
733 }
734 EXPORT_SYMBOL_GPL(ktime_get);
735 
736 u32 ktime_get_resolution_ns(void)
737 {
738 	struct timekeeper *tk = &tk_core.timekeeper;
739 	unsigned int seq;
740 	u32 nsecs;
741 
742 	WARN_ON(timekeeping_suspended);
743 
744 	do {
745 		seq = read_seqcount_begin(&tk_core.seq);
746 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
747 	} while (read_seqcount_retry(&tk_core.seq, seq));
748 
749 	return nsecs;
750 }
751 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
752 
753 static ktime_t *offsets[TK_OFFS_MAX] = {
754 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
755 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
756 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
757 };
758 
759 ktime_t ktime_get_with_offset(enum tk_offsets offs)
760 {
761 	struct timekeeper *tk = &tk_core.timekeeper;
762 	unsigned int seq;
763 	ktime_t base, *offset = offsets[offs];
764 	u64 nsecs;
765 
766 	WARN_ON(timekeeping_suspended);
767 
768 	do {
769 		seq = read_seqcount_begin(&tk_core.seq);
770 		base = ktime_add(tk->tkr_mono.base, *offset);
771 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
772 
773 	} while (read_seqcount_retry(&tk_core.seq, seq));
774 
775 	return ktime_add_ns(base, nsecs);
776 
777 }
778 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
779 
780 /**
781  * ktime_mono_to_any() - convert mononotic time to any other time
782  * @tmono:	time to convert.
783  * @offs:	which offset to use
784  */
785 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
786 {
787 	ktime_t *offset = offsets[offs];
788 	unsigned long seq;
789 	ktime_t tconv;
790 
791 	do {
792 		seq = read_seqcount_begin(&tk_core.seq);
793 		tconv = ktime_add(tmono, *offset);
794 	} while (read_seqcount_retry(&tk_core.seq, seq));
795 
796 	return tconv;
797 }
798 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
799 
800 /**
801  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
802  */
803 ktime_t ktime_get_raw(void)
804 {
805 	struct timekeeper *tk = &tk_core.timekeeper;
806 	unsigned int seq;
807 	ktime_t base;
808 	u64 nsecs;
809 
810 	do {
811 		seq = read_seqcount_begin(&tk_core.seq);
812 		base = tk->tkr_raw.base;
813 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
814 
815 	} while (read_seqcount_retry(&tk_core.seq, seq));
816 
817 	return ktime_add_ns(base, nsecs);
818 }
819 EXPORT_SYMBOL_GPL(ktime_get_raw);
820 
821 /**
822  * ktime_get_ts64 - get the monotonic clock in timespec64 format
823  * @ts:		pointer to timespec variable
824  *
825  * The function calculates the monotonic clock from the realtime
826  * clock and the wall_to_monotonic offset and stores the result
827  * in normalized timespec64 format in the variable pointed to by @ts.
828  */
829 void ktime_get_ts64(struct timespec64 *ts)
830 {
831 	struct timekeeper *tk = &tk_core.timekeeper;
832 	struct timespec64 tomono;
833 	unsigned int seq;
834 	u64 nsec;
835 
836 	WARN_ON(timekeeping_suspended);
837 
838 	do {
839 		seq = read_seqcount_begin(&tk_core.seq);
840 		ts->tv_sec = tk->xtime_sec;
841 		nsec = timekeeping_get_ns(&tk->tkr_mono);
842 		tomono = tk->wall_to_monotonic;
843 
844 	} while (read_seqcount_retry(&tk_core.seq, seq));
845 
846 	ts->tv_sec += tomono.tv_sec;
847 	ts->tv_nsec = 0;
848 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_ts64);
851 
852 /**
853  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
854  *
855  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
856  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
857  * works on both 32 and 64 bit systems. On 32 bit systems the readout
858  * covers ~136 years of uptime which should be enough to prevent
859  * premature wrap arounds.
860  */
861 time64_t ktime_get_seconds(void)
862 {
863 	struct timekeeper *tk = &tk_core.timekeeper;
864 
865 	WARN_ON(timekeeping_suspended);
866 	return tk->ktime_sec;
867 }
868 EXPORT_SYMBOL_GPL(ktime_get_seconds);
869 
870 /**
871  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
872  *
873  * Returns the wall clock seconds since 1970. This replaces the
874  * get_seconds() interface which is not y2038 safe on 32bit systems.
875  *
876  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
877  * 32bit systems the access must be protected with the sequence
878  * counter to provide "atomic" access to the 64bit tk->xtime_sec
879  * value.
880  */
881 time64_t ktime_get_real_seconds(void)
882 {
883 	struct timekeeper *tk = &tk_core.timekeeper;
884 	time64_t seconds;
885 	unsigned int seq;
886 
887 	if (IS_ENABLED(CONFIG_64BIT))
888 		return tk->xtime_sec;
889 
890 	do {
891 		seq = read_seqcount_begin(&tk_core.seq);
892 		seconds = tk->xtime_sec;
893 
894 	} while (read_seqcount_retry(&tk_core.seq, seq));
895 
896 	return seconds;
897 }
898 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
899 
900 /**
901  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
902  * but without the sequence counter protect. This internal function
903  * is called just when timekeeping lock is already held.
904  */
905 time64_t __ktime_get_real_seconds(void)
906 {
907 	struct timekeeper *tk = &tk_core.timekeeper;
908 
909 	return tk->xtime_sec;
910 }
911 
912 /**
913  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
914  * @systime_snapshot:	pointer to struct receiving the system time snapshot
915  */
916 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
917 {
918 	struct timekeeper *tk = &tk_core.timekeeper;
919 	unsigned long seq;
920 	ktime_t base_raw;
921 	ktime_t base_real;
922 	u64 nsec_raw;
923 	u64 nsec_real;
924 	u64 now;
925 
926 	WARN_ON_ONCE(timekeeping_suspended);
927 
928 	do {
929 		seq = read_seqcount_begin(&tk_core.seq);
930 
931 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
932 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
933 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
934 		base_real = ktime_add(tk->tkr_mono.base,
935 				      tk_core.timekeeper.offs_real);
936 		base_raw = tk->tkr_raw.base;
937 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
938 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
939 	} while (read_seqcount_retry(&tk_core.seq, seq));
940 
941 	systime_snapshot->cycles = now;
942 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
943 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
946 
947 /* Scale base by mult/div checking for overflow */
948 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
949 {
950 	u64 tmp, rem;
951 
952 	tmp = div64_u64_rem(*base, div, &rem);
953 
954 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
955 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
956 		return -EOVERFLOW;
957 	tmp *= mult;
958 	rem *= mult;
959 
960 	do_div(rem, div);
961 	*base = tmp + rem;
962 	return 0;
963 }
964 
965 /**
966  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
967  * @history:			Snapshot representing start of history
968  * @partial_history_cycles:	Cycle offset into history (fractional part)
969  * @total_history_cycles:	Total history length in cycles
970  * @discontinuity:		True indicates clock was set on history period
971  * @ts:				Cross timestamp that should be adjusted using
972  *	partial/total ratio
973  *
974  * Helper function used by get_device_system_crosststamp() to correct the
975  * crosstimestamp corresponding to the start of the current interval to the
976  * system counter value (timestamp point) provided by the driver. The
977  * total_history_* quantities are the total history starting at the provided
978  * reference point and ending at the start of the current interval. The cycle
979  * count between the driver timestamp point and the start of the current
980  * interval is partial_history_cycles.
981  */
982 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
983 					 u64 partial_history_cycles,
984 					 u64 total_history_cycles,
985 					 bool discontinuity,
986 					 struct system_device_crosststamp *ts)
987 {
988 	struct timekeeper *tk = &tk_core.timekeeper;
989 	u64 corr_raw, corr_real;
990 	bool interp_forward;
991 	int ret;
992 
993 	if (total_history_cycles == 0 || partial_history_cycles == 0)
994 		return 0;
995 
996 	/* Interpolate shortest distance from beginning or end of history */
997 	interp_forward = partial_history_cycles > total_history_cycles/2 ?
998 		true : false;
999 	partial_history_cycles = interp_forward ?
1000 		total_history_cycles - partial_history_cycles :
1001 		partial_history_cycles;
1002 
1003 	/*
1004 	 * Scale the monotonic raw time delta by:
1005 	 *	partial_history_cycles / total_history_cycles
1006 	 */
1007 	corr_raw = (u64)ktime_to_ns(
1008 		ktime_sub(ts->sys_monoraw, history->raw));
1009 	ret = scale64_check_overflow(partial_history_cycles,
1010 				     total_history_cycles, &corr_raw);
1011 	if (ret)
1012 		return ret;
1013 
1014 	/*
1015 	 * If there is a discontinuity in the history, scale monotonic raw
1016 	 *	correction by:
1017 	 *	mult(real)/mult(raw) yielding the realtime correction
1018 	 * Otherwise, calculate the realtime correction similar to monotonic
1019 	 *	raw calculation
1020 	 */
1021 	if (discontinuity) {
1022 		corr_real = mul_u64_u32_div
1023 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1024 	} else {
1025 		corr_real = (u64)ktime_to_ns(
1026 			ktime_sub(ts->sys_realtime, history->real));
1027 		ret = scale64_check_overflow(partial_history_cycles,
1028 					     total_history_cycles, &corr_real);
1029 		if (ret)
1030 			return ret;
1031 	}
1032 
1033 	/* Fixup monotonic raw and real time time values */
1034 	if (interp_forward) {
1035 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1036 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1037 	} else {
1038 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1039 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * cycle_between - true if test occurs chronologically between before and after
1047  */
1048 static bool cycle_between(u64 before, u64 test, u64 after)
1049 {
1050 	if (test > before && test < after)
1051 		return true;
1052 	if (test < before && before > after)
1053 		return true;
1054 	return false;
1055 }
1056 
1057 /**
1058  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1059  * @get_time_fn:	Callback to get simultaneous device time and
1060  *	system counter from the device driver
1061  * @ctx:		Context passed to get_time_fn()
1062  * @history_begin:	Historical reference point used to interpolate system
1063  *	time when counter provided by the driver is before the current interval
1064  * @xtstamp:		Receives simultaneously captured system and device time
1065  *
1066  * Reads a timestamp from a device and correlates it to system time
1067  */
1068 int get_device_system_crosststamp(int (*get_time_fn)
1069 				  (ktime_t *device_time,
1070 				   struct system_counterval_t *sys_counterval,
1071 				   void *ctx),
1072 				  void *ctx,
1073 				  struct system_time_snapshot *history_begin,
1074 				  struct system_device_crosststamp *xtstamp)
1075 {
1076 	struct system_counterval_t system_counterval;
1077 	struct timekeeper *tk = &tk_core.timekeeper;
1078 	u64 cycles, now, interval_start;
1079 	unsigned int clock_was_set_seq = 0;
1080 	ktime_t base_real, base_raw;
1081 	u64 nsec_real, nsec_raw;
1082 	u8 cs_was_changed_seq;
1083 	unsigned long seq;
1084 	bool do_interp;
1085 	int ret;
1086 
1087 	do {
1088 		seq = read_seqcount_begin(&tk_core.seq);
1089 		/*
1090 		 * Try to synchronously capture device time and a system
1091 		 * counter value calling back into the device driver
1092 		 */
1093 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1094 		if (ret)
1095 			return ret;
1096 
1097 		/*
1098 		 * Verify that the clocksource associated with the captured
1099 		 * system counter value is the same as the currently installed
1100 		 * timekeeper clocksource
1101 		 */
1102 		if (tk->tkr_mono.clock != system_counterval.cs)
1103 			return -ENODEV;
1104 		cycles = system_counterval.cycles;
1105 
1106 		/*
1107 		 * Check whether the system counter value provided by the
1108 		 * device driver is on the current timekeeping interval.
1109 		 */
1110 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
1111 		interval_start = tk->tkr_mono.cycle_last;
1112 		if (!cycle_between(interval_start, cycles, now)) {
1113 			clock_was_set_seq = tk->clock_was_set_seq;
1114 			cs_was_changed_seq = tk->cs_was_changed_seq;
1115 			cycles = interval_start;
1116 			do_interp = true;
1117 		} else {
1118 			do_interp = false;
1119 		}
1120 
1121 		base_real = ktime_add(tk->tkr_mono.base,
1122 				      tk_core.timekeeper.offs_real);
1123 		base_raw = tk->tkr_raw.base;
1124 
1125 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1126 						     system_counterval.cycles);
1127 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1128 						    system_counterval.cycles);
1129 	} while (read_seqcount_retry(&tk_core.seq, seq));
1130 
1131 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1132 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1133 
1134 	/*
1135 	 * Interpolate if necessary, adjusting back from the start of the
1136 	 * current interval
1137 	 */
1138 	if (do_interp) {
1139 		u64 partial_history_cycles, total_history_cycles;
1140 		bool discontinuity;
1141 
1142 		/*
1143 		 * Check that the counter value occurs after the provided
1144 		 * history reference and that the history doesn't cross a
1145 		 * clocksource change
1146 		 */
1147 		if (!history_begin ||
1148 		    !cycle_between(history_begin->cycles,
1149 				   system_counterval.cycles, cycles) ||
1150 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1151 			return -EINVAL;
1152 		partial_history_cycles = cycles - system_counterval.cycles;
1153 		total_history_cycles = cycles - history_begin->cycles;
1154 		discontinuity =
1155 			history_begin->clock_was_set_seq != clock_was_set_seq;
1156 
1157 		ret = adjust_historical_crosststamp(history_begin,
1158 						    partial_history_cycles,
1159 						    total_history_cycles,
1160 						    discontinuity, xtstamp);
1161 		if (ret)
1162 			return ret;
1163 	}
1164 
1165 	return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1168 
1169 /**
1170  * do_gettimeofday - Returns the time of day in a timeval
1171  * @tv:		pointer to the timeval to be set
1172  *
1173  * NOTE: Users should be converted to using getnstimeofday()
1174  */
1175 void do_gettimeofday(struct timeval *tv)
1176 {
1177 	struct timespec64 now;
1178 
1179 	getnstimeofday64(&now);
1180 	tv->tv_sec = now.tv_sec;
1181 	tv->tv_usec = now.tv_nsec/1000;
1182 }
1183 EXPORT_SYMBOL(do_gettimeofday);
1184 
1185 /**
1186  * do_settimeofday64 - Sets the time of day.
1187  * @ts:     pointer to the timespec64 variable containing the new time
1188  *
1189  * Sets the time of day to the new time and update NTP and notify hrtimers
1190  */
1191 int do_settimeofday64(const struct timespec64 *ts)
1192 {
1193 	struct timekeeper *tk = &tk_core.timekeeper;
1194 	struct timespec64 ts_delta, xt;
1195 	unsigned long flags;
1196 	int ret = 0;
1197 
1198 	if (!timespec64_valid_strict(ts))
1199 		return -EINVAL;
1200 
1201 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1202 	write_seqcount_begin(&tk_core.seq);
1203 
1204 	timekeeping_forward_now(tk);
1205 
1206 	xt = tk_xtime(tk);
1207 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1208 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1209 
1210 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1211 		ret = -EINVAL;
1212 		goto out;
1213 	}
1214 
1215 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1216 
1217 	tk_set_xtime(tk, ts);
1218 out:
1219 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1220 
1221 	write_seqcount_end(&tk_core.seq);
1222 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1223 
1224 	/* signal hrtimers about time change */
1225 	clock_was_set();
1226 
1227 	return ret;
1228 }
1229 EXPORT_SYMBOL(do_settimeofday64);
1230 
1231 /**
1232  * timekeeping_inject_offset - Adds or subtracts from the current time.
1233  * @tv:		pointer to the timespec variable containing the offset
1234  *
1235  * Adds or subtracts an offset value from the current time.
1236  */
1237 int timekeeping_inject_offset(struct timespec *ts)
1238 {
1239 	struct timekeeper *tk = &tk_core.timekeeper;
1240 	unsigned long flags;
1241 	struct timespec64 ts64, tmp;
1242 	int ret = 0;
1243 
1244 	if (!timespec_inject_offset_valid(ts))
1245 		return -EINVAL;
1246 
1247 	ts64 = timespec_to_timespec64(*ts);
1248 
1249 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1250 	write_seqcount_begin(&tk_core.seq);
1251 
1252 	timekeeping_forward_now(tk);
1253 
1254 	/* Make sure the proposed value is valid */
1255 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1256 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1257 	    !timespec64_valid_strict(&tmp)) {
1258 		ret = -EINVAL;
1259 		goto error;
1260 	}
1261 
1262 	tk_xtime_add(tk, &ts64);
1263 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1264 
1265 error: /* even if we error out, we forwarded the time, so call update */
1266 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1267 
1268 	write_seqcount_end(&tk_core.seq);
1269 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270 
1271 	/* signal hrtimers about time change */
1272 	clock_was_set();
1273 
1274 	return ret;
1275 }
1276 EXPORT_SYMBOL(timekeeping_inject_offset);
1277 
1278 
1279 /**
1280  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1281  *
1282  */
1283 s32 timekeeping_get_tai_offset(void)
1284 {
1285 	struct timekeeper *tk = &tk_core.timekeeper;
1286 	unsigned int seq;
1287 	s32 ret;
1288 
1289 	do {
1290 		seq = read_seqcount_begin(&tk_core.seq);
1291 		ret = tk->tai_offset;
1292 	} while (read_seqcount_retry(&tk_core.seq, seq));
1293 
1294 	return ret;
1295 }
1296 
1297 /**
1298  * __timekeeping_set_tai_offset - Lock free worker function
1299  *
1300  */
1301 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1302 {
1303 	tk->tai_offset = tai_offset;
1304 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1305 }
1306 
1307 /**
1308  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1309  *
1310  */
1311 void timekeeping_set_tai_offset(s32 tai_offset)
1312 {
1313 	struct timekeeper *tk = &tk_core.timekeeper;
1314 	unsigned long flags;
1315 
1316 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1317 	write_seqcount_begin(&tk_core.seq);
1318 	__timekeeping_set_tai_offset(tk, tai_offset);
1319 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1320 	write_seqcount_end(&tk_core.seq);
1321 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1322 	clock_was_set();
1323 }
1324 
1325 /**
1326  * change_clocksource - Swaps clocksources if a new one is available
1327  *
1328  * Accumulates current time interval and initializes new clocksource
1329  */
1330 static int change_clocksource(void *data)
1331 {
1332 	struct timekeeper *tk = &tk_core.timekeeper;
1333 	struct clocksource *new, *old;
1334 	unsigned long flags;
1335 
1336 	new = (struct clocksource *) data;
1337 
1338 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339 	write_seqcount_begin(&tk_core.seq);
1340 
1341 	timekeeping_forward_now(tk);
1342 	/*
1343 	 * If the cs is in module, get a module reference. Succeeds
1344 	 * for built-in code (owner == NULL) as well.
1345 	 */
1346 	if (try_module_get(new->owner)) {
1347 		if (!new->enable || new->enable(new) == 0) {
1348 			old = tk->tkr_mono.clock;
1349 			tk_setup_internals(tk, new);
1350 			if (old->disable)
1351 				old->disable(old);
1352 			module_put(old->owner);
1353 		} else {
1354 			module_put(new->owner);
1355 		}
1356 	}
1357 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1358 
1359 	write_seqcount_end(&tk_core.seq);
1360 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1361 
1362 	return 0;
1363 }
1364 
1365 /**
1366  * timekeeping_notify - Install a new clock source
1367  * @clock:		pointer to the clock source
1368  *
1369  * This function is called from clocksource.c after a new, better clock
1370  * source has been registered. The caller holds the clocksource_mutex.
1371  */
1372 int timekeeping_notify(struct clocksource *clock)
1373 {
1374 	struct timekeeper *tk = &tk_core.timekeeper;
1375 
1376 	if (tk->tkr_mono.clock == clock)
1377 		return 0;
1378 	stop_machine(change_clocksource, clock, NULL);
1379 	tick_clock_notify();
1380 	return tk->tkr_mono.clock == clock ? 0 : -1;
1381 }
1382 
1383 /**
1384  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1385  * @ts:		pointer to the timespec64 to be set
1386  *
1387  * Returns the raw monotonic time (completely un-modified by ntp)
1388  */
1389 void getrawmonotonic64(struct timespec64 *ts)
1390 {
1391 	struct timekeeper *tk = &tk_core.timekeeper;
1392 	struct timespec64 ts64;
1393 	unsigned long seq;
1394 	u64 nsecs;
1395 
1396 	do {
1397 		seq = read_seqcount_begin(&tk_core.seq);
1398 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1399 		ts64 = tk->raw_time;
1400 
1401 	} while (read_seqcount_retry(&tk_core.seq, seq));
1402 
1403 	timespec64_add_ns(&ts64, nsecs);
1404 	*ts = ts64;
1405 }
1406 EXPORT_SYMBOL(getrawmonotonic64);
1407 
1408 
1409 /**
1410  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1411  */
1412 int timekeeping_valid_for_hres(void)
1413 {
1414 	struct timekeeper *tk = &tk_core.timekeeper;
1415 	unsigned long seq;
1416 	int ret;
1417 
1418 	do {
1419 		seq = read_seqcount_begin(&tk_core.seq);
1420 
1421 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1422 
1423 	} while (read_seqcount_retry(&tk_core.seq, seq));
1424 
1425 	return ret;
1426 }
1427 
1428 /**
1429  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1430  */
1431 u64 timekeeping_max_deferment(void)
1432 {
1433 	struct timekeeper *tk = &tk_core.timekeeper;
1434 	unsigned long seq;
1435 	u64 ret;
1436 
1437 	do {
1438 		seq = read_seqcount_begin(&tk_core.seq);
1439 
1440 		ret = tk->tkr_mono.clock->max_idle_ns;
1441 
1442 	} while (read_seqcount_retry(&tk_core.seq, seq));
1443 
1444 	return ret;
1445 }
1446 
1447 /**
1448  * read_persistent_clock -  Return time from the persistent clock.
1449  *
1450  * Weak dummy function for arches that do not yet support it.
1451  * Reads the time from the battery backed persistent clock.
1452  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1453  *
1454  *  XXX - Do be sure to remove it once all arches implement it.
1455  */
1456 void __weak read_persistent_clock(struct timespec *ts)
1457 {
1458 	ts->tv_sec = 0;
1459 	ts->tv_nsec = 0;
1460 }
1461 
1462 void __weak read_persistent_clock64(struct timespec64 *ts64)
1463 {
1464 	struct timespec ts;
1465 
1466 	read_persistent_clock(&ts);
1467 	*ts64 = timespec_to_timespec64(ts);
1468 }
1469 
1470 /**
1471  * read_boot_clock64 -  Return time of the system start.
1472  *
1473  * Weak dummy function for arches that do not yet support it.
1474  * Function to read the exact time the system has been started.
1475  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1476  *
1477  *  XXX - Do be sure to remove it once all arches implement it.
1478  */
1479 void __weak read_boot_clock64(struct timespec64 *ts)
1480 {
1481 	ts->tv_sec = 0;
1482 	ts->tv_nsec = 0;
1483 }
1484 
1485 /* Flag for if timekeeping_resume() has injected sleeptime */
1486 static bool sleeptime_injected;
1487 
1488 /* Flag for if there is a persistent clock on this platform */
1489 static bool persistent_clock_exists;
1490 
1491 /*
1492  * timekeeping_init - Initializes the clocksource and common timekeeping values
1493  */
1494 void __init timekeeping_init(void)
1495 {
1496 	struct timekeeper *tk = &tk_core.timekeeper;
1497 	struct clocksource *clock;
1498 	unsigned long flags;
1499 	struct timespec64 now, boot, tmp;
1500 
1501 	read_persistent_clock64(&now);
1502 	if (!timespec64_valid_strict(&now)) {
1503 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1504 			"         Check your CMOS/BIOS settings.\n");
1505 		now.tv_sec = 0;
1506 		now.tv_nsec = 0;
1507 	} else if (now.tv_sec || now.tv_nsec)
1508 		persistent_clock_exists = true;
1509 
1510 	read_boot_clock64(&boot);
1511 	if (!timespec64_valid_strict(&boot)) {
1512 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1513 			"         Check your CMOS/BIOS settings.\n");
1514 		boot.tv_sec = 0;
1515 		boot.tv_nsec = 0;
1516 	}
1517 
1518 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1519 	write_seqcount_begin(&tk_core.seq);
1520 	ntp_init();
1521 
1522 	clock = clocksource_default_clock();
1523 	if (clock->enable)
1524 		clock->enable(clock);
1525 	tk_setup_internals(tk, clock);
1526 
1527 	tk_set_xtime(tk, &now);
1528 	tk->raw_time.tv_sec = 0;
1529 	tk->raw_time.tv_nsec = 0;
1530 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1531 		boot = tk_xtime(tk);
1532 
1533 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1534 	tk_set_wall_to_mono(tk, tmp);
1535 
1536 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1537 
1538 	write_seqcount_end(&tk_core.seq);
1539 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1540 }
1541 
1542 /* time in seconds when suspend began for persistent clock */
1543 static struct timespec64 timekeeping_suspend_time;
1544 
1545 /**
1546  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1547  * @delta: pointer to a timespec delta value
1548  *
1549  * Takes a timespec offset measuring a suspend interval and properly
1550  * adds the sleep offset to the timekeeping variables.
1551  */
1552 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1553 					   struct timespec64 *delta)
1554 {
1555 	if (!timespec64_valid_strict(delta)) {
1556 		printk_deferred(KERN_WARNING
1557 				"__timekeeping_inject_sleeptime: Invalid "
1558 				"sleep delta value!\n");
1559 		return;
1560 	}
1561 	tk_xtime_add(tk, delta);
1562 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1563 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1564 	tk_debug_account_sleep_time(delta);
1565 }
1566 
1567 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1568 /**
1569  * We have three kinds of time sources to use for sleep time
1570  * injection, the preference order is:
1571  * 1) non-stop clocksource
1572  * 2) persistent clock (ie: RTC accessible when irqs are off)
1573  * 3) RTC
1574  *
1575  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1576  * If system has neither 1) nor 2), 3) will be used finally.
1577  *
1578  *
1579  * If timekeeping has injected sleeptime via either 1) or 2),
1580  * 3) becomes needless, so in this case we don't need to call
1581  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1582  * means.
1583  */
1584 bool timekeeping_rtc_skipresume(void)
1585 {
1586 	return sleeptime_injected;
1587 }
1588 
1589 /**
1590  * 1) can be determined whether to use or not only when doing
1591  * timekeeping_resume() which is invoked after rtc_suspend(),
1592  * so we can't skip rtc_suspend() surely if system has 1).
1593  *
1594  * But if system has 2), 2) will definitely be used, so in this
1595  * case we don't need to call rtc_suspend(), and this is what
1596  * timekeeping_rtc_skipsuspend() means.
1597  */
1598 bool timekeeping_rtc_skipsuspend(void)
1599 {
1600 	return persistent_clock_exists;
1601 }
1602 
1603 /**
1604  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1605  * @delta: pointer to a timespec64 delta value
1606  *
1607  * This hook is for architectures that cannot support read_persistent_clock64
1608  * because their RTC/persistent clock is only accessible when irqs are enabled.
1609  * and also don't have an effective nonstop clocksource.
1610  *
1611  * This function should only be called by rtc_resume(), and allows
1612  * a suspend offset to be injected into the timekeeping values.
1613  */
1614 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1615 {
1616 	struct timekeeper *tk = &tk_core.timekeeper;
1617 	unsigned long flags;
1618 
1619 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620 	write_seqcount_begin(&tk_core.seq);
1621 
1622 	timekeeping_forward_now(tk);
1623 
1624 	__timekeeping_inject_sleeptime(tk, delta);
1625 
1626 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1627 
1628 	write_seqcount_end(&tk_core.seq);
1629 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1630 
1631 	/* signal hrtimers about time change */
1632 	clock_was_set();
1633 }
1634 #endif
1635 
1636 /**
1637  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1638  */
1639 void timekeeping_resume(void)
1640 {
1641 	struct timekeeper *tk = &tk_core.timekeeper;
1642 	struct clocksource *clock = tk->tkr_mono.clock;
1643 	unsigned long flags;
1644 	struct timespec64 ts_new, ts_delta;
1645 	u64 cycle_now;
1646 
1647 	sleeptime_injected = false;
1648 	read_persistent_clock64(&ts_new);
1649 
1650 	clockevents_resume();
1651 	clocksource_resume();
1652 
1653 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1654 	write_seqcount_begin(&tk_core.seq);
1655 
1656 	/*
1657 	 * After system resumes, we need to calculate the suspended time and
1658 	 * compensate it for the OS time. There are 3 sources that could be
1659 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1660 	 * device.
1661 	 *
1662 	 * One specific platform may have 1 or 2 or all of them, and the
1663 	 * preference will be:
1664 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1665 	 * The less preferred source will only be tried if there is no better
1666 	 * usable source. The rtc part is handled separately in rtc core code.
1667 	 */
1668 	cycle_now = tk->tkr_mono.read(clock);
1669 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1670 		cycle_now > tk->tkr_mono.cycle_last) {
1671 		u64 nsec, cyc_delta;
1672 
1673 		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1674 					      tk->tkr_mono.mask);
1675 		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1676 		ts_delta = ns_to_timespec64(nsec);
1677 		sleeptime_injected = true;
1678 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1679 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1680 		sleeptime_injected = true;
1681 	}
1682 
1683 	if (sleeptime_injected)
1684 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1685 
1686 	/* Re-base the last cycle value */
1687 	tk->tkr_mono.cycle_last = cycle_now;
1688 	tk->tkr_raw.cycle_last  = cycle_now;
1689 
1690 	tk->ntp_error = 0;
1691 	timekeeping_suspended = 0;
1692 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1693 	write_seqcount_end(&tk_core.seq);
1694 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1695 
1696 	touch_softlockup_watchdog();
1697 
1698 	tick_resume();
1699 	hrtimers_resume();
1700 }
1701 
1702 int timekeeping_suspend(void)
1703 {
1704 	struct timekeeper *tk = &tk_core.timekeeper;
1705 	unsigned long flags;
1706 	struct timespec64		delta, delta_delta;
1707 	static struct timespec64	old_delta;
1708 
1709 	read_persistent_clock64(&timekeeping_suspend_time);
1710 
1711 	/*
1712 	 * On some systems the persistent_clock can not be detected at
1713 	 * timekeeping_init by its return value, so if we see a valid
1714 	 * value returned, update the persistent_clock_exists flag.
1715 	 */
1716 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1717 		persistent_clock_exists = true;
1718 
1719 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1720 	write_seqcount_begin(&tk_core.seq);
1721 	timekeeping_forward_now(tk);
1722 	timekeeping_suspended = 1;
1723 
1724 	if (persistent_clock_exists) {
1725 		/*
1726 		 * To avoid drift caused by repeated suspend/resumes,
1727 		 * which each can add ~1 second drift error,
1728 		 * try to compensate so the difference in system time
1729 		 * and persistent_clock time stays close to constant.
1730 		 */
1731 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1732 		delta_delta = timespec64_sub(delta, old_delta);
1733 		if (abs(delta_delta.tv_sec) >= 2) {
1734 			/*
1735 			 * if delta_delta is too large, assume time correction
1736 			 * has occurred and set old_delta to the current delta.
1737 			 */
1738 			old_delta = delta;
1739 		} else {
1740 			/* Otherwise try to adjust old_system to compensate */
1741 			timekeeping_suspend_time =
1742 				timespec64_add(timekeeping_suspend_time, delta_delta);
1743 		}
1744 	}
1745 
1746 	timekeeping_update(tk, TK_MIRROR);
1747 	halt_fast_timekeeper(tk);
1748 	write_seqcount_end(&tk_core.seq);
1749 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1750 
1751 	tick_suspend();
1752 	clocksource_suspend();
1753 	clockevents_suspend();
1754 
1755 	return 0;
1756 }
1757 
1758 /* sysfs resume/suspend bits for timekeeping */
1759 static struct syscore_ops timekeeping_syscore_ops = {
1760 	.resume		= timekeeping_resume,
1761 	.suspend	= timekeeping_suspend,
1762 };
1763 
1764 static int __init timekeeping_init_ops(void)
1765 {
1766 	register_syscore_ops(&timekeeping_syscore_ops);
1767 	return 0;
1768 }
1769 device_initcall(timekeeping_init_ops);
1770 
1771 /*
1772  * Apply a multiplier adjustment to the timekeeper
1773  */
1774 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1775 							 s64 offset,
1776 							 bool negative,
1777 							 int adj_scale)
1778 {
1779 	s64 interval = tk->cycle_interval;
1780 	s32 mult_adj = 1;
1781 
1782 	if (negative) {
1783 		mult_adj = -mult_adj;
1784 		interval = -interval;
1785 		offset  = -offset;
1786 	}
1787 	mult_adj <<= adj_scale;
1788 	interval <<= adj_scale;
1789 	offset <<= adj_scale;
1790 
1791 	/*
1792 	 * So the following can be confusing.
1793 	 *
1794 	 * To keep things simple, lets assume mult_adj == 1 for now.
1795 	 *
1796 	 * When mult_adj != 1, remember that the interval and offset values
1797 	 * have been appropriately scaled so the math is the same.
1798 	 *
1799 	 * The basic idea here is that we're increasing the multiplier
1800 	 * by one, this causes the xtime_interval to be incremented by
1801 	 * one cycle_interval. This is because:
1802 	 *	xtime_interval = cycle_interval * mult
1803 	 * So if mult is being incremented by one:
1804 	 *	xtime_interval = cycle_interval * (mult + 1)
1805 	 * Its the same as:
1806 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1807 	 * Which can be shortened to:
1808 	 *	xtime_interval += cycle_interval
1809 	 *
1810 	 * So offset stores the non-accumulated cycles. Thus the current
1811 	 * time (in shifted nanoseconds) is:
1812 	 *	now = (offset * adj) + xtime_nsec
1813 	 * Now, even though we're adjusting the clock frequency, we have
1814 	 * to keep time consistent. In other words, we can't jump back
1815 	 * in time, and we also want to avoid jumping forward in time.
1816 	 *
1817 	 * So given the same offset value, we need the time to be the same
1818 	 * both before and after the freq adjustment.
1819 	 *	now = (offset * adj_1) + xtime_nsec_1
1820 	 *	now = (offset * adj_2) + xtime_nsec_2
1821 	 * So:
1822 	 *	(offset * adj_1) + xtime_nsec_1 =
1823 	 *		(offset * adj_2) + xtime_nsec_2
1824 	 * And we know:
1825 	 *	adj_2 = adj_1 + 1
1826 	 * So:
1827 	 *	(offset * adj_1) + xtime_nsec_1 =
1828 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1829 	 *	(offset * adj_1) + xtime_nsec_1 =
1830 	 *		(offset * adj_1) + offset + xtime_nsec_2
1831 	 * Canceling the sides:
1832 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1833 	 * Which gives us:
1834 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1835 	 * Which simplfies to:
1836 	 *	xtime_nsec -= offset
1837 	 *
1838 	 * XXX - TODO: Doc ntp_error calculation.
1839 	 */
1840 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1841 		/* NTP adjustment caused clocksource mult overflow */
1842 		WARN_ON_ONCE(1);
1843 		return;
1844 	}
1845 
1846 	tk->tkr_mono.mult += mult_adj;
1847 	tk->xtime_interval += interval;
1848 	tk->tkr_mono.xtime_nsec -= offset;
1849 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1850 }
1851 
1852 /*
1853  * Calculate the multiplier adjustment needed to match the frequency
1854  * specified by NTP
1855  */
1856 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1857 							s64 offset)
1858 {
1859 	s64 interval = tk->cycle_interval;
1860 	s64 xinterval = tk->xtime_interval;
1861 	u32 base = tk->tkr_mono.clock->mult;
1862 	u32 max = tk->tkr_mono.clock->maxadj;
1863 	u32 cur_adj = tk->tkr_mono.mult;
1864 	s64 tick_error;
1865 	bool negative;
1866 	u32 adj_scale;
1867 
1868 	/* Remove any current error adj from freq calculation */
1869 	if (tk->ntp_err_mult)
1870 		xinterval -= tk->cycle_interval;
1871 
1872 	tk->ntp_tick = ntp_tick_length();
1873 
1874 	/* Calculate current error per tick */
1875 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1876 	tick_error -= (xinterval + tk->xtime_remainder);
1877 
1878 	/* Don't worry about correcting it if its small */
1879 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1880 		return;
1881 
1882 	/* preserve the direction of correction */
1883 	negative = (tick_error < 0);
1884 
1885 	/* If any adjustment would pass the max, just return */
1886 	if (negative && (cur_adj - 1) <= (base - max))
1887 		return;
1888 	if (!negative && (cur_adj + 1) >= (base + max))
1889 		return;
1890 	/*
1891 	 * Sort out the magnitude of the correction, but
1892 	 * avoid making so large a correction that we go
1893 	 * over the max adjustment.
1894 	 */
1895 	adj_scale = 0;
1896 	tick_error = abs(tick_error);
1897 	while (tick_error > interval) {
1898 		u32 adj = 1 << (adj_scale + 1);
1899 
1900 		/* Check if adjustment gets us within 1 unit from the max */
1901 		if (negative && (cur_adj - adj) <= (base - max))
1902 			break;
1903 		if (!negative && (cur_adj + adj) >= (base + max))
1904 			break;
1905 
1906 		adj_scale++;
1907 		tick_error >>= 1;
1908 	}
1909 
1910 	/* scale the corrections */
1911 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1912 }
1913 
1914 /*
1915  * Adjust the timekeeper's multiplier to the correct frequency
1916  * and also to reduce the accumulated error value.
1917  */
1918 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1919 {
1920 	/* Correct for the current frequency error */
1921 	timekeeping_freqadjust(tk, offset);
1922 
1923 	/* Next make a small adjustment to fix any cumulative error */
1924 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1925 		tk->ntp_err_mult = 1;
1926 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1927 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1928 		/* Undo any existing error adjustment */
1929 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1930 		tk->ntp_err_mult = 0;
1931 	}
1932 
1933 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1934 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1935 			> tk->tkr_mono.clock->maxadj))) {
1936 		printk_once(KERN_WARNING
1937 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1938 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1939 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1940 	}
1941 
1942 	/*
1943 	 * It may be possible that when we entered this function, xtime_nsec
1944 	 * was very small.  Further, if we're slightly speeding the clocksource
1945 	 * in the code above, its possible the required corrective factor to
1946 	 * xtime_nsec could cause it to underflow.
1947 	 *
1948 	 * Now, since we already accumulated the second, cannot simply roll
1949 	 * the accumulated second back, since the NTP subsystem has been
1950 	 * notified via second_overflow. So instead we push xtime_nsec forward
1951 	 * by the amount we underflowed, and add that amount into the error.
1952 	 *
1953 	 * We'll correct this error next time through this function, when
1954 	 * xtime_nsec is not as small.
1955 	 */
1956 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1957 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1958 		tk->tkr_mono.xtime_nsec = 0;
1959 		tk->ntp_error += neg << tk->ntp_error_shift;
1960 	}
1961 }
1962 
1963 /**
1964  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1965  *
1966  * Helper function that accumulates the nsecs greater than a second
1967  * from the xtime_nsec field to the xtime_secs field.
1968  * It also calls into the NTP code to handle leapsecond processing.
1969  *
1970  */
1971 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1972 {
1973 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1974 	unsigned int clock_set = 0;
1975 
1976 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1977 		int leap;
1978 
1979 		tk->tkr_mono.xtime_nsec -= nsecps;
1980 		tk->xtime_sec++;
1981 
1982 		/* Figure out if its a leap sec and apply if needed */
1983 		leap = second_overflow(tk->xtime_sec);
1984 		if (unlikely(leap)) {
1985 			struct timespec64 ts;
1986 
1987 			tk->xtime_sec += leap;
1988 
1989 			ts.tv_sec = leap;
1990 			ts.tv_nsec = 0;
1991 			tk_set_wall_to_mono(tk,
1992 				timespec64_sub(tk->wall_to_monotonic, ts));
1993 
1994 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1995 
1996 			clock_set = TK_CLOCK_WAS_SET;
1997 		}
1998 	}
1999 	return clock_set;
2000 }
2001 
2002 /**
2003  * logarithmic_accumulation - shifted accumulation of cycles
2004  *
2005  * This functions accumulates a shifted interval of cycles into
2006  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2007  * loop.
2008  *
2009  * Returns the unconsumed cycles.
2010  */
2011 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2012 				    u32 shift, unsigned int *clock_set)
2013 {
2014 	u64 interval = tk->cycle_interval << shift;
2015 	u64 raw_nsecs;
2016 
2017 	/* If the offset is smaller than a shifted interval, do nothing */
2018 	if (offset < interval)
2019 		return offset;
2020 
2021 	/* Accumulate one shifted interval */
2022 	offset -= interval;
2023 	tk->tkr_mono.cycle_last += interval;
2024 	tk->tkr_raw.cycle_last  += interval;
2025 
2026 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2027 	*clock_set |= accumulate_nsecs_to_secs(tk);
2028 
2029 	/* Accumulate raw time */
2030 	raw_nsecs = (u64)tk->raw_interval << shift;
2031 	raw_nsecs += tk->raw_time.tv_nsec;
2032 	if (raw_nsecs >= NSEC_PER_SEC) {
2033 		u64 raw_secs = raw_nsecs;
2034 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2035 		tk->raw_time.tv_sec += raw_secs;
2036 	}
2037 	tk->raw_time.tv_nsec = raw_nsecs;
2038 
2039 	/* Accumulate error between NTP and clock interval */
2040 	tk->ntp_error += tk->ntp_tick << shift;
2041 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2042 						(tk->ntp_error_shift + shift);
2043 
2044 	return offset;
2045 }
2046 
2047 /**
2048  * update_wall_time - Uses the current clocksource to increment the wall time
2049  *
2050  */
2051 void update_wall_time(void)
2052 {
2053 	struct timekeeper *real_tk = &tk_core.timekeeper;
2054 	struct timekeeper *tk = &shadow_timekeeper;
2055 	u64 offset;
2056 	int shift = 0, maxshift;
2057 	unsigned int clock_set = 0;
2058 	unsigned long flags;
2059 
2060 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2061 
2062 	/* Make sure we're fully resumed: */
2063 	if (unlikely(timekeeping_suspended))
2064 		goto out;
2065 
2066 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2067 	offset = real_tk->cycle_interval;
2068 #else
2069 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2070 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071 #endif
2072 
2073 	/* Check if there's really nothing to do */
2074 	if (offset < real_tk->cycle_interval)
2075 		goto out;
2076 
2077 	/* Do some additional sanity checking */
2078 	timekeeping_check_update(real_tk, offset);
2079 
2080 	/*
2081 	 * With NO_HZ we may have to accumulate many cycle_intervals
2082 	 * (think "ticks") worth of time at once. To do this efficiently,
2083 	 * we calculate the largest doubling multiple of cycle_intervals
2084 	 * that is smaller than the offset.  We then accumulate that
2085 	 * chunk in one go, and then try to consume the next smaller
2086 	 * doubled multiple.
2087 	 */
2088 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089 	shift = max(0, shift);
2090 	/* Bound shift to one less than what overflows tick_length */
2091 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092 	shift = min(shift, maxshift);
2093 	while (offset >= tk->cycle_interval) {
2094 		offset = logarithmic_accumulation(tk, offset, shift,
2095 							&clock_set);
2096 		if (offset < tk->cycle_interval<<shift)
2097 			shift--;
2098 	}
2099 
2100 	/* correct the clock when NTP error is too big */
2101 	timekeeping_adjust(tk, offset);
2102 
2103 	/*
2104 	 * XXX This can be killed once everyone converts
2105 	 * to the new update_vsyscall.
2106 	 */
2107 	old_vsyscall_fixup(tk);
2108 
2109 	/*
2110 	 * Finally, make sure that after the rounding
2111 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2112 	 */
2113 	clock_set |= accumulate_nsecs_to_secs(tk);
2114 
2115 	write_seqcount_begin(&tk_core.seq);
2116 	/*
2117 	 * Update the real timekeeper.
2118 	 *
2119 	 * We could avoid this memcpy by switching pointers, but that
2120 	 * requires changes to all other timekeeper usage sites as
2121 	 * well, i.e. move the timekeeper pointer getter into the
2122 	 * spinlocked/seqcount protected sections. And we trade this
2123 	 * memcpy under the tk_core.seq against one before we start
2124 	 * updating.
2125 	 */
2126 	timekeeping_update(tk, clock_set);
2127 	memcpy(real_tk, tk, sizeof(*tk));
2128 	/* The memcpy must come last. Do not put anything here! */
2129 	write_seqcount_end(&tk_core.seq);
2130 out:
2131 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2132 	if (clock_set)
2133 		/* Have to call _delayed version, since in irq context*/
2134 		clock_was_set_delayed();
2135 }
2136 
2137 /**
2138  * getboottime64 - Return the real time of system boot.
2139  * @ts:		pointer to the timespec64 to be set
2140  *
2141  * Returns the wall-time of boot in a timespec64.
2142  *
2143  * This is based on the wall_to_monotonic offset and the total suspend
2144  * time. Calls to settimeofday will affect the value returned (which
2145  * basically means that however wrong your real time clock is at boot time,
2146  * you get the right time here).
2147  */
2148 void getboottime64(struct timespec64 *ts)
2149 {
2150 	struct timekeeper *tk = &tk_core.timekeeper;
2151 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2152 
2153 	*ts = ktime_to_timespec64(t);
2154 }
2155 EXPORT_SYMBOL_GPL(getboottime64);
2156 
2157 unsigned long get_seconds(void)
2158 {
2159 	struct timekeeper *tk = &tk_core.timekeeper;
2160 
2161 	return tk->xtime_sec;
2162 }
2163 EXPORT_SYMBOL(get_seconds);
2164 
2165 struct timespec __current_kernel_time(void)
2166 {
2167 	struct timekeeper *tk = &tk_core.timekeeper;
2168 
2169 	return timespec64_to_timespec(tk_xtime(tk));
2170 }
2171 
2172 struct timespec64 current_kernel_time64(void)
2173 {
2174 	struct timekeeper *tk = &tk_core.timekeeper;
2175 	struct timespec64 now;
2176 	unsigned long seq;
2177 
2178 	do {
2179 		seq = read_seqcount_begin(&tk_core.seq);
2180 
2181 		now = tk_xtime(tk);
2182 	} while (read_seqcount_retry(&tk_core.seq, seq));
2183 
2184 	return now;
2185 }
2186 EXPORT_SYMBOL(current_kernel_time64);
2187 
2188 struct timespec64 get_monotonic_coarse64(void)
2189 {
2190 	struct timekeeper *tk = &tk_core.timekeeper;
2191 	struct timespec64 now, mono;
2192 	unsigned long seq;
2193 
2194 	do {
2195 		seq = read_seqcount_begin(&tk_core.seq);
2196 
2197 		now = tk_xtime(tk);
2198 		mono = tk->wall_to_monotonic;
2199 	} while (read_seqcount_retry(&tk_core.seq, seq));
2200 
2201 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2202 				now.tv_nsec + mono.tv_nsec);
2203 
2204 	return now;
2205 }
2206 EXPORT_SYMBOL(get_monotonic_coarse64);
2207 
2208 /*
2209  * Must hold jiffies_lock
2210  */
2211 void do_timer(unsigned long ticks)
2212 {
2213 	jiffies_64 += ticks;
2214 	calc_global_load(ticks);
2215 }
2216 
2217 /**
2218  * ktime_get_update_offsets_now - hrtimer helper
2219  * @cwsseq:	pointer to check and store the clock was set sequence number
2220  * @offs_real:	pointer to storage for monotonic -> realtime offset
2221  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2222  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2223  *
2224  * Returns current monotonic time and updates the offsets if the
2225  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2226  * different.
2227  *
2228  * Called from hrtimer_interrupt() or retrigger_next_event()
2229  */
2230 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2231 				     ktime_t *offs_boot, ktime_t *offs_tai)
2232 {
2233 	struct timekeeper *tk = &tk_core.timekeeper;
2234 	unsigned int seq;
2235 	ktime_t base;
2236 	u64 nsecs;
2237 
2238 	do {
2239 		seq = read_seqcount_begin(&tk_core.seq);
2240 
2241 		base = tk->tkr_mono.base;
2242 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2243 		base = ktime_add_ns(base, nsecs);
2244 
2245 		if (*cwsseq != tk->clock_was_set_seq) {
2246 			*cwsseq = tk->clock_was_set_seq;
2247 			*offs_real = tk->offs_real;
2248 			*offs_boot = tk->offs_boot;
2249 			*offs_tai = tk->offs_tai;
2250 		}
2251 
2252 		/* Handle leapsecond insertion adjustments */
2253 		if (unlikely(base >= tk->next_leap_ktime))
2254 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2255 
2256 	} while (read_seqcount_retry(&tk_core.seq, seq));
2257 
2258 	return base;
2259 }
2260 
2261 /**
2262  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2263  */
2264 int do_adjtimex(struct timex *txc)
2265 {
2266 	struct timekeeper *tk = &tk_core.timekeeper;
2267 	unsigned long flags;
2268 	struct timespec64 ts;
2269 	s32 orig_tai, tai;
2270 	int ret;
2271 
2272 	/* Validate the data before disabling interrupts */
2273 	ret = ntp_validate_timex(txc);
2274 	if (ret)
2275 		return ret;
2276 
2277 	if (txc->modes & ADJ_SETOFFSET) {
2278 		struct timespec delta;
2279 		delta.tv_sec  = txc->time.tv_sec;
2280 		delta.tv_nsec = txc->time.tv_usec;
2281 		if (!(txc->modes & ADJ_NANO))
2282 			delta.tv_nsec *= 1000;
2283 		ret = timekeeping_inject_offset(&delta);
2284 		if (ret)
2285 			return ret;
2286 	}
2287 
2288 	getnstimeofday64(&ts);
2289 
2290 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2291 	write_seqcount_begin(&tk_core.seq);
2292 
2293 	orig_tai = tai = tk->tai_offset;
2294 	ret = __do_adjtimex(txc, &ts, &tai);
2295 
2296 	if (tai != orig_tai) {
2297 		__timekeeping_set_tai_offset(tk, tai);
2298 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2299 	}
2300 	tk_update_leap_state(tk);
2301 
2302 	write_seqcount_end(&tk_core.seq);
2303 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2304 
2305 	if (tai != orig_tai)
2306 		clock_was_set();
2307 
2308 	ntp_notify_cmos_timer();
2309 
2310 	return ret;
2311 }
2312 
2313 #ifdef CONFIG_NTP_PPS
2314 /**
2315  * hardpps() - Accessor function to NTP __hardpps function
2316  */
2317 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2318 {
2319 	unsigned long flags;
2320 
2321 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2322 	write_seqcount_begin(&tk_core.seq);
2323 
2324 	__hardpps(phase_ts, raw_ts);
2325 
2326 	write_seqcount_end(&tk_core.seq);
2327 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2328 }
2329 EXPORT_SYMBOL(hardpps);
2330 #endif
2331 
2332 /**
2333  * xtime_update() - advances the timekeeping infrastructure
2334  * @ticks:	number of ticks, that have elapsed since the last call.
2335  *
2336  * Must be called with interrupts disabled.
2337  */
2338 void xtime_update(unsigned long ticks)
2339 {
2340 	write_seqlock(&jiffies_lock);
2341 	do_timer(ticks);
2342 	write_sequnlock(&jiffies_lock);
2343 	update_wall_time();
2344 }
2345