1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 123 { 124 125 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 u64 now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 203 { 204 } 205 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 u64 cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 u64 interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 ++tk->cs_was_changed_seq; 237 old_clock = tk->tkr_mono.clock; 238 tk->tkr_mono.clock = clock; 239 tk->tkr_mono.read = clock->read; 240 tk->tkr_mono.mask = clock->mask; 241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 242 243 tk->tkr_raw.clock = clock; 244 tk->tkr_raw.read = clock->read; 245 tk->tkr_raw.mask = clock->mask; 246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 247 248 /* Do the ns -> cycle conversion first, using original mult */ 249 tmp = NTP_INTERVAL_LENGTH; 250 tmp <<= clock->shift; 251 ntpinterval = tmp; 252 tmp += clock->mult/2; 253 do_div(tmp, clock->mult); 254 if (tmp == 0) 255 tmp = 1; 256 257 interval = (u64) tmp; 258 tk->cycle_interval = interval; 259 260 /* Go back from cycles -> shifted ns */ 261 tk->xtime_interval = interval * clock->mult; 262 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 263 tk->raw_interval = (interval * clock->mult) >> clock->shift; 264 265 /* if changing clocks, convert xtime_nsec shift units */ 266 if (old_clock) { 267 int shift_change = clock->shift - old_clock->shift; 268 if (shift_change < 0) 269 tk->tkr_mono.xtime_nsec >>= -shift_change; 270 else 271 tk->tkr_mono.xtime_nsec <<= shift_change; 272 } 273 tk->tkr_raw.xtime_nsec = 0; 274 275 tk->tkr_mono.shift = clock->shift; 276 tk->tkr_raw.shift = clock->shift; 277 278 tk->ntp_error = 0; 279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 281 282 /* 283 * The timekeeper keeps its own mult values for the currently 284 * active clocksource. These value will be adjusted via NTP 285 * to counteract clock drifting. 286 */ 287 tk->tkr_mono.mult = clock->mult; 288 tk->tkr_raw.mult = clock->mult; 289 tk->ntp_err_mult = 0; 290 } 291 292 /* Timekeeper helper functions. */ 293 294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 295 static u32 default_arch_gettimeoffset(void) { return 0; } 296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 297 #else 298 static inline u32 arch_gettimeoffset(void) { return 0; } 299 #endif 300 301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta) 302 { 303 u64 nsec; 304 305 nsec = delta * tkr->mult + tkr->xtime_nsec; 306 nsec >>= tkr->shift; 307 308 /* If arch requires, add in get_arch_timeoffset() */ 309 return nsec + arch_gettimeoffset(); 310 } 311 312 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr) 313 { 314 u64 delta; 315 316 delta = timekeeping_get_delta(tkr); 317 return timekeeping_delta_to_ns(tkr, delta); 318 } 319 320 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles) 321 { 322 u64 delta; 323 324 /* calculate the delta since the last update_wall_time */ 325 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 326 return timekeeping_delta_to_ns(tkr, delta); 327 } 328 329 /** 330 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 331 * @tkr: Timekeeping readout base from which we take the update 332 * 333 * We want to use this from any context including NMI and tracing / 334 * instrumenting the timekeeping code itself. 335 * 336 * Employ the latch technique; see @raw_write_seqcount_latch. 337 * 338 * So if a NMI hits the update of base[0] then it will use base[1] 339 * which is still consistent. In the worst case this can result is a 340 * slightly wrong timestamp (a few nanoseconds). See 341 * @ktime_get_mono_fast_ns. 342 */ 343 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 344 { 345 struct tk_read_base *base = tkf->base; 346 347 /* Force readers off to base[1] */ 348 raw_write_seqcount_latch(&tkf->seq); 349 350 /* Update base[0] */ 351 memcpy(base, tkr, sizeof(*base)); 352 353 /* Force readers back to base[0] */ 354 raw_write_seqcount_latch(&tkf->seq); 355 356 /* Update base[1] */ 357 memcpy(base + 1, base, sizeof(*base)); 358 } 359 360 /** 361 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 362 * 363 * This timestamp is not guaranteed to be monotonic across an update. 364 * The timestamp is calculated by: 365 * 366 * now = base_mono + clock_delta * slope 367 * 368 * So if the update lowers the slope, readers who are forced to the 369 * not yet updated second array are still using the old steeper slope. 370 * 371 * tmono 372 * ^ 373 * | o n 374 * | o n 375 * | u 376 * | o 377 * |o 378 * |12345678---> reader order 379 * 380 * o = old slope 381 * u = update 382 * n = new slope 383 * 384 * So reader 6 will observe time going backwards versus reader 5. 385 * 386 * While other CPUs are likely to be able observe that, the only way 387 * for a CPU local observation is when an NMI hits in the middle of 388 * the update. Timestamps taken from that NMI context might be ahead 389 * of the following timestamps. Callers need to be aware of that and 390 * deal with it. 391 */ 392 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 393 { 394 struct tk_read_base *tkr; 395 unsigned int seq; 396 u64 now; 397 398 do { 399 seq = raw_read_seqcount_latch(&tkf->seq); 400 tkr = tkf->base + (seq & 0x01); 401 now = ktime_to_ns(tkr->base); 402 403 now += timekeeping_delta_to_ns(tkr, 404 clocksource_delta( 405 tkr->read(tkr->clock), 406 tkr->cycle_last, 407 tkr->mask)); 408 } while (read_seqcount_retry(&tkf->seq, seq)); 409 410 return now; 411 } 412 413 u64 ktime_get_mono_fast_ns(void) 414 { 415 return __ktime_get_fast_ns(&tk_fast_mono); 416 } 417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 418 419 u64 ktime_get_raw_fast_ns(void) 420 { 421 return __ktime_get_fast_ns(&tk_fast_raw); 422 } 423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 424 425 /** 426 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 427 * 428 * To keep it NMI safe since we're accessing from tracing, we're not using a 429 * separate timekeeper with updates to monotonic clock and boot offset 430 * protected with seqlocks. This has the following minor side effects: 431 * 432 * (1) Its possible that a timestamp be taken after the boot offset is updated 433 * but before the timekeeper is updated. If this happens, the new boot offset 434 * is added to the old timekeeping making the clock appear to update slightly 435 * earlier: 436 * CPU 0 CPU 1 437 * timekeeping_inject_sleeptime64() 438 * __timekeeping_inject_sleeptime(tk, delta); 439 * timestamp(); 440 * timekeeping_update(tk, TK_CLEAR_NTP...); 441 * 442 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 443 * partially updated. Since the tk->offs_boot update is a rare event, this 444 * should be a rare occurrence which postprocessing should be able to handle. 445 */ 446 u64 notrace ktime_get_boot_fast_ns(void) 447 { 448 struct timekeeper *tk = &tk_core.timekeeper; 449 450 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); 451 } 452 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 453 454 /* Suspend-time cycles value for halted fast timekeeper. */ 455 static u64 cycles_at_suspend; 456 457 static u64 dummy_clock_read(struct clocksource *cs) 458 { 459 return cycles_at_suspend; 460 } 461 462 /** 463 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 464 * @tk: Timekeeper to snapshot. 465 * 466 * It generally is unsafe to access the clocksource after timekeeping has been 467 * suspended, so take a snapshot of the readout base of @tk and use it as the 468 * fast timekeeper's readout base while suspended. It will return the same 469 * number of cycles every time until timekeeping is resumed at which time the 470 * proper readout base for the fast timekeeper will be restored automatically. 471 */ 472 static void halt_fast_timekeeper(struct timekeeper *tk) 473 { 474 static struct tk_read_base tkr_dummy; 475 struct tk_read_base *tkr = &tk->tkr_mono; 476 477 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 478 cycles_at_suspend = tkr->read(tkr->clock); 479 tkr_dummy.read = dummy_clock_read; 480 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 481 482 tkr = &tk->tkr_raw; 483 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 484 tkr_dummy.read = dummy_clock_read; 485 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 486 } 487 488 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 489 490 static inline void update_vsyscall(struct timekeeper *tk) 491 { 492 struct timespec xt, wm; 493 494 xt = timespec64_to_timespec(tk_xtime(tk)); 495 wm = timespec64_to_timespec(tk->wall_to_monotonic); 496 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 497 tk->tkr_mono.cycle_last); 498 } 499 500 static inline void old_vsyscall_fixup(struct timekeeper *tk) 501 { 502 s64 remainder; 503 504 /* 505 * Store only full nanoseconds into xtime_nsec after rounding 506 * it up and add the remainder to the error difference. 507 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 508 * by truncating the remainder in vsyscalls. However, it causes 509 * additional work to be done in timekeeping_adjust(). Once 510 * the vsyscall implementations are converted to use xtime_nsec 511 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 512 * users are removed, this can be killed. 513 */ 514 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 515 if (remainder != 0) { 516 tk->tkr_mono.xtime_nsec -= remainder; 517 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 518 tk->ntp_error += remainder << tk->ntp_error_shift; 519 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 520 } 521 } 522 #else 523 #define old_vsyscall_fixup(tk) 524 #endif 525 526 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 527 528 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 529 { 530 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 531 } 532 533 /** 534 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 535 */ 536 int pvclock_gtod_register_notifier(struct notifier_block *nb) 537 { 538 struct timekeeper *tk = &tk_core.timekeeper; 539 unsigned long flags; 540 int ret; 541 542 raw_spin_lock_irqsave(&timekeeper_lock, flags); 543 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 544 update_pvclock_gtod(tk, true); 545 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 546 547 return ret; 548 } 549 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 550 551 /** 552 * pvclock_gtod_unregister_notifier - unregister a pvclock 553 * timedata update listener 554 */ 555 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 556 { 557 unsigned long flags; 558 int ret; 559 560 raw_spin_lock_irqsave(&timekeeper_lock, flags); 561 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 562 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 563 564 return ret; 565 } 566 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 567 568 /* 569 * tk_update_leap_state - helper to update the next_leap_ktime 570 */ 571 static inline void tk_update_leap_state(struct timekeeper *tk) 572 { 573 tk->next_leap_ktime = ntp_get_next_leap(); 574 if (tk->next_leap_ktime != KTIME_MAX) 575 /* Convert to monotonic time */ 576 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 577 } 578 579 /* 580 * Update the ktime_t based scalar nsec members of the timekeeper 581 */ 582 static inline void tk_update_ktime_data(struct timekeeper *tk) 583 { 584 u64 seconds; 585 u32 nsec; 586 587 /* 588 * The xtime based monotonic readout is: 589 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 590 * The ktime based monotonic readout is: 591 * nsec = base_mono + now(); 592 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 593 */ 594 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 595 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 596 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 597 598 /* Update the monotonic raw base */ 599 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 600 601 /* 602 * The sum of the nanoseconds portions of xtime and 603 * wall_to_monotonic can be greater/equal one second. Take 604 * this into account before updating tk->ktime_sec. 605 */ 606 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 607 if (nsec >= NSEC_PER_SEC) 608 seconds++; 609 tk->ktime_sec = seconds; 610 } 611 612 /* must hold timekeeper_lock */ 613 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 614 { 615 if (action & TK_CLEAR_NTP) { 616 tk->ntp_error = 0; 617 ntp_clear(); 618 } 619 620 tk_update_leap_state(tk); 621 tk_update_ktime_data(tk); 622 623 update_vsyscall(tk); 624 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 625 626 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 627 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 628 629 if (action & TK_CLOCK_WAS_SET) 630 tk->clock_was_set_seq++; 631 /* 632 * The mirroring of the data to the shadow-timekeeper needs 633 * to happen last here to ensure we don't over-write the 634 * timekeeper structure on the next update with stale data 635 */ 636 if (action & TK_MIRROR) 637 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 638 sizeof(tk_core.timekeeper)); 639 } 640 641 /** 642 * timekeeping_forward_now - update clock to the current time 643 * 644 * Forward the current clock to update its state since the last call to 645 * update_wall_time(). This is useful before significant clock changes, 646 * as it avoids having to deal with this time offset explicitly. 647 */ 648 static void timekeeping_forward_now(struct timekeeper *tk) 649 { 650 struct clocksource *clock = tk->tkr_mono.clock; 651 u64 cycle_now, delta; 652 u64 nsec; 653 654 cycle_now = tk->tkr_mono.read(clock); 655 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 656 tk->tkr_mono.cycle_last = cycle_now; 657 tk->tkr_raw.cycle_last = cycle_now; 658 659 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 660 661 /* If arch requires, add in get_arch_timeoffset() */ 662 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 663 664 tk_normalize_xtime(tk); 665 666 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 667 timespec64_add_ns(&tk->raw_time, nsec); 668 } 669 670 /** 671 * __getnstimeofday64 - Returns the time of day in a timespec64. 672 * @ts: pointer to the timespec to be set 673 * 674 * Updates the time of day in the timespec. 675 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 676 */ 677 int __getnstimeofday64(struct timespec64 *ts) 678 { 679 struct timekeeper *tk = &tk_core.timekeeper; 680 unsigned long seq; 681 u64 nsecs; 682 683 do { 684 seq = read_seqcount_begin(&tk_core.seq); 685 686 ts->tv_sec = tk->xtime_sec; 687 nsecs = timekeeping_get_ns(&tk->tkr_mono); 688 689 } while (read_seqcount_retry(&tk_core.seq, seq)); 690 691 ts->tv_nsec = 0; 692 timespec64_add_ns(ts, nsecs); 693 694 /* 695 * Do not bail out early, in case there were callers still using 696 * the value, even in the face of the WARN_ON. 697 */ 698 if (unlikely(timekeeping_suspended)) 699 return -EAGAIN; 700 return 0; 701 } 702 EXPORT_SYMBOL(__getnstimeofday64); 703 704 /** 705 * getnstimeofday64 - Returns the time of day in a timespec64. 706 * @ts: pointer to the timespec64 to be set 707 * 708 * Returns the time of day in a timespec64 (WARN if suspended). 709 */ 710 void getnstimeofday64(struct timespec64 *ts) 711 { 712 WARN_ON(__getnstimeofday64(ts)); 713 } 714 EXPORT_SYMBOL(getnstimeofday64); 715 716 ktime_t ktime_get(void) 717 { 718 struct timekeeper *tk = &tk_core.timekeeper; 719 unsigned int seq; 720 ktime_t base; 721 u64 nsecs; 722 723 WARN_ON(timekeeping_suspended); 724 725 do { 726 seq = read_seqcount_begin(&tk_core.seq); 727 base = tk->tkr_mono.base; 728 nsecs = timekeeping_get_ns(&tk->tkr_mono); 729 730 } while (read_seqcount_retry(&tk_core.seq, seq)); 731 732 return ktime_add_ns(base, nsecs); 733 } 734 EXPORT_SYMBOL_GPL(ktime_get); 735 736 u32 ktime_get_resolution_ns(void) 737 { 738 struct timekeeper *tk = &tk_core.timekeeper; 739 unsigned int seq; 740 u32 nsecs; 741 742 WARN_ON(timekeeping_suspended); 743 744 do { 745 seq = read_seqcount_begin(&tk_core.seq); 746 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 747 } while (read_seqcount_retry(&tk_core.seq, seq)); 748 749 return nsecs; 750 } 751 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 752 753 static ktime_t *offsets[TK_OFFS_MAX] = { 754 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 755 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 756 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 757 }; 758 759 ktime_t ktime_get_with_offset(enum tk_offsets offs) 760 { 761 struct timekeeper *tk = &tk_core.timekeeper; 762 unsigned int seq; 763 ktime_t base, *offset = offsets[offs]; 764 u64 nsecs; 765 766 WARN_ON(timekeeping_suspended); 767 768 do { 769 seq = read_seqcount_begin(&tk_core.seq); 770 base = ktime_add(tk->tkr_mono.base, *offset); 771 nsecs = timekeeping_get_ns(&tk->tkr_mono); 772 773 } while (read_seqcount_retry(&tk_core.seq, seq)); 774 775 return ktime_add_ns(base, nsecs); 776 777 } 778 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 779 780 /** 781 * ktime_mono_to_any() - convert mononotic time to any other time 782 * @tmono: time to convert. 783 * @offs: which offset to use 784 */ 785 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 786 { 787 ktime_t *offset = offsets[offs]; 788 unsigned long seq; 789 ktime_t tconv; 790 791 do { 792 seq = read_seqcount_begin(&tk_core.seq); 793 tconv = ktime_add(tmono, *offset); 794 } while (read_seqcount_retry(&tk_core.seq, seq)); 795 796 return tconv; 797 } 798 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 799 800 /** 801 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 802 */ 803 ktime_t ktime_get_raw(void) 804 { 805 struct timekeeper *tk = &tk_core.timekeeper; 806 unsigned int seq; 807 ktime_t base; 808 u64 nsecs; 809 810 do { 811 seq = read_seqcount_begin(&tk_core.seq); 812 base = tk->tkr_raw.base; 813 nsecs = timekeeping_get_ns(&tk->tkr_raw); 814 815 } while (read_seqcount_retry(&tk_core.seq, seq)); 816 817 return ktime_add_ns(base, nsecs); 818 } 819 EXPORT_SYMBOL_GPL(ktime_get_raw); 820 821 /** 822 * ktime_get_ts64 - get the monotonic clock in timespec64 format 823 * @ts: pointer to timespec variable 824 * 825 * The function calculates the monotonic clock from the realtime 826 * clock and the wall_to_monotonic offset and stores the result 827 * in normalized timespec64 format in the variable pointed to by @ts. 828 */ 829 void ktime_get_ts64(struct timespec64 *ts) 830 { 831 struct timekeeper *tk = &tk_core.timekeeper; 832 struct timespec64 tomono; 833 unsigned int seq; 834 u64 nsec; 835 836 WARN_ON(timekeeping_suspended); 837 838 do { 839 seq = read_seqcount_begin(&tk_core.seq); 840 ts->tv_sec = tk->xtime_sec; 841 nsec = timekeeping_get_ns(&tk->tkr_mono); 842 tomono = tk->wall_to_monotonic; 843 844 } while (read_seqcount_retry(&tk_core.seq, seq)); 845 846 ts->tv_sec += tomono.tv_sec; 847 ts->tv_nsec = 0; 848 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 849 } 850 EXPORT_SYMBOL_GPL(ktime_get_ts64); 851 852 /** 853 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 854 * 855 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 856 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 857 * works on both 32 and 64 bit systems. On 32 bit systems the readout 858 * covers ~136 years of uptime which should be enough to prevent 859 * premature wrap arounds. 860 */ 861 time64_t ktime_get_seconds(void) 862 { 863 struct timekeeper *tk = &tk_core.timekeeper; 864 865 WARN_ON(timekeeping_suspended); 866 return tk->ktime_sec; 867 } 868 EXPORT_SYMBOL_GPL(ktime_get_seconds); 869 870 /** 871 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 872 * 873 * Returns the wall clock seconds since 1970. This replaces the 874 * get_seconds() interface which is not y2038 safe on 32bit systems. 875 * 876 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 877 * 32bit systems the access must be protected with the sequence 878 * counter to provide "atomic" access to the 64bit tk->xtime_sec 879 * value. 880 */ 881 time64_t ktime_get_real_seconds(void) 882 { 883 struct timekeeper *tk = &tk_core.timekeeper; 884 time64_t seconds; 885 unsigned int seq; 886 887 if (IS_ENABLED(CONFIG_64BIT)) 888 return tk->xtime_sec; 889 890 do { 891 seq = read_seqcount_begin(&tk_core.seq); 892 seconds = tk->xtime_sec; 893 894 } while (read_seqcount_retry(&tk_core.seq, seq)); 895 896 return seconds; 897 } 898 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 899 900 /** 901 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 902 * but without the sequence counter protect. This internal function 903 * is called just when timekeeping lock is already held. 904 */ 905 time64_t __ktime_get_real_seconds(void) 906 { 907 struct timekeeper *tk = &tk_core.timekeeper; 908 909 return tk->xtime_sec; 910 } 911 912 /** 913 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 914 * @systime_snapshot: pointer to struct receiving the system time snapshot 915 */ 916 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 917 { 918 struct timekeeper *tk = &tk_core.timekeeper; 919 unsigned long seq; 920 ktime_t base_raw; 921 ktime_t base_real; 922 u64 nsec_raw; 923 u64 nsec_real; 924 u64 now; 925 926 WARN_ON_ONCE(timekeeping_suspended); 927 928 do { 929 seq = read_seqcount_begin(&tk_core.seq); 930 931 now = tk->tkr_mono.read(tk->tkr_mono.clock); 932 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 933 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 934 base_real = ktime_add(tk->tkr_mono.base, 935 tk_core.timekeeper.offs_real); 936 base_raw = tk->tkr_raw.base; 937 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 938 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 939 } while (read_seqcount_retry(&tk_core.seq, seq)); 940 941 systime_snapshot->cycles = now; 942 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 943 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 944 } 945 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 946 947 /* Scale base by mult/div checking for overflow */ 948 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 949 { 950 u64 tmp, rem; 951 952 tmp = div64_u64_rem(*base, div, &rem); 953 954 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 955 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 956 return -EOVERFLOW; 957 tmp *= mult; 958 rem *= mult; 959 960 do_div(rem, div); 961 *base = tmp + rem; 962 return 0; 963 } 964 965 /** 966 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 967 * @history: Snapshot representing start of history 968 * @partial_history_cycles: Cycle offset into history (fractional part) 969 * @total_history_cycles: Total history length in cycles 970 * @discontinuity: True indicates clock was set on history period 971 * @ts: Cross timestamp that should be adjusted using 972 * partial/total ratio 973 * 974 * Helper function used by get_device_system_crosststamp() to correct the 975 * crosstimestamp corresponding to the start of the current interval to the 976 * system counter value (timestamp point) provided by the driver. The 977 * total_history_* quantities are the total history starting at the provided 978 * reference point and ending at the start of the current interval. The cycle 979 * count between the driver timestamp point and the start of the current 980 * interval is partial_history_cycles. 981 */ 982 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 983 u64 partial_history_cycles, 984 u64 total_history_cycles, 985 bool discontinuity, 986 struct system_device_crosststamp *ts) 987 { 988 struct timekeeper *tk = &tk_core.timekeeper; 989 u64 corr_raw, corr_real; 990 bool interp_forward; 991 int ret; 992 993 if (total_history_cycles == 0 || partial_history_cycles == 0) 994 return 0; 995 996 /* Interpolate shortest distance from beginning or end of history */ 997 interp_forward = partial_history_cycles > total_history_cycles/2 ? 998 true : false; 999 partial_history_cycles = interp_forward ? 1000 total_history_cycles - partial_history_cycles : 1001 partial_history_cycles; 1002 1003 /* 1004 * Scale the monotonic raw time delta by: 1005 * partial_history_cycles / total_history_cycles 1006 */ 1007 corr_raw = (u64)ktime_to_ns( 1008 ktime_sub(ts->sys_monoraw, history->raw)); 1009 ret = scale64_check_overflow(partial_history_cycles, 1010 total_history_cycles, &corr_raw); 1011 if (ret) 1012 return ret; 1013 1014 /* 1015 * If there is a discontinuity in the history, scale monotonic raw 1016 * correction by: 1017 * mult(real)/mult(raw) yielding the realtime correction 1018 * Otherwise, calculate the realtime correction similar to monotonic 1019 * raw calculation 1020 */ 1021 if (discontinuity) { 1022 corr_real = mul_u64_u32_div 1023 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1024 } else { 1025 corr_real = (u64)ktime_to_ns( 1026 ktime_sub(ts->sys_realtime, history->real)); 1027 ret = scale64_check_overflow(partial_history_cycles, 1028 total_history_cycles, &corr_real); 1029 if (ret) 1030 return ret; 1031 } 1032 1033 /* Fixup monotonic raw and real time time values */ 1034 if (interp_forward) { 1035 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1036 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1037 } else { 1038 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1039 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1040 } 1041 1042 return 0; 1043 } 1044 1045 /* 1046 * cycle_between - true if test occurs chronologically between before and after 1047 */ 1048 static bool cycle_between(u64 before, u64 test, u64 after) 1049 { 1050 if (test > before && test < after) 1051 return true; 1052 if (test < before && before > after) 1053 return true; 1054 return false; 1055 } 1056 1057 /** 1058 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1059 * @get_time_fn: Callback to get simultaneous device time and 1060 * system counter from the device driver 1061 * @ctx: Context passed to get_time_fn() 1062 * @history_begin: Historical reference point used to interpolate system 1063 * time when counter provided by the driver is before the current interval 1064 * @xtstamp: Receives simultaneously captured system and device time 1065 * 1066 * Reads a timestamp from a device and correlates it to system time 1067 */ 1068 int get_device_system_crosststamp(int (*get_time_fn) 1069 (ktime_t *device_time, 1070 struct system_counterval_t *sys_counterval, 1071 void *ctx), 1072 void *ctx, 1073 struct system_time_snapshot *history_begin, 1074 struct system_device_crosststamp *xtstamp) 1075 { 1076 struct system_counterval_t system_counterval; 1077 struct timekeeper *tk = &tk_core.timekeeper; 1078 u64 cycles, now, interval_start; 1079 unsigned int clock_was_set_seq = 0; 1080 ktime_t base_real, base_raw; 1081 u64 nsec_real, nsec_raw; 1082 u8 cs_was_changed_seq; 1083 unsigned long seq; 1084 bool do_interp; 1085 int ret; 1086 1087 do { 1088 seq = read_seqcount_begin(&tk_core.seq); 1089 /* 1090 * Try to synchronously capture device time and a system 1091 * counter value calling back into the device driver 1092 */ 1093 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1094 if (ret) 1095 return ret; 1096 1097 /* 1098 * Verify that the clocksource associated with the captured 1099 * system counter value is the same as the currently installed 1100 * timekeeper clocksource 1101 */ 1102 if (tk->tkr_mono.clock != system_counterval.cs) 1103 return -ENODEV; 1104 cycles = system_counterval.cycles; 1105 1106 /* 1107 * Check whether the system counter value provided by the 1108 * device driver is on the current timekeeping interval. 1109 */ 1110 now = tk->tkr_mono.read(tk->tkr_mono.clock); 1111 interval_start = tk->tkr_mono.cycle_last; 1112 if (!cycle_between(interval_start, cycles, now)) { 1113 clock_was_set_seq = tk->clock_was_set_seq; 1114 cs_was_changed_seq = tk->cs_was_changed_seq; 1115 cycles = interval_start; 1116 do_interp = true; 1117 } else { 1118 do_interp = false; 1119 } 1120 1121 base_real = ktime_add(tk->tkr_mono.base, 1122 tk_core.timekeeper.offs_real); 1123 base_raw = tk->tkr_raw.base; 1124 1125 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1126 system_counterval.cycles); 1127 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1128 system_counterval.cycles); 1129 } while (read_seqcount_retry(&tk_core.seq, seq)); 1130 1131 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1132 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1133 1134 /* 1135 * Interpolate if necessary, adjusting back from the start of the 1136 * current interval 1137 */ 1138 if (do_interp) { 1139 u64 partial_history_cycles, total_history_cycles; 1140 bool discontinuity; 1141 1142 /* 1143 * Check that the counter value occurs after the provided 1144 * history reference and that the history doesn't cross a 1145 * clocksource change 1146 */ 1147 if (!history_begin || 1148 !cycle_between(history_begin->cycles, 1149 system_counterval.cycles, cycles) || 1150 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1151 return -EINVAL; 1152 partial_history_cycles = cycles - system_counterval.cycles; 1153 total_history_cycles = cycles - history_begin->cycles; 1154 discontinuity = 1155 history_begin->clock_was_set_seq != clock_was_set_seq; 1156 1157 ret = adjust_historical_crosststamp(history_begin, 1158 partial_history_cycles, 1159 total_history_cycles, 1160 discontinuity, xtstamp); 1161 if (ret) 1162 return ret; 1163 } 1164 1165 return 0; 1166 } 1167 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1168 1169 /** 1170 * do_gettimeofday - Returns the time of day in a timeval 1171 * @tv: pointer to the timeval to be set 1172 * 1173 * NOTE: Users should be converted to using getnstimeofday() 1174 */ 1175 void do_gettimeofday(struct timeval *tv) 1176 { 1177 struct timespec64 now; 1178 1179 getnstimeofday64(&now); 1180 tv->tv_sec = now.tv_sec; 1181 tv->tv_usec = now.tv_nsec/1000; 1182 } 1183 EXPORT_SYMBOL(do_gettimeofday); 1184 1185 /** 1186 * do_settimeofday64 - Sets the time of day. 1187 * @ts: pointer to the timespec64 variable containing the new time 1188 * 1189 * Sets the time of day to the new time and update NTP and notify hrtimers 1190 */ 1191 int do_settimeofday64(const struct timespec64 *ts) 1192 { 1193 struct timekeeper *tk = &tk_core.timekeeper; 1194 struct timespec64 ts_delta, xt; 1195 unsigned long flags; 1196 int ret = 0; 1197 1198 if (!timespec64_valid_strict(ts)) 1199 return -EINVAL; 1200 1201 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1202 write_seqcount_begin(&tk_core.seq); 1203 1204 timekeeping_forward_now(tk); 1205 1206 xt = tk_xtime(tk); 1207 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1208 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1209 1210 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1211 ret = -EINVAL; 1212 goto out; 1213 } 1214 1215 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1216 1217 tk_set_xtime(tk, ts); 1218 out: 1219 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1220 1221 write_seqcount_end(&tk_core.seq); 1222 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1223 1224 /* signal hrtimers about time change */ 1225 clock_was_set(); 1226 1227 return ret; 1228 } 1229 EXPORT_SYMBOL(do_settimeofday64); 1230 1231 /** 1232 * timekeeping_inject_offset - Adds or subtracts from the current time. 1233 * @tv: pointer to the timespec variable containing the offset 1234 * 1235 * Adds or subtracts an offset value from the current time. 1236 */ 1237 int timekeeping_inject_offset(struct timespec *ts) 1238 { 1239 struct timekeeper *tk = &tk_core.timekeeper; 1240 unsigned long flags; 1241 struct timespec64 ts64, tmp; 1242 int ret = 0; 1243 1244 if (!timespec_inject_offset_valid(ts)) 1245 return -EINVAL; 1246 1247 ts64 = timespec_to_timespec64(*ts); 1248 1249 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1250 write_seqcount_begin(&tk_core.seq); 1251 1252 timekeeping_forward_now(tk); 1253 1254 /* Make sure the proposed value is valid */ 1255 tmp = timespec64_add(tk_xtime(tk), ts64); 1256 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1257 !timespec64_valid_strict(&tmp)) { 1258 ret = -EINVAL; 1259 goto error; 1260 } 1261 1262 tk_xtime_add(tk, &ts64); 1263 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1264 1265 error: /* even if we error out, we forwarded the time, so call update */ 1266 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1267 1268 write_seqcount_end(&tk_core.seq); 1269 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1270 1271 /* signal hrtimers about time change */ 1272 clock_was_set(); 1273 1274 return ret; 1275 } 1276 EXPORT_SYMBOL(timekeeping_inject_offset); 1277 1278 /** 1279 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1280 * 1281 */ 1282 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1283 { 1284 tk->tai_offset = tai_offset; 1285 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1286 } 1287 1288 /** 1289 * change_clocksource - Swaps clocksources if a new one is available 1290 * 1291 * Accumulates current time interval and initializes new clocksource 1292 */ 1293 static int change_clocksource(void *data) 1294 { 1295 struct timekeeper *tk = &tk_core.timekeeper; 1296 struct clocksource *new, *old; 1297 unsigned long flags; 1298 1299 new = (struct clocksource *) data; 1300 1301 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1302 write_seqcount_begin(&tk_core.seq); 1303 1304 timekeeping_forward_now(tk); 1305 /* 1306 * If the cs is in module, get a module reference. Succeeds 1307 * for built-in code (owner == NULL) as well. 1308 */ 1309 if (try_module_get(new->owner)) { 1310 if (!new->enable || new->enable(new) == 0) { 1311 old = tk->tkr_mono.clock; 1312 tk_setup_internals(tk, new); 1313 if (old->disable) 1314 old->disable(old); 1315 module_put(old->owner); 1316 } else { 1317 module_put(new->owner); 1318 } 1319 } 1320 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1321 1322 write_seqcount_end(&tk_core.seq); 1323 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1324 1325 return 0; 1326 } 1327 1328 /** 1329 * timekeeping_notify - Install a new clock source 1330 * @clock: pointer to the clock source 1331 * 1332 * This function is called from clocksource.c after a new, better clock 1333 * source has been registered. The caller holds the clocksource_mutex. 1334 */ 1335 int timekeeping_notify(struct clocksource *clock) 1336 { 1337 struct timekeeper *tk = &tk_core.timekeeper; 1338 1339 if (tk->tkr_mono.clock == clock) 1340 return 0; 1341 stop_machine(change_clocksource, clock, NULL); 1342 tick_clock_notify(); 1343 return tk->tkr_mono.clock == clock ? 0 : -1; 1344 } 1345 1346 /** 1347 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1348 * @ts: pointer to the timespec64 to be set 1349 * 1350 * Returns the raw monotonic time (completely un-modified by ntp) 1351 */ 1352 void getrawmonotonic64(struct timespec64 *ts) 1353 { 1354 struct timekeeper *tk = &tk_core.timekeeper; 1355 struct timespec64 ts64; 1356 unsigned long seq; 1357 u64 nsecs; 1358 1359 do { 1360 seq = read_seqcount_begin(&tk_core.seq); 1361 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1362 ts64 = tk->raw_time; 1363 1364 } while (read_seqcount_retry(&tk_core.seq, seq)); 1365 1366 timespec64_add_ns(&ts64, nsecs); 1367 *ts = ts64; 1368 } 1369 EXPORT_SYMBOL(getrawmonotonic64); 1370 1371 1372 /** 1373 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1374 */ 1375 int timekeeping_valid_for_hres(void) 1376 { 1377 struct timekeeper *tk = &tk_core.timekeeper; 1378 unsigned long seq; 1379 int ret; 1380 1381 do { 1382 seq = read_seqcount_begin(&tk_core.seq); 1383 1384 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1385 1386 } while (read_seqcount_retry(&tk_core.seq, seq)); 1387 1388 return ret; 1389 } 1390 1391 /** 1392 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1393 */ 1394 u64 timekeeping_max_deferment(void) 1395 { 1396 struct timekeeper *tk = &tk_core.timekeeper; 1397 unsigned long seq; 1398 u64 ret; 1399 1400 do { 1401 seq = read_seqcount_begin(&tk_core.seq); 1402 1403 ret = tk->tkr_mono.clock->max_idle_ns; 1404 1405 } while (read_seqcount_retry(&tk_core.seq, seq)); 1406 1407 return ret; 1408 } 1409 1410 /** 1411 * read_persistent_clock - Return time from the persistent clock. 1412 * 1413 * Weak dummy function for arches that do not yet support it. 1414 * Reads the time from the battery backed persistent clock. 1415 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1416 * 1417 * XXX - Do be sure to remove it once all arches implement it. 1418 */ 1419 void __weak read_persistent_clock(struct timespec *ts) 1420 { 1421 ts->tv_sec = 0; 1422 ts->tv_nsec = 0; 1423 } 1424 1425 void __weak read_persistent_clock64(struct timespec64 *ts64) 1426 { 1427 struct timespec ts; 1428 1429 read_persistent_clock(&ts); 1430 *ts64 = timespec_to_timespec64(ts); 1431 } 1432 1433 /** 1434 * read_boot_clock64 - Return time of the system start. 1435 * 1436 * Weak dummy function for arches that do not yet support it. 1437 * Function to read the exact time the system has been started. 1438 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1439 * 1440 * XXX - Do be sure to remove it once all arches implement it. 1441 */ 1442 void __weak read_boot_clock64(struct timespec64 *ts) 1443 { 1444 ts->tv_sec = 0; 1445 ts->tv_nsec = 0; 1446 } 1447 1448 /* Flag for if timekeeping_resume() has injected sleeptime */ 1449 static bool sleeptime_injected; 1450 1451 /* Flag for if there is a persistent clock on this platform */ 1452 static bool persistent_clock_exists; 1453 1454 /* 1455 * timekeeping_init - Initializes the clocksource and common timekeeping values 1456 */ 1457 void __init timekeeping_init(void) 1458 { 1459 struct timekeeper *tk = &tk_core.timekeeper; 1460 struct clocksource *clock; 1461 unsigned long flags; 1462 struct timespec64 now, boot, tmp; 1463 1464 read_persistent_clock64(&now); 1465 if (!timespec64_valid_strict(&now)) { 1466 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1467 " Check your CMOS/BIOS settings.\n"); 1468 now.tv_sec = 0; 1469 now.tv_nsec = 0; 1470 } else if (now.tv_sec || now.tv_nsec) 1471 persistent_clock_exists = true; 1472 1473 read_boot_clock64(&boot); 1474 if (!timespec64_valid_strict(&boot)) { 1475 pr_warn("WARNING: Boot clock returned invalid value!\n" 1476 " Check your CMOS/BIOS settings.\n"); 1477 boot.tv_sec = 0; 1478 boot.tv_nsec = 0; 1479 } 1480 1481 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1482 write_seqcount_begin(&tk_core.seq); 1483 ntp_init(); 1484 1485 clock = clocksource_default_clock(); 1486 if (clock->enable) 1487 clock->enable(clock); 1488 tk_setup_internals(tk, clock); 1489 1490 tk_set_xtime(tk, &now); 1491 tk->raw_time.tv_sec = 0; 1492 tk->raw_time.tv_nsec = 0; 1493 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1494 boot = tk_xtime(tk); 1495 1496 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1497 tk_set_wall_to_mono(tk, tmp); 1498 1499 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1500 1501 write_seqcount_end(&tk_core.seq); 1502 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1503 } 1504 1505 /* time in seconds when suspend began for persistent clock */ 1506 static struct timespec64 timekeeping_suspend_time; 1507 1508 /** 1509 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1510 * @delta: pointer to a timespec delta value 1511 * 1512 * Takes a timespec offset measuring a suspend interval and properly 1513 * adds the sleep offset to the timekeeping variables. 1514 */ 1515 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1516 struct timespec64 *delta) 1517 { 1518 if (!timespec64_valid_strict(delta)) { 1519 printk_deferred(KERN_WARNING 1520 "__timekeeping_inject_sleeptime: Invalid " 1521 "sleep delta value!\n"); 1522 return; 1523 } 1524 tk_xtime_add(tk, delta); 1525 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1526 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1527 tk_debug_account_sleep_time(delta); 1528 } 1529 1530 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1531 /** 1532 * We have three kinds of time sources to use for sleep time 1533 * injection, the preference order is: 1534 * 1) non-stop clocksource 1535 * 2) persistent clock (ie: RTC accessible when irqs are off) 1536 * 3) RTC 1537 * 1538 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1539 * If system has neither 1) nor 2), 3) will be used finally. 1540 * 1541 * 1542 * If timekeeping has injected sleeptime via either 1) or 2), 1543 * 3) becomes needless, so in this case we don't need to call 1544 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1545 * means. 1546 */ 1547 bool timekeeping_rtc_skipresume(void) 1548 { 1549 return sleeptime_injected; 1550 } 1551 1552 /** 1553 * 1) can be determined whether to use or not only when doing 1554 * timekeeping_resume() which is invoked after rtc_suspend(), 1555 * so we can't skip rtc_suspend() surely if system has 1). 1556 * 1557 * But if system has 2), 2) will definitely be used, so in this 1558 * case we don't need to call rtc_suspend(), and this is what 1559 * timekeeping_rtc_skipsuspend() means. 1560 */ 1561 bool timekeeping_rtc_skipsuspend(void) 1562 { 1563 return persistent_clock_exists; 1564 } 1565 1566 /** 1567 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1568 * @delta: pointer to a timespec64 delta value 1569 * 1570 * This hook is for architectures that cannot support read_persistent_clock64 1571 * because their RTC/persistent clock is only accessible when irqs are enabled. 1572 * and also don't have an effective nonstop clocksource. 1573 * 1574 * This function should only be called by rtc_resume(), and allows 1575 * a suspend offset to be injected into the timekeeping values. 1576 */ 1577 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1578 { 1579 struct timekeeper *tk = &tk_core.timekeeper; 1580 unsigned long flags; 1581 1582 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1583 write_seqcount_begin(&tk_core.seq); 1584 1585 timekeeping_forward_now(tk); 1586 1587 __timekeeping_inject_sleeptime(tk, delta); 1588 1589 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1590 1591 write_seqcount_end(&tk_core.seq); 1592 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1593 1594 /* signal hrtimers about time change */ 1595 clock_was_set(); 1596 } 1597 #endif 1598 1599 /** 1600 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1601 */ 1602 void timekeeping_resume(void) 1603 { 1604 struct timekeeper *tk = &tk_core.timekeeper; 1605 struct clocksource *clock = tk->tkr_mono.clock; 1606 unsigned long flags; 1607 struct timespec64 ts_new, ts_delta; 1608 u64 cycle_now; 1609 1610 sleeptime_injected = false; 1611 read_persistent_clock64(&ts_new); 1612 1613 clockevents_resume(); 1614 clocksource_resume(); 1615 1616 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1617 write_seqcount_begin(&tk_core.seq); 1618 1619 /* 1620 * After system resumes, we need to calculate the suspended time and 1621 * compensate it for the OS time. There are 3 sources that could be 1622 * used: Nonstop clocksource during suspend, persistent clock and rtc 1623 * device. 1624 * 1625 * One specific platform may have 1 or 2 or all of them, and the 1626 * preference will be: 1627 * suspend-nonstop clocksource -> persistent clock -> rtc 1628 * The less preferred source will only be tried if there is no better 1629 * usable source. The rtc part is handled separately in rtc core code. 1630 */ 1631 cycle_now = tk->tkr_mono.read(clock); 1632 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1633 cycle_now > tk->tkr_mono.cycle_last) { 1634 u64 nsec, cyc_delta; 1635 1636 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1637 tk->tkr_mono.mask); 1638 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift); 1639 ts_delta = ns_to_timespec64(nsec); 1640 sleeptime_injected = true; 1641 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1642 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1643 sleeptime_injected = true; 1644 } 1645 1646 if (sleeptime_injected) 1647 __timekeeping_inject_sleeptime(tk, &ts_delta); 1648 1649 /* Re-base the last cycle value */ 1650 tk->tkr_mono.cycle_last = cycle_now; 1651 tk->tkr_raw.cycle_last = cycle_now; 1652 1653 tk->ntp_error = 0; 1654 timekeeping_suspended = 0; 1655 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1656 write_seqcount_end(&tk_core.seq); 1657 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1658 1659 touch_softlockup_watchdog(); 1660 1661 tick_resume(); 1662 hrtimers_resume(); 1663 } 1664 1665 int timekeeping_suspend(void) 1666 { 1667 struct timekeeper *tk = &tk_core.timekeeper; 1668 unsigned long flags; 1669 struct timespec64 delta, delta_delta; 1670 static struct timespec64 old_delta; 1671 1672 read_persistent_clock64(&timekeeping_suspend_time); 1673 1674 /* 1675 * On some systems the persistent_clock can not be detected at 1676 * timekeeping_init by its return value, so if we see a valid 1677 * value returned, update the persistent_clock_exists flag. 1678 */ 1679 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1680 persistent_clock_exists = true; 1681 1682 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1683 write_seqcount_begin(&tk_core.seq); 1684 timekeeping_forward_now(tk); 1685 timekeeping_suspended = 1; 1686 1687 if (persistent_clock_exists) { 1688 /* 1689 * To avoid drift caused by repeated suspend/resumes, 1690 * which each can add ~1 second drift error, 1691 * try to compensate so the difference in system time 1692 * and persistent_clock time stays close to constant. 1693 */ 1694 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1695 delta_delta = timespec64_sub(delta, old_delta); 1696 if (abs(delta_delta.tv_sec) >= 2) { 1697 /* 1698 * if delta_delta is too large, assume time correction 1699 * has occurred and set old_delta to the current delta. 1700 */ 1701 old_delta = delta; 1702 } else { 1703 /* Otherwise try to adjust old_system to compensate */ 1704 timekeeping_suspend_time = 1705 timespec64_add(timekeeping_suspend_time, delta_delta); 1706 } 1707 } 1708 1709 timekeeping_update(tk, TK_MIRROR); 1710 halt_fast_timekeeper(tk); 1711 write_seqcount_end(&tk_core.seq); 1712 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1713 1714 tick_suspend(); 1715 clocksource_suspend(); 1716 clockevents_suspend(); 1717 1718 return 0; 1719 } 1720 1721 /* sysfs resume/suspend bits for timekeeping */ 1722 static struct syscore_ops timekeeping_syscore_ops = { 1723 .resume = timekeeping_resume, 1724 .suspend = timekeeping_suspend, 1725 }; 1726 1727 static int __init timekeeping_init_ops(void) 1728 { 1729 register_syscore_ops(&timekeeping_syscore_ops); 1730 return 0; 1731 } 1732 device_initcall(timekeeping_init_ops); 1733 1734 /* 1735 * Apply a multiplier adjustment to the timekeeper 1736 */ 1737 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1738 s64 offset, 1739 bool negative, 1740 int adj_scale) 1741 { 1742 s64 interval = tk->cycle_interval; 1743 s32 mult_adj = 1; 1744 1745 if (negative) { 1746 mult_adj = -mult_adj; 1747 interval = -interval; 1748 offset = -offset; 1749 } 1750 mult_adj <<= adj_scale; 1751 interval <<= adj_scale; 1752 offset <<= adj_scale; 1753 1754 /* 1755 * So the following can be confusing. 1756 * 1757 * To keep things simple, lets assume mult_adj == 1 for now. 1758 * 1759 * When mult_adj != 1, remember that the interval and offset values 1760 * have been appropriately scaled so the math is the same. 1761 * 1762 * The basic idea here is that we're increasing the multiplier 1763 * by one, this causes the xtime_interval to be incremented by 1764 * one cycle_interval. This is because: 1765 * xtime_interval = cycle_interval * mult 1766 * So if mult is being incremented by one: 1767 * xtime_interval = cycle_interval * (mult + 1) 1768 * Its the same as: 1769 * xtime_interval = (cycle_interval * mult) + cycle_interval 1770 * Which can be shortened to: 1771 * xtime_interval += cycle_interval 1772 * 1773 * So offset stores the non-accumulated cycles. Thus the current 1774 * time (in shifted nanoseconds) is: 1775 * now = (offset * adj) + xtime_nsec 1776 * Now, even though we're adjusting the clock frequency, we have 1777 * to keep time consistent. In other words, we can't jump back 1778 * in time, and we also want to avoid jumping forward in time. 1779 * 1780 * So given the same offset value, we need the time to be the same 1781 * both before and after the freq adjustment. 1782 * now = (offset * adj_1) + xtime_nsec_1 1783 * now = (offset * adj_2) + xtime_nsec_2 1784 * So: 1785 * (offset * adj_1) + xtime_nsec_1 = 1786 * (offset * adj_2) + xtime_nsec_2 1787 * And we know: 1788 * adj_2 = adj_1 + 1 1789 * So: 1790 * (offset * adj_1) + xtime_nsec_1 = 1791 * (offset * (adj_1+1)) + xtime_nsec_2 1792 * (offset * adj_1) + xtime_nsec_1 = 1793 * (offset * adj_1) + offset + xtime_nsec_2 1794 * Canceling the sides: 1795 * xtime_nsec_1 = offset + xtime_nsec_2 1796 * Which gives us: 1797 * xtime_nsec_2 = xtime_nsec_1 - offset 1798 * Which simplfies to: 1799 * xtime_nsec -= offset 1800 * 1801 * XXX - TODO: Doc ntp_error calculation. 1802 */ 1803 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1804 /* NTP adjustment caused clocksource mult overflow */ 1805 WARN_ON_ONCE(1); 1806 return; 1807 } 1808 1809 tk->tkr_mono.mult += mult_adj; 1810 tk->xtime_interval += interval; 1811 tk->tkr_mono.xtime_nsec -= offset; 1812 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1813 } 1814 1815 /* 1816 * Calculate the multiplier adjustment needed to match the frequency 1817 * specified by NTP 1818 */ 1819 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1820 s64 offset) 1821 { 1822 s64 interval = tk->cycle_interval; 1823 s64 xinterval = tk->xtime_interval; 1824 u32 base = tk->tkr_mono.clock->mult; 1825 u32 max = tk->tkr_mono.clock->maxadj; 1826 u32 cur_adj = tk->tkr_mono.mult; 1827 s64 tick_error; 1828 bool negative; 1829 u32 adj_scale; 1830 1831 /* Remove any current error adj from freq calculation */ 1832 if (tk->ntp_err_mult) 1833 xinterval -= tk->cycle_interval; 1834 1835 tk->ntp_tick = ntp_tick_length(); 1836 1837 /* Calculate current error per tick */ 1838 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1839 tick_error -= (xinterval + tk->xtime_remainder); 1840 1841 /* Don't worry about correcting it if its small */ 1842 if (likely((tick_error >= 0) && (tick_error <= interval))) 1843 return; 1844 1845 /* preserve the direction of correction */ 1846 negative = (tick_error < 0); 1847 1848 /* If any adjustment would pass the max, just return */ 1849 if (negative && (cur_adj - 1) <= (base - max)) 1850 return; 1851 if (!negative && (cur_adj + 1) >= (base + max)) 1852 return; 1853 /* 1854 * Sort out the magnitude of the correction, but 1855 * avoid making so large a correction that we go 1856 * over the max adjustment. 1857 */ 1858 adj_scale = 0; 1859 tick_error = abs(tick_error); 1860 while (tick_error > interval) { 1861 u32 adj = 1 << (adj_scale + 1); 1862 1863 /* Check if adjustment gets us within 1 unit from the max */ 1864 if (negative && (cur_adj - adj) <= (base - max)) 1865 break; 1866 if (!negative && (cur_adj + adj) >= (base + max)) 1867 break; 1868 1869 adj_scale++; 1870 tick_error >>= 1; 1871 } 1872 1873 /* scale the corrections */ 1874 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1875 } 1876 1877 /* 1878 * Adjust the timekeeper's multiplier to the correct frequency 1879 * and also to reduce the accumulated error value. 1880 */ 1881 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1882 { 1883 /* Correct for the current frequency error */ 1884 timekeeping_freqadjust(tk, offset); 1885 1886 /* Next make a small adjustment to fix any cumulative error */ 1887 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1888 tk->ntp_err_mult = 1; 1889 timekeeping_apply_adjustment(tk, offset, 0, 0); 1890 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1891 /* Undo any existing error adjustment */ 1892 timekeeping_apply_adjustment(tk, offset, 1, 0); 1893 tk->ntp_err_mult = 0; 1894 } 1895 1896 if (unlikely(tk->tkr_mono.clock->maxadj && 1897 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1898 > tk->tkr_mono.clock->maxadj))) { 1899 printk_once(KERN_WARNING 1900 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1901 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1902 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1903 } 1904 1905 /* 1906 * It may be possible that when we entered this function, xtime_nsec 1907 * was very small. Further, if we're slightly speeding the clocksource 1908 * in the code above, its possible the required corrective factor to 1909 * xtime_nsec could cause it to underflow. 1910 * 1911 * Now, since we already accumulated the second, cannot simply roll 1912 * the accumulated second back, since the NTP subsystem has been 1913 * notified via second_overflow. So instead we push xtime_nsec forward 1914 * by the amount we underflowed, and add that amount into the error. 1915 * 1916 * We'll correct this error next time through this function, when 1917 * xtime_nsec is not as small. 1918 */ 1919 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1920 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1921 tk->tkr_mono.xtime_nsec = 0; 1922 tk->ntp_error += neg << tk->ntp_error_shift; 1923 } 1924 } 1925 1926 /** 1927 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1928 * 1929 * Helper function that accumulates the nsecs greater than a second 1930 * from the xtime_nsec field to the xtime_secs field. 1931 * It also calls into the NTP code to handle leapsecond processing. 1932 * 1933 */ 1934 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1935 { 1936 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1937 unsigned int clock_set = 0; 1938 1939 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1940 int leap; 1941 1942 tk->tkr_mono.xtime_nsec -= nsecps; 1943 tk->xtime_sec++; 1944 1945 /* Figure out if its a leap sec and apply if needed */ 1946 leap = second_overflow(tk->xtime_sec); 1947 if (unlikely(leap)) { 1948 struct timespec64 ts; 1949 1950 tk->xtime_sec += leap; 1951 1952 ts.tv_sec = leap; 1953 ts.tv_nsec = 0; 1954 tk_set_wall_to_mono(tk, 1955 timespec64_sub(tk->wall_to_monotonic, ts)); 1956 1957 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1958 1959 clock_set = TK_CLOCK_WAS_SET; 1960 } 1961 } 1962 return clock_set; 1963 } 1964 1965 /** 1966 * logarithmic_accumulation - shifted accumulation of cycles 1967 * 1968 * This functions accumulates a shifted interval of cycles into 1969 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1970 * loop. 1971 * 1972 * Returns the unconsumed cycles. 1973 */ 1974 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 1975 u32 shift, unsigned int *clock_set) 1976 { 1977 u64 interval = tk->cycle_interval << shift; 1978 u64 raw_nsecs; 1979 1980 /* If the offset is smaller than a shifted interval, do nothing */ 1981 if (offset < interval) 1982 return offset; 1983 1984 /* Accumulate one shifted interval */ 1985 offset -= interval; 1986 tk->tkr_mono.cycle_last += interval; 1987 tk->tkr_raw.cycle_last += interval; 1988 1989 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 1990 *clock_set |= accumulate_nsecs_to_secs(tk); 1991 1992 /* Accumulate raw time */ 1993 raw_nsecs = (u64)tk->raw_interval << shift; 1994 raw_nsecs += tk->raw_time.tv_nsec; 1995 if (raw_nsecs >= NSEC_PER_SEC) { 1996 u64 raw_secs = raw_nsecs; 1997 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 1998 tk->raw_time.tv_sec += raw_secs; 1999 } 2000 tk->raw_time.tv_nsec = raw_nsecs; 2001 2002 /* Accumulate error between NTP and clock interval */ 2003 tk->ntp_error += tk->ntp_tick << shift; 2004 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2005 (tk->ntp_error_shift + shift); 2006 2007 return offset; 2008 } 2009 2010 /** 2011 * update_wall_time - Uses the current clocksource to increment the wall time 2012 * 2013 */ 2014 void update_wall_time(void) 2015 { 2016 struct timekeeper *real_tk = &tk_core.timekeeper; 2017 struct timekeeper *tk = &shadow_timekeeper; 2018 u64 offset; 2019 int shift = 0, maxshift; 2020 unsigned int clock_set = 0; 2021 unsigned long flags; 2022 2023 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2024 2025 /* Make sure we're fully resumed: */ 2026 if (unlikely(timekeeping_suspended)) 2027 goto out; 2028 2029 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2030 offset = real_tk->cycle_interval; 2031 #else 2032 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 2033 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2034 #endif 2035 2036 /* Check if there's really nothing to do */ 2037 if (offset < real_tk->cycle_interval) 2038 goto out; 2039 2040 /* Do some additional sanity checking */ 2041 timekeeping_check_update(real_tk, offset); 2042 2043 /* 2044 * With NO_HZ we may have to accumulate many cycle_intervals 2045 * (think "ticks") worth of time at once. To do this efficiently, 2046 * we calculate the largest doubling multiple of cycle_intervals 2047 * that is smaller than the offset. We then accumulate that 2048 * chunk in one go, and then try to consume the next smaller 2049 * doubled multiple. 2050 */ 2051 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2052 shift = max(0, shift); 2053 /* Bound shift to one less than what overflows tick_length */ 2054 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2055 shift = min(shift, maxshift); 2056 while (offset >= tk->cycle_interval) { 2057 offset = logarithmic_accumulation(tk, offset, shift, 2058 &clock_set); 2059 if (offset < tk->cycle_interval<<shift) 2060 shift--; 2061 } 2062 2063 /* correct the clock when NTP error is too big */ 2064 timekeeping_adjust(tk, offset); 2065 2066 /* 2067 * XXX This can be killed once everyone converts 2068 * to the new update_vsyscall. 2069 */ 2070 old_vsyscall_fixup(tk); 2071 2072 /* 2073 * Finally, make sure that after the rounding 2074 * xtime_nsec isn't larger than NSEC_PER_SEC 2075 */ 2076 clock_set |= accumulate_nsecs_to_secs(tk); 2077 2078 write_seqcount_begin(&tk_core.seq); 2079 /* 2080 * Update the real timekeeper. 2081 * 2082 * We could avoid this memcpy by switching pointers, but that 2083 * requires changes to all other timekeeper usage sites as 2084 * well, i.e. move the timekeeper pointer getter into the 2085 * spinlocked/seqcount protected sections. And we trade this 2086 * memcpy under the tk_core.seq against one before we start 2087 * updating. 2088 */ 2089 timekeeping_update(tk, clock_set); 2090 memcpy(real_tk, tk, sizeof(*tk)); 2091 /* The memcpy must come last. Do not put anything here! */ 2092 write_seqcount_end(&tk_core.seq); 2093 out: 2094 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2095 if (clock_set) 2096 /* Have to call _delayed version, since in irq context*/ 2097 clock_was_set_delayed(); 2098 } 2099 2100 /** 2101 * getboottime64 - Return the real time of system boot. 2102 * @ts: pointer to the timespec64 to be set 2103 * 2104 * Returns the wall-time of boot in a timespec64. 2105 * 2106 * This is based on the wall_to_monotonic offset and the total suspend 2107 * time. Calls to settimeofday will affect the value returned (which 2108 * basically means that however wrong your real time clock is at boot time, 2109 * you get the right time here). 2110 */ 2111 void getboottime64(struct timespec64 *ts) 2112 { 2113 struct timekeeper *tk = &tk_core.timekeeper; 2114 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2115 2116 *ts = ktime_to_timespec64(t); 2117 } 2118 EXPORT_SYMBOL_GPL(getboottime64); 2119 2120 unsigned long get_seconds(void) 2121 { 2122 struct timekeeper *tk = &tk_core.timekeeper; 2123 2124 return tk->xtime_sec; 2125 } 2126 EXPORT_SYMBOL(get_seconds); 2127 2128 struct timespec __current_kernel_time(void) 2129 { 2130 struct timekeeper *tk = &tk_core.timekeeper; 2131 2132 return timespec64_to_timespec(tk_xtime(tk)); 2133 } 2134 2135 struct timespec64 current_kernel_time64(void) 2136 { 2137 struct timekeeper *tk = &tk_core.timekeeper; 2138 struct timespec64 now; 2139 unsigned long seq; 2140 2141 do { 2142 seq = read_seqcount_begin(&tk_core.seq); 2143 2144 now = tk_xtime(tk); 2145 } while (read_seqcount_retry(&tk_core.seq, seq)); 2146 2147 return now; 2148 } 2149 EXPORT_SYMBOL(current_kernel_time64); 2150 2151 struct timespec64 get_monotonic_coarse64(void) 2152 { 2153 struct timekeeper *tk = &tk_core.timekeeper; 2154 struct timespec64 now, mono; 2155 unsigned long seq; 2156 2157 do { 2158 seq = read_seqcount_begin(&tk_core.seq); 2159 2160 now = tk_xtime(tk); 2161 mono = tk->wall_to_monotonic; 2162 } while (read_seqcount_retry(&tk_core.seq, seq)); 2163 2164 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2165 now.tv_nsec + mono.tv_nsec); 2166 2167 return now; 2168 } 2169 EXPORT_SYMBOL(get_monotonic_coarse64); 2170 2171 /* 2172 * Must hold jiffies_lock 2173 */ 2174 void do_timer(unsigned long ticks) 2175 { 2176 jiffies_64 += ticks; 2177 calc_global_load(ticks); 2178 } 2179 2180 /** 2181 * ktime_get_update_offsets_now - hrtimer helper 2182 * @cwsseq: pointer to check and store the clock was set sequence number 2183 * @offs_real: pointer to storage for monotonic -> realtime offset 2184 * @offs_boot: pointer to storage for monotonic -> boottime offset 2185 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2186 * 2187 * Returns current monotonic time and updates the offsets if the 2188 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2189 * different. 2190 * 2191 * Called from hrtimer_interrupt() or retrigger_next_event() 2192 */ 2193 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2194 ktime_t *offs_boot, ktime_t *offs_tai) 2195 { 2196 struct timekeeper *tk = &tk_core.timekeeper; 2197 unsigned int seq; 2198 ktime_t base; 2199 u64 nsecs; 2200 2201 do { 2202 seq = read_seqcount_begin(&tk_core.seq); 2203 2204 base = tk->tkr_mono.base; 2205 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2206 base = ktime_add_ns(base, nsecs); 2207 2208 if (*cwsseq != tk->clock_was_set_seq) { 2209 *cwsseq = tk->clock_was_set_seq; 2210 *offs_real = tk->offs_real; 2211 *offs_boot = tk->offs_boot; 2212 *offs_tai = tk->offs_tai; 2213 } 2214 2215 /* Handle leapsecond insertion adjustments */ 2216 if (unlikely(base >= tk->next_leap_ktime)) 2217 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2218 2219 } while (read_seqcount_retry(&tk_core.seq, seq)); 2220 2221 return base; 2222 } 2223 2224 /** 2225 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2226 */ 2227 int do_adjtimex(struct timex *txc) 2228 { 2229 struct timekeeper *tk = &tk_core.timekeeper; 2230 unsigned long flags; 2231 struct timespec64 ts; 2232 s32 orig_tai, tai; 2233 int ret; 2234 2235 /* Validate the data before disabling interrupts */ 2236 ret = ntp_validate_timex(txc); 2237 if (ret) 2238 return ret; 2239 2240 if (txc->modes & ADJ_SETOFFSET) { 2241 struct timespec delta; 2242 delta.tv_sec = txc->time.tv_sec; 2243 delta.tv_nsec = txc->time.tv_usec; 2244 if (!(txc->modes & ADJ_NANO)) 2245 delta.tv_nsec *= 1000; 2246 ret = timekeeping_inject_offset(&delta); 2247 if (ret) 2248 return ret; 2249 } 2250 2251 getnstimeofday64(&ts); 2252 2253 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2254 write_seqcount_begin(&tk_core.seq); 2255 2256 orig_tai = tai = tk->tai_offset; 2257 ret = __do_adjtimex(txc, &ts, &tai); 2258 2259 if (tai != orig_tai) { 2260 __timekeeping_set_tai_offset(tk, tai); 2261 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2262 } 2263 tk_update_leap_state(tk); 2264 2265 write_seqcount_end(&tk_core.seq); 2266 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2267 2268 if (tai != orig_tai) 2269 clock_was_set(); 2270 2271 ntp_notify_cmos_timer(); 2272 2273 return ret; 2274 } 2275 2276 #ifdef CONFIG_NTP_PPS 2277 /** 2278 * hardpps() - Accessor function to NTP __hardpps function 2279 */ 2280 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2281 { 2282 unsigned long flags; 2283 2284 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2285 write_seqcount_begin(&tk_core.seq); 2286 2287 __hardpps(phase_ts, raw_ts); 2288 2289 write_seqcount_end(&tk_core.seq); 2290 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2291 } 2292 EXPORT_SYMBOL(hardpps); 2293 #endif 2294 2295 /** 2296 * xtime_update() - advances the timekeeping infrastructure 2297 * @ticks: number of ticks, that have elapsed since the last call. 2298 * 2299 * Must be called with interrupts disabled. 2300 */ 2301 void xtime_update(unsigned long ticks) 2302 { 2303 write_seqlock(&jiffies_lock); 2304 do_timer(ticks); 2305 write_sequnlock(&jiffies_lock); 2306 update_wall_time(); 2307 } 2308