1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 63 /* flag for if timekeeping is suspended */ 64 int __read_mostly timekeeping_suspended; 65 66 /* Flag for if there is a persistent clock on this platform */ 67 bool __read_mostly persistent_clock_exist = false; 68 69 static inline void tk_normalize_xtime(struct timekeeper *tk) 70 { 71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) { 72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift; 73 tk->xtime_sec++; 74 } 75 } 76 77 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 78 { 79 struct timespec64 ts; 80 81 ts.tv_sec = tk->xtime_sec; 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift); 83 return ts; 84 } 85 86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 87 { 88 tk->xtime_sec = ts->tv_sec; 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift; 90 } 91 92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 93 { 94 tk->xtime_sec += ts->tv_sec; 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift; 96 tk_normalize_xtime(tk); 97 } 98 99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 100 { 101 struct timespec64 tmp; 102 103 /* 104 * Verify consistency of: offset_real = -wall_to_monotonic 105 * before modifying anything 106 */ 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 108 -tk->wall_to_monotonic.tv_nsec); 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 110 tk->wall_to_monotonic = wtm; 111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 112 tk->offs_real = timespec64_to_ktime(tmp); 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 114 } 115 116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 117 { 118 tk->offs_boot = ktime_add(tk->offs_boot, delta); 119 } 120 121 /** 122 * tk_setup_internals - Set up internals to use clocksource clock. 123 * 124 * @tk: The target timekeeper to setup. 125 * @clock: Pointer to clocksource. 126 * 127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 128 * pair and interval request. 129 * 130 * Unless you're the timekeeping code, you should not be using this! 131 */ 132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 133 { 134 cycle_t interval; 135 u64 tmp, ntpinterval; 136 struct clocksource *old_clock; 137 138 old_clock = tk->tkr.clock; 139 tk->tkr.clock = clock; 140 tk->tkr.read = clock->read; 141 tk->tkr.mask = clock->mask; 142 tk->tkr.cycle_last = tk->tkr.read(clock); 143 144 /* Do the ns -> cycle conversion first, using original mult */ 145 tmp = NTP_INTERVAL_LENGTH; 146 tmp <<= clock->shift; 147 ntpinterval = tmp; 148 tmp += clock->mult/2; 149 do_div(tmp, clock->mult); 150 if (tmp == 0) 151 tmp = 1; 152 153 interval = (cycle_t) tmp; 154 tk->cycle_interval = interval; 155 156 /* Go back from cycles -> shifted ns */ 157 tk->xtime_interval = (u64) interval * clock->mult; 158 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 159 tk->raw_interval = 160 ((u64) interval * clock->mult) >> clock->shift; 161 162 /* if changing clocks, convert xtime_nsec shift units */ 163 if (old_clock) { 164 int shift_change = clock->shift - old_clock->shift; 165 if (shift_change < 0) 166 tk->tkr.xtime_nsec >>= -shift_change; 167 else 168 tk->tkr.xtime_nsec <<= shift_change; 169 } 170 tk->tkr.shift = clock->shift; 171 172 tk->ntp_error = 0; 173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 175 176 /* 177 * The timekeeper keeps its own mult values for the currently 178 * active clocksource. These value will be adjusted via NTP 179 * to counteract clock drifting. 180 */ 181 tk->tkr.mult = clock->mult; 182 tk->ntp_err_mult = 0; 183 } 184 185 /* Timekeeper helper functions. */ 186 187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 188 static u32 default_arch_gettimeoffset(void) { return 0; } 189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 190 #else 191 static inline u32 arch_gettimeoffset(void) { return 0; } 192 #endif 193 194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 195 { 196 cycle_t cycle_now, delta; 197 s64 nsec; 198 199 /* read clocksource: */ 200 cycle_now = tkr->read(tkr->clock); 201 202 /* calculate the delta since the last update_wall_time: */ 203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 204 205 nsec = delta * tkr->mult + tkr->xtime_nsec; 206 nsec >>= tkr->shift; 207 208 /* If arch requires, add in get_arch_timeoffset() */ 209 return nsec + arch_gettimeoffset(); 210 } 211 212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk) 213 { 214 struct clocksource *clock = tk->tkr.clock; 215 cycle_t cycle_now, delta; 216 s64 nsec; 217 218 /* read clocksource: */ 219 cycle_now = tk->tkr.read(clock); 220 221 /* calculate the delta since the last update_wall_time: */ 222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask); 223 224 /* convert delta to nanoseconds. */ 225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift); 226 227 /* If arch requires, add in get_arch_timeoffset() */ 228 return nsec + arch_gettimeoffset(); 229 } 230 231 /** 232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 233 * @tk: The timekeeper from which we take the update 234 * @tkf: The fast timekeeper to update 235 * @tbase: The time base for the fast timekeeper (mono/raw) 236 * 237 * We want to use this from any context including NMI and tracing / 238 * instrumenting the timekeeping code itself. 239 * 240 * So we handle this differently than the other timekeeping accessor 241 * functions which retry when the sequence count has changed. The 242 * update side does: 243 * 244 * smp_wmb(); <- Ensure that the last base[1] update is visible 245 * tkf->seq++; 246 * smp_wmb(); <- Ensure that the seqcount update is visible 247 * update(tkf->base[0], tk); 248 * smp_wmb(); <- Ensure that the base[0] update is visible 249 * tkf->seq++; 250 * smp_wmb(); <- Ensure that the seqcount update is visible 251 * update(tkf->base[1], tk); 252 * 253 * The reader side does: 254 * 255 * do { 256 * seq = tkf->seq; 257 * smp_rmb(); 258 * idx = seq & 0x01; 259 * now = now(tkf->base[idx]); 260 * smp_rmb(); 261 * } while (seq != tkf->seq) 262 * 263 * As long as we update base[0] readers are forced off to 264 * base[1]. Once base[0] is updated readers are redirected to base[0] 265 * and the base[1] update takes place. 266 * 267 * So if a NMI hits the update of base[0] then it will use base[1] 268 * which is still consistent. In the worst case this can result is a 269 * slightly wrong timestamp (a few nanoseconds). See 270 * @ktime_get_mono_fast_ns. 271 */ 272 static void update_fast_timekeeper(struct timekeeper *tk) 273 { 274 struct tk_read_base *base = tk_fast_mono.base; 275 276 /* Force readers off to base[1] */ 277 raw_write_seqcount_latch(&tk_fast_mono.seq); 278 279 /* Update base[0] */ 280 memcpy(base, &tk->tkr, sizeof(*base)); 281 282 /* Force readers back to base[0] */ 283 raw_write_seqcount_latch(&tk_fast_mono.seq); 284 285 /* Update base[1] */ 286 memcpy(base + 1, base, sizeof(*base)); 287 } 288 289 /** 290 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 291 * 292 * This timestamp is not guaranteed to be monotonic across an update. 293 * The timestamp is calculated by: 294 * 295 * now = base_mono + clock_delta * slope 296 * 297 * So if the update lowers the slope, readers who are forced to the 298 * not yet updated second array are still using the old steeper slope. 299 * 300 * tmono 301 * ^ 302 * | o n 303 * | o n 304 * | u 305 * | o 306 * |o 307 * |12345678---> reader order 308 * 309 * o = old slope 310 * u = update 311 * n = new slope 312 * 313 * So reader 6 will observe time going backwards versus reader 5. 314 * 315 * While other CPUs are likely to be able observe that, the only way 316 * for a CPU local observation is when an NMI hits in the middle of 317 * the update. Timestamps taken from that NMI context might be ahead 318 * of the following timestamps. Callers need to be aware of that and 319 * deal with it. 320 */ 321 u64 notrace ktime_get_mono_fast_ns(void) 322 { 323 struct tk_read_base *tkr; 324 unsigned int seq; 325 u64 now; 326 327 do { 328 seq = raw_read_seqcount(&tk_fast_mono.seq); 329 tkr = tk_fast_mono.base + (seq & 0x01); 330 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr); 331 332 } while (read_seqcount_retry(&tk_fast_mono.seq, seq)); 333 return now; 334 } 335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 336 337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 338 339 static inline void update_vsyscall(struct timekeeper *tk) 340 { 341 struct timespec xt, wm; 342 343 xt = timespec64_to_timespec(tk_xtime(tk)); 344 wm = timespec64_to_timespec(tk->wall_to_monotonic); 345 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult, 346 tk->tkr.cycle_last); 347 } 348 349 static inline void old_vsyscall_fixup(struct timekeeper *tk) 350 { 351 s64 remainder; 352 353 /* 354 * Store only full nanoseconds into xtime_nsec after rounding 355 * it up and add the remainder to the error difference. 356 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 357 * by truncating the remainder in vsyscalls. However, it causes 358 * additional work to be done in timekeeping_adjust(). Once 359 * the vsyscall implementations are converted to use xtime_nsec 360 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 361 * users are removed, this can be killed. 362 */ 363 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1); 364 tk->tkr.xtime_nsec -= remainder; 365 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift; 366 tk->ntp_error += remainder << tk->ntp_error_shift; 367 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift; 368 } 369 #else 370 #define old_vsyscall_fixup(tk) 371 #endif 372 373 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 374 375 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 376 { 377 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 378 } 379 380 /** 381 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 382 */ 383 int pvclock_gtod_register_notifier(struct notifier_block *nb) 384 { 385 struct timekeeper *tk = &tk_core.timekeeper; 386 unsigned long flags; 387 int ret; 388 389 raw_spin_lock_irqsave(&timekeeper_lock, flags); 390 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 391 update_pvclock_gtod(tk, true); 392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 393 394 return ret; 395 } 396 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 397 398 /** 399 * pvclock_gtod_unregister_notifier - unregister a pvclock 400 * timedata update listener 401 */ 402 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 403 { 404 unsigned long flags; 405 int ret; 406 407 raw_spin_lock_irqsave(&timekeeper_lock, flags); 408 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 409 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 410 411 return ret; 412 } 413 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 414 415 /* 416 * Update the ktime_t based scalar nsec members of the timekeeper 417 */ 418 static inline void tk_update_ktime_data(struct timekeeper *tk) 419 { 420 u64 seconds; 421 u32 nsec; 422 423 /* 424 * The xtime based monotonic readout is: 425 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 426 * The ktime based monotonic readout is: 427 * nsec = base_mono + now(); 428 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 429 */ 430 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 431 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 432 tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 433 434 /* Update the monotonic raw base */ 435 tk->base_raw = timespec64_to_ktime(tk->raw_time); 436 437 /* 438 * The sum of the nanoseconds portions of xtime and 439 * wall_to_monotonic can be greater/equal one second. Take 440 * this into account before updating tk->ktime_sec. 441 */ 442 nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift); 443 if (nsec >= NSEC_PER_SEC) 444 seconds++; 445 tk->ktime_sec = seconds; 446 } 447 448 /* must hold timekeeper_lock */ 449 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 450 { 451 if (action & TK_CLEAR_NTP) { 452 tk->ntp_error = 0; 453 ntp_clear(); 454 } 455 456 tk_update_ktime_data(tk); 457 458 update_vsyscall(tk); 459 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 460 461 if (action & TK_MIRROR) 462 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 463 sizeof(tk_core.timekeeper)); 464 465 update_fast_timekeeper(tk); 466 } 467 468 /** 469 * timekeeping_forward_now - update clock to the current time 470 * 471 * Forward the current clock to update its state since the last call to 472 * update_wall_time(). This is useful before significant clock changes, 473 * as it avoids having to deal with this time offset explicitly. 474 */ 475 static void timekeeping_forward_now(struct timekeeper *tk) 476 { 477 struct clocksource *clock = tk->tkr.clock; 478 cycle_t cycle_now, delta; 479 s64 nsec; 480 481 cycle_now = tk->tkr.read(clock); 482 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask); 483 tk->tkr.cycle_last = cycle_now; 484 485 tk->tkr.xtime_nsec += delta * tk->tkr.mult; 486 487 /* If arch requires, add in get_arch_timeoffset() */ 488 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift; 489 490 tk_normalize_xtime(tk); 491 492 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift); 493 timespec64_add_ns(&tk->raw_time, nsec); 494 } 495 496 /** 497 * __getnstimeofday64 - Returns the time of day in a timespec64. 498 * @ts: pointer to the timespec to be set 499 * 500 * Updates the time of day in the timespec. 501 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 502 */ 503 int __getnstimeofday64(struct timespec64 *ts) 504 { 505 struct timekeeper *tk = &tk_core.timekeeper; 506 unsigned long seq; 507 s64 nsecs = 0; 508 509 do { 510 seq = read_seqcount_begin(&tk_core.seq); 511 512 ts->tv_sec = tk->xtime_sec; 513 nsecs = timekeeping_get_ns(&tk->tkr); 514 515 } while (read_seqcount_retry(&tk_core.seq, seq)); 516 517 ts->tv_nsec = 0; 518 timespec64_add_ns(ts, nsecs); 519 520 /* 521 * Do not bail out early, in case there were callers still using 522 * the value, even in the face of the WARN_ON. 523 */ 524 if (unlikely(timekeeping_suspended)) 525 return -EAGAIN; 526 return 0; 527 } 528 EXPORT_SYMBOL(__getnstimeofday64); 529 530 /** 531 * getnstimeofday64 - Returns the time of day in a timespec64. 532 * @ts: pointer to the timespec64 to be set 533 * 534 * Returns the time of day in a timespec64 (WARN if suspended). 535 */ 536 void getnstimeofday64(struct timespec64 *ts) 537 { 538 WARN_ON(__getnstimeofday64(ts)); 539 } 540 EXPORT_SYMBOL(getnstimeofday64); 541 542 ktime_t ktime_get(void) 543 { 544 struct timekeeper *tk = &tk_core.timekeeper; 545 unsigned int seq; 546 ktime_t base; 547 s64 nsecs; 548 549 WARN_ON(timekeeping_suspended); 550 551 do { 552 seq = read_seqcount_begin(&tk_core.seq); 553 base = tk->tkr.base_mono; 554 nsecs = timekeeping_get_ns(&tk->tkr); 555 556 } while (read_seqcount_retry(&tk_core.seq, seq)); 557 558 return ktime_add_ns(base, nsecs); 559 } 560 EXPORT_SYMBOL_GPL(ktime_get); 561 562 static ktime_t *offsets[TK_OFFS_MAX] = { 563 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 564 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 565 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 566 }; 567 568 ktime_t ktime_get_with_offset(enum tk_offsets offs) 569 { 570 struct timekeeper *tk = &tk_core.timekeeper; 571 unsigned int seq; 572 ktime_t base, *offset = offsets[offs]; 573 s64 nsecs; 574 575 WARN_ON(timekeeping_suspended); 576 577 do { 578 seq = read_seqcount_begin(&tk_core.seq); 579 base = ktime_add(tk->tkr.base_mono, *offset); 580 nsecs = timekeeping_get_ns(&tk->tkr); 581 582 } while (read_seqcount_retry(&tk_core.seq, seq)); 583 584 return ktime_add_ns(base, nsecs); 585 586 } 587 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 588 589 /** 590 * ktime_mono_to_any() - convert mononotic time to any other time 591 * @tmono: time to convert. 592 * @offs: which offset to use 593 */ 594 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 595 { 596 ktime_t *offset = offsets[offs]; 597 unsigned long seq; 598 ktime_t tconv; 599 600 do { 601 seq = read_seqcount_begin(&tk_core.seq); 602 tconv = ktime_add(tmono, *offset); 603 } while (read_seqcount_retry(&tk_core.seq, seq)); 604 605 return tconv; 606 } 607 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 608 609 /** 610 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 611 */ 612 ktime_t ktime_get_raw(void) 613 { 614 struct timekeeper *tk = &tk_core.timekeeper; 615 unsigned int seq; 616 ktime_t base; 617 s64 nsecs; 618 619 do { 620 seq = read_seqcount_begin(&tk_core.seq); 621 base = tk->base_raw; 622 nsecs = timekeeping_get_ns_raw(tk); 623 624 } while (read_seqcount_retry(&tk_core.seq, seq)); 625 626 return ktime_add_ns(base, nsecs); 627 } 628 EXPORT_SYMBOL_GPL(ktime_get_raw); 629 630 /** 631 * ktime_get_ts64 - get the monotonic clock in timespec64 format 632 * @ts: pointer to timespec variable 633 * 634 * The function calculates the monotonic clock from the realtime 635 * clock and the wall_to_monotonic offset and stores the result 636 * in normalized timespec64 format in the variable pointed to by @ts. 637 */ 638 void ktime_get_ts64(struct timespec64 *ts) 639 { 640 struct timekeeper *tk = &tk_core.timekeeper; 641 struct timespec64 tomono; 642 s64 nsec; 643 unsigned int seq; 644 645 WARN_ON(timekeeping_suspended); 646 647 do { 648 seq = read_seqcount_begin(&tk_core.seq); 649 ts->tv_sec = tk->xtime_sec; 650 nsec = timekeeping_get_ns(&tk->tkr); 651 tomono = tk->wall_to_monotonic; 652 653 } while (read_seqcount_retry(&tk_core.seq, seq)); 654 655 ts->tv_sec += tomono.tv_sec; 656 ts->tv_nsec = 0; 657 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 658 } 659 EXPORT_SYMBOL_GPL(ktime_get_ts64); 660 661 /** 662 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 663 * 664 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 665 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 666 * works on both 32 and 64 bit systems. On 32 bit systems the readout 667 * covers ~136 years of uptime which should be enough to prevent 668 * premature wrap arounds. 669 */ 670 time64_t ktime_get_seconds(void) 671 { 672 struct timekeeper *tk = &tk_core.timekeeper; 673 674 WARN_ON(timekeeping_suspended); 675 return tk->ktime_sec; 676 } 677 EXPORT_SYMBOL_GPL(ktime_get_seconds); 678 679 /** 680 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 681 * 682 * Returns the wall clock seconds since 1970. This replaces the 683 * get_seconds() interface which is not y2038 safe on 32bit systems. 684 * 685 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 686 * 32bit systems the access must be protected with the sequence 687 * counter to provide "atomic" access to the 64bit tk->xtime_sec 688 * value. 689 */ 690 time64_t ktime_get_real_seconds(void) 691 { 692 struct timekeeper *tk = &tk_core.timekeeper; 693 time64_t seconds; 694 unsigned int seq; 695 696 if (IS_ENABLED(CONFIG_64BIT)) 697 return tk->xtime_sec; 698 699 do { 700 seq = read_seqcount_begin(&tk_core.seq); 701 seconds = tk->xtime_sec; 702 703 } while (read_seqcount_retry(&tk_core.seq, seq)); 704 705 return seconds; 706 } 707 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 708 709 #ifdef CONFIG_NTP_PPS 710 711 /** 712 * getnstime_raw_and_real - get day and raw monotonic time in timespec format 713 * @ts_raw: pointer to the timespec to be set to raw monotonic time 714 * @ts_real: pointer to the timespec to be set to the time of day 715 * 716 * This function reads both the time of day and raw monotonic time at the 717 * same time atomically and stores the resulting timestamps in timespec 718 * format. 719 */ 720 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) 721 { 722 struct timekeeper *tk = &tk_core.timekeeper; 723 unsigned long seq; 724 s64 nsecs_raw, nsecs_real; 725 726 WARN_ON_ONCE(timekeeping_suspended); 727 728 do { 729 seq = read_seqcount_begin(&tk_core.seq); 730 731 *ts_raw = timespec64_to_timespec(tk->raw_time); 732 ts_real->tv_sec = tk->xtime_sec; 733 ts_real->tv_nsec = 0; 734 735 nsecs_raw = timekeeping_get_ns_raw(tk); 736 nsecs_real = timekeeping_get_ns(&tk->tkr); 737 738 } while (read_seqcount_retry(&tk_core.seq, seq)); 739 740 timespec_add_ns(ts_raw, nsecs_raw); 741 timespec_add_ns(ts_real, nsecs_real); 742 } 743 EXPORT_SYMBOL(getnstime_raw_and_real); 744 745 #endif /* CONFIG_NTP_PPS */ 746 747 /** 748 * do_gettimeofday - Returns the time of day in a timeval 749 * @tv: pointer to the timeval to be set 750 * 751 * NOTE: Users should be converted to using getnstimeofday() 752 */ 753 void do_gettimeofday(struct timeval *tv) 754 { 755 struct timespec64 now; 756 757 getnstimeofday64(&now); 758 tv->tv_sec = now.tv_sec; 759 tv->tv_usec = now.tv_nsec/1000; 760 } 761 EXPORT_SYMBOL(do_gettimeofday); 762 763 /** 764 * do_settimeofday64 - Sets the time of day. 765 * @ts: pointer to the timespec64 variable containing the new time 766 * 767 * Sets the time of day to the new time and update NTP and notify hrtimers 768 */ 769 int do_settimeofday64(const struct timespec64 *ts) 770 { 771 struct timekeeper *tk = &tk_core.timekeeper; 772 struct timespec64 ts_delta, xt; 773 unsigned long flags; 774 775 if (!timespec64_valid_strict(ts)) 776 return -EINVAL; 777 778 raw_spin_lock_irqsave(&timekeeper_lock, flags); 779 write_seqcount_begin(&tk_core.seq); 780 781 timekeeping_forward_now(tk); 782 783 xt = tk_xtime(tk); 784 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 785 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 786 787 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 788 789 tk_set_xtime(tk, ts); 790 791 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 792 793 write_seqcount_end(&tk_core.seq); 794 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 795 796 /* signal hrtimers about time change */ 797 clock_was_set(); 798 799 return 0; 800 } 801 EXPORT_SYMBOL(do_settimeofday64); 802 803 /** 804 * timekeeping_inject_offset - Adds or subtracts from the current time. 805 * @tv: pointer to the timespec variable containing the offset 806 * 807 * Adds or subtracts an offset value from the current time. 808 */ 809 int timekeeping_inject_offset(struct timespec *ts) 810 { 811 struct timekeeper *tk = &tk_core.timekeeper; 812 unsigned long flags; 813 struct timespec64 ts64, tmp; 814 int ret = 0; 815 816 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) 817 return -EINVAL; 818 819 ts64 = timespec_to_timespec64(*ts); 820 821 raw_spin_lock_irqsave(&timekeeper_lock, flags); 822 write_seqcount_begin(&tk_core.seq); 823 824 timekeeping_forward_now(tk); 825 826 /* Make sure the proposed value is valid */ 827 tmp = timespec64_add(tk_xtime(tk), ts64); 828 if (!timespec64_valid_strict(&tmp)) { 829 ret = -EINVAL; 830 goto error; 831 } 832 833 tk_xtime_add(tk, &ts64); 834 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 835 836 error: /* even if we error out, we forwarded the time, so call update */ 837 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 838 839 write_seqcount_end(&tk_core.seq); 840 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 841 842 /* signal hrtimers about time change */ 843 clock_was_set(); 844 845 return ret; 846 } 847 EXPORT_SYMBOL(timekeeping_inject_offset); 848 849 850 /** 851 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 852 * 853 */ 854 s32 timekeeping_get_tai_offset(void) 855 { 856 struct timekeeper *tk = &tk_core.timekeeper; 857 unsigned int seq; 858 s32 ret; 859 860 do { 861 seq = read_seqcount_begin(&tk_core.seq); 862 ret = tk->tai_offset; 863 } while (read_seqcount_retry(&tk_core.seq, seq)); 864 865 return ret; 866 } 867 868 /** 869 * __timekeeping_set_tai_offset - Lock free worker function 870 * 871 */ 872 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 873 { 874 tk->tai_offset = tai_offset; 875 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 876 } 877 878 /** 879 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 880 * 881 */ 882 void timekeeping_set_tai_offset(s32 tai_offset) 883 { 884 struct timekeeper *tk = &tk_core.timekeeper; 885 unsigned long flags; 886 887 raw_spin_lock_irqsave(&timekeeper_lock, flags); 888 write_seqcount_begin(&tk_core.seq); 889 __timekeeping_set_tai_offset(tk, tai_offset); 890 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 891 write_seqcount_end(&tk_core.seq); 892 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 893 clock_was_set(); 894 } 895 896 /** 897 * change_clocksource - Swaps clocksources if a new one is available 898 * 899 * Accumulates current time interval and initializes new clocksource 900 */ 901 static int change_clocksource(void *data) 902 { 903 struct timekeeper *tk = &tk_core.timekeeper; 904 struct clocksource *new, *old; 905 unsigned long flags; 906 907 new = (struct clocksource *) data; 908 909 raw_spin_lock_irqsave(&timekeeper_lock, flags); 910 write_seqcount_begin(&tk_core.seq); 911 912 timekeeping_forward_now(tk); 913 /* 914 * If the cs is in module, get a module reference. Succeeds 915 * for built-in code (owner == NULL) as well. 916 */ 917 if (try_module_get(new->owner)) { 918 if (!new->enable || new->enable(new) == 0) { 919 old = tk->tkr.clock; 920 tk_setup_internals(tk, new); 921 if (old->disable) 922 old->disable(old); 923 module_put(old->owner); 924 } else { 925 module_put(new->owner); 926 } 927 } 928 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 929 930 write_seqcount_end(&tk_core.seq); 931 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 932 933 return 0; 934 } 935 936 /** 937 * timekeeping_notify - Install a new clock source 938 * @clock: pointer to the clock source 939 * 940 * This function is called from clocksource.c after a new, better clock 941 * source has been registered. The caller holds the clocksource_mutex. 942 */ 943 int timekeeping_notify(struct clocksource *clock) 944 { 945 struct timekeeper *tk = &tk_core.timekeeper; 946 947 if (tk->tkr.clock == clock) 948 return 0; 949 stop_machine(change_clocksource, clock, NULL); 950 tick_clock_notify(); 951 return tk->tkr.clock == clock ? 0 : -1; 952 } 953 954 /** 955 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 956 * @ts: pointer to the timespec64 to be set 957 * 958 * Returns the raw monotonic time (completely un-modified by ntp) 959 */ 960 void getrawmonotonic64(struct timespec64 *ts) 961 { 962 struct timekeeper *tk = &tk_core.timekeeper; 963 struct timespec64 ts64; 964 unsigned long seq; 965 s64 nsecs; 966 967 do { 968 seq = read_seqcount_begin(&tk_core.seq); 969 nsecs = timekeeping_get_ns_raw(tk); 970 ts64 = tk->raw_time; 971 972 } while (read_seqcount_retry(&tk_core.seq, seq)); 973 974 timespec64_add_ns(&ts64, nsecs); 975 *ts = ts64; 976 } 977 EXPORT_SYMBOL(getrawmonotonic64); 978 979 980 /** 981 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 982 */ 983 int timekeeping_valid_for_hres(void) 984 { 985 struct timekeeper *tk = &tk_core.timekeeper; 986 unsigned long seq; 987 int ret; 988 989 do { 990 seq = read_seqcount_begin(&tk_core.seq); 991 992 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 993 994 } while (read_seqcount_retry(&tk_core.seq, seq)); 995 996 return ret; 997 } 998 999 /** 1000 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1001 */ 1002 u64 timekeeping_max_deferment(void) 1003 { 1004 struct timekeeper *tk = &tk_core.timekeeper; 1005 unsigned long seq; 1006 u64 ret; 1007 1008 do { 1009 seq = read_seqcount_begin(&tk_core.seq); 1010 1011 ret = tk->tkr.clock->max_idle_ns; 1012 1013 } while (read_seqcount_retry(&tk_core.seq, seq)); 1014 1015 return ret; 1016 } 1017 1018 /** 1019 * read_persistent_clock - Return time from the persistent clock. 1020 * 1021 * Weak dummy function for arches that do not yet support it. 1022 * Reads the time from the battery backed persistent clock. 1023 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1024 * 1025 * XXX - Do be sure to remove it once all arches implement it. 1026 */ 1027 void __weak read_persistent_clock(struct timespec *ts) 1028 { 1029 ts->tv_sec = 0; 1030 ts->tv_nsec = 0; 1031 } 1032 1033 /** 1034 * read_boot_clock - Return time of the system start. 1035 * 1036 * Weak dummy function for arches that do not yet support it. 1037 * Function to read the exact time the system has been started. 1038 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1039 * 1040 * XXX - Do be sure to remove it once all arches implement it. 1041 */ 1042 void __weak read_boot_clock(struct timespec *ts) 1043 { 1044 ts->tv_sec = 0; 1045 ts->tv_nsec = 0; 1046 } 1047 1048 /* 1049 * timekeeping_init - Initializes the clocksource and common timekeeping values 1050 */ 1051 void __init timekeeping_init(void) 1052 { 1053 struct timekeeper *tk = &tk_core.timekeeper; 1054 struct clocksource *clock; 1055 unsigned long flags; 1056 struct timespec64 now, boot, tmp; 1057 struct timespec ts; 1058 1059 read_persistent_clock(&ts); 1060 now = timespec_to_timespec64(ts); 1061 if (!timespec64_valid_strict(&now)) { 1062 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1063 " Check your CMOS/BIOS settings.\n"); 1064 now.tv_sec = 0; 1065 now.tv_nsec = 0; 1066 } else if (now.tv_sec || now.tv_nsec) 1067 persistent_clock_exist = true; 1068 1069 read_boot_clock(&ts); 1070 boot = timespec_to_timespec64(ts); 1071 if (!timespec64_valid_strict(&boot)) { 1072 pr_warn("WARNING: Boot clock returned invalid value!\n" 1073 " Check your CMOS/BIOS settings.\n"); 1074 boot.tv_sec = 0; 1075 boot.tv_nsec = 0; 1076 } 1077 1078 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1079 write_seqcount_begin(&tk_core.seq); 1080 ntp_init(); 1081 1082 clock = clocksource_default_clock(); 1083 if (clock->enable) 1084 clock->enable(clock); 1085 tk_setup_internals(tk, clock); 1086 1087 tk_set_xtime(tk, &now); 1088 tk->raw_time.tv_sec = 0; 1089 tk->raw_time.tv_nsec = 0; 1090 tk->base_raw.tv64 = 0; 1091 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1092 boot = tk_xtime(tk); 1093 1094 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1095 tk_set_wall_to_mono(tk, tmp); 1096 1097 timekeeping_update(tk, TK_MIRROR); 1098 1099 write_seqcount_end(&tk_core.seq); 1100 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1101 } 1102 1103 /* time in seconds when suspend began */ 1104 static struct timespec64 timekeeping_suspend_time; 1105 1106 /** 1107 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1108 * @delta: pointer to a timespec delta value 1109 * 1110 * Takes a timespec offset measuring a suspend interval and properly 1111 * adds the sleep offset to the timekeeping variables. 1112 */ 1113 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1114 struct timespec64 *delta) 1115 { 1116 if (!timespec64_valid_strict(delta)) { 1117 printk_deferred(KERN_WARNING 1118 "__timekeeping_inject_sleeptime: Invalid " 1119 "sleep delta value!\n"); 1120 return; 1121 } 1122 tk_xtime_add(tk, delta); 1123 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1124 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1125 tk_debug_account_sleep_time(delta); 1126 } 1127 1128 /** 1129 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1130 * @delta: pointer to a timespec64 delta value 1131 * 1132 * This hook is for architectures that cannot support read_persistent_clock 1133 * because their RTC/persistent clock is only accessible when irqs are enabled. 1134 * 1135 * This function should only be called by rtc_resume(), and allows 1136 * a suspend offset to be injected into the timekeeping values. 1137 */ 1138 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1139 { 1140 struct timekeeper *tk = &tk_core.timekeeper; 1141 unsigned long flags; 1142 1143 /* 1144 * Make sure we don't set the clock twice, as timekeeping_resume() 1145 * already did it 1146 */ 1147 if (has_persistent_clock()) 1148 return; 1149 1150 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1151 write_seqcount_begin(&tk_core.seq); 1152 1153 timekeeping_forward_now(tk); 1154 1155 __timekeeping_inject_sleeptime(tk, delta); 1156 1157 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1158 1159 write_seqcount_end(&tk_core.seq); 1160 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1161 1162 /* signal hrtimers about time change */ 1163 clock_was_set(); 1164 } 1165 1166 /** 1167 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1168 * 1169 * This is for the generic clocksource timekeeping. 1170 * xtime/wall_to_monotonic/jiffies/etc are 1171 * still managed by arch specific suspend/resume code. 1172 */ 1173 static void timekeeping_resume(void) 1174 { 1175 struct timekeeper *tk = &tk_core.timekeeper; 1176 struct clocksource *clock = tk->tkr.clock; 1177 unsigned long flags; 1178 struct timespec64 ts_new, ts_delta; 1179 struct timespec tmp; 1180 cycle_t cycle_now, cycle_delta; 1181 bool suspendtime_found = false; 1182 1183 read_persistent_clock(&tmp); 1184 ts_new = timespec_to_timespec64(tmp); 1185 1186 clockevents_resume(); 1187 clocksource_resume(); 1188 1189 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1190 write_seqcount_begin(&tk_core.seq); 1191 1192 /* 1193 * After system resumes, we need to calculate the suspended time and 1194 * compensate it for the OS time. There are 3 sources that could be 1195 * used: Nonstop clocksource during suspend, persistent clock and rtc 1196 * device. 1197 * 1198 * One specific platform may have 1 or 2 or all of them, and the 1199 * preference will be: 1200 * suspend-nonstop clocksource -> persistent clock -> rtc 1201 * The less preferred source will only be tried if there is no better 1202 * usable source. The rtc part is handled separately in rtc core code. 1203 */ 1204 cycle_now = tk->tkr.read(clock); 1205 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1206 cycle_now > tk->tkr.cycle_last) { 1207 u64 num, max = ULLONG_MAX; 1208 u32 mult = clock->mult; 1209 u32 shift = clock->shift; 1210 s64 nsec = 0; 1211 1212 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, 1213 tk->tkr.mask); 1214 1215 /* 1216 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1217 * suspended time is too long. In that case we need do the 1218 * 64 bits math carefully 1219 */ 1220 do_div(max, mult); 1221 if (cycle_delta > max) { 1222 num = div64_u64(cycle_delta, max); 1223 nsec = (((u64) max * mult) >> shift) * num; 1224 cycle_delta -= num * max; 1225 } 1226 nsec += ((u64) cycle_delta * mult) >> shift; 1227 1228 ts_delta = ns_to_timespec64(nsec); 1229 suspendtime_found = true; 1230 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1231 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1232 suspendtime_found = true; 1233 } 1234 1235 if (suspendtime_found) 1236 __timekeeping_inject_sleeptime(tk, &ts_delta); 1237 1238 /* Re-base the last cycle value */ 1239 tk->tkr.cycle_last = cycle_now; 1240 tk->ntp_error = 0; 1241 timekeeping_suspended = 0; 1242 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1243 write_seqcount_end(&tk_core.seq); 1244 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1245 1246 touch_softlockup_watchdog(); 1247 1248 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 1249 1250 /* Resume hrtimers */ 1251 hrtimers_resume(); 1252 } 1253 1254 static int timekeeping_suspend(void) 1255 { 1256 struct timekeeper *tk = &tk_core.timekeeper; 1257 unsigned long flags; 1258 struct timespec64 delta, delta_delta; 1259 static struct timespec64 old_delta; 1260 struct timespec tmp; 1261 1262 read_persistent_clock(&tmp); 1263 timekeeping_suspend_time = timespec_to_timespec64(tmp); 1264 1265 /* 1266 * On some systems the persistent_clock can not be detected at 1267 * timekeeping_init by its return value, so if we see a valid 1268 * value returned, update the persistent_clock_exists flag. 1269 */ 1270 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1271 persistent_clock_exist = true; 1272 1273 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1274 write_seqcount_begin(&tk_core.seq); 1275 timekeeping_forward_now(tk); 1276 timekeeping_suspended = 1; 1277 1278 /* 1279 * To avoid drift caused by repeated suspend/resumes, 1280 * which each can add ~1 second drift error, 1281 * try to compensate so the difference in system time 1282 * and persistent_clock time stays close to constant. 1283 */ 1284 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1285 delta_delta = timespec64_sub(delta, old_delta); 1286 if (abs(delta_delta.tv_sec) >= 2) { 1287 /* 1288 * if delta_delta is too large, assume time correction 1289 * has occured and set old_delta to the current delta. 1290 */ 1291 old_delta = delta; 1292 } else { 1293 /* Otherwise try to adjust old_system to compensate */ 1294 timekeeping_suspend_time = 1295 timespec64_add(timekeeping_suspend_time, delta_delta); 1296 } 1297 1298 timekeeping_update(tk, TK_MIRROR); 1299 write_seqcount_end(&tk_core.seq); 1300 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1301 1302 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 1303 clocksource_suspend(); 1304 clockevents_suspend(); 1305 1306 return 0; 1307 } 1308 1309 /* sysfs resume/suspend bits for timekeeping */ 1310 static struct syscore_ops timekeeping_syscore_ops = { 1311 .resume = timekeeping_resume, 1312 .suspend = timekeeping_suspend, 1313 }; 1314 1315 static int __init timekeeping_init_ops(void) 1316 { 1317 register_syscore_ops(&timekeeping_syscore_ops); 1318 return 0; 1319 } 1320 device_initcall(timekeeping_init_ops); 1321 1322 /* 1323 * Apply a multiplier adjustment to the timekeeper 1324 */ 1325 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1326 s64 offset, 1327 bool negative, 1328 int adj_scale) 1329 { 1330 s64 interval = tk->cycle_interval; 1331 s32 mult_adj = 1; 1332 1333 if (negative) { 1334 mult_adj = -mult_adj; 1335 interval = -interval; 1336 offset = -offset; 1337 } 1338 mult_adj <<= adj_scale; 1339 interval <<= adj_scale; 1340 offset <<= adj_scale; 1341 1342 /* 1343 * So the following can be confusing. 1344 * 1345 * To keep things simple, lets assume mult_adj == 1 for now. 1346 * 1347 * When mult_adj != 1, remember that the interval and offset values 1348 * have been appropriately scaled so the math is the same. 1349 * 1350 * The basic idea here is that we're increasing the multiplier 1351 * by one, this causes the xtime_interval to be incremented by 1352 * one cycle_interval. This is because: 1353 * xtime_interval = cycle_interval * mult 1354 * So if mult is being incremented by one: 1355 * xtime_interval = cycle_interval * (mult + 1) 1356 * Its the same as: 1357 * xtime_interval = (cycle_interval * mult) + cycle_interval 1358 * Which can be shortened to: 1359 * xtime_interval += cycle_interval 1360 * 1361 * So offset stores the non-accumulated cycles. Thus the current 1362 * time (in shifted nanoseconds) is: 1363 * now = (offset * adj) + xtime_nsec 1364 * Now, even though we're adjusting the clock frequency, we have 1365 * to keep time consistent. In other words, we can't jump back 1366 * in time, and we also want to avoid jumping forward in time. 1367 * 1368 * So given the same offset value, we need the time to be the same 1369 * both before and after the freq adjustment. 1370 * now = (offset * adj_1) + xtime_nsec_1 1371 * now = (offset * adj_2) + xtime_nsec_2 1372 * So: 1373 * (offset * adj_1) + xtime_nsec_1 = 1374 * (offset * adj_2) + xtime_nsec_2 1375 * And we know: 1376 * adj_2 = adj_1 + 1 1377 * So: 1378 * (offset * adj_1) + xtime_nsec_1 = 1379 * (offset * (adj_1+1)) + xtime_nsec_2 1380 * (offset * adj_1) + xtime_nsec_1 = 1381 * (offset * adj_1) + offset + xtime_nsec_2 1382 * Canceling the sides: 1383 * xtime_nsec_1 = offset + xtime_nsec_2 1384 * Which gives us: 1385 * xtime_nsec_2 = xtime_nsec_1 - offset 1386 * Which simplfies to: 1387 * xtime_nsec -= offset 1388 * 1389 * XXX - TODO: Doc ntp_error calculation. 1390 */ 1391 if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) { 1392 /* NTP adjustment caused clocksource mult overflow */ 1393 WARN_ON_ONCE(1); 1394 return; 1395 } 1396 1397 tk->tkr.mult += mult_adj; 1398 tk->xtime_interval += interval; 1399 tk->tkr.xtime_nsec -= offset; 1400 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1401 } 1402 1403 /* 1404 * Calculate the multiplier adjustment needed to match the frequency 1405 * specified by NTP 1406 */ 1407 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1408 s64 offset) 1409 { 1410 s64 interval = tk->cycle_interval; 1411 s64 xinterval = tk->xtime_interval; 1412 s64 tick_error; 1413 bool negative; 1414 u32 adj; 1415 1416 /* Remove any current error adj from freq calculation */ 1417 if (tk->ntp_err_mult) 1418 xinterval -= tk->cycle_interval; 1419 1420 tk->ntp_tick = ntp_tick_length(); 1421 1422 /* Calculate current error per tick */ 1423 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1424 tick_error -= (xinterval + tk->xtime_remainder); 1425 1426 /* Don't worry about correcting it if its small */ 1427 if (likely((tick_error >= 0) && (tick_error <= interval))) 1428 return; 1429 1430 /* preserve the direction of correction */ 1431 negative = (tick_error < 0); 1432 1433 /* Sort out the magnitude of the correction */ 1434 tick_error = abs(tick_error); 1435 for (adj = 0; tick_error > interval; adj++) 1436 tick_error >>= 1; 1437 1438 /* scale the corrections */ 1439 timekeeping_apply_adjustment(tk, offset, negative, adj); 1440 } 1441 1442 /* 1443 * Adjust the timekeeper's multiplier to the correct frequency 1444 * and also to reduce the accumulated error value. 1445 */ 1446 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1447 { 1448 /* Correct for the current frequency error */ 1449 timekeeping_freqadjust(tk, offset); 1450 1451 /* Next make a small adjustment to fix any cumulative error */ 1452 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1453 tk->ntp_err_mult = 1; 1454 timekeeping_apply_adjustment(tk, offset, 0, 0); 1455 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1456 /* Undo any existing error adjustment */ 1457 timekeeping_apply_adjustment(tk, offset, 1, 0); 1458 tk->ntp_err_mult = 0; 1459 } 1460 1461 if (unlikely(tk->tkr.clock->maxadj && 1462 (abs(tk->tkr.mult - tk->tkr.clock->mult) 1463 > tk->tkr.clock->maxadj))) { 1464 printk_once(KERN_WARNING 1465 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1466 tk->tkr.clock->name, (long)tk->tkr.mult, 1467 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj); 1468 } 1469 1470 /* 1471 * It may be possible that when we entered this function, xtime_nsec 1472 * was very small. Further, if we're slightly speeding the clocksource 1473 * in the code above, its possible the required corrective factor to 1474 * xtime_nsec could cause it to underflow. 1475 * 1476 * Now, since we already accumulated the second, cannot simply roll 1477 * the accumulated second back, since the NTP subsystem has been 1478 * notified via second_overflow. So instead we push xtime_nsec forward 1479 * by the amount we underflowed, and add that amount into the error. 1480 * 1481 * We'll correct this error next time through this function, when 1482 * xtime_nsec is not as small. 1483 */ 1484 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) { 1485 s64 neg = -(s64)tk->tkr.xtime_nsec; 1486 tk->tkr.xtime_nsec = 0; 1487 tk->ntp_error += neg << tk->ntp_error_shift; 1488 } 1489 } 1490 1491 /** 1492 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1493 * 1494 * Helper function that accumulates a the nsecs greater then a second 1495 * from the xtime_nsec field to the xtime_secs field. 1496 * It also calls into the NTP code to handle leapsecond processing. 1497 * 1498 */ 1499 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1500 { 1501 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift; 1502 unsigned int clock_set = 0; 1503 1504 while (tk->tkr.xtime_nsec >= nsecps) { 1505 int leap; 1506 1507 tk->tkr.xtime_nsec -= nsecps; 1508 tk->xtime_sec++; 1509 1510 /* Figure out if its a leap sec and apply if needed */ 1511 leap = second_overflow(tk->xtime_sec); 1512 if (unlikely(leap)) { 1513 struct timespec64 ts; 1514 1515 tk->xtime_sec += leap; 1516 1517 ts.tv_sec = leap; 1518 ts.tv_nsec = 0; 1519 tk_set_wall_to_mono(tk, 1520 timespec64_sub(tk->wall_to_monotonic, ts)); 1521 1522 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1523 1524 clock_set = TK_CLOCK_WAS_SET; 1525 } 1526 } 1527 return clock_set; 1528 } 1529 1530 /** 1531 * logarithmic_accumulation - shifted accumulation of cycles 1532 * 1533 * This functions accumulates a shifted interval of cycles into 1534 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1535 * loop. 1536 * 1537 * Returns the unconsumed cycles. 1538 */ 1539 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 1540 u32 shift, 1541 unsigned int *clock_set) 1542 { 1543 cycle_t interval = tk->cycle_interval << shift; 1544 u64 raw_nsecs; 1545 1546 /* If the offset is smaller then a shifted interval, do nothing */ 1547 if (offset < interval) 1548 return offset; 1549 1550 /* Accumulate one shifted interval */ 1551 offset -= interval; 1552 tk->tkr.cycle_last += interval; 1553 1554 tk->tkr.xtime_nsec += tk->xtime_interval << shift; 1555 *clock_set |= accumulate_nsecs_to_secs(tk); 1556 1557 /* Accumulate raw time */ 1558 raw_nsecs = (u64)tk->raw_interval << shift; 1559 raw_nsecs += tk->raw_time.tv_nsec; 1560 if (raw_nsecs >= NSEC_PER_SEC) { 1561 u64 raw_secs = raw_nsecs; 1562 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1563 tk->raw_time.tv_sec += raw_secs; 1564 } 1565 tk->raw_time.tv_nsec = raw_nsecs; 1566 1567 /* Accumulate error between NTP and clock interval */ 1568 tk->ntp_error += tk->ntp_tick << shift; 1569 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 1570 (tk->ntp_error_shift + shift); 1571 1572 return offset; 1573 } 1574 1575 /** 1576 * update_wall_time - Uses the current clocksource to increment the wall time 1577 * 1578 */ 1579 void update_wall_time(void) 1580 { 1581 struct timekeeper *real_tk = &tk_core.timekeeper; 1582 struct timekeeper *tk = &shadow_timekeeper; 1583 cycle_t offset; 1584 int shift = 0, maxshift; 1585 unsigned int clock_set = 0; 1586 unsigned long flags; 1587 1588 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1589 1590 /* Make sure we're fully resumed: */ 1591 if (unlikely(timekeeping_suspended)) 1592 goto out; 1593 1594 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 1595 offset = real_tk->cycle_interval; 1596 #else 1597 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock), 1598 tk->tkr.cycle_last, tk->tkr.mask); 1599 #endif 1600 1601 /* Check if there's really nothing to do */ 1602 if (offset < real_tk->cycle_interval) 1603 goto out; 1604 1605 /* 1606 * With NO_HZ we may have to accumulate many cycle_intervals 1607 * (think "ticks") worth of time at once. To do this efficiently, 1608 * we calculate the largest doubling multiple of cycle_intervals 1609 * that is smaller than the offset. We then accumulate that 1610 * chunk in one go, and then try to consume the next smaller 1611 * doubled multiple. 1612 */ 1613 shift = ilog2(offset) - ilog2(tk->cycle_interval); 1614 shift = max(0, shift); 1615 /* Bound shift to one less than what overflows tick_length */ 1616 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 1617 shift = min(shift, maxshift); 1618 while (offset >= tk->cycle_interval) { 1619 offset = logarithmic_accumulation(tk, offset, shift, 1620 &clock_set); 1621 if (offset < tk->cycle_interval<<shift) 1622 shift--; 1623 } 1624 1625 /* correct the clock when NTP error is too big */ 1626 timekeeping_adjust(tk, offset); 1627 1628 /* 1629 * XXX This can be killed once everyone converts 1630 * to the new update_vsyscall. 1631 */ 1632 old_vsyscall_fixup(tk); 1633 1634 /* 1635 * Finally, make sure that after the rounding 1636 * xtime_nsec isn't larger than NSEC_PER_SEC 1637 */ 1638 clock_set |= accumulate_nsecs_to_secs(tk); 1639 1640 write_seqcount_begin(&tk_core.seq); 1641 /* 1642 * Update the real timekeeper. 1643 * 1644 * We could avoid this memcpy by switching pointers, but that 1645 * requires changes to all other timekeeper usage sites as 1646 * well, i.e. move the timekeeper pointer getter into the 1647 * spinlocked/seqcount protected sections. And we trade this 1648 * memcpy under the tk_core.seq against one before we start 1649 * updating. 1650 */ 1651 memcpy(real_tk, tk, sizeof(*tk)); 1652 timekeeping_update(real_tk, clock_set); 1653 write_seqcount_end(&tk_core.seq); 1654 out: 1655 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1656 if (clock_set) 1657 /* Have to call _delayed version, since in irq context*/ 1658 clock_was_set_delayed(); 1659 } 1660 1661 /** 1662 * getboottime - Return the real time of system boot. 1663 * @ts: pointer to the timespec to be set 1664 * 1665 * Returns the wall-time of boot in a timespec. 1666 * 1667 * This is based on the wall_to_monotonic offset and the total suspend 1668 * time. Calls to settimeofday will affect the value returned (which 1669 * basically means that however wrong your real time clock is at boot time, 1670 * you get the right time here). 1671 */ 1672 void getboottime(struct timespec *ts) 1673 { 1674 struct timekeeper *tk = &tk_core.timekeeper; 1675 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 1676 1677 *ts = ktime_to_timespec(t); 1678 } 1679 EXPORT_SYMBOL_GPL(getboottime); 1680 1681 unsigned long get_seconds(void) 1682 { 1683 struct timekeeper *tk = &tk_core.timekeeper; 1684 1685 return tk->xtime_sec; 1686 } 1687 EXPORT_SYMBOL(get_seconds); 1688 1689 struct timespec __current_kernel_time(void) 1690 { 1691 struct timekeeper *tk = &tk_core.timekeeper; 1692 1693 return timespec64_to_timespec(tk_xtime(tk)); 1694 } 1695 1696 struct timespec current_kernel_time(void) 1697 { 1698 struct timekeeper *tk = &tk_core.timekeeper; 1699 struct timespec64 now; 1700 unsigned long seq; 1701 1702 do { 1703 seq = read_seqcount_begin(&tk_core.seq); 1704 1705 now = tk_xtime(tk); 1706 } while (read_seqcount_retry(&tk_core.seq, seq)); 1707 1708 return timespec64_to_timespec(now); 1709 } 1710 EXPORT_SYMBOL(current_kernel_time); 1711 1712 struct timespec64 get_monotonic_coarse64(void) 1713 { 1714 struct timekeeper *tk = &tk_core.timekeeper; 1715 struct timespec64 now, mono; 1716 unsigned long seq; 1717 1718 do { 1719 seq = read_seqcount_begin(&tk_core.seq); 1720 1721 now = tk_xtime(tk); 1722 mono = tk->wall_to_monotonic; 1723 } while (read_seqcount_retry(&tk_core.seq, seq)); 1724 1725 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 1726 now.tv_nsec + mono.tv_nsec); 1727 1728 return now; 1729 } 1730 1731 /* 1732 * Must hold jiffies_lock 1733 */ 1734 void do_timer(unsigned long ticks) 1735 { 1736 jiffies_64 += ticks; 1737 calc_global_load(ticks); 1738 } 1739 1740 /** 1741 * ktime_get_update_offsets_tick - hrtimer helper 1742 * @offs_real: pointer to storage for monotonic -> realtime offset 1743 * @offs_boot: pointer to storage for monotonic -> boottime offset 1744 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1745 * 1746 * Returns monotonic time at last tick and various offsets 1747 */ 1748 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot, 1749 ktime_t *offs_tai) 1750 { 1751 struct timekeeper *tk = &tk_core.timekeeper; 1752 unsigned int seq; 1753 ktime_t base; 1754 u64 nsecs; 1755 1756 do { 1757 seq = read_seqcount_begin(&tk_core.seq); 1758 1759 base = tk->tkr.base_mono; 1760 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift; 1761 1762 *offs_real = tk->offs_real; 1763 *offs_boot = tk->offs_boot; 1764 *offs_tai = tk->offs_tai; 1765 } while (read_seqcount_retry(&tk_core.seq, seq)); 1766 1767 return ktime_add_ns(base, nsecs); 1768 } 1769 1770 #ifdef CONFIG_HIGH_RES_TIMERS 1771 /** 1772 * ktime_get_update_offsets_now - hrtimer helper 1773 * @offs_real: pointer to storage for monotonic -> realtime offset 1774 * @offs_boot: pointer to storage for monotonic -> boottime offset 1775 * @offs_tai: pointer to storage for monotonic -> clock tai offset 1776 * 1777 * Returns current monotonic time and updates the offsets 1778 * Called from hrtimer_interrupt() or retrigger_next_event() 1779 */ 1780 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot, 1781 ktime_t *offs_tai) 1782 { 1783 struct timekeeper *tk = &tk_core.timekeeper; 1784 unsigned int seq; 1785 ktime_t base; 1786 u64 nsecs; 1787 1788 do { 1789 seq = read_seqcount_begin(&tk_core.seq); 1790 1791 base = tk->tkr.base_mono; 1792 nsecs = timekeeping_get_ns(&tk->tkr); 1793 1794 *offs_real = tk->offs_real; 1795 *offs_boot = tk->offs_boot; 1796 *offs_tai = tk->offs_tai; 1797 } while (read_seqcount_retry(&tk_core.seq, seq)); 1798 1799 return ktime_add_ns(base, nsecs); 1800 } 1801 #endif 1802 1803 /** 1804 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 1805 */ 1806 int do_adjtimex(struct timex *txc) 1807 { 1808 struct timekeeper *tk = &tk_core.timekeeper; 1809 unsigned long flags; 1810 struct timespec64 ts; 1811 s32 orig_tai, tai; 1812 int ret; 1813 1814 /* Validate the data before disabling interrupts */ 1815 ret = ntp_validate_timex(txc); 1816 if (ret) 1817 return ret; 1818 1819 if (txc->modes & ADJ_SETOFFSET) { 1820 struct timespec delta; 1821 delta.tv_sec = txc->time.tv_sec; 1822 delta.tv_nsec = txc->time.tv_usec; 1823 if (!(txc->modes & ADJ_NANO)) 1824 delta.tv_nsec *= 1000; 1825 ret = timekeeping_inject_offset(&delta); 1826 if (ret) 1827 return ret; 1828 } 1829 1830 getnstimeofday64(&ts); 1831 1832 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1833 write_seqcount_begin(&tk_core.seq); 1834 1835 orig_tai = tai = tk->tai_offset; 1836 ret = __do_adjtimex(txc, &ts, &tai); 1837 1838 if (tai != orig_tai) { 1839 __timekeeping_set_tai_offset(tk, tai); 1840 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1841 } 1842 write_seqcount_end(&tk_core.seq); 1843 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1844 1845 if (tai != orig_tai) 1846 clock_was_set(); 1847 1848 ntp_notify_cmos_timer(); 1849 1850 return ret; 1851 } 1852 1853 #ifdef CONFIG_NTP_PPS 1854 /** 1855 * hardpps() - Accessor function to NTP __hardpps function 1856 */ 1857 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) 1858 { 1859 unsigned long flags; 1860 1861 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1862 write_seqcount_begin(&tk_core.seq); 1863 1864 __hardpps(phase_ts, raw_ts); 1865 1866 write_seqcount_end(&tk_core.seq); 1867 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1868 } 1869 EXPORT_SYMBOL(hardpps); 1870 #endif 1871 1872 /** 1873 * xtime_update() - advances the timekeeping infrastructure 1874 * @ticks: number of ticks, that have elapsed since the last call. 1875 * 1876 * Must be called with interrupts disabled. 1877 */ 1878 void xtime_update(unsigned long ticks) 1879 { 1880 write_seqlock(&jiffies_lock); 1881 do_timer(ticks); 1882 write_sequnlock(&jiffies_lock); 1883 update_wall_time(); 1884 } 1885