xref: /openbmc/linux/kernel/time/timekeeping.c (revision 867a0e05)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65 
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68 
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 		tk->xtime_sec++;
74 	}
75 }
76 
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 	struct timespec64 ts;
80 
81 	ts.tv_sec = tk->xtime_sec;
82 	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 	return ts;
84 }
85 
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 	tk->xtime_sec = ts->tv_sec;
89 	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91 
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 	tk->xtime_sec += ts->tv_sec;
95 	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96 	tk_normalize_xtime(tk);
97 }
98 
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 	struct timespec64 tmp;
102 
103 	/*
104 	 * Verify consistency of: offset_real = -wall_to_monotonic
105 	 * before modifying anything
106 	 */
107 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 					-tk->wall_to_monotonic.tv_nsec);
109 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110 	tk->wall_to_monotonic = wtm;
111 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 	tk->offs_real = timespec64_to_ktime(tmp);
113 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115 
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120 
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:		The target timekeeper to setup.
125  * @clock:		Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134 	cycle_t interval;
135 	u64 tmp, ntpinterval;
136 	struct clocksource *old_clock;
137 
138 	old_clock = tk->tkr.clock;
139 	tk->tkr.clock = clock;
140 	tk->tkr.read = clock->read;
141 	tk->tkr.mask = clock->mask;
142 	tk->tkr.cycle_last = tk->tkr.read(clock);
143 
144 	/* Do the ns -> cycle conversion first, using original mult */
145 	tmp = NTP_INTERVAL_LENGTH;
146 	tmp <<= clock->shift;
147 	ntpinterval = tmp;
148 	tmp += clock->mult/2;
149 	do_div(tmp, clock->mult);
150 	if (tmp == 0)
151 		tmp = 1;
152 
153 	interval = (cycle_t) tmp;
154 	tk->cycle_interval = interval;
155 
156 	/* Go back from cycles -> shifted ns */
157 	tk->xtime_interval = (u64) interval * clock->mult;
158 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 	tk->raw_interval =
160 		((u64) interval * clock->mult) >> clock->shift;
161 
162 	 /* if changing clocks, convert xtime_nsec shift units */
163 	if (old_clock) {
164 		int shift_change = clock->shift - old_clock->shift;
165 		if (shift_change < 0)
166 			tk->tkr.xtime_nsec >>= -shift_change;
167 		else
168 			tk->tkr.xtime_nsec <<= shift_change;
169 	}
170 	tk->tkr.shift = clock->shift;
171 
172 	tk->ntp_error = 0;
173 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 
176 	/*
177 	 * The timekeeper keeps its own mult values for the currently
178 	 * active clocksource. These value will be adjusted via NTP
179 	 * to counteract clock drifting.
180 	 */
181 	tk->tkr.mult = clock->mult;
182 	tk->ntp_err_mult = 0;
183 }
184 
185 /* Timekeeper helper functions. */
186 
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193 
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196 	cycle_t cycle_now, delta;
197 	s64 nsec;
198 
199 	/* read clocksource: */
200 	cycle_now = tkr->read(tkr->clock);
201 
202 	/* calculate the delta since the last update_wall_time: */
203 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204 
205 	nsec = delta * tkr->mult + tkr->xtime_nsec;
206 	nsec >>= tkr->shift;
207 
208 	/* If arch requires, add in get_arch_timeoffset() */
209 	return nsec + arch_gettimeoffset();
210 }
211 
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214 	struct clocksource *clock = tk->tkr.clock;
215 	cycle_t cycle_now, delta;
216 	s64 nsec;
217 
218 	/* read clocksource: */
219 	cycle_now = tk->tkr.read(clock);
220 
221 	/* calculate the delta since the last update_wall_time: */
222 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223 
224 	/* convert delta to nanoseconds. */
225 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226 
227 	/* If arch requires, add in get_arch_timeoffset() */
228 	return nsec + arch_gettimeoffset();
229 }
230 
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tk:		The timekeeper from which we take the update
234  * @tkf:	The fast timekeeper to update
235  * @tbase:	The time base for the fast timekeeper (mono/raw)
236  *
237  * We want to use this from any context including NMI and tracing /
238  * instrumenting the timekeeping code itself.
239  *
240  * So we handle this differently than the other timekeeping accessor
241  * functions which retry when the sequence count has changed. The
242  * update side does:
243  *
244  * smp_wmb();	<- Ensure that the last base[1] update is visible
245  * tkf->seq++;
246  * smp_wmb();	<- Ensure that the seqcount update is visible
247  * update(tkf->base[0], tk);
248  * smp_wmb();	<- Ensure that the base[0] update is visible
249  * tkf->seq++;
250  * smp_wmb();	<- Ensure that the seqcount update is visible
251  * update(tkf->base[1], tk);
252  *
253  * The reader side does:
254  *
255  * do {
256  *	seq = tkf->seq;
257  *	smp_rmb();
258  *	idx = seq & 0x01;
259  *	now = now(tkf->base[idx]);
260  *	smp_rmb();
261  * } while (seq != tkf->seq)
262  *
263  * As long as we update base[0] readers are forced off to
264  * base[1]. Once base[0] is updated readers are redirected to base[0]
265  * and the base[1] update takes place.
266  *
267  * So if a NMI hits the update of base[0] then it will use base[1]
268  * which is still consistent. In the worst case this can result is a
269  * slightly wrong timestamp (a few nanoseconds). See
270  * @ktime_get_mono_fast_ns.
271  */
272 static void update_fast_timekeeper(struct timekeeper *tk)
273 {
274 	struct tk_read_base *base = tk_fast_mono.base;
275 
276 	/* Force readers off to base[1] */
277 	raw_write_seqcount_latch(&tk_fast_mono.seq);
278 
279 	/* Update base[0] */
280 	memcpy(base, &tk->tkr, sizeof(*base));
281 
282 	/* Force readers back to base[0] */
283 	raw_write_seqcount_latch(&tk_fast_mono.seq);
284 
285 	/* Update base[1] */
286 	memcpy(base + 1, base, sizeof(*base));
287 }
288 
289 /**
290  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291  *
292  * This timestamp is not guaranteed to be monotonic across an update.
293  * The timestamp is calculated by:
294  *
295  *	now = base_mono + clock_delta * slope
296  *
297  * So if the update lowers the slope, readers who are forced to the
298  * not yet updated second array are still using the old steeper slope.
299  *
300  * tmono
301  * ^
302  * |    o  n
303  * |   o n
304  * |  u
305  * | o
306  * |o
307  * |12345678---> reader order
308  *
309  * o = old slope
310  * u = update
311  * n = new slope
312  *
313  * So reader 6 will observe time going backwards versus reader 5.
314  *
315  * While other CPUs are likely to be able observe that, the only way
316  * for a CPU local observation is when an NMI hits in the middle of
317  * the update. Timestamps taken from that NMI context might be ahead
318  * of the following timestamps. Callers need to be aware of that and
319  * deal with it.
320  */
321 u64 notrace ktime_get_mono_fast_ns(void)
322 {
323 	struct tk_read_base *tkr;
324 	unsigned int seq;
325 	u64 now;
326 
327 	do {
328 		seq = raw_read_seqcount(&tk_fast_mono.seq);
329 		tkr = tk_fast_mono.base + (seq & 0x01);
330 		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331 
332 	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 	return now;
334 }
335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336 
337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338 
339 static inline void update_vsyscall(struct timekeeper *tk)
340 {
341 	struct timespec xt, wm;
342 
343 	xt = timespec64_to_timespec(tk_xtime(tk));
344 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
345 	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346 			    tk->tkr.cycle_last);
347 }
348 
349 static inline void old_vsyscall_fixup(struct timekeeper *tk)
350 {
351 	s64 remainder;
352 
353 	/*
354 	* Store only full nanoseconds into xtime_nsec after rounding
355 	* it up and add the remainder to the error difference.
356 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
357 	* by truncating the remainder in vsyscalls. However, it causes
358 	* additional work to be done in timekeeping_adjust(). Once
359 	* the vsyscall implementations are converted to use xtime_nsec
360 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361 	* users are removed, this can be killed.
362 	*/
363 	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364 	tk->tkr.xtime_nsec -= remainder;
365 	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366 	tk->ntp_error += remainder << tk->ntp_error_shift;
367 	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 }
369 #else
370 #define old_vsyscall_fixup(tk)
371 #endif
372 
373 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374 
375 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376 {
377 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 }
379 
380 /**
381  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
382  */
383 int pvclock_gtod_register_notifier(struct notifier_block *nb)
384 {
385 	struct timekeeper *tk = &tk_core.timekeeper;
386 	unsigned long flags;
387 	int ret;
388 
389 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
390 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391 	update_pvclock_gtod(tk, true);
392 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393 
394 	return ret;
395 }
396 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397 
398 /**
399  * pvclock_gtod_unregister_notifier - unregister a pvclock
400  * timedata update listener
401  */
402 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403 {
404 	unsigned long flags;
405 	int ret;
406 
407 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
408 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410 
411 	return ret;
412 }
413 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414 
415 /*
416  * Update the ktime_t based scalar nsec members of the timekeeper
417  */
418 static inline void tk_update_ktime_data(struct timekeeper *tk)
419 {
420 	u64 seconds;
421 	u32 nsec;
422 
423 	/*
424 	 * The xtime based monotonic readout is:
425 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
426 	 * The ktime based monotonic readout is:
427 	 *	nsec = base_mono + now();
428 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
429 	 */
430 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
431 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
432 	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
433 
434 	/* Update the monotonic raw base */
435 	tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 
437 	/*
438 	 * The sum of the nanoseconds portions of xtime and
439 	 * wall_to_monotonic can be greater/equal one second. Take
440 	 * this into account before updating tk->ktime_sec.
441 	 */
442 	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
443 	if (nsec >= NSEC_PER_SEC)
444 		seconds++;
445 	tk->ktime_sec = seconds;
446 }
447 
448 /* must hold timekeeper_lock */
449 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
450 {
451 	if (action & TK_CLEAR_NTP) {
452 		tk->ntp_error = 0;
453 		ntp_clear();
454 	}
455 
456 	tk_update_ktime_data(tk);
457 
458 	update_vsyscall(tk);
459 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
460 
461 	if (action & TK_MIRROR)
462 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
463 		       sizeof(tk_core.timekeeper));
464 
465 	update_fast_timekeeper(tk);
466 }
467 
468 /**
469  * timekeeping_forward_now - update clock to the current time
470  *
471  * Forward the current clock to update its state since the last call to
472  * update_wall_time(). This is useful before significant clock changes,
473  * as it avoids having to deal with this time offset explicitly.
474  */
475 static void timekeeping_forward_now(struct timekeeper *tk)
476 {
477 	struct clocksource *clock = tk->tkr.clock;
478 	cycle_t cycle_now, delta;
479 	s64 nsec;
480 
481 	cycle_now = tk->tkr.read(clock);
482 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
483 	tk->tkr.cycle_last = cycle_now;
484 
485 	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
486 
487 	/* If arch requires, add in get_arch_timeoffset() */
488 	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
489 
490 	tk_normalize_xtime(tk);
491 
492 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
493 	timespec64_add_ns(&tk->raw_time, nsec);
494 }
495 
496 /**
497  * __getnstimeofday64 - Returns the time of day in a timespec64.
498  * @ts:		pointer to the timespec to be set
499  *
500  * Updates the time of day in the timespec.
501  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
502  */
503 int __getnstimeofday64(struct timespec64 *ts)
504 {
505 	struct timekeeper *tk = &tk_core.timekeeper;
506 	unsigned long seq;
507 	s64 nsecs = 0;
508 
509 	do {
510 		seq = read_seqcount_begin(&tk_core.seq);
511 
512 		ts->tv_sec = tk->xtime_sec;
513 		nsecs = timekeeping_get_ns(&tk->tkr);
514 
515 	} while (read_seqcount_retry(&tk_core.seq, seq));
516 
517 	ts->tv_nsec = 0;
518 	timespec64_add_ns(ts, nsecs);
519 
520 	/*
521 	 * Do not bail out early, in case there were callers still using
522 	 * the value, even in the face of the WARN_ON.
523 	 */
524 	if (unlikely(timekeeping_suspended))
525 		return -EAGAIN;
526 	return 0;
527 }
528 EXPORT_SYMBOL(__getnstimeofday64);
529 
530 /**
531  * getnstimeofday64 - Returns the time of day in a timespec64.
532  * @ts:		pointer to the timespec64 to be set
533  *
534  * Returns the time of day in a timespec64 (WARN if suspended).
535  */
536 void getnstimeofday64(struct timespec64 *ts)
537 {
538 	WARN_ON(__getnstimeofday64(ts));
539 }
540 EXPORT_SYMBOL(getnstimeofday64);
541 
542 ktime_t ktime_get(void)
543 {
544 	struct timekeeper *tk = &tk_core.timekeeper;
545 	unsigned int seq;
546 	ktime_t base;
547 	s64 nsecs;
548 
549 	WARN_ON(timekeeping_suspended);
550 
551 	do {
552 		seq = read_seqcount_begin(&tk_core.seq);
553 		base = tk->tkr.base_mono;
554 		nsecs = timekeeping_get_ns(&tk->tkr);
555 
556 	} while (read_seqcount_retry(&tk_core.seq, seq));
557 
558 	return ktime_add_ns(base, nsecs);
559 }
560 EXPORT_SYMBOL_GPL(ktime_get);
561 
562 static ktime_t *offsets[TK_OFFS_MAX] = {
563 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
564 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
565 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
566 };
567 
568 ktime_t ktime_get_with_offset(enum tk_offsets offs)
569 {
570 	struct timekeeper *tk = &tk_core.timekeeper;
571 	unsigned int seq;
572 	ktime_t base, *offset = offsets[offs];
573 	s64 nsecs;
574 
575 	WARN_ON(timekeeping_suspended);
576 
577 	do {
578 		seq = read_seqcount_begin(&tk_core.seq);
579 		base = ktime_add(tk->tkr.base_mono, *offset);
580 		nsecs = timekeeping_get_ns(&tk->tkr);
581 
582 	} while (read_seqcount_retry(&tk_core.seq, seq));
583 
584 	return ktime_add_ns(base, nsecs);
585 
586 }
587 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
588 
589 /**
590  * ktime_mono_to_any() - convert mononotic time to any other time
591  * @tmono:	time to convert.
592  * @offs:	which offset to use
593  */
594 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
595 {
596 	ktime_t *offset = offsets[offs];
597 	unsigned long seq;
598 	ktime_t tconv;
599 
600 	do {
601 		seq = read_seqcount_begin(&tk_core.seq);
602 		tconv = ktime_add(tmono, *offset);
603 	} while (read_seqcount_retry(&tk_core.seq, seq));
604 
605 	return tconv;
606 }
607 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
608 
609 /**
610  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
611  */
612 ktime_t ktime_get_raw(void)
613 {
614 	struct timekeeper *tk = &tk_core.timekeeper;
615 	unsigned int seq;
616 	ktime_t base;
617 	s64 nsecs;
618 
619 	do {
620 		seq = read_seqcount_begin(&tk_core.seq);
621 		base = tk->base_raw;
622 		nsecs = timekeeping_get_ns_raw(tk);
623 
624 	} while (read_seqcount_retry(&tk_core.seq, seq));
625 
626 	return ktime_add_ns(base, nsecs);
627 }
628 EXPORT_SYMBOL_GPL(ktime_get_raw);
629 
630 /**
631  * ktime_get_ts64 - get the monotonic clock in timespec64 format
632  * @ts:		pointer to timespec variable
633  *
634  * The function calculates the monotonic clock from the realtime
635  * clock and the wall_to_monotonic offset and stores the result
636  * in normalized timespec64 format in the variable pointed to by @ts.
637  */
638 void ktime_get_ts64(struct timespec64 *ts)
639 {
640 	struct timekeeper *tk = &tk_core.timekeeper;
641 	struct timespec64 tomono;
642 	s64 nsec;
643 	unsigned int seq;
644 
645 	WARN_ON(timekeeping_suspended);
646 
647 	do {
648 		seq = read_seqcount_begin(&tk_core.seq);
649 		ts->tv_sec = tk->xtime_sec;
650 		nsec = timekeeping_get_ns(&tk->tkr);
651 		tomono = tk->wall_to_monotonic;
652 
653 	} while (read_seqcount_retry(&tk_core.seq, seq));
654 
655 	ts->tv_sec += tomono.tv_sec;
656 	ts->tv_nsec = 0;
657 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
658 }
659 EXPORT_SYMBOL_GPL(ktime_get_ts64);
660 
661 /**
662  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
663  *
664  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
665  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
666  * works on both 32 and 64 bit systems. On 32 bit systems the readout
667  * covers ~136 years of uptime which should be enough to prevent
668  * premature wrap arounds.
669  */
670 time64_t ktime_get_seconds(void)
671 {
672 	struct timekeeper *tk = &tk_core.timekeeper;
673 
674 	WARN_ON(timekeeping_suspended);
675 	return tk->ktime_sec;
676 }
677 EXPORT_SYMBOL_GPL(ktime_get_seconds);
678 
679 /**
680  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
681  *
682  * Returns the wall clock seconds since 1970. This replaces the
683  * get_seconds() interface which is not y2038 safe on 32bit systems.
684  *
685  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
686  * 32bit systems the access must be protected with the sequence
687  * counter to provide "atomic" access to the 64bit tk->xtime_sec
688  * value.
689  */
690 time64_t ktime_get_real_seconds(void)
691 {
692 	struct timekeeper *tk = &tk_core.timekeeper;
693 	time64_t seconds;
694 	unsigned int seq;
695 
696 	if (IS_ENABLED(CONFIG_64BIT))
697 		return tk->xtime_sec;
698 
699 	do {
700 		seq = read_seqcount_begin(&tk_core.seq);
701 		seconds = tk->xtime_sec;
702 
703 	} while (read_seqcount_retry(&tk_core.seq, seq));
704 
705 	return seconds;
706 }
707 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
708 
709 #ifdef CONFIG_NTP_PPS
710 
711 /**
712  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
713  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
714  * @ts_real:	pointer to the timespec to be set to the time of day
715  *
716  * This function reads both the time of day and raw monotonic time at the
717  * same time atomically and stores the resulting timestamps in timespec
718  * format.
719  */
720 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
721 {
722 	struct timekeeper *tk = &tk_core.timekeeper;
723 	unsigned long seq;
724 	s64 nsecs_raw, nsecs_real;
725 
726 	WARN_ON_ONCE(timekeeping_suspended);
727 
728 	do {
729 		seq = read_seqcount_begin(&tk_core.seq);
730 
731 		*ts_raw = timespec64_to_timespec(tk->raw_time);
732 		ts_real->tv_sec = tk->xtime_sec;
733 		ts_real->tv_nsec = 0;
734 
735 		nsecs_raw = timekeeping_get_ns_raw(tk);
736 		nsecs_real = timekeeping_get_ns(&tk->tkr);
737 
738 	} while (read_seqcount_retry(&tk_core.seq, seq));
739 
740 	timespec_add_ns(ts_raw, nsecs_raw);
741 	timespec_add_ns(ts_real, nsecs_real);
742 }
743 EXPORT_SYMBOL(getnstime_raw_and_real);
744 
745 #endif /* CONFIG_NTP_PPS */
746 
747 /**
748  * do_gettimeofday - Returns the time of day in a timeval
749  * @tv:		pointer to the timeval to be set
750  *
751  * NOTE: Users should be converted to using getnstimeofday()
752  */
753 void do_gettimeofday(struct timeval *tv)
754 {
755 	struct timespec64 now;
756 
757 	getnstimeofday64(&now);
758 	tv->tv_sec = now.tv_sec;
759 	tv->tv_usec = now.tv_nsec/1000;
760 }
761 EXPORT_SYMBOL(do_gettimeofday);
762 
763 /**
764  * do_settimeofday64 - Sets the time of day.
765  * @ts:     pointer to the timespec64 variable containing the new time
766  *
767  * Sets the time of day to the new time and update NTP and notify hrtimers
768  */
769 int do_settimeofday64(const struct timespec64 *ts)
770 {
771 	struct timekeeper *tk = &tk_core.timekeeper;
772 	struct timespec64 ts_delta, xt;
773 	unsigned long flags;
774 
775 	if (!timespec64_valid_strict(ts))
776 		return -EINVAL;
777 
778 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
779 	write_seqcount_begin(&tk_core.seq);
780 
781 	timekeeping_forward_now(tk);
782 
783 	xt = tk_xtime(tk);
784 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
785 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
786 
787 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
788 
789 	tk_set_xtime(tk, ts);
790 
791 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
792 
793 	write_seqcount_end(&tk_core.seq);
794 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
795 
796 	/* signal hrtimers about time change */
797 	clock_was_set();
798 
799 	return 0;
800 }
801 EXPORT_SYMBOL(do_settimeofday64);
802 
803 /**
804  * timekeeping_inject_offset - Adds or subtracts from the current time.
805  * @tv:		pointer to the timespec variable containing the offset
806  *
807  * Adds or subtracts an offset value from the current time.
808  */
809 int timekeeping_inject_offset(struct timespec *ts)
810 {
811 	struct timekeeper *tk = &tk_core.timekeeper;
812 	unsigned long flags;
813 	struct timespec64 ts64, tmp;
814 	int ret = 0;
815 
816 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
817 		return -EINVAL;
818 
819 	ts64 = timespec_to_timespec64(*ts);
820 
821 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
822 	write_seqcount_begin(&tk_core.seq);
823 
824 	timekeeping_forward_now(tk);
825 
826 	/* Make sure the proposed value is valid */
827 	tmp = timespec64_add(tk_xtime(tk),  ts64);
828 	if (!timespec64_valid_strict(&tmp)) {
829 		ret = -EINVAL;
830 		goto error;
831 	}
832 
833 	tk_xtime_add(tk, &ts64);
834 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
835 
836 error: /* even if we error out, we forwarded the time, so call update */
837 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
838 
839 	write_seqcount_end(&tk_core.seq);
840 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
841 
842 	/* signal hrtimers about time change */
843 	clock_was_set();
844 
845 	return ret;
846 }
847 EXPORT_SYMBOL(timekeeping_inject_offset);
848 
849 
850 /**
851  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
852  *
853  */
854 s32 timekeeping_get_tai_offset(void)
855 {
856 	struct timekeeper *tk = &tk_core.timekeeper;
857 	unsigned int seq;
858 	s32 ret;
859 
860 	do {
861 		seq = read_seqcount_begin(&tk_core.seq);
862 		ret = tk->tai_offset;
863 	} while (read_seqcount_retry(&tk_core.seq, seq));
864 
865 	return ret;
866 }
867 
868 /**
869  * __timekeeping_set_tai_offset - Lock free worker function
870  *
871  */
872 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
873 {
874 	tk->tai_offset = tai_offset;
875 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
876 }
877 
878 /**
879  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
880  *
881  */
882 void timekeeping_set_tai_offset(s32 tai_offset)
883 {
884 	struct timekeeper *tk = &tk_core.timekeeper;
885 	unsigned long flags;
886 
887 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
888 	write_seqcount_begin(&tk_core.seq);
889 	__timekeeping_set_tai_offset(tk, tai_offset);
890 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
891 	write_seqcount_end(&tk_core.seq);
892 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
893 	clock_was_set();
894 }
895 
896 /**
897  * change_clocksource - Swaps clocksources if a new one is available
898  *
899  * Accumulates current time interval and initializes new clocksource
900  */
901 static int change_clocksource(void *data)
902 {
903 	struct timekeeper *tk = &tk_core.timekeeper;
904 	struct clocksource *new, *old;
905 	unsigned long flags;
906 
907 	new = (struct clocksource *) data;
908 
909 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
910 	write_seqcount_begin(&tk_core.seq);
911 
912 	timekeeping_forward_now(tk);
913 	/*
914 	 * If the cs is in module, get a module reference. Succeeds
915 	 * for built-in code (owner == NULL) as well.
916 	 */
917 	if (try_module_get(new->owner)) {
918 		if (!new->enable || new->enable(new) == 0) {
919 			old = tk->tkr.clock;
920 			tk_setup_internals(tk, new);
921 			if (old->disable)
922 				old->disable(old);
923 			module_put(old->owner);
924 		} else {
925 			module_put(new->owner);
926 		}
927 	}
928 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
929 
930 	write_seqcount_end(&tk_core.seq);
931 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
932 
933 	return 0;
934 }
935 
936 /**
937  * timekeeping_notify - Install a new clock source
938  * @clock:		pointer to the clock source
939  *
940  * This function is called from clocksource.c after a new, better clock
941  * source has been registered. The caller holds the clocksource_mutex.
942  */
943 int timekeeping_notify(struct clocksource *clock)
944 {
945 	struct timekeeper *tk = &tk_core.timekeeper;
946 
947 	if (tk->tkr.clock == clock)
948 		return 0;
949 	stop_machine(change_clocksource, clock, NULL);
950 	tick_clock_notify();
951 	return tk->tkr.clock == clock ? 0 : -1;
952 }
953 
954 /**
955  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
956  * @ts:		pointer to the timespec64 to be set
957  *
958  * Returns the raw monotonic time (completely un-modified by ntp)
959  */
960 void getrawmonotonic64(struct timespec64 *ts)
961 {
962 	struct timekeeper *tk = &tk_core.timekeeper;
963 	struct timespec64 ts64;
964 	unsigned long seq;
965 	s64 nsecs;
966 
967 	do {
968 		seq = read_seqcount_begin(&tk_core.seq);
969 		nsecs = timekeeping_get_ns_raw(tk);
970 		ts64 = tk->raw_time;
971 
972 	} while (read_seqcount_retry(&tk_core.seq, seq));
973 
974 	timespec64_add_ns(&ts64, nsecs);
975 	*ts = ts64;
976 }
977 EXPORT_SYMBOL(getrawmonotonic64);
978 
979 
980 /**
981  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
982  */
983 int timekeeping_valid_for_hres(void)
984 {
985 	struct timekeeper *tk = &tk_core.timekeeper;
986 	unsigned long seq;
987 	int ret;
988 
989 	do {
990 		seq = read_seqcount_begin(&tk_core.seq);
991 
992 		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
993 
994 	} while (read_seqcount_retry(&tk_core.seq, seq));
995 
996 	return ret;
997 }
998 
999 /**
1000  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1001  */
1002 u64 timekeeping_max_deferment(void)
1003 {
1004 	struct timekeeper *tk = &tk_core.timekeeper;
1005 	unsigned long seq;
1006 	u64 ret;
1007 
1008 	do {
1009 		seq = read_seqcount_begin(&tk_core.seq);
1010 
1011 		ret = tk->tkr.clock->max_idle_ns;
1012 
1013 	} while (read_seqcount_retry(&tk_core.seq, seq));
1014 
1015 	return ret;
1016 }
1017 
1018 /**
1019  * read_persistent_clock -  Return time from the persistent clock.
1020  *
1021  * Weak dummy function for arches that do not yet support it.
1022  * Reads the time from the battery backed persistent clock.
1023  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1024  *
1025  *  XXX - Do be sure to remove it once all arches implement it.
1026  */
1027 void __weak read_persistent_clock(struct timespec *ts)
1028 {
1029 	ts->tv_sec = 0;
1030 	ts->tv_nsec = 0;
1031 }
1032 
1033 /**
1034  * read_boot_clock -  Return time of the system start.
1035  *
1036  * Weak dummy function for arches that do not yet support it.
1037  * Function to read the exact time the system has been started.
1038  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1039  *
1040  *  XXX - Do be sure to remove it once all arches implement it.
1041  */
1042 void __weak read_boot_clock(struct timespec *ts)
1043 {
1044 	ts->tv_sec = 0;
1045 	ts->tv_nsec = 0;
1046 }
1047 
1048 /*
1049  * timekeeping_init - Initializes the clocksource and common timekeeping values
1050  */
1051 void __init timekeeping_init(void)
1052 {
1053 	struct timekeeper *tk = &tk_core.timekeeper;
1054 	struct clocksource *clock;
1055 	unsigned long flags;
1056 	struct timespec64 now, boot, tmp;
1057 	struct timespec ts;
1058 
1059 	read_persistent_clock(&ts);
1060 	now = timespec_to_timespec64(ts);
1061 	if (!timespec64_valid_strict(&now)) {
1062 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1063 			"         Check your CMOS/BIOS settings.\n");
1064 		now.tv_sec = 0;
1065 		now.tv_nsec = 0;
1066 	} else if (now.tv_sec || now.tv_nsec)
1067 		persistent_clock_exist = true;
1068 
1069 	read_boot_clock(&ts);
1070 	boot = timespec_to_timespec64(ts);
1071 	if (!timespec64_valid_strict(&boot)) {
1072 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1073 			"         Check your CMOS/BIOS settings.\n");
1074 		boot.tv_sec = 0;
1075 		boot.tv_nsec = 0;
1076 	}
1077 
1078 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1079 	write_seqcount_begin(&tk_core.seq);
1080 	ntp_init();
1081 
1082 	clock = clocksource_default_clock();
1083 	if (clock->enable)
1084 		clock->enable(clock);
1085 	tk_setup_internals(tk, clock);
1086 
1087 	tk_set_xtime(tk, &now);
1088 	tk->raw_time.tv_sec = 0;
1089 	tk->raw_time.tv_nsec = 0;
1090 	tk->base_raw.tv64 = 0;
1091 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1092 		boot = tk_xtime(tk);
1093 
1094 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1095 	tk_set_wall_to_mono(tk, tmp);
1096 
1097 	timekeeping_update(tk, TK_MIRROR);
1098 
1099 	write_seqcount_end(&tk_core.seq);
1100 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1101 }
1102 
1103 /* time in seconds when suspend began */
1104 static struct timespec64 timekeeping_suspend_time;
1105 
1106 /**
1107  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1108  * @delta: pointer to a timespec delta value
1109  *
1110  * Takes a timespec offset measuring a suspend interval and properly
1111  * adds the sleep offset to the timekeeping variables.
1112  */
1113 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1114 					   struct timespec64 *delta)
1115 {
1116 	if (!timespec64_valid_strict(delta)) {
1117 		printk_deferred(KERN_WARNING
1118 				"__timekeeping_inject_sleeptime: Invalid "
1119 				"sleep delta value!\n");
1120 		return;
1121 	}
1122 	tk_xtime_add(tk, delta);
1123 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1124 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1125 	tk_debug_account_sleep_time(delta);
1126 }
1127 
1128 /**
1129  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1130  * @delta: pointer to a timespec64 delta value
1131  *
1132  * This hook is for architectures that cannot support read_persistent_clock
1133  * because their RTC/persistent clock is only accessible when irqs are enabled.
1134  *
1135  * This function should only be called by rtc_resume(), and allows
1136  * a suspend offset to be injected into the timekeeping values.
1137  */
1138 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1139 {
1140 	struct timekeeper *tk = &tk_core.timekeeper;
1141 	unsigned long flags;
1142 
1143 	/*
1144 	 * Make sure we don't set the clock twice, as timekeeping_resume()
1145 	 * already did it
1146 	 */
1147 	if (has_persistent_clock())
1148 		return;
1149 
1150 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1151 	write_seqcount_begin(&tk_core.seq);
1152 
1153 	timekeeping_forward_now(tk);
1154 
1155 	__timekeeping_inject_sleeptime(tk, delta);
1156 
1157 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1158 
1159 	write_seqcount_end(&tk_core.seq);
1160 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1161 
1162 	/* signal hrtimers about time change */
1163 	clock_was_set();
1164 }
1165 
1166 /**
1167  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1168  *
1169  * This is for the generic clocksource timekeeping.
1170  * xtime/wall_to_monotonic/jiffies/etc are
1171  * still managed by arch specific suspend/resume code.
1172  */
1173 static void timekeeping_resume(void)
1174 {
1175 	struct timekeeper *tk = &tk_core.timekeeper;
1176 	struct clocksource *clock = tk->tkr.clock;
1177 	unsigned long flags;
1178 	struct timespec64 ts_new, ts_delta;
1179 	struct timespec tmp;
1180 	cycle_t cycle_now, cycle_delta;
1181 	bool suspendtime_found = false;
1182 
1183 	read_persistent_clock(&tmp);
1184 	ts_new = timespec_to_timespec64(tmp);
1185 
1186 	clockevents_resume();
1187 	clocksource_resume();
1188 
1189 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1190 	write_seqcount_begin(&tk_core.seq);
1191 
1192 	/*
1193 	 * After system resumes, we need to calculate the suspended time and
1194 	 * compensate it for the OS time. There are 3 sources that could be
1195 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1196 	 * device.
1197 	 *
1198 	 * One specific platform may have 1 or 2 or all of them, and the
1199 	 * preference will be:
1200 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1201 	 * The less preferred source will only be tried if there is no better
1202 	 * usable source. The rtc part is handled separately in rtc core code.
1203 	 */
1204 	cycle_now = tk->tkr.read(clock);
1205 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1206 		cycle_now > tk->tkr.cycle_last) {
1207 		u64 num, max = ULLONG_MAX;
1208 		u32 mult = clock->mult;
1209 		u32 shift = clock->shift;
1210 		s64 nsec = 0;
1211 
1212 		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1213 						tk->tkr.mask);
1214 
1215 		/*
1216 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1217 		 * suspended time is too long. In that case we need do the
1218 		 * 64 bits math carefully
1219 		 */
1220 		do_div(max, mult);
1221 		if (cycle_delta > max) {
1222 			num = div64_u64(cycle_delta, max);
1223 			nsec = (((u64) max * mult) >> shift) * num;
1224 			cycle_delta -= num * max;
1225 		}
1226 		nsec += ((u64) cycle_delta * mult) >> shift;
1227 
1228 		ts_delta = ns_to_timespec64(nsec);
1229 		suspendtime_found = true;
1230 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1231 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1232 		suspendtime_found = true;
1233 	}
1234 
1235 	if (suspendtime_found)
1236 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1237 
1238 	/* Re-base the last cycle value */
1239 	tk->tkr.cycle_last = cycle_now;
1240 	tk->ntp_error = 0;
1241 	timekeeping_suspended = 0;
1242 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1243 	write_seqcount_end(&tk_core.seq);
1244 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1245 
1246 	touch_softlockup_watchdog();
1247 
1248 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1249 
1250 	/* Resume hrtimers */
1251 	hrtimers_resume();
1252 }
1253 
1254 static int timekeeping_suspend(void)
1255 {
1256 	struct timekeeper *tk = &tk_core.timekeeper;
1257 	unsigned long flags;
1258 	struct timespec64		delta, delta_delta;
1259 	static struct timespec64	old_delta;
1260 	struct timespec tmp;
1261 
1262 	read_persistent_clock(&tmp);
1263 	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1264 
1265 	/*
1266 	 * On some systems the persistent_clock can not be detected at
1267 	 * timekeeping_init by its return value, so if we see a valid
1268 	 * value returned, update the persistent_clock_exists flag.
1269 	 */
1270 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1271 		persistent_clock_exist = true;
1272 
1273 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1274 	write_seqcount_begin(&tk_core.seq);
1275 	timekeeping_forward_now(tk);
1276 	timekeeping_suspended = 1;
1277 
1278 	/*
1279 	 * To avoid drift caused by repeated suspend/resumes,
1280 	 * which each can add ~1 second drift error,
1281 	 * try to compensate so the difference in system time
1282 	 * and persistent_clock time stays close to constant.
1283 	 */
1284 	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1285 	delta_delta = timespec64_sub(delta, old_delta);
1286 	if (abs(delta_delta.tv_sec)  >= 2) {
1287 		/*
1288 		 * if delta_delta is too large, assume time correction
1289 		 * has occured and set old_delta to the current delta.
1290 		 */
1291 		old_delta = delta;
1292 	} else {
1293 		/* Otherwise try to adjust old_system to compensate */
1294 		timekeeping_suspend_time =
1295 			timespec64_add(timekeeping_suspend_time, delta_delta);
1296 	}
1297 
1298 	timekeeping_update(tk, TK_MIRROR);
1299 	write_seqcount_end(&tk_core.seq);
1300 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1301 
1302 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1303 	clocksource_suspend();
1304 	clockevents_suspend();
1305 
1306 	return 0;
1307 }
1308 
1309 /* sysfs resume/suspend bits for timekeeping */
1310 static struct syscore_ops timekeeping_syscore_ops = {
1311 	.resume		= timekeeping_resume,
1312 	.suspend	= timekeeping_suspend,
1313 };
1314 
1315 static int __init timekeeping_init_ops(void)
1316 {
1317 	register_syscore_ops(&timekeeping_syscore_ops);
1318 	return 0;
1319 }
1320 device_initcall(timekeeping_init_ops);
1321 
1322 /*
1323  * Apply a multiplier adjustment to the timekeeper
1324  */
1325 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1326 							 s64 offset,
1327 							 bool negative,
1328 							 int adj_scale)
1329 {
1330 	s64 interval = tk->cycle_interval;
1331 	s32 mult_adj = 1;
1332 
1333 	if (negative) {
1334 		mult_adj = -mult_adj;
1335 		interval = -interval;
1336 		offset  = -offset;
1337 	}
1338 	mult_adj <<= adj_scale;
1339 	interval <<= adj_scale;
1340 	offset <<= adj_scale;
1341 
1342 	/*
1343 	 * So the following can be confusing.
1344 	 *
1345 	 * To keep things simple, lets assume mult_adj == 1 for now.
1346 	 *
1347 	 * When mult_adj != 1, remember that the interval and offset values
1348 	 * have been appropriately scaled so the math is the same.
1349 	 *
1350 	 * The basic idea here is that we're increasing the multiplier
1351 	 * by one, this causes the xtime_interval to be incremented by
1352 	 * one cycle_interval. This is because:
1353 	 *	xtime_interval = cycle_interval * mult
1354 	 * So if mult is being incremented by one:
1355 	 *	xtime_interval = cycle_interval * (mult + 1)
1356 	 * Its the same as:
1357 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1358 	 * Which can be shortened to:
1359 	 *	xtime_interval += cycle_interval
1360 	 *
1361 	 * So offset stores the non-accumulated cycles. Thus the current
1362 	 * time (in shifted nanoseconds) is:
1363 	 *	now = (offset * adj) + xtime_nsec
1364 	 * Now, even though we're adjusting the clock frequency, we have
1365 	 * to keep time consistent. In other words, we can't jump back
1366 	 * in time, and we also want to avoid jumping forward in time.
1367 	 *
1368 	 * So given the same offset value, we need the time to be the same
1369 	 * both before and after the freq adjustment.
1370 	 *	now = (offset * adj_1) + xtime_nsec_1
1371 	 *	now = (offset * adj_2) + xtime_nsec_2
1372 	 * So:
1373 	 *	(offset * adj_1) + xtime_nsec_1 =
1374 	 *		(offset * adj_2) + xtime_nsec_2
1375 	 * And we know:
1376 	 *	adj_2 = adj_1 + 1
1377 	 * So:
1378 	 *	(offset * adj_1) + xtime_nsec_1 =
1379 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1380 	 *	(offset * adj_1) + xtime_nsec_1 =
1381 	 *		(offset * adj_1) + offset + xtime_nsec_2
1382 	 * Canceling the sides:
1383 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1384 	 * Which gives us:
1385 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1386 	 * Which simplfies to:
1387 	 *	xtime_nsec -= offset
1388 	 *
1389 	 * XXX - TODO: Doc ntp_error calculation.
1390 	 */
1391 	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1392 		/* NTP adjustment caused clocksource mult overflow */
1393 		WARN_ON_ONCE(1);
1394 		return;
1395 	}
1396 
1397 	tk->tkr.mult += mult_adj;
1398 	tk->xtime_interval += interval;
1399 	tk->tkr.xtime_nsec -= offset;
1400 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1401 }
1402 
1403 /*
1404  * Calculate the multiplier adjustment needed to match the frequency
1405  * specified by NTP
1406  */
1407 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1408 							s64 offset)
1409 {
1410 	s64 interval = tk->cycle_interval;
1411 	s64 xinterval = tk->xtime_interval;
1412 	s64 tick_error;
1413 	bool negative;
1414 	u32 adj;
1415 
1416 	/* Remove any current error adj from freq calculation */
1417 	if (tk->ntp_err_mult)
1418 		xinterval -= tk->cycle_interval;
1419 
1420 	tk->ntp_tick = ntp_tick_length();
1421 
1422 	/* Calculate current error per tick */
1423 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1424 	tick_error -= (xinterval + tk->xtime_remainder);
1425 
1426 	/* Don't worry about correcting it if its small */
1427 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1428 		return;
1429 
1430 	/* preserve the direction of correction */
1431 	negative = (tick_error < 0);
1432 
1433 	/* Sort out the magnitude of the correction */
1434 	tick_error = abs(tick_error);
1435 	for (adj = 0; tick_error > interval; adj++)
1436 		tick_error >>= 1;
1437 
1438 	/* scale the corrections */
1439 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1440 }
1441 
1442 /*
1443  * Adjust the timekeeper's multiplier to the correct frequency
1444  * and also to reduce the accumulated error value.
1445  */
1446 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1447 {
1448 	/* Correct for the current frequency error */
1449 	timekeeping_freqadjust(tk, offset);
1450 
1451 	/* Next make a small adjustment to fix any cumulative error */
1452 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1453 		tk->ntp_err_mult = 1;
1454 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1455 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1456 		/* Undo any existing error adjustment */
1457 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1458 		tk->ntp_err_mult = 0;
1459 	}
1460 
1461 	if (unlikely(tk->tkr.clock->maxadj &&
1462 		(abs(tk->tkr.mult - tk->tkr.clock->mult)
1463 			> tk->tkr.clock->maxadj))) {
1464 		printk_once(KERN_WARNING
1465 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1466 			tk->tkr.clock->name, (long)tk->tkr.mult,
1467 			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1468 	}
1469 
1470 	/*
1471 	 * It may be possible that when we entered this function, xtime_nsec
1472 	 * was very small.  Further, if we're slightly speeding the clocksource
1473 	 * in the code above, its possible the required corrective factor to
1474 	 * xtime_nsec could cause it to underflow.
1475 	 *
1476 	 * Now, since we already accumulated the second, cannot simply roll
1477 	 * the accumulated second back, since the NTP subsystem has been
1478 	 * notified via second_overflow. So instead we push xtime_nsec forward
1479 	 * by the amount we underflowed, and add that amount into the error.
1480 	 *
1481 	 * We'll correct this error next time through this function, when
1482 	 * xtime_nsec is not as small.
1483 	 */
1484 	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1485 		s64 neg = -(s64)tk->tkr.xtime_nsec;
1486 		tk->tkr.xtime_nsec = 0;
1487 		tk->ntp_error += neg << tk->ntp_error_shift;
1488 	}
1489 }
1490 
1491 /**
1492  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1493  *
1494  * Helper function that accumulates a the nsecs greater then a second
1495  * from the xtime_nsec field to the xtime_secs field.
1496  * It also calls into the NTP code to handle leapsecond processing.
1497  *
1498  */
1499 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1500 {
1501 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1502 	unsigned int clock_set = 0;
1503 
1504 	while (tk->tkr.xtime_nsec >= nsecps) {
1505 		int leap;
1506 
1507 		tk->tkr.xtime_nsec -= nsecps;
1508 		tk->xtime_sec++;
1509 
1510 		/* Figure out if its a leap sec and apply if needed */
1511 		leap = second_overflow(tk->xtime_sec);
1512 		if (unlikely(leap)) {
1513 			struct timespec64 ts;
1514 
1515 			tk->xtime_sec += leap;
1516 
1517 			ts.tv_sec = leap;
1518 			ts.tv_nsec = 0;
1519 			tk_set_wall_to_mono(tk,
1520 				timespec64_sub(tk->wall_to_monotonic, ts));
1521 
1522 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1523 
1524 			clock_set = TK_CLOCK_WAS_SET;
1525 		}
1526 	}
1527 	return clock_set;
1528 }
1529 
1530 /**
1531  * logarithmic_accumulation - shifted accumulation of cycles
1532  *
1533  * This functions accumulates a shifted interval of cycles into
1534  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1535  * loop.
1536  *
1537  * Returns the unconsumed cycles.
1538  */
1539 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1540 						u32 shift,
1541 						unsigned int *clock_set)
1542 {
1543 	cycle_t interval = tk->cycle_interval << shift;
1544 	u64 raw_nsecs;
1545 
1546 	/* If the offset is smaller then a shifted interval, do nothing */
1547 	if (offset < interval)
1548 		return offset;
1549 
1550 	/* Accumulate one shifted interval */
1551 	offset -= interval;
1552 	tk->tkr.cycle_last += interval;
1553 
1554 	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1555 	*clock_set |= accumulate_nsecs_to_secs(tk);
1556 
1557 	/* Accumulate raw time */
1558 	raw_nsecs = (u64)tk->raw_interval << shift;
1559 	raw_nsecs += tk->raw_time.tv_nsec;
1560 	if (raw_nsecs >= NSEC_PER_SEC) {
1561 		u64 raw_secs = raw_nsecs;
1562 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1563 		tk->raw_time.tv_sec += raw_secs;
1564 	}
1565 	tk->raw_time.tv_nsec = raw_nsecs;
1566 
1567 	/* Accumulate error between NTP and clock interval */
1568 	tk->ntp_error += tk->ntp_tick << shift;
1569 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1570 						(tk->ntp_error_shift + shift);
1571 
1572 	return offset;
1573 }
1574 
1575 /**
1576  * update_wall_time - Uses the current clocksource to increment the wall time
1577  *
1578  */
1579 void update_wall_time(void)
1580 {
1581 	struct timekeeper *real_tk = &tk_core.timekeeper;
1582 	struct timekeeper *tk = &shadow_timekeeper;
1583 	cycle_t offset;
1584 	int shift = 0, maxshift;
1585 	unsigned int clock_set = 0;
1586 	unsigned long flags;
1587 
1588 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1589 
1590 	/* Make sure we're fully resumed: */
1591 	if (unlikely(timekeeping_suspended))
1592 		goto out;
1593 
1594 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1595 	offset = real_tk->cycle_interval;
1596 #else
1597 	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1598 				   tk->tkr.cycle_last, tk->tkr.mask);
1599 #endif
1600 
1601 	/* Check if there's really nothing to do */
1602 	if (offset < real_tk->cycle_interval)
1603 		goto out;
1604 
1605 	/*
1606 	 * With NO_HZ we may have to accumulate many cycle_intervals
1607 	 * (think "ticks") worth of time at once. To do this efficiently,
1608 	 * we calculate the largest doubling multiple of cycle_intervals
1609 	 * that is smaller than the offset.  We then accumulate that
1610 	 * chunk in one go, and then try to consume the next smaller
1611 	 * doubled multiple.
1612 	 */
1613 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1614 	shift = max(0, shift);
1615 	/* Bound shift to one less than what overflows tick_length */
1616 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1617 	shift = min(shift, maxshift);
1618 	while (offset >= tk->cycle_interval) {
1619 		offset = logarithmic_accumulation(tk, offset, shift,
1620 							&clock_set);
1621 		if (offset < tk->cycle_interval<<shift)
1622 			shift--;
1623 	}
1624 
1625 	/* correct the clock when NTP error is too big */
1626 	timekeeping_adjust(tk, offset);
1627 
1628 	/*
1629 	 * XXX This can be killed once everyone converts
1630 	 * to the new update_vsyscall.
1631 	 */
1632 	old_vsyscall_fixup(tk);
1633 
1634 	/*
1635 	 * Finally, make sure that after the rounding
1636 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1637 	 */
1638 	clock_set |= accumulate_nsecs_to_secs(tk);
1639 
1640 	write_seqcount_begin(&tk_core.seq);
1641 	/*
1642 	 * Update the real timekeeper.
1643 	 *
1644 	 * We could avoid this memcpy by switching pointers, but that
1645 	 * requires changes to all other timekeeper usage sites as
1646 	 * well, i.e. move the timekeeper pointer getter into the
1647 	 * spinlocked/seqcount protected sections. And we trade this
1648 	 * memcpy under the tk_core.seq against one before we start
1649 	 * updating.
1650 	 */
1651 	memcpy(real_tk, tk, sizeof(*tk));
1652 	timekeeping_update(real_tk, clock_set);
1653 	write_seqcount_end(&tk_core.seq);
1654 out:
1655 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1656 	if (clock_set)
1657 		/* Have to call _delayed version, since in irq context*/
1658 		clock_was_set_delayed();
1659 }
1660 
1661 /**
1662  * getboottime - Return the real time of system boot.
1663  * @ts:		pointer to the timespec to be set
1664  *
1665  * Returns the wall-time of boot in a timespec.
1666  *
1667  * This is based on the wall_to_monotonic offset and the total suspend
1668  * time. Calls to settimeofday will affect the value returned (which
1669  * basically means that however wrong your real time clock is at boot time,
1670  * you get the right time here).
1671  */
1672 void getboottime(struct timespec *ts)
1673 {
1674 	struct timekeeper *tk = &tk_core.timekeeper;
1675 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1676 
1677 	*ts = ktime_to_timespec(t);
1678 }
1679 EXPORT_SYMBOL_GPL(getboottime);
1680 
1681 unsigned long get_seconds(void)
1682 {
1683 	struct timekeeper *tk = &tk_core.timekeeper;
1684 
1685 	return tk->xtime_sec;
1686 }
1687 EXPORT_SYMBOL(get_seconds);
1688 
1689 struct timespec __current_kernel_time(void)
1690 {
1691 	struct timekeeper *tk = &tk_core.timekeeper;
1692 
1693 	return timespec64_to_timespec(tk_xtime(tk));
1694 }
1695 
1696 struct timespec current_kernel_time(void)
1697 {
1698 	struct timekeeper *tk = &tk_core.timekeeper;
1699 	struct timespec64 now;
1700 	unsigned long seq;
1701 
1702 	do {
1703 		seq = read_seqcount_begin(&tk_core.seq);
1704 
1705 		now = tk_xtime(tk);
1706 	} while (read_seqcount_retry(&tk_core.seq, seq));
1707 
1708 	return timespec64_to_timespec(now);
1709 }
1710 EXPORT_SYMBOL(current_kernel_time);
1711 
1712 struct timespec64 get_monotonic_coarse64(void)
1713 {
1714 	struct timekeeper *tk = &tk_core.timekeeper;
1715 	struct timespec64 now, mono;
1716 	unsigned long seq;
1717 
1718 	do {
1719 		seq = read_seqcount_begin(&tk_core.seq);
1720 
1721 		now = tk_xtime(tk);
1722 		mono = tk->wall_to_monotonic;
1723 	} while (read_seqcount_retry(&tk_core.seq, seq));
1724 
1725 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1726 				now.tv_nsec + mono.tv_nsec);
1727 
1728 	return now;
1729 }
1730 
1731 /*
1732  * Must hold jiffies_lock
1733  */
1734 void do_timer(unsigned long ticks)
1735 {
1736 	jiffies_64 += ticks;
1737 	calc_global_load(ticks);
1738 }
1739 
1740 /**
1741  * ktime_get_update_offsets_tick - hrtimer helper
1742  * @offs_real:	pointer to storage for monotonic -> realtime offset
1743  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1744  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1745  *
1746  * Returns monotonic time at last tick and various offsets
1747  */
1748 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1749 							ktime_t *offs_tai)
1750 {
1751 	struct timekeeper *tk = &tk_core.timekeeper;
1752 	unsigned int seq;
1753 	ktime_t base;
1754 	u64 nsecs;
1755 
1756 	do {
1757 		seq = read_seqcount_begin(&tk_core.seq);
1758 
1759 		base = tk->tkr.base_mono;
1760 		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1761 
1762 		*offs_real = tk->offs_real;
1763 		*offs_boot = tk->offs_boot;
1764 		*offs_tai = tk->offs_tai;
1765 	} while (read_seqcount_retry(&tk_core.seq, seq));
1766 
1767 	return ktime_add_ns(base, nsecs);
1768 }
1769 
1770 #ifdef CONFIG_HIGH_RES_TIMERS
1771 /**
1772  * ktime_get_update_offsets_now - hrtimer helper
1773  * @offs_real:	pointer to storage for monotonic -> realtime offset
1774  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1775  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1776  *
1777  * Returns current monotonic time and updates the offsets
1778  * Called from hrtimer_interrupt() or retrigger_next_event()
1779  */
1780 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1781 							ktime_t *offs_tai)
1782 {
1783 	struct timekeeper *tk = &tk_core.timekeeper;
1784 	unsigned int seq;
1785 	ktime_t base;
1786 	u64 nsecs;
1787 
1788 	do {
1789 		seq = read_seqcount_begin(&tk_core.seq);
1790 
1791 		base = tk->tkr.base_mono;
1792 		nsecs = timekeeping_get_ns(&tk->tkr);
1793 
1794 		*offs_real = tk->offs_real;
1795 		*offs_boot = tk->offs_boot;
1796 		*offs_tai = tk->offs_tai;
1797 	} while (read_seqcount_retry(&tk_core.seq, seq));
1798 
1799 	return ktime_add_ns(base, nsecs);
1800 }
1801 #endif
1802 
1803 /**
1804  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1805  */
1806 int do_adjtimex(struct timex *txc)
1807 {
1808 	struct timekeeper *tk = &tk_core.timekeeper;
1809 	unsigned long flags;
1810 	struct timespec64 ts;
1811 	s32 orig_tai, tai;
1812 	int ret;
1813 
1814 	/* Validate the data before disabling interrupts */
1815 	ret = ntp_validate_timex(txc);
1816 	if (ret)
1817 		return ret;
1818 
1819 	if (txc->modes & ADJ_SETOFFSET) {
1820 		struct timespec delta;
1821 		delta.tv_sec  = txc->time.tv_sec;
1822 		delta.tv_nsec = txc->time.tv_usec;
1823 		if (!(txc->modes & ADJ_NANO))
1824 			delta.tv_nsec *= 1000;
1825 		ret = timekeeping_inject_offset(&delta);
1826 		if (ret)
1827 			return ret;
1828 	}
1829 
1830 	getnstimeofday64(&ts);
1831 
1832 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1833 	write_seqcount_begin(&tk_core.seq);
1834 
1835 	orig_tai = tai = tk->tai_offset;
1836 	ret = __do_adjtimex(txc, &ts, &tai);
1837 
1838 	if (tai != orig_tai) {
1839 		__timekeeping_set_tai_offset(tk, tai);
1840 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1841 	}
1842 	write_seqcount_end(&tk_core.seq);
1843 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1844 
1845 	if (tai != orig_tai)
1846 		clock_was_set();
1847 
1848 	ntp_notify_cmos_timer();
1849 
1850 	return ret;
1851 }
1852 
1853 #ifdef CONFIG_NTP_PPS
1854 /**
1855  * hardpps() - Accessor function to NTP __hardpps function
1856  */
1857 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1858 {
1859 	unsigned long flags;
1860 
1861 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1862 	write_seqcount_begin(&tk_core.seq);
1863 
1864 	__hardpps(phase_ts, raw_ts);
1865 
1866 	write_seqcount_end(&tk_core.seq);
1867 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1868 }
1869 EXPORT_SYMBOL(hardpps);
1870 #endif
1871 
1872 /**
1873  * xtime_update() - advances the timekeeping infrastructure
1874  * @ticks:	number of ticks, that have elapsed since the last call.
1875  *
1876  * Must be called with interrupts disabled.
1877  */
1878 void xtime_update(unsigned long ticks)
1879 {
1880 	write_seqlock(&jiffies_lock);
1881 	do_timer(ticks);
1882 	write_sequnlock(&jiffies_lock);
1883 	update_wall_time();
1884 }
1885