1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 123 { 124 125 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 u64 now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 203 { 204 } 205 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 u64 cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 u64 interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 ++tk->cs_was_changed_seq; 237 old_clock = tk->tkr_mono.clock; 238 tk->tkr_mono.clock = clock; 239 tk->tkr_mono.read = clock->read; 240 tk->tkr_mono.mask = clock->mask; 241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 242 243 tk->tkr_raw.clock = clock; 244 tk->tkr_raw.read = clock->read; 245 tk->tkr_raw.mask = clock->mask; 246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 247 248 /* Do the ns -> cycle conversion first, using original mult */ 249 tmp = NTP_INTERVAL_LENGTH; 250 tmp <<= clock->shift; 251 ntpinterval = tmp; 252 tmp += clock->mult/2; 253 do_div(tmp, clock->mult); 254 if (tmp == 0) 255 tmp = 1; 256 257 interval = (u64) tmp; 258 tk->cycle_interval = interval; 259 260 /* Go back from cycles -> shifted ns */ 261 tk->xtime_interval = interval * clock->mult; 262 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 263 tk->raw_interval = (interval * clock->mult) >> clock->shift; 264 265 /* if changing clocks, convert xtime_nsec shift units */ 266 if (old_clock) { 267 int shift_change = clock->shift - old_clock->shift; 268 if (shift_change < 0) 269 tk->tkr_mono.xtime_nsec >>= -shift_change; 270 else 271 tk->tkr_mono.xtime_nsec <<= shift_change; 272 } 273 tk->tkr_raw.xtime_nsec = 0; 274 275 tk->tkr_mono.shift = clock->shift; 276 tk->tkr_raw.shift = clock->shift; 277 278 tk->ntp_error = 0; 279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 281 282 /* 283 * The timekeeper keeps its own mult values for the currently 284 * active clocksource. These value will be adjusted via NTP 285 * to counteract clock drifting. 286 */ 287 tk->tkr_mono.mult = clock->mult; 288 tk->tkr_raw.mult = clock->mult; 289 tk->ntp_err_mult = 0; 290 } 291 292 /* Timekeeper helper functions. */ 293 294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 295 static u32 default_arch_gettimeoffset(void) { return 0; } 296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 297 #else 298 static inline u32 arch_gettimeoffset(void) { return 0; } 299 #endif 300 301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) 302 { 303 u64 nsec; 304 305 nsec = delta * tkr->mult + tkr->xtime_nsec; 306 nsec >>= tkr->shift; 307 308 /* If arch requires, add in get_arch_timeoffset() */ 309 return nsec + arch_gettimeoffset(); 310 } 311 312 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 313 { 314 u64 delta; 315 316 delta = timekeeping_get_delta(tkr); 317 return timekeeping_delta_to_ns(tkr, delta); 318 } 319 320 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) 321 { 322 u64 delta; 323 324 /* calculate the delta since the last update_wall_time */ 325 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 326 return timekeeping_delta_to_ns(tkr, delta); 327 } 328 329 /** 330 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 331 * @tkr: Timekeeping readout base from which we take the update 332 * 333 * We want to use this from any context including NMI and tracing / 334 * instrumenting the timekeeping code itself. 335 * 336 * Employ the latch technique; see @raw_write_seqcount_latch. 337 * 338 * So if a NMI hits the update of base[0] then it will use base[1] 339 * which is still consistent. In the worst case this can result is a 340 * slightly wrong timestamp (a few nanoseconds). See 341 * @ktime_get_mono_fast_ns. 342 */ 343 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 344 { 345 struct tk_read_base *base = tkf->base; 346 347 /* Force readers off to base[1] */ 348 raw_write_seqcount_latch(&tkf->seq); 349 350 /* Update base[0] */ 351 memcpy(base, tkr, sizeof(*base)); 352 353 /* Force readers back to base[0] */ 354 raw_write_seqcount_latch(&tkf->seq); 355 356 /* Update base[1] */ 357 memcpy(base + 1, base, sizeof(*base)); 358 } 359 360 /** 361 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 362 * 363 * This timestamp is not guaranteed to be monotonic across an update. 364 * The timestamp is calculated by: 365 * 366 * now = base_mono + clock_delta * slope 367 * 368 * So if the update lowers the slope, readers who are forced to the 369 * not yet updated second array are still using the old steeper slope. 370 * 371 * tmono 372 * ^ 373 * | o n 374 * | o n 375 * | u 376 * | o 377 * |o 378 * |12345678---> reader order 379 * 380 * o = old slope 381 * u = update 382 * n = new slope 383 * 384 * So reader 6 will observe time going backwards versus reader 5. 385 * 386 * While other CPUs are likely to be able observe that, the only way 387 * for a CPU local observation is when an NMI hits in the middle of 388 * the update. Timestamps taken from that NMI context might be ahead 389 * of the following timestamps. Callers need to be aware of that and 390 * deal with it. 391 */ 392 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 393 { 394 struct tk_read_base *tkr; 395 unsigned int seq; 396 u64 now; 397 398 do { 399 seq = raw_read_seqcount_latch(&tkf->seq); 400 tkr = tkf->base + (seq & 0x01); 401 now = ktime_to_ns(tkr->base); 402 403 now += timekeeping_delta_to_ns(tkr, 404 clocksource_delta( 405 tkr->read(tkr->clock), 406 tkr->cycle_last, 407 tkr->mask)); 408 } while (read_seqcount_retry(&tkf->seq, seq)); 409 410 return now; 411 } 412 413 u64 ktime_get_mono_fast_ns(void) 414 { 415 return __ktime_get_fast_ns(&tk_fast_mono); 416 } 417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 418 419 u64 ktime_get_raw_fast_ns(void) 420 { 421 return __ktime_get_fast_ns(&tk_fast_raw); 422 } 423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 424 425 /** 426 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 427 * 428 * To keep it NMI safe since we're accessing from tracing, we're not using a 429 * separate timekeeper with updates to monotonic clock and boot offset 430 * protected with seqlocks. This has the following minor side effects: 431 * 432 * (1) Its possible that a timestamp be taken after the boot offset is updated 433 * but before the timekeeper is updated. If this happens, the new boot offset 434 * is added to the old timekeeping making the clock appear to update slightly 435 * earlier: 436 * CPU 0 CPU 1 437 * timekeeping_inject_sleeptime64() 438 * __timekeeping_inject_sleeptime(tk, delta); 439 * timestamp(); 440 * timekeeping_update(tk, TK_CLEAR_NTP...); 441 * 442 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 443 * partially updated. Since the tk->offs_boot update is a rare event, this 444 * should be a rare occurrence which postprocessing should be able to handle. 445 */ 446 u64 notrace ktime_get_boot_fast_ns(void) 447 { 448 struct timekeeper *tk = &tk_core.timekeeper; 449 450 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 451 } 452 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 453 454 /* Suspend-time cycles value for halted fast timekeeper. */ 455 static u64 cycles_at_suspend; 456 457 static u64 dummy_clock_read(struct clocksource *cs) 458 { 459 return cycles_at_suspend; 460 } 461 462 /** 463 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 464 * @tk: Timekeeper to snapshot. 465 * 466 * It generally is unsafe to access the clocksource after timekeeping has been 467 * suspended, so take a snapshot of the readout base of @tk and use it as the 468 * fast timekeeper's readout base while suspended. It will return the same 469 * number of cycles every time until timekeeping is resumed at which time the 470 * proper readout base for the fast timekeeper will be restored automatically. 471 */ 472 static void halt_fast_timekeeper(struct timekeeper *tk) 473 { 474 static struct tk_read_base tkr_dummy; 475 struct tk_read_base *tkr = &tk->tkr_mono; 476 477 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 478 cycles_at_suspend = tkr->read(tkr->clock); 479 tkr_dummy.read = dummy_clock_read; 480 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 481 482 tkr = &tk->tkr_raw; 483 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 484 tkr_dummy.read = dummy_clock_read; 485 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 486 } 487 488 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 489 490 static inline void update_vsyscall(struct timekeeper *tk) 491 { 492 struct timespec xt, wm; 493 494 xt = timespec64_to_timespec(tk_xtime(tk)); 495 wm = timespec64_to_timespec(tk->wall_to_monotonic); 496 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 497 tk->tkr_mono.cycle_last); 498 } 499 500 static inline void old_vsyscall_fixup(struct timekeeper *tk) 501 { 502 s64 remainder; 503 504 /* 505 * Store only full nanoseconds into xtime_nsec after rounding 506 * it up and add the remainder to the error difference. 507 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 508 * by truncating the remainder in vsyscalls. However, it causes 509 * additional work to be done in timekeeping_adjust(). Once 510 * the vsyscall implementations are converted to use xtime_nsec 511 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 512 * users are removed, this can be killed. 513 */ 514 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 515 if (remainder != 0) { 516 tk->tkr_mono.xtime_nsec -= remainder; 517 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 518 tk->ntp_error += remainder << tk->ntp_error_shift; 519 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 520 } 521 } 522 #else 523 #define old_vsyscall_fixup(tk) 524 #endif 525 526 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 527 528 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 529 { 530 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 531 } 532 533 /** 534 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 535 */ 536 int pvclock_gtod_register_notifier(struct notifier_block *nb) 537 { 538 struct timekeeper *tk = &tk_core.timekeeper; 539 unsigned long flags; 540 int ret; 541 542 raw_spin_lock_irqsave(&timekeeper_lock, flags); 543 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 544 update_pvclock_gtod(tk, true); 545 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 546 547 return ret; 548 } 549 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 550 551 /** 552 * pvclock_gtod_unregister_notifier - unregister a pvclock 553 * timedata update listener 554 */ 555 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 556 { 557 unsigned long flags; 558 int ret; 559 560 raw_spin_lock_irqsave(&timekeeper_lock, flags); 561 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 562 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 563 564 return ret; 565 } 566 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 567 568 /* 569 * tk_update_leap_state - helper to update the next_leap_ktime 570 */ 571 static inline void tk_update_leap_state(struct timekeeper *tk) 572 { 573 tk->next_leap_ktime = ntp_get_next_leap(); 574 if (tk->next_leap_ktime != KTIME_MAX) 575 /* Convert to monotonic time */ 576 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 577 } 578 579 /* 580 * Update the ktime_t based scalar nsec members of the timekeeper 581 */ 582 static inline void tk_update_ktime_data(struct timekeeper *tk) 583 { 584 u64 seconds; 585 u32 nsec; 586 587 /* 588 * The xtime based monotonic readout is: 589 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 590 * The ktime based monotonic readout is: 591 * nsec = base_mono + now(); 592 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 593 */ 594 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 595 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 596 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 597 598 /* Update the monotonic raw base */ 599 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 600 601 /* 602 * The sum of the nanoseconds portions of xtime and 603 * wall_to_monotonic can be greater/equal one second. Take 604 * this into account before updating tk->ktime_sec. 605 */ 606 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 607 if (nsec >= NSEC_PER_SEC) 608 seconds++; 609 tk->ktime_sec = seconds; 610 } 611 612 /* must hold timekeeper_lock */ 613 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 614 { 615 if (action & TK_CLEAR_NTP) { 616 tk->ntp_error = 0; 617 ntp_clear(); 618 } 619 620 tk_update_leap_state(tk); 621 tk_update_ktime_data(tk); 622 623 update_vsyscall(tk); 624 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 625 626 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 627 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 628 629 if (action & TK_CLOCK_WAS_SET) 630 tk->clock_was_set_seq++; 631 /* 632 * The mirroring of the data to the shadow-timekeeper needs 633 * to happen last here to ensure we don't over-write the 634 * timekeeper structure on the next update with stale data 635 */ 636 if (action & TK_MIRROR) 637 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 638 sizeof(tk_core.timekeeper)); 639 } 640 641 /** 642 * timekeeping_forward_now - update clock to the current time 643 * 644 * Forward the current clock to update its state since the last call to 645 * update_wall_time(). This is useful before significant clock changes, 646 * as it avoids having to deal with this time offset explicitly. 647 */ 648 static void timekeeping_forward_now(struct timekeeper *tk) 649 { 650 struct clocksource *clock = tk->tkr_mono.clock; 651 u64 cycle_now, delta; 652 u64 nsec; 653 654 cycle_now = tk->tkr_mono.read(clock); 655 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 656 tk->tkr_mono.cycle_last = cycle_now; 657 tk->tkr_raw.cycle_last = cycle_now; 658 659 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 660 661 /* If arch requires, add in get_arch_timeoffset() */ 662 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 663 664 tk_normalize_xtime(tk); 665 666 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 667 timespec64_add_ns(&tk->raw_time, nsec); 668 } 669 670 /** 671 * __getnstimeofday64 - Returns the time of day in a timespec64. 672 * @ts: pointer to the timespec to be set 673 * 674 * Updates the time of day in the timespec. 675 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 676 */ 677 int __getnstimeofday64(struct timespec64 *ts) 678 { 679 struct timekeeper *tk = &tk_core.timekeeper; 680 unsigned long seq; 681 u64 nsecs; 682 683 do { 684 seq = read_seqcount_begin(&tk_core.seq); 685 686 ts->tv_sec = tk->xtime_sec; 687 nsecs = timekeeping_get_ns(&tk->tkr_mono); 688 689 } while (read_seqcount_retry(&tk_core.seq, seq)); 690 691 ts->tv_nsec = 0; 692 timespec64_add_ns(ts, nsecs); 693 694 /* 695 * Do not bail out early, in case there were callers still using 696 * the value, even in the face of the WARN_ON. 697 */ 698 if (unlikely(timekeeping_suspended)) 699 return -EAGAIN; 700 return 0; 701 } 702 EXPORT_SYMBOL(__getnstimeofday64); 703 704 /** 705 * getnstimeofday64 - Returns the time of day in a timespec64. 706 * @ts: pointer to the timespec64 to be set 707 * 708 * Returns the time of day in a timespec64 (WARN if suspended). 709 */ 710 void getnstimeofday64(struct timespec64 *ts) 711 { 712 WARN_ON(__getnstimeofday64(ts)); 713 } 714 EXPORT_SYMBOL(getnstimeofday64); 715 716 ktime_t ktime_get(void) 717 { 718 struct timekeeper *tk = &tk_core.timekeeper; 719 unsigned int seq; 720 ktime_t base; 721 u64 nsecs; 722 723 WARN_ON(timekeeping_suspended); 724 725 do { 726 seq = read_seqcount_begin(&tk_core.seq); 727 base = tk->tkr_mono.base; 728 nsecs = timekeeping_get_ns(&tk->tkr_mono); 729 730 } while (read_seqcount_retry(&tk_core.seq, seq)); 731 732 return ktime_add_ns(base, nsecs); 733 } 734 EXPORT_SYMBOL_GPL(ktime_get); 735 736 u32 ktime_get_resolution_ns(void) 737 { 738 struct timekeeper *tk = &tk_core.timekeeper; 739 unsigned int seq; 740 u32 nsecs; 741 742 WARN_ON(timekeeping_suspended); 743 744 do { 745 seq = read_seqcount_begin(&tk_core.seq); 746 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 747 } while (read_seqcount_retry(&tk_core.seq, seq)); 748 749 return nsecs; 750 } 751 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 752 753 static ktime_t *offsets[TK_OFFS_MAX] = { 754 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 755 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 756 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 757 }; 758 759 ktime_t ktime_get_with_offset(enum tk_offsets offs) 760 { 761 struct timekeeper *tk = &tk_core.timekeeper; 762 unsigned int seq; 763 ktime_t base, *offset = offsets[offs]; 764 u64 nsecs; 765 766 WARN_ON(timekeeping_suspended); 767 768 do { 769 seq = read_seqcount_begin(&tk_core.seq); 770 base = ktime_add(tk->tkr_mono.base, *offset); 771 nsecs = timekeeping_get_ns(&tk->tkr_mono); 772 773 } while (read_seqcount_retry(&tk_core.seq, seq)); 774 775 return ktime_add_ns(base, nsecs); 776 777 } 778 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 779 780 /** 781 * ktime_mono_to_any() - convert mononotic time to any other time 782 * @tmono: time to convert. 783 * @offs: which offset to use 784 */ 785 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 786 { 787 ktime_t *offset = offsets[offs]; 788 unsigned long seq; 789 ktime_t tconv; 790 791 do { 792 seq = read_seqcount_begin(&tk_core.seq); 793 tconv = ktime_add(tmono, *offset); 794 } while (read_seqcount_retry(&tk_core.seq, seq)); 795 796 return tconv; 797 } 798 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 799 800 /** 801 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 802 */ 803 ktime_t ktime_get_raw(void) 804 { 805 struct timekeeper *tk = &tk_core.timekeeper; 806 unsigned int seq; 807 ktime_t base; 808 u64 nsecs; 809 810 do { 811 seq = read_seqcount_begin(&tk_core.seq); 812 base = tk->tkr_raw.base; 813 nsecs = timekeeping_get_ns(&tk->tkr_raw); 814 815 } while (read_seqcount_retry(&tk_core.seq, seq)); 816 817 return ktime_add_ns(base, nsecs); 818 } 819 EXPORT_SYMBOL_GPL(ktime_get_raw); 820 821 /** 822 * ktime_get_ts64 - get the monotonic clock in timespec64 format 823 * @ts: pointer to timespec variable 824 * 825 * The function calculates the monotonic clock from the realtime 826 * clock and the wall_to_monotonic offset and stores the result 827 * in normalized timespec64 format in the variable pointed to by @ts. 828 */ 829 void ktime_get_ts64(struct timespec64 *ts) 830 { 831 struct timekeeper *tk = &tk_core.timekeeper; 832 struct timespec64 tomono; 833 unsigned int seq; 834 u64 nsec; 835 836 WARN_ON(timekeeping_suspended); 837 838 do { 839 seq = read_seqcount_begin(&tk_core.seq); 840 ts->tv_sec = tk->xtime_sec; 841 nsec = timekeeping_get_ns(&tk->tkr_mono); 842 tomono = tk->wall_to_monotonic; 843 844 } while (read_seqcount_retry(&tk_core.seq, seq)); 845 846 ts->tv_sec += tomono.tv_sec; 847 ts->tv_nsec = 0; 848 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 849 } 850 EXPORT_SYMBOL_GPL(ktime_get_ts64); 851 852 /** 853 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 854 * 855 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 856 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 857 * works on both 32 and 64 bit systems. On 32 bit systems the readout 858 * covers ~136 years of uptime which should be enough to prevent 859 * premature wrap arounds. 860 */ 861 time64_t ktime_get_seconds(void) 862 { 863 struct timekeeper *tk = &tk_core.timekeeper; 864 865 WARN_ON(timekeeping_suspended); 866 return tk->ktime_sec; 867 } 868 EXPORT_SYMBOL_GPL(ktime_get_seconds); 869 870 /** 871 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 872 * 873 * Returns the wall clock seconds since 1970. This replaces the 874 * get_seconds() interface which is not y2038 safe on 32bit systems. 875 * 876 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 877 * 32bit systems the access must be protected with the sequence 878 * counter to provide "atomic" access to the 64bit tk->xtime_sec 879 * value. 880 */ 881 time64_t ktime_get_real_seconds(void) 882 { 883 struct timekeeper *tk = &tk_core.timekeeper; 884 time64_t seconds; 885 unsigned int seq; 886 887 if (IS_ENABLED(CONFIG_64BIT)) 888 return tk->xtime_sec; 889 890 do { 891 seq = read_seqcount_begin(&tk_core.seq); 892 seconds = tk->xtime_sec; 893 894 } while (read_seqcount_retry(&tk_core.seq, seq)); 895 896 return seconds; 897 } 898 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 899 900 /** 901 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 902 * but without the sequence counter protect. This internal function 903 * is called just when timekeeping lock is already held. 904 */ 905 time64_t __ktime_get_real_seconds(void) 906 { 907 struct timekeeper *tk = &tk_core.timekeeper; 908 909 return tk->xtime_sec; 910 } 911 912 /** 913 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 914 * @systime_snapshot: pointer to struct receiving the system time snapshot 915 */ 916 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 917 { 918 struct timekeeper *tk = &tk_core.timekeeper; 919 unsigned long seq; 920 ktime_t base_raw; 921 ktime_t base_real; 922 u64 nsec_raw; 923 u64 nsec_real; 924 u64 now; 925 926 WARN_ON_ONCE(timekeeping_suspended); 927 928 do { 929 seq = read_seqcount_begin(&tk_core.seq); 930 931 now = tk->tkr_mono.read(tk->tkr_mono.clock); 932 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 933 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 934 base_real = ktime_add(tk->tkr_mono.base, 935 tk_core.timekeeper.offs_real); 936 base_raw = tk->tkr_raw.base; 937 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 938 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 939 } while (read_seqcount_retry(&tk_core.seq, seq)); 940 941 systime_snapshot->cycles = now; 942 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 943 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 944 } 945 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 946 947 /* Scale base by mult/div checking for overflow */ 948 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 949 { 950 u64 tmp, rem; 951 952 tmp = div64_u64_rem(*base, div, &rem); 953 954 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 955 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 956 return -EOVERFLOW; 957 tmp *= mult; 958 rem *= mult; 959 960 do_div(rem, div); 961 *base = tmp + rem; 962 return 0; 963 } 964 965 /** 966 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 967 * @history: Snapshot representing start of history 968 * @partial_history_cycles: Cycle offset into history (fractional part) 969 * @total_history_cycles: Total history length in cycles 970 * @discontinuity: True indicates clock was set on history period 971 * @ts: Cross timestamp that should be adjusted using 972 * partial/total ratio 973 * 974 * Helper function used by get_device_system_crosststamp() to correct the 975 * crosstimestamp corresponding to the start of the current interval to the 976 * system counter value (timestamp point) provided by the driver. The 977 * total_history_* quantities are the total history starting at the provided 978 * reference point and ending at the start of the current interval. The cycle 979 * count between the driver timestamp point and the start of the current 980 * interval is partial_history_cycles. 981 */ 982 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 983 u64 partial_history_cycles, 984 u64 total_history_cycles, 985 bool discontinuity, 986 struct system_device_crosststamp *ts) 987 { 988 struct timekeeper *tk = &tk_core.timekeeper; 989 u64 corr_raw, corr_real; 990 bool interp_forward; 991 int ret; 992 993 if (total_history_cycles == 0 || partial_history_cycles == 0) 994 return 0; 995 996 /* Interpolate shortest distance from beginning or end of history */ 997 interp_forward = partial_history_cycles > total_history_cycles/2 ? 998 true : false; 999 partial_history_cycles = interp_forward ? 1000 total_history_cycles - partial_history_cycles : 1001 partial_history_cycles; 1002 1003 /* 1004 * Scale the monotonic raw time delta by: 1005 * partial_history_cycles / total_history_cycles 1006 */ 1007 corr_raw = (u64)ktime_to_ns( 1008 ktime_sub(ts->sys_monoraw, history->raw)); 1009 ret = scale64_check_overflow(partial_history_cycles, 1010 total_history_cycles, &corr_raw); 1011 if (ret) 1012 return ret; 1013 1014 /* 1015 * If there is a discontinuity in the history, scale monotonic raw 1016 * correction by: 1017 * mult(real)/mult(raw) yielding the realtime correction 1018 * Otherwise, calculate the realtime correction similar to monotonic 1019 * raw calculation 1020 */ 1021 if (discontinuity) { 1022 corr_real = mul_u64_u32_div 1023 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1024 } else { 1025 corr_real = (u64)ktime_to_ns( 1026 ktime_sub(ts->sys_realtime, history->real)); 1027 ret = scale64_check_overflow(partial_history_cycles, 1028 total_history_cycles, &corr_real); 1029 if (ret) 1030 return ret; 1031 } 1032 1033 /* Fixup monotonic raw and real time time values */ 1034 if (interp_forward) { 1035 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1036 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1037 } else { 1038 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1039 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1040 } 1041 1042 return 0; 1043 } 1044 1045 /* 1046 * cycle_between - true if test occurs chronologically between before and after 1047 */ 1048 static bool cycle_between(u64 before, u64 test, u64 after) 1049 { 1050 if (test > before && test < after) 1051 return true; 1052 if (test < before && before > after) 1053 return true; 1054 return false; 1055 } 1056 1057 /** 1058 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1059 * @get_time_fn: Callback to get simultaneous device time and 1060 * system counter from the device driver 1061 * @ctx: Context passed to get_time_fn() 1062 * @history_begin: Historical reference point used to interpolate system 1063 * time when counter provided by the driver is before the current interval 1064 * @xtstamp: Receives simultaneously captured system and device time 1065 * 1066 * Reads a timestamp from a device and correlates it to system time 1067 */ 1068 int get_device_system_crosststamp(int (*get_time_fn) 1069 (ktime_t *device_time, 1070 struct system_counterval_t *sys_counterval, 1071 void *ctx), 1072 void *ctx, 1073 struct system_time_snapshot *history_begin, 1074 struct system_device_crosststamp *xtstamp) 1075 { 1076 struct system_counterval_t system_counterval; 1077 struct timekeeper *tk = &tk_core.timekeeper; 1078 u64 cycles, now, interval_start; 1079 unsigned int clock_was_set_seq = 0; 1080 ktime_t base_real, base_raw; 1081 u64 nsec_real, nsec_raw; 1082 u8 cs_was_changed_seq; 1083 unsigned long seq; 1084 bool do_interp; 1085 int ret; 1086 1087 do { 1088 seq = read_seqcount_begin(&tk_core.seq); 1089 /* 1090 * Try to synchronously capture device time and a system 1091 * counter value calling back into the device driver 1092 */ 1093 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1094 if (ret) 1095 return ret; 1096 1097 /* 1098 * Verify that the clocksource associated with the captured 1099 * system counter value is the same as the currently installed 1100 * timekeeper clocksource 1101 */ 1102 if (tk->tkr_mono.clock != system_counterval.cs) 1103 return -ENODEV; 1104 cycles = system_counterval.cycles; 1105 1106 /* 1107 * Check whether the system counter value provided by the 1108 * device driver is on the current timekeeping interval. 1109 */ 1110 now = tk->tkr_mono.read(tk->tkr_mono.clock); 1111 interval_start = tk->tkr_mono.cycle_last; 1112 if (!cycle_between(interval_start, cycles, now)) { 1113 clock_was_set_seq = tk->clock_was_set_seq; 1114 cs_was_changed_seq = tk->cs_was_changed_seq; 1115 cycles = interval_start; 1116 do_interp = true; 1117 } else { 1118 do_interp = false; 1119 } 1120 1121 base_real = ktime_add(tk->tkr_mono.base, 1122 tk_core.timekeeper.offs_real); 1123 base_raw = tk->tkr_raw.base; 1124 1125 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1126 system_counterval.cycles); 1127 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1128 system_counterval.cycles); 1129 } while (read_seqcount_retry(&tk_core.seq, seq)); 1130 1131 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1132 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1133 1134 /* 1135 * Interpolate if necessary, adjusting back from the start of the 1136 * current interval 1137 */ 1138 if (do_interp) { 1139 u64 partial_history_cycles, total_history_cycles; 1140 bool discontinuity; 1141 1142 /* 1143 * Check that the counter value occurs after the provided 1144 * history reference and that the history doesn't cross a 1145 * clocksource change 1146 */ 1147 if (!history_begin || 1148 !cycle_between(history_begin->cycles, 1149 system_counterval.cycles, cycles) || 1150 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1151 return -EINVAL; 1152 partial_history_cycles = cycles - system_counterval.cycles; 1153 total_history_cycles = cycles - history_begin->cycles; 1154 discontinuity = 1155 history_begin->clock_was_set_seq != clock_was_set_seq; 1156 1157 ret = adjust_historical_crosststamp(history_begin, 1158 partial_history_cycles, 1159 total_history_cycles, 1160 discontinuity, xtstamp); 1161 if (ret) 1162 return ret; 1163 } 1164 1165 return 0; 1166 } 1167 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1168 1169 /** 1170 * do_gettimeofday - Returns the time of day in a timeval 1171 * @tv: pointer to the timeval to be set 1172 * 1173 * NOTE: Users should be converted to using getnstimeofday() 1174 */ 1175 void do_gettimeofday(struct timeval *tv) 1176 { 1177 struct timespec64 now; 1178 1179 getnstimeofday64(&now); 1180 tv->tv_sec = now.tv_sec; 1181 tv->tv_usec = now.tv_nsec/1000; 1182 } 1183 EXPORT_SYMBOL(do_gettimeofday); 1184 1185 /** 1186 * do_settimeofday64 - Sets the time of day. 1187 * @ts: pointer to the timespec64 variable containing the new time 1188 * 1189 * Sets the time of day to the new time and update NTP and notify hrtimers 1190 */ 1191 int do_settimeofday64(const struct timespec64 *ts) 1192 { 1193 struct timekeeper *tk = &tk_core.timekeeper; 1194 struct timespec64 ts_delta, xt; 1195 unsigned long flags; 1196 int ret = 0; 1197 1198 if (!timespec64_valid_strict(ts)) 1199 return -EINVAL; 1200 1201 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1202 write_seqcount_begin(&tk_core.seq); 1203 1204 timekeeping_forward_now(tk); 1205 1206 xt = tk_xtime(tk); 1207 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1208 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1209 1210 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1211 ret = -EINVAL; 1212 goto out; 1213 } 1214 1215 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1216 1217 tk_set_xtime(tk, ts); 1218 out: 1219 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1220 1221 write_seqcount_end(&tk_core.seq); 1222 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1223 1224 /* signal hrtimers about time change */ 1225 clock_was_set(); 1226 1227 return ret; 1228 } 1229 EXPORT_SYMBOL(do_settimeofday64); 1230 1231 /** 1232 * timekeeping_inject_offset - Adds or subtracts from the current time. 1233 * @tv: pointer to the timespec variable containing the offset 1234 * 1235 * Adds or subtracts an offset value from the current time. 1236 */ 1237 int timekeeping_inject_offset(struct timespec *ts) 1238 { 1239 struct timekeeper *tk = &tk_core.timekeeper; 1240 unsigned long flags; 1241 struct timespec64 ts64, tmp; 1242 int ret = 0; 1243 1244 if (!timespec_inject_offset_valid(ts)) 1245 return -EINVAL; 1246 1247 ts64 = timespec_to_timespec64(*ts); 1248 1249 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1250 write_seqcount_begin(&tk_core.seq); 1251 1252 timekeeping_forward_now(tk); 1253 1254 /* Make sure the proposed value is valid */ 1255 tmp = timespec64_add(tk_xtime(tk), ts64); 1256 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1257 !timespec64_valid_strict(&tmp)) { 1258 ret = -EINVAL; 1259 goto error; 1260 } 1261 1262 tk_xtime_add(tk, &ts64); 1263 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1264 1265 error: /* even if we error out, we forwarded the time, so call update */ 1266 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1267 1268 write_seqcount_end(&tk_core.seq); 1269 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1270 1271 /* signal hrtimers about time change */ 1272 clock_was_set(); 1273 1274 return ret; 1275 } 1276 EXPORT_SYMBOL(timekeeping_inject_offset); 1277 1278 1279 /** 1280 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 1281 * 1282 */ 1283 s32 timekeeping_get_tai_offset(void) 1284 { 1285 struct timekeeper *tk = &tk_core.timekeeper; 1286 unsigned int seq; 1287 s32 ret; 1288 1289 do { 1290 seq = read_seqcount_begin(&tk_core.seq); 1291 ret = tk->tai_offset; 1292 } while (read_seqcount_retry(&tk_core.seq, seq)); 1293 1294 return ret; 1295 } 1296 1297 /** 1298 * __timekeeping_set_tai_offset - Lock free worker function 1299 * 1300 */ 1301 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1302 { 1303 tk->tai_offset = tai_offset; 1304 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1305 } 1306 1307 /** 1308 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1309 * 1310 */ 1311 void timekeeping_set_tai_offset(s32 tai_offset) 1312 { 1313 struct timekeeper *tk = &tk_core.timekeeper; 1314 unsigned long flags; 1315 1316 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1317 write_seqcount_begin(&tk_core.seq); 1318 __timekeeping_set_tai_offset(tk, tai_offset); 1319 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1320 write_seqcount_end(&tk_core.seq); 1321 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1322 clock_was_set(); 1323 } 1324 1325 /** 1326 * change_clocksource - Swaps clocksources if a new one is available 1327 * 1328 * Accumulates current time interval and initializes new clocksource 1329 */ 1330 static int change_clocksource(void *data) 1331 { 1332 struct timekeeper *tk = &tk_core.timekeeper; 1333 struct clocksource *new, *old; 1334 unsigned long flags; 1335 1336 new = (struct clocksource *) data; 1337 1338 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1339 write_seqcount_begin(&tk_core.seq); 1340 1341 timekeeping_forward_now(tk); 1342 /* 1343 * If the cs is in module, get a module reference. Succeeds 1344 * for built-in code (owner == NULL) as well. 1345 */ 1346 if (try_module_get(new->owner)) { 1347 if (!new->enable || new->enable(new) == 0) { 1348 old = tk->tkr_mono.clock; 1349 tk_setup_internals(tk, new); 1350 if (old->disable) 1351 old->disable(old); 1352 module_put(old->owner); 1353 } else { 1354 module_put(new->owner); 1355 } 1356 } 1357 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1358 1359 write_seqcount_end(&tk_core.seq); 1360 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1361 1362 return 0; 1363 } 1364 1365 /** 1366 * timekeeping_notify - Install a new clock source 1367 * @clock: pointer to the clock source 1368 * 1369 * This function is called from clocksource.c after a new, better clock 1370 * source has been registered. The caller holds the clocksource_mutex. 1371 */ 1372 int timekeeping_notify(struct clocksource *clock) 1373 { 1374 struct timekeeper *tk = &tk_core.timekeeper; 1375 1376 if (tk->tkr_mono.clock == clock) 1377 return 0; 1378 stop_machine(change_clocksource, clock, NULL); 1379 tick_clock_notify(); 1380 return tk->tkr_mono.clock == clock ? 0 : -1; 1381 } 1382 1383 /** 1384 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1385 * @ts: pointer to the timespec64 to be set 1386 * 1387 * Returns the raw monotonic time (completely un-modified by ntp) 1388 */ 1389 void getrawmonotonic64(struct timespec64 *ts) 1390 { 1391 struct timekeeper *tk = &tk_core.timekeeper; 1392 struct timespec64 ts64; 1393 unsigned long seq; 1394 u64 nsecs; 1395 1396 do { 1397 seq = read_seqcount_begin(&tk_core.seq); 1398 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1399 ts64 = tk->raw_time; 1400 1401 } while (read_seqcount_retry(&tk_core.seq, seq)); 1402 1403 timespec64_add_ns(&ts64, nsecs); 1404 *ts = ts64; 1405 } 1406 EXPORT_SYMBOL(getrawmonotonic64); 1407 1408 1409 /** 1410 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1411 */ 1412 int timekeeping_valid_for_hres(void) 1413 { 1414 struct timekeeper *tk = &tk_core.timekeeper; 1415 unsigned long seq; 1416 int ret; 1417 1418 do { 1419 seq = read_seqcount_begin(&tk_core.seq); 1420 1421 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1422 1423 } while (read_seqcount_retry(&tk_core.seq, seq)); 1424 1425 return ret; 1426 } 1427 1428 /** 1429 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1430 */ 1431 u64 timekeeping_max_deferment(void) 1432 { 1433 struct timekeeper *tk = &tk_core.timekeeper; 1434 unsigned long seq; 1435 u64 ret; 1436 1437 do { 1438 seq = read_seqcount_begin(&tk_core.seq); 1439 1440 ret = tk->tkr_mono.clock->max_idle_ns; 1441 1442 } while (read_seqcount_retry(&tk_core.seq, seq)); 1443 1444 return ret; 1445 } 1446 1447 /** 1448 * read_persistent_clock - Return time from the persistent clock. 1449 * 1450 * Weak dummy function for arches that do not yet support it. 1451 * Reads the time from the battery backed persistent clock. 1452 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1453 * 1454 * XXX - Do be sure to remove it once all arches implement it. 1455 */ 1456 void __weak read_persistent_clock(struct timespec *ts) 1457 { 1458 ts->tv_sec = 0; 1459 ts->tv_nsec = 0; 1460 } 1461 1462 void __weak read_persistent_clock64(struct timespec64 *ts64) 1463 { 1464 struct timespec ts; 1465 1466 read_persistent_clock(&ts); 1467 *ts64 = timespec_to_timespec64(ts); 1468 } 1469 1470 /** 1471 * read_boot_clock64 - Return time of the system start. 1472 * 1473 * Weak dummy function for arches that do not yet support it. 1474 * Function to read the exact time the system has been started. 1475 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1476 * 1477 * XXX - Do be sure to remove it once all arches implement it. 1478 */ 1479 void __weak read_boot_clock64(struct timespec64 *ts) 1480 { 1481 ts->tv_sec = 0; 1482 ts->tv_nsec = 0; 1483 } 1484 1485 /* Flag for if timekeeping_resume() has injected sleeptime */ 1486 static bool sleeptime_injected; 1487 1488 /* Flag for if there is a persistent clock on this platform */ 1489 static bool persistent_clock_exists; 1490 1491 /* 1492 * timekeeping_init - Initializes the clocksource and common timekeeping values 1493 */ 1494 void __init timekeeping_init(void) 1495 { 1496 struct timekeeper *tk = &tk_core.timekeeper; 1497 struct clocksource *clock; 1498 unsigned long flags; 1499 struct timespec64 now, boot, tmp; 1500 1501 read_persistent_clock64(&now); 1502 if (!timespec64_valid_strict(&now)) { 1503 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1504 " Check your CMOS/BIOS settings.\n"); 1505 now.tv_sec = 0; 1506 now.tv_nsec = 0; 1507 } else if (now.tv_sec || now.tv_nsec) 1508 persistent_clock_exists = true; 1509 1510 read_boot_clock64(&boot); 1511 if (!timespec64_valid_strict(&boot)) { 1512 pr_warn("WARNING: Boot clock returned invalid value!\n" 1513 " Check your CMOS/BIOS settings.\n"); 1514 boot.tv_sec = 0; 1515 boot.tv_nsec = 0; 1516 } 1517 1518 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1519 write_seqcount_begin(&tk_core.seq); 1520 ntp_init(); 1521 1522 clock = clocksource_default_clock(); 1523 if (clock->enable) 1524 clock->enable(clock); 1525 tk_setup_internals(tk, clock); 1526 1527 tk_set_xtime(tk, &now); 1528 tk->raw_time.tv_sec = 0; 1529 tk->raw_time.tv_nsec = 0; 1530 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1531 boot = tk_xtime(tk); 1532 1533 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1534 tk_set_wall_to_mono(tk, tmp); 1535 1536 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1537 1538 write_seqcount_end(&tk_core.seq); 1539 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1540 } 1541 1542 /* time in seconds when suspend began for persistent clock */ 1543 static struct timespec64 timekeeping_suspend_time; 1544 1545 /** 1546 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1547 * @delta: pointer to a timespec delta value 1548 * 1549 * Takes a timespec offset measuring a suspend interval and properly 1550 * adds the sleep offset to the timekeeping variables. 1551 */ 1552 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1553 struct timespec64 *delta) 1554 { 1555 if (!timespec64_valid_strict(delta)) { 1556 printk_deferred(KERN_WARNING 1557 "__timekeeping_inject_sleeptime: Invalid " 1558 "sleep delta value!\n"); 1559 return; 1560 } 1561 tk_xtime_add(tk, delta); 1562 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1563 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1564 tk_debug_account_sleep_time(delta); 1565 } 1566 1567 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1568 /** 1569 * We have three kinds of time sources to use for sleep time 1570 * injection, the preference order is: 1571 * 1) non-stop clocksource 1572 * 2) persistent clock (ie: RTC accessible when irqs are off) 1573 * 3) RTC 1574 * 1575 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1576 * If system has neither 1) nor 2), 3) will be used finally. 1577 * 1578 * 1579 * If timekeeping has injected sleeptime via either 1) or 2), 1580 * 3) becomes needless, so in this case we don't need to call 1581 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1582 * means. 1583 */ 1584 bool timekeeping_rtc_skipresume(void) 1585 { 1586 return sleeptime_injected; 1587 } 1588 1589 /** 1590 * 1) can be determined whether to use or not only when doing 1591 * timekeeping_resume() which is invoked after rtc_suspend(), 1592 * so we can't skip rtc_suspend() surely if system has 1). 1593 * 1594 * But if system has 2), 2) will definitely be used, so in this 1595 * case we don't need to call rtc_suspend(), and this is what 1596 * timekeeping_rtc_skipsuspend() means. 1597 */ 1598 bool timekeeping_rtc_skipsuspend(void) 1599 { 1600 return persistent_clock_exists; 1601 } 1602 1603 /** 1604 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1605 * @delta: pointer to a timespec64 delta value 1606 * 1607 * This hook is for architectures that cannot support read_persistent_clock64 1608 * because their RTC/persistent clock is only accessible when irqs are enabled. 1609 * and also don't have an effective nonstop clocksource. 1610 * 1611 * This function should only be called by rtc_resume(), and allows 1612 * a suspend offset to be injected into the timekeeping values. 1613 */ 1614 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1615 { 1616 struct timekeeper *tk = &tk_core.timekeeper; 1617 unsigned long flags; 1618 1619 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1620 write_seqcount_begin(&tk_core.seq); 1621 1622 timekeeping_forward_now(tk); 1623 1624 __timekeeping_inject_sleeptime(tk, delta); 1625 1626 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1627 1628 write_seqcount_end(&tk_core.seq); 1629 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1630 1631 /* signal hrtimers about time change */ 1632 clock_was_set(); 1633 } 1634 #endif 1635 1636 /** 1637 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1638 */ 1639 void timekeeping_resume(void) 1640 { 1641 struct timekeeper *tk = &tk_core.timekeeper; 1642 struct clocksource *clock = tk->tkr_mono.clock; 1643 unsigned long flags; 1644 struct timespec64 ts_new, ts_delta; 1645 u64 cycle_now; 1646 1647 sleeptime_injected = false; 1648 read_persistent_clock64(&ts_new); 1649 1650 clockevents_resume(); 1651 clocksource_resume(); 1652 1653 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1654 write_seqcount_begin(&tk_core.seq); 1655 1656 /* 1657 * After system resumes, we need to calculate the suspended time and 1658 * compensate it for the OS time. There are 3 sources that could be 1659 * used: Nonstop clocksource during suspend, persistent clock and rtc 1660 * device. 1661 * 1662 * One specific platform may have 1 or 2 or all of them, and the 1663 * preference will be: 1664 * suspend-nonstop clocksource -> persistent clock -> rtc 1665 * The less preferred source will only be tried if there is no better 1666 * usable source. The rtc part is handled separately in rtc core code. 1667 */ 1668 cycle_now = tk->tkr_mono.read(clock); 1669 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1670 cycle_now > tk->tkr_mono.cycle_last) { 1671 u64 nsec, cyc_delta; 1672 1673 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1674 tk->tkr_mono.mask); 1675 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1676 ts_delta = ns_to_timespec64(nsec); 1677 sleeptime_injected = true; 1678 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1679 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1680 sleeptime_injected = true; 1681 } 1682 1683 if (sleeptime_injected) 1684 __timekeeping_inject_sleeptime(tk, &ts_delta); 1685 1686 /* Re-base the last cycle value */ 1687 tk->tkr_mono.cycle_last = cycle_now; 1688 tk->tkr_raw.cycle_last = cycle_now; 1689 1690 tk->ntp_error = 0; 1691 timekeeping_suspended = 0; 1692 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1693 write_seqcount_end(&tk_core.seq); 1694 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1695 1696 touch_softlockup_watchdog(); 1697 1698 tick_resume(); 1699 hrtimers_resume(); 1700 } 1701 1702 int timekeeping_suspend(void) 1703 { 1704 struct timekeeper *tk = &tk_core.timekeeper; 1705 unsigned long flags; 1706 struct timespec64 delta, delta_delta; 1707 static struct timespec64 old_delta; 1708 1709 read_persistent_clock64(&timekeeping_suspend_time); 1710 1711 /* 1712 * On some systems the persistent_clock can not be detected at 1713 * timekeeping_init by its return value, so if we see a valid 1714 * value returned, update the persistent_clock_exists flag. 1715 */ 1716 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1717 persistent_clock_exists = true; 1718 1719 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1720 write_seqcount_begin(&tk_core.seq); 1721 timekeeping_forward_now(tk); 1722 timekeeping_suspended = 1; 1723 1724 if (persistent_clock_exists) { 1725 /* 1726 * To avoid drift caused by repeated suspend/resumes, 1727 * which each can add ~1 second drift error, 1728 * try to compensate so the difference in system time 1729 * and persistent_clock time stays close to constant. 1730 */ 1731 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1732 delta_delta = timespec64_sub(delta, old_delta); 1733 if (abs(delta_delta.tv_sec) >= 2) { 1734 /* 1735 * if delta_delta is too large, assume time correction 1736 * has occurred and set old_delta to the current delta. 1737 */ 1738 old_delta = delta; 1739 } else { 1740 /* Otherwise try to adjust old_system to compensate */ 1741 timekeeping_suspend_time = 1742 timespec64_add(timekeeping_suspend_time, delta_delta); 1743 } 1744 } 1745 1746 timekeeping_update(tk, TK_MIRROR); 1747 halt_fast_timekeeper(tk); 1748 write_seqcount_end(&tk_core.seq); 1749 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1750 1751 tick_suspend(); 1752 clocksource_suspend(); 1753 clockevents_suspend(); 1754 1755 return 0; 1756 } 1757 1758 /* sysfs resume/suspend bits for timekeeping */ 1759 static struct syscore_ops timekeeping_syscore_ops = { 1760 .resume = timekeeping_resume, 1761 .suspend = timekeeping_suspend, 1762 }; 1763 1764 static int __init timekeeping_init_ops(void) 1765 { 1766 register_syscore_ops(&timekeeping_syscore_ops); 1767 return 0; 1768 } 1769 device_initcall(timekeeping_init_ops); 1770 1771 /* 1772 * Apply a multiplier adjustment to the timekeeper 1773 */ 1774 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1775 s64 offset, 1776 bool negative, 1777 int adj_scale) 1778 { 1779 s64 interval = tk->cycle_interval; 1780 s32 mult_adj = 1; 1781 1782 if (negative) { 1783 mult_adj = -mult_adj; 1784 interval = -interval; 1785 offset = -offset; 1786 } 1787 mult_adj <<= adj_scale; 1788 interval <<= adj_scale; 1789 offset <<= adj_scale; 1790 1791 /* 1792 * So the following can be confusing. 1793 * 1794 * To keep things simple, lets assume mult_adj == 1 for now. 1795 * 1796 * When mult_adj != 1, remember that the interval and offset values 1797 * have been appropriately scaled so the math is the same. 1798 * 1799 * The basic idea here is that we're increasing the multiplier 1800 * by one, this causes the xtime_interval to be incremented by 1801 * one cycle_interval. This is because: 1802 * xtime_interval = cycle_interval * mult 1803 * So if mult is being incremented by one: 1804 * xtime_interval = cycle_interval * (mult + 1) 1805 * Its the same as: 1806 * xtime_interval = (cycle_interval * mult) + cycle_interval 1807 * Which can be shortened to: 1808 * xtime_interval += cycle_interval 1809 * 1810 * So offset stores the non-accumulated cycles. Thus the current 1811 * time (in shifted nanoseconds) is: 1812 * now = (offset * adj) + xtime_nsec 1813 * Now, even though we're adjusting the clock frequency, we have 1814 * to keep time consistent. In other words, we can't jump back 1815 * in time, and we also want to avoid jumping forward in time. 1816 * 1817 * So given the same offset value, we need the time to be the same 1818 * both before and after the freq adjustment. 1819 * now = (offset * adj_1) + xtime_nsec_1 1820 * now = (offset * adj_2) + xtime_nsec_2 1821 * So: 1822 * (offset * adj_1) + xtime_nsec_1 = 1823 * (offset * adj_2) + xtime_nsec_2 1824 * And we know: 1825 * adj_2 = adj_1 + 1 1826 * So: 1827 * (offset * adj_1) + xtime_nsec_1 = 1828 * (offset * (adj_1+1)) + xtime_nsec_2 1829 * (offset * adj_1) + xtime_nsec_1 = 1830 * (offset * adj_1) + offset + xtime_nsec_2 1831 * Canceling the sides: 1832 * xtime_nsec_1 = offset + xtime_nsec_2 1833 * Which gives us: 1834 * xtime_nsec_2 = xtime_nsec_1 - offset 1835 * Which simplfies to: 1836 * xtime_nsec -= offset 1837 * 1838 * XXX - TODO: Doc ntp_error calculation. 1839 */ 1840 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1841 /* NTP adjustment caused clocksource mult overflow */ 1842 WARN_ON_ONCE(1); 1843 return; 1844 } 1845 1846 tk->tkr_mono.mult += mult_adj; 1847 tk->xtime_interval += interval; 1848 tk->tkr_mono.xtime_nsec -= offset; 1849 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1850 } 1851 1852 /* 1853 * Calculate the multiplier adjustment needed to match the frequency 1854 * specified by NTP 1855 */ 1856 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1857 s64 offset) 1858 { 1859 s64 interval = tk->cycle_interval; 1860 s64 xinterval = tk->xtime_interval; 1861 u32 base = tk->tkr_mono.clock->mult; 1862 u32 max = tk->tkr_mono.clock->maxadj; 1863 u32 cur_adj = tk->tkr_mono.mult; 1864 s64 tick_error; 1865 bool negative; 1866 u32 adj_scale; 1867 1868 /* Remove any current error adj from freq calculation */ 1869 if (tk->ntp_err_mult) 1870 xinterval -= tk->cycle_interval; 1871 1872 tk->ntp_tick = ntp_tick_length(); 1873 1874 /* Calculate current error per tick */ 1875 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1876 tick_error -= (xinterval + tk->xtime_remainder); 1877 1878 /* Don't worry about correcting it if its small */ 1879 if (likely((tick_error >= 0) && (tick_error <= interval))) 1880 return; 1881 1882 /* preserve the direction of correction */ 1883 negative = (tick_error < 0); 1884 1885 /* If any adjustment would pass the max, just return */ 1886 if (negative && (cur_adj - 1) <= (base - max)) 1887 return; 1888 if (!negative && (cur_adj + 1) >= (base + max)) 1889 return; 1890 /* 1891 * Sort out the magnitude of the correction, but 1892 * avoid making so large a correction that we go 1893 * over the max adjustment. 1894 */ 1895 adj_scale = 0; 1896 tick_error = abs(tick_error); 1897 while (tick_error > interval) { 1898 u32 adj = 1 << (adj_scale + 1); 1899 1900 /* Check if adjustment gets us within 1 unit from the max */ 1901 if (negative && (cur_adj - adj) <= (base - max)) 1902 break; 1903 if (!negative && (cur_adj + adj) >= (base + max)) 1904 break; 1905 1906 adj_scale++; 1907 tick_error >>= 1; 1908 } 1909 1910 /* scale the corrections */ 1911 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1912 } 1913 1914 /* 1915 * Adjust the timekeeper's multiplier to the correct frequency 1916 * and also to reduce the accumulated error value. 1917 */ 1918 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1919 { 1920 /* Correct for the current frequency error */ 1921 timekeeping_freqadjust(tk, offset); 1922 1923 /* Next make a small adjustment to fix any cumulative error */ 1924 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1925 tk->ntp_err_mult = 1; 1926 timekeeping_apply_adjustment(tk, offset, 0, 0); 1927 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1928 /* Undo any existing error adjustment */ 1929 timekeeping_apply_adjustment(tk, offset, 1, 0); 1930 tk->ntp_err_mult = 0; 1931 } 1932 1933 if (unlikely(tk->tkr_mono.clock->maxadj && 1934 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1935 > tk->tkr_mono.clock->maxadj))) { 1936 printk_once(KERN_WARNING 1937 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1938 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1939 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1940 } 1941 1942 /* 1943 * It may be possible that when we entered this function, xtime_nsec 1944 * was very small. Further, if we're slightly speeding the clocksource 1945 * in the code above, its possible the required corrective factor to 1946 * xtime_nsec could cause it to underflow. 1947 * 1948 * Now, since we already accumulated the second, cannot simply roll 1949 * the accumulated second back, since the NTP subsystem has been 1950 * notified via second_overflow. So instead we push xtime_nsec forward 1951 * by the amount we underflowed, and add that amount into the error. 1952 * 1953 * We'll correct this error next time through this function, when 1954 * xtime_nsec is not as small. 1955 */ 1956 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1957 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1958 tk->tkr_mono.xtime_nsec = 0; 1959 tk->ntp_error += neg << tk->ntp_error_shift; 1960 } 1961 } 1962 1963 /** 1964 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1965 * 1966 * Helper function that accumulates the nsecs greater than a second 1967 * from the xtime_nsec field to the xtime_secs field. 1968 * It also calls into the NTP code to handle leapsecond processing. 1969 * 1970 */ 1971 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1972 { 1973 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1974 unsigned int clock_set = 0; 1975 1976 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1977 int leap; 1978 1979 tk->tkr_mono.xtime_nsec -= nsecps; 1980 tk->xtime_sec++; 1981 1982 /* Figure out if its a leap sec and apply if needed */ 1983 leap = second_overflow(tk->xtime_sec); 1984 if (unlikely(leap)) { 1985 struct timespec64 ts; 1986 1987 tk->xtime_sec += leap; 1988 1989 ts.tv_sec = leap; 1990 ts.tv_nsec = 0; 1991 tk_set_wall_to_mono(tk, 1992 timespec64_sub(tk->wall_to_monotonic, ts)); 1993 1994 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1995 1996 clock_set = TK_CLOCK_WAS_SET; 1997 } 1998 } 1999 return clock_set; 2000 } 2001 2002 /** 2003 * logarithmic_accumulation - shifted accumulation of cycles 2004 * 2005 * This functions accumulates a shifted interval of cycles into 2006 * into a shifted interval nanoseconds. Allows for O(log) accumulation 2007 * loop. 2008 * 2009 * Returns the unconsumed cycles. 2010 */ 2011 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2012 u32 shift, unsigned int *clock_set) 2013 { 2014 u64 interval = tk->cycle_interval << shift; 2015 u64 raw_nsecs; 2016 2017 /* If the offset is smaller than a shifted interval, do nothing */ 2018 if (offset < interval) 2019 return offset; 2020 2021 /* Accumulate one shifted interval */ 2022 offset -= interval; 2023 tk->tkr_mono.cycle_last += interval; 2024 tk->tkr_raw.cycle_last += interval; 2025 2026 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2027 *clock_set |= accumulate_nsecs_to_secs(tk); 2028 2029 /* Accumulate raw time */ 2030 raw_nsecs = (u64)tk->raw_interval << shift; 2031 raw_nsecs += tk->raw_time.tv_nsec; 2032 if (raw_nsecs >= NSEC_PER_SEC) { 2033 u64 raw_secs = raw_nsecs; 2034 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 2035 tk->raw_time.tv_sec += raw_secs; 2036 } 2037 tk->raw_time.tv_nsec = raw_nsecs; 2038 2039 /* Accumulate error between NTP and clock interval */ 2040 tk->ntp_error += tk->ntp_tick << shift; 2041 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2042 (tk->ntp_error_shift + shift); 2043 2044 return offset; 2045 } 2046 2047 /** 2048 * update_wall_time - Uses the current clocksource to increment the wall time 2049 * 2050 */ 2051 void update_wall_time(void) 2052 { 2053 struct timekeeper *real_tk = &tk_core.timekeeper; 2054 struct timekeeper *tk = &shadow_timekeeper; 2055 u64 offset; 2056 int shift = 0, maxshift; 2057 unsigned int clock_set = 0; 2058 unsigned long flags; 2059 2060 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2061 2062 /* Make sure we're fully resumed: */ 2063 if (unlikely(timekeeping_suspended)) 2064 goto out; 2065 2066 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2067 offset = real_tk->cycle_interval; 2068 #else 2069 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 2070 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2071 #endif 2072 2073 /* Check if there's really nothing to do */ 2074 if (offset < real_tk->cycle_interval) 2075 goto out; 2076 2077 /* Do some additional sanity checking */ 2078 timekeeping_check_update(real_tk, offset); 2079 2080 /* 2081 * With NO_HZ we may have to accumulate many cycle_intervals 2082 * (think "ticks") worth of time at once. To do this efficiently, 2083 * we calculate the largest doubling multiple of cycle_intervals 2084 * that is smaller than the offset. We then accumulate that 2085 * chunk in one go, and then try to consume the next smaller 2086 * doubled multiple. 2087 */ 2088 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2089 shift = max(0, shift); 2090 /* Bound shift to one less than what overflows tick_length */ 2091 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2092 shift = min(shift, maxshift); 2093 while (offset >= tk->cycle_interval) { 2094 offset = logarithmic_accumulation(tk, offset, shift, 2095 &clock_set); 2096 if (offset < tk->cycle_interval<<shift) 2097 shift--; 2098 } 2099 2100 /* correct the clock when NTP error is too big */ 2101 timekeeping_adjust(tk, offset); 2102 2103 /* 2104 * XXX This can be killed once everyone converts 2105 * to the new update_vsyscall. 2106 */ 2107 old_vsyscall_fixup(tk); 2108 2109 /* 2110 * Finally, make sure that after the rounding 2111 * xtime_nsec isn't larger than NSEC_PER_SEC 2112 */ 2113 clock_set |= accumulate_nsecs_to_secs(tk); 2114 2115 write_seqcount_begin(&tk_core.seq); 2116 /* 2117 * Update the real timekeeper. 2118 * 2119 * We could avoid this memcpy by switching pointers, but that 2120 * requires changes to all other timekeeper usage sites as 2121 * well, i.e. move the timekeeper pointer getter into the 2122 * spinlocked/seqcount protected sections. And we trade this 2123 * memcpy under the tk_core.seq against one before we start 2124 * updating. 2125 */ 2126 timekeeping_update(tk, clock_set); 2127 memcpy(real_tk, tk, sizeof(*tk)); 2128 /* The memcpy must come last. Do not put anything here! */ 2129 write_seqcount_end(&tk_core.seq); 2130 out: 2131 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2132 if (clock_set) 2133 /* Have to call _delayed version, since in irq context*/ 2134 clock_was_set_delayed(); 2135 } 2136 2137 /** 2138 * getboottime64 - Return the real time of system boot. 2139 * @ts: pointer to the timespec64 to be set 2140 * 2141 * Returns the wall-time of boot in a timespec64. 2142 * 2143 * This is based on the wall_to_monotonic offset and the total suspend 2144 * time. Calls to settimeofday will affect the value returned (which 2145 * basically means that however wrong your real time clock is at boot time, 2146 * you get the right time here). 2147 */ 2148 void getboottime64(struct timespec64 *ts) 2149 { 2150 struct timekeeper *tk = &tk_core.timekeeper; 2151 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2152 2153 *ts = ktime_to_timespec64(t); 2154 } 2155 EXPORT_SYMBOL_GPL(getboottime64); 2156 2157 unsigned long get_seconds(void) 2158 { 2159 struct timekeeper *tk = &tk_core.timekeeper; 2160 2161 return tk->xtime_sec; 2162 } 2163 EXPORT_SYMBOL(get_seconds); 2164 2165 struct timespec __current_kernel_time(void) 2166 { 2167 struct timekeeper *tk = &tk_core.timekeeper; 2168 2169 return timespec64_to_timespec(tk_xtime(tk)); 2170 } 2171 2172 struct timespec64 current_kernel_time64(void) 2173 { 2174 struct timekeeper *tk = &tk_core.timekeeper; 2175 struct timespec64 now; 2176 unsigned long seq; 2177 2178 do { 2179 seq = read_seqcount_begin(&tk_core.seq); 2180 2181 now = tk_xtime(tk); 2182 } while (read_seqcount_retry(&tk_core.seq, seq)); 2183 2184 return now; 2185 } 2186 EXPORT_SYMBOL(current_kernel_time64); 2187 2188 struct timespec64 get_monotonic_coarse64(void) 2189 { 2190 struct timekeeper *tk = &tk_core.timekeeper; 2191 struct timespec64 now, mono; 2192 unsigned long seq; 2193 2194 do { 2195 seq = read_seqcount_begin(&tk_core.seq); 2196 2197 now = tk_xtime(tk); 2198 mono = tk->wall_to_monotonic; 2199 } while (read_seqcount_retry(&tk_core.seq, seq)); 2200 2201 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2202 now.tv_nsec + mono.tv_nsec); 2203 2204 return now; 2205 } 2206 EXPORT_SYMBOL(get_monotonic_coarse64); 2207 2208 /* 2209 * Must hold jiffies_lock 2210 */ 2211 void do_timer(unsigned long ticks) 2212 { 2213 jiffies_64 += ticks; 2214 calc_global_load(ticks); 2215 } 2216 2217 /** 2218 * ktime_get_update_offsets_now - hrtimer helper 2219 * @cwsseq: pointer to check and store the clock was set sequence number 2220 * @offs_real: pointer to storage for monotonic -> realtime offset 2221 * @offs_boot: pointer to storage for monotonic -> boottime offset 2222 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2223 * 2224 * Returns current monotonic time and updates the offsets if the 2225 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2226 * different. 2227 * 2228 * Called from hrtimer_interrupt() or retrigger_next_event() 2229 */ 2230 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2231 ktime_t *offs_boot, ktime_t *offs_tai) 2232 { 2233 struct timekeeper *tk = &tk_core.timekeeper; 2234 unsigned int seq; 2235 ktime_t base; 2236 u64 nsecs; 2237 2238 do { 2239 seq = read_seqcount_begin(&tk_core.seq); 2240 2241 base = tk->tkr_mono.base; 2242 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2243 base = ktime_add_ns(base, nsecs); 2244 2245 if (*cwsseq != tk->clock_was_set_seq) { 2246 *cwsseq = tk->clock_was_set_seq; 2247 *offs_real = tk->offs_real; 2248 *offs_boot = tk->offs_boot; 2249 *offs_tai = tk->offs_tai; 2250 } 2251 2252 /* Handle leapsecond insertion adjustments */ 2253 if (unlikely(base >= tk->next_leap_ktime)) 2254 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2255 2256 } while (read_seqcount_retry(&tk_core.seq, seq)); 2257 2258 return base; 2259 } 2260 2261 /** 2262 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2263 */ 2264 int do_adjtimex(struct timex *txc) 2265 { 2266 struct timekeeper *tk = &tk_core.timekeeper; 2267 unsigned long flags; 2268 struct timespec64 ts; 2269 s32 orig_tai, tai; 2270 int ret; 2271 2272 /* Validate the data before disabling interrupts */ 2273 ret = ntp_validate_timex(txc); 2274 if (ret) 2275 return ret; 2276 2277 if (txc->modes & ADJ_SETOFFSET) { 2278 struct timespec delta; 2279 delta.tv_sec = txc->time.tv_sec; 2280 delta.tv_nsec = txc->time.tv_usec; 2281 if (!(txc->modes & ADJ_NANO)) 2282 delta.tv_nsec *= 1000; 2283 ret = timekeeping_inject_offset(&delta); 2284 if (ret) 2285 return ret; 2286 } 2287 2288 getnstimeofday64(&ts); 2289 2290 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2291 write_seqcount_begin(&tk_core.seq); 2292 2293 orig_tai = tai = tk->tai_offset; 2294 ret = __do_adjtimex(txc, &ts, &tai); 2295 2296 if (tai != orig_tai) { 2297 __timekeeping_set_tai_offset(tk, tai); 2298 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2299 } 2300 tk_update_leap_state(tk); 2301 2302 write_seqcount_end(&tk_core.seq); 2303 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2304 2305 if (tai != orig_tai) 2306 clock_was_set(); 2307 2308 ntp_notify_cmos_timer(); 2309 2310 return ret; 2311 } 2312 2313 #ifdef CONFIG_NTP_PPS 2314 /** 2315 * hardpps() - Accessor function to NTP __hardpps function 2316 */ 2317 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2318 { 2319 unsigned long flags; 2320 2321 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2322 write_seqcount_begin(&tk_core.seq); 2323 2324 __hardpps(phase_ts, raw_ts); 2325 2326 write_seqcount_end(&tk_core.seq); 2327 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2328 } 2329 EXPORT_SYMBOL(hardpps); 2330 #endif 2331 2332 /** 2333 * xtime_update() - advances the timekeeping infrastructure 2334 * @ticks: number of ticks, that have elapsed since the last call. 2335 * 2336 * Must be called with interrupts disabled. 2337 */ 2338 void xtime_update(unsigned long ticks) 2339 { 2340 write_seqlock(&jiffies_lock); 2341 do_timer(ticks); 2342 write_sequnlock(&jiffies_lock); 2343 update_wall_time(); 2344 } 2345