1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/percpu.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/sysdev.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/tick.h> 21 22 23 /* 24 * This read-write spinlock protects us from races in SMP while 25 * playing with xtime. 26 */ 27 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); 28 29 30 /* 31 * The current time 32 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 33 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 34 * at zero at system boot time, so wall_to_monotonic will be negative, 35 * however, we will ALWAYS keep the tv_nsec part positive so we can use 36 * the usual normalization. 37 * 38 * wall_to_monotonic is moved after resume from suspend for the monotonic 39 * time not to jump. We need to add total_sleep_time to wall_to_monotonic 40 * to get the real boot based time offset. 41 * 42 * - wall_to_monotonic is no longer the boot time, getboottime must be 43 * used instead. 44 */ 45 struct timespec xtime __attribute__ ((aligned (16))); 46 struct timespec wall_to_monotonic __attribute__ ((aligned (16))); 47 static unsigned long total_sleep_time; /* seconds */ 48 49 /* flag for if timekeeping is suspended */ 50 int __read_mostly timekeeping_suspended; 51 52 static struct timespec xtime_cache __attribute__ ((aligned (16))); 53 void update_xtime_cache(u64 nsec) 54 { 55 xtime_cache = xtime; 56 timespec_add_ns(&xtime_cache, nsec); 57 } 58 59 struct clocksource *clock; 60 61 62 #ifdef CONFIG_GENERIC_TIME 63 /** 64 * clocksource_forward_now - update clock to the current time 65 * 66 * Forward the current clock to update its state since the last call to 67 * update_wall_time(). This is useful before significant clock changes, 68 * as it avoids having to deal with this time offset explicitly. 69 */ 70 static void clocksource_forward_now(void) 71 { 72 cycle_t cycle_now, cycle_delta; 73 s64 nsec; 74 75 cycle_now = clocksource_read(clock); 76 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 77 clock->cycle_last = cycle_now; 78 79 nsec = cyc2ns(clock, cycle_delta); 80 81 /* If arch requires, add in gettimeoffset() */ 82 nsec += arch_gettimeoffset(); 83 84 timespec_add_ns(&xtime, nsec); 85 86 nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; 87 clock->raw_time.tv_nsec += nsec; 88 } 89 90 /** 91 * getnstimeofday - Returns the time of day in a timespec 92 * @ts: pointer to the timespec to be set 93 * 94 * Returns the time of day in a timespec. 95 */ 96 void getnstimeofday(struct timespec *ts) 97 { 98 cycle_t cycle_now, cycle_delta; 99 unsigned long seq; 100 s64 nsecs; 101 102 WARN_ON(timekeeping_suspended); 103 104 do { 105 seq = read_seqbegin(&xtime_lock); 106 107 *ts = xtime; 108 109 /* read clocksource: */ 110 cycle_now = clocksource_read(clock); 111 112 /* calculate the delta since the last update_wall_time: */ 113 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 114 115 /* convert to nanoseconds: */ 116 nsecs = cyc2ns(clock, cycle_delta); 117 118 /* If arch requires, add in gettimeoffset() */ 119 nsecs += arch_gettimeoffset(); 120 121 } while (read_seqretry(&xtime_lock, seq)); 122 123 timespec_add_ns(ts, nsecs); 124 } 125 126 EXPORT_SYMBOL(getnstimeofday); 127 128 /** 129 * do_gettimeofday - Returns the time of day in a timeval 130 * @tv: pointer to the timeval to be set 131 * 132 * NOTE: Users should be converted to using getnstimeofday() 133 */ 134 void do_gettimeofday(struct timeval *tv) 135 { 136 struct timespec now; 137 138 getnstimeofday(&now); 139 tv->tv_sec = now.tv_sec; 140 tv->tv_usec = now.tv_nsec/1000; 141 } 142 143 EXPORT_SYMBOL(do_gettimeofday); 144 /** 145 * do_settimeofday - Sets the time of day 146 * @tv: pointer to the timespec variable containing the new time 147 * 148 * Sets the time of day to the new time and update NTP and notify hrtimers 149 */ 150 int do_settimeofday(struct timespec *tv) 151 { 152 struct timespec ts_delta; 153 unsigned long flags; 154 155 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 156 return -EINVAL; 157 158 write_seqlock_irqsave(&xtime_lock, flags); 159 160 clocksource_forward_now(); 161 162 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; 163 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; 164 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta); 165 166 xtime = *tv; 167 168 update_xtime_cache(0); 169 170 clock->error = 0; 171 ntp_clear(); 172 173 update_vsyscall(&xtime, clock); 174 175 write_sequnlock_irqrestore(&xtime_lock, flags); 176 177 /* signal hrtimers about time change */ 178 clock_was_set(); 179 180 return 0; 181 } 182 183 EXPORT_SYMBOL(do_settimeofday); 184 185 /** 186 * change_clocksource - Swaps clocksources if a new one is available 187 * 188 * Accumulates current time interval and initializes new clocksource 189 */ 190 static void change_clocksource(void) 191 { 192 struct clocksource *new, *old; 193 194 new = clocksource_get_next(); 195 196 if (clock == new) 197 return; 198 199 clocksource_forward_now(); 200 201 if (clocksource_enable(new)) 202 return; 203 204 new->raw_time = clock->raw_time; 205 old = clock; 206 clock = new; 207 clocksource_disable(old); 208 209 clock->cycle_last = 0; 210 clock->cycle_last = clocksource_read(clock); 211 clock->error = 0; 212 clock->xtime_nsec = 0; 213 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); 214 215 tick_clock_notify(); 216 217 /* 218 * We're holding xtime lock and waking up klogd would deadlock 219 * us on enqueue. So no printing! 220 printk(KERN_INFO "Time: %s clocksource has been installed.\n", 221 clock->name); 222 */ 223 } 224 #else 225 static inline void clocksource_forward_now(void) { } 226 static inline void change_clocksource(void) { } 227 #endif 228 229 /** 230 * getrawmonotonic - Returns the raw monotonic time in a timespec 231 * @ts: pointer to the timespec to be set 232 * 233 * Returns the raw monotonic time (completely un-modified by ntp) 234 */ 235 void getrawmonotonic(struct timespec *ts) 236 { 237 unsigned long seq; 238 s64 nsecs; 239 cycle_t cycle_now, cycle_delta; 240 241 do { 242 seq = read_seqbegin(&xtime_lock); 243 244 /* read clocksource: */ 245 cycle_now = clocksource_read(clock); 246 247 /* calculate the delta since the last update_wall_time: */ 248 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; 249 250 /* convert to nanoseconds: */ 251 nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; 252 253 *ts = clock->raw_time; 254 255 } while (read_seqretry(&xtime_lock, seq)); 256 257 timespec_add_ns(ts, nsecs); 258 } 259 EXPORT_SYMBOL(getrawmonotonic); 260 261 262 /** 263 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 264 */ 265 int timekeeping_valid_for_hres(void) 266 { 267 unsigned long seq; 268 int ret; 269 270 do { 271 seq = read_seqbegin(&xtime_lock); 272 273 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 274 275 } while (read_seqretry(&xtime_lock, seq)); 276 277 return ret; 278 } 279 280 /** 281 * read_persistent_clock - Return time in seconds from the persistent clock. 282 * 283 * Weak dummy function for arches that do not yet support it. 284 * Returns seconds from epoch using the battery backed persistent clock. 285 * Returns zero if unsupported. 286 * 287 * XXX - Do be sure to remove it once all arches implement it. 288 */ 289 unsigned long __attribute__((weak)) read_persistent_clock(void) 290 { 291 return 0; 292 } 293 294 /* 295 * timekeeping_init - Initializes the clocksource and common timekeeping values 296 */ 297 void __init timekeeping_init(void) 298 { 299 unsigned long flags; 300 unsigned long sec = read_persistent_clock(); 301 302 write_seqlock_irqsave(&xtime_lock, flags); 303 304 ntp_init(); 305 306 clock = clocksource_get_next(); 307 clocksource_enable(clock); 308 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); 309 clock->cycle_last = clocksource_read(clock); 310 311 xtime.tv_sec = sec; 312 xtime.tv_nsec = 0; 313 set_normalized_timespec(&wall_to_monotonic, 314 -xtime.tv_sec, -xtime.tv_nsec); 315 update_xtime_cache(0); 316 total_sleep_time = 0; 317 write_sequnlock_irqrestore(&xtime_lock, flags); 318 } 319 320 /* time in seconds when suspend began */ 321 static unsigned long timekeeping_suspend_time; 322 323 /** 324 * timekeeping_resume - Resumes the generic timekeeping subsystem. 325 * @dev: unused 326 * 327 * This is for the generic clocksource timekeeping. 328 * xtime/wall_to_monotonic/jiffies/etc are 329 * still managed by arch specific suspend/resume code. 330 */ 331 static int timekeeping_resume(struct sys_device *dev) 332 { 333 unsigned long flags; 334 unsigned long now = read_persistent_clock(); 335 336 clocksource_resume(); 337 338 write_seqlock_irqsave(&xtime_lock, flags); 339 340 if (now && (now > timekeeping_suspend_time)) { 341 unsigned long sleep_length = now - timekeeping_suspend_time; 342 343 xtime.tv_sec += sleep_length; 344 wall_to_monotonic.tv_sec -= sleep_length; 345 total_sleep_time += sleep_length; 346 } 347 update_xtime_cache(0); 348 /* re-base the last cycle value */ 349 clock->cycle_last = 0; 350 clock->cycle_last = clocksource_read(clock); 351 clock->error = 0; 352 timekeeping_suspended = 0; 353 write_sequnlock_irqrestore(&xtime_lock, flags); 354 355 touch_softlockup_watchdog(); 356 357 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); 358 359 /* Resume hrtimers */ 360 hres_timers_resume(); 361 362 return 0; 363 } 364 365 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) 366 { 367 unsigned long flags; 368 369 timekeeping_suspend_time = read_persistent_clock(); 370 371 write_seqlock_irqsave(&xtime_lock, flags); 372 clocksource_forward_now(); 373 timekeeping_suspended = 1; 374 write_sequnlock_irqrestore(&xtime_lock, flags); 375 376 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 377 378 return 0; 379 } 380 381 /* sysfs resume/suspend bits for timekeeping */ 382 static struct sysdev_class timekeeping_sysclass = { 383 .name = "timekeeping", 384 .resume = timekeeping_resume, 385 .suspend = timekeeping_suspend, 386 }; 387 388 static struct sys_device device_timer = { 389 .id = 0, 390 .cls = &timekeeping_sysclass, 391 }; 392 393 static int __init timekeeping_init_device(void) 394 { 395 int error = sysdev_class_register(&timekeeping_sysclass); 396 if (!error) 397 error = sysdev_register(&device_timer); 398 return error; 399 } 400 401 device_initcall(timekeeping_init_device); 402 403 /* 404 * If the error is already larger, we look ahead even further 405 * to compensate for late or lost adjustments. 406 */ 407 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, 408 s64 *offset) 409 { 410 s64 tick_error, i; 411 u32 look_ahead, adj; 412 s32 error2, mult; 413 414 /* 415 * Use the current error value to determine how much to look ahead. 416 * The larger the error the slower we adjust for it to avoid problems 417 * with losing too many ticks, otherwise we would overadjust and 418 * produce an even larger error. The smaller the adjustment the 419 * faster we try to adjust for it, as lost ticks can do less harm 420 * here. This is tuned so that an error of about 1 msec is adjusted 421 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). 422 */ 423 error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); 424 error2 = abs(error2); 425 for (look_ahead = 0; error2 > 0; look_ahead++) 426 error2 >>= 2; 427 428 /* 429 * Now calculate the error in (1 << look_ahead) ticks, but first 430 * remove the single look ahead already included in the error. 431 */ 432 tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1); 433 tick_error -= clock->xtime_interval >> 1; 434 error = ((error - tick_error) >> look_ahead) + tick_error; 435 436 /* Finally calculate the adjustment shift value. */ 437 i = *interval; 438 mult = 1; 439 if (error < 0) { 440 error = -error; 441 *interval = -*interval; 442 *offset = -*offset; 443 mult = -1; 444 } 445 for (adj = 0; error > i; adj++) 446 error >>= 1; 447 448 *interval <<= adj; 449 *offset <<= adj; 450 return mult << adj; 451 } 452 453 /* 454 * Adjust the multiplier to reduce the error value, 455 * this is optimized for the most common adjustments of -1,0,1, 456 * for other values we can do a bit more work. 457 */ 458 static void clocksource_adjust(s64 offset) 459 { 460 s64 error, interval = clock->cycle_interval; 461 int adj; 462 463 error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1); 464 if (error > interval) { 465 error >>= 2; 466 if (likely(error <= interval)) 467 adj = 1; 468 else 469 adj = clocksource_bigadjust(error, &interval, &offset); 470 } else if (error < -interval) { 471 error >>= 2; 472 if (likely(error >= -interval)) { 473 adj = -1; 474 interval = -interval; 475 offset = -offset; 476 } else 477 adj = clocksource_bigadjust(error, &interval, &offset); 478 } else 479 return; 480 481 clock->mult += adj; 482 clock->xtime_interval += interval; 483 clock->xtime_nsec -= offset; 484 clock->error -= (interval - offset) << 485 (NTP_SCALE_SHIFT - clock->shift); 486 } 487 488 /** 489 * update_wall_time - Uses the current clocksource to increment the wall time 490 * 491 * Called from the timer interrupt, must hold a write on xtime_lock. 492 */ 493 void update_wall_time(void) 494 { 495 cycle_t offset; 496 497 /* Make sure we're fully resumed: */ 498 if (unlikely(timekeeping_suspended)) 499 return; 500 501 #ifdef CONFIG_GENERIC_TIME 502 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; 503 #else 504 offset = clock->cycle_interval; 505 #endif 506 clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift; 507 508 /* normally this loop will run just once, however in the 509 * case of lost or late ticks, it will accumulate correctly. 510 */ 511 while (offset >= clock->cycle_interval) { 512 /* accumulate one interval */ 513 offset -= clock->cycle_interval; 514 clock->cycle_last += clock->cycle_interval; 515 516 clock->xtime_nsec += clock->xtime_interval; 517 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { 518 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; 519 xtime.tv_sec++; 520 second_overflow(); 521 } 522 523 clock->raw_time.tv_nsec += clock->raw_interval; 524 if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) { 525 clock->raw_time.tv_nsec -= NSEC_PER_SEC; 526 clock->raw_time.tv_sec++; 527 } 528 529 /* accumulate error between NTP and clock interval */ 530 clock->error += tick_length; 531 clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); 532 } 533 534 /* correct the clock when NTP error is too big */ 535 clocksource_adjust(offset); 536 537 /* 538 * Since in the loop above, we accumulate any amount of time 539 * in xtime_nsec over a second into xtime.tv_sec, its possible for 540 * xtime_nsec to be fairly small after the loop. Further, if we're 541 * slightly speeding the clocksource up in clocksource_adjust(), 542 * its possible the required corrective factor to xtime_nsec could 543 * cause it to underflow. 544 * 545 * Now, we cannot simply roll the accumulated second back, since 546 * the NTP subsystem has been notified via second_overflow. So 547 * instead we push xtime_nsec forward by the amount we underflowed, 548 * and add that amount into the error. 549 * 550 * We'll correct this error next time through this function, when 551 * xtime_nsec is not as small. 552 */ 553 if (unlikely((s64)clock->xtime_nsec < 0)) { 554 s64 neg = -(s64)clock->xtime_nsec; 555 clock->xtime_nsec = 0; 556 clock->error += neg << (NTP_SCALE_SHIFT - clock->shift); 557 } 558 559 /* store full nanoseconds into xtime after rounding it up and 560 * add the remainder to the error difference. 561 */ 562 xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1; 563 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; 564 clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift); 565 566 update_xtime_cache(cyc2ns(clock, offset)); 567 568 /* check to see if there is a new clocksource to use */ 569 change_clocksource(); 570 update_vsyscall(&xtime, clock); 571 } 572 573 /** 574 * getboottime - Return the real time of system boot. 575 * @ts: pointer to the timespec to be set 576 * 577 * Returns the time of day in a timespec. 578 * 579 * This is based on the wall_to_monotonic offset and the total suspend 580 * time. Calls to settimeofday will affect the value returned (which 581 * basically means that however wrong your real time clock is at boot time, 582 * you get the right time here). 583 */ 584 void getboottime(struct timespec *ts) 585 { 586 set_normalized_timespec(ts, 587 - (wall_to_monotonic.tv_sec + total_sleep_time), 588 - wall_to_monotonic.tv_nsec); 589 } 590 591 /** 592 * monotonic_to_bootbased - Convert the monotonic time to boot based. 593 * @ts: pointer to the timespec to be converted 594 */ 595 void monotonic_to_bootbased(struct timespec *ts) 596 { 597 ts->tv_sec += total_sleep_time; 598 } 599 600 unsigned long get_seconds(void) 601 { 602 return xtime_cache.tv_sec; 603 } 604 EXPORT_SYMBOL(get_seconds); 605 606 607 struct timespec current_kernel_time(void) 608 { 609 struct timespec now; 610 unsigned long seq; 611 612 do { 613 seq = read_seqbegin(&xtime_lock); 614 615 now = xtime_cache; 616 } while (read_seqretry(&xtime_lock, seq)); 617 618 return now; 619 } 620 EXPORT_SYMBOL(current_kernel_time); 621