xref: /openbmc/linux/kernel/time/timekeeping.c (revision 78c99ba1)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 
22 
23 /*
24  * This read-write spinlock protects us from races in SMP while
25  * playing with xtime.
26  */
27 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
28 
29 
30 /*
31  * The current time
32  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
33  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
34  * at zero at system boot time, so wall_to_monotonic will be negative,
35  * however, we will ALWAYS keep the tv_nsec part positive so we can use
36  * the usual normalization.
37  *
38  * wall_to_monotonic is moved after resume from suspend for the monotonic
39  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
40  * to get the real boot based time offset.
41  *
42  * - wall_to_monotonic is no longer the boot time, getboottime must be
43  * used instead.
44  */
45 struct timespec xtime __attribute__ ((aligned (16)));
46 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
47 static unsigned long total_sleep_time;		/* seconds */
48 
49 /* flag for if timekeeping is suspended */
50 int __read_mostly timekeeping_suspended;
51 
52 static struct timespec xtime_cache __attribute__ ((aligned (16)));
53 void update_xtime_cache(u64 nsec)
54 {
55 	xtime_cache = xtime;
56 	timespec_add_ns(&xtime_cache, nsec);
57 }
58 
59 struct clocksource *clock;
60 
61 
62 #ifdef CONFIG_GENERIC_TIME
63 /**
64  * clocksource_forward_now - update clock to the current time
65  *
66  * Forward the current clock to update its state since the last call to
67  * update_wall_time(). This is useful before significant clock changes,
68  * as it avoids having to deal with this time offset explicitly.
69  */
70 static void clocksource_forward_now(void)
71 {
72 	cycle_t cycle_now, cycle_delta;
73 	s64 nsec;
74 
75 	cycle_now = clocksource_read(clock);
76 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
77 	clock->cycle_last = cycle_now;
78 
79 	nsec = cyc2ns(clock, cycle_delta);
80 
81 	/* If arch requires, add in gettimeoffset() */
82 	nsec += arch_gettimeoffset();
83 
84 	timespec_add_ns(&xtime, nsec);
85 
86 	nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift;
87 	clock->raw_time.tv_nsec += nsec;
88 }
89 
90 /**
91  * getnstimeofday - Returns the time of day in a timespec
92  * @ts:		pointer to the timespec to be set
93  *
94  * Returns the time of day in a timespec.
95  */
96 void getnstimeofday(struct timespec *ts)
97 {
98 	cycle_t cycle_now, cycle_delta;
99 	unsigned long seq;
100 	s64 nsecs;
101 
102 	WARN_ON(timekeeping_suspended);
103 
104 	do {
105 		seq = read_seqbegin(&xtime_lock);
106 
107 		*ts = xtime;
108 
109 		/* read clocksource: */
110 		cycle_now = clocksource_read(clock);
111 
112 		/* calculate the delta since the last update_wall_time: */
113 		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
114 
115 		/* convert to nanoseconds: */
116 		nsecs = cyc2ns(clock, cycle_delta);
117 
118 		/* If arch requires, add in gettimeoffset() */
119 		nsecs += arch_gettimeoffset();
120 
121 	} while (read_seqretry(&xtime_lock, seq));
122 
123 	timespec_add_ns(ts, nsecs);
124 }
125 
126 EXPORT_SYMBOL(getnstimeofday);
127 
128 /**
129  * do_gettimeofday - Returns the time of day in a timeval
130  * @tv:		pointer to the timeval to be set
131  *
132  * NOTE: Users should be converted to using getnstimeofday()
133  */
134 void do_gettimeofday(struct timeval *tv)
135 {
136 	struct timespec now;
137 
138 	getnstimeofday(&now);
139 	tv->tv_sec = now.tv_sec;
140 	tv->tv_usec = now.tv_nsec/1000;
141 }
142 
143 EXPORT_SYMBOL(do_gettimeofday);
144 /**
145  * do_settimeofday - Sets the time of day
146  * @tv:		pointer to the timespec variable containing the new time
147  *
148  * Sets the time of day to the new time and update NTP and notify hrtimers
149  */
150 int do_settimeofday(struct timespec *tv)
151 {
152 	struct timespec ts_delta;
153 	unsigned long flags;
154 
155 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
156 		return -EINVAL;
157 
158 	write_seqlock_irqsave(&xtime_lock, flags);
159 
160 	clocksource_forward_now();
161 
162 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
163 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
164 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
165 
166 	xtime = *tv;
167 
168 	update_xtime_cache(0);
169 
170 	clock->error = 0;
171 	ntp_clear();
172 
173 	update_vsyscall(&xtime, clock);
174 
175 	write_sequnlock_irqrestore(&xtime_lock, flags);
176 
177 	/* signal hrtimers about time change */
178 	clock_was_set();
179 
180 	return 0;
181 }
182 
183 EXPORT_SYMBOL(do_settimeofday);
184 
185 /**
186  * change_clocksource - Swaps clocksources if a new one is available
187  *
188  * Accumulates current time interval and initializes new clocksource
189  */
190 static void change_clocksource(void)
191 {
192 	struct clocksource *new, *old;
193 
194 	new = clocksource_get_next();
195 
196 	if (clock == new)
197 		return;
198 
199 	clocksource_forward_now();
200 
201 	if (clocksource_enable(new))
202 		return;
203 
204 	new->raw_time = clock->raw_time;
205 	old = clock;
206 	clock = new;
207 	clocksource_disable(old);
208 
209 	clock->cycle_last = 0;
210 	clock->cycle_last = clocksource_read(clock);
211 	clock->error = 0;
212 	clock->xtime_nsec = 0;
213 	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
214 
215 	tick_clock_notify();
216 
217 	/*
218 	 * We're holding xtime lock and waking up klogd would deadlock
219 	 * us on enqueue.  So no printing!
220 	printk(KERN_INFO "Time: %s clocksource has been installed.\n",
221 	       clock->name);
222 	 */
223 }
224 #else
225 static inline void clocksource_forward_now(void) { }
226 static inline void change_clocksource(void) { }
227 #endif
228 
229 /**
230  * getrawmonotonic - Returns the raw monotonic time in a timespec
231  * @ts:		pointer to the timespec to be set
232  *
233  * Returns the raw monotonic time (completely un-modified by ntp)
234  */
235 void getrawmonotonic(struct timespec *ts)
236 {
237 	unsigned long seq;
238 	s64 nsecs;
239 	cycle_t cycle_now, cycle_delta;
240 
241 	do {
242 		seq = read_seqbegin(&xtime_lock);
243 
244 		/* read clocksource: */
245 		cycle_now = clocksource_read(clock);
246 
247 		/* calculate the delta since the last update_wall_time: */
248 		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
249 
250 		/* convert to nanoseconds: */
251 		nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift;
252 
253 		*ts = clock->raw_time;
254 
255 	} while (read_seqretry(&xtime_lock, seq));
256 
257 	timespec_add_ns(ts, nsecs);
258 }
259 EXPORT_SYMBOL(getrawmonotonic);
260 
261 
262 /**
263  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
264  */
265 int timekeeping_valid_for_hres(void)
266 {
267 	unsigned long seq;
268 	int ret;
269 
270 	do {
271 		seq = read_seqbegin(&xtime_lock);
272 
273 		ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
274 
275 	} while (read_seqretry(&xtime_lock, seq));
276 
277 	return ret;
278 }
279 
280 /**
281  * read_persistent_clock -  Return time in seconds from the persistent clock.
282  *
283  * Weak dummy function for arches that do not yet support it.
284  * Returns seconds from epoch using the battery backed persistent clock.
285  * Returns zero if unsupported.
286  *
287  *  XXX - Do be sure to remove it once all arches implement it.
288  */
289 unsigned long __attribute__((weak)) read_persistent_clock(void)
290 {
291 	return 0;
292 }
293 
294 /*
295  * timekeeping_init - Initializes the clocksource and common timekeeping values
296  */
297 void __init timekeeping_init(void)
298 {
299 	unsigned long flags;
300 	unsigned long sec = read_persistent_clock();
301 
302 	write_seqlock_irqsave(&xtime_lock, flags);
303 
304 	ntp_init();
305 
306 	clock = clocksource_get_next();
307 	clocksource_enable(clock);
308 	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
309 	clock->cycle_last = clocksource_read(clock);
310 
311 	xtime.tv_sec = sec;
312 	xtime.tv_nsec = 0;
313 	set_normalized_timespec(&wall_to_monotonic,
314 		-xtime.tv_sec, -xtime.tv_nsec);
315 	update_xtime_cache(0);
316 	total_sleep_time = 0;
317 	write_sequnlock_irqrestore(&xtime_lock, flags);
318 }
319 
320 /* time in seconds when suspend began */
321 static unsigned long timekeeping_suspend_time;
322 
323 /**
324  * timekeeping_resume - Resumes the generic timekeeping subsystem.
325  * @dev:	unused
326  *
327  * This is for the generic clocksource timekeeping.
328  * xtime/wall_to_monotonic/jiffies/etc are
329  * still managed by arch specific suspend/resume code.
330  */
331 static int timekeeping_resume(struct sys_device *dev)
332 {
333 	unsigned long flags;
334 	unsigned long now = read_persistent_clock();
335 
336 	clocksource_resume();
337 
338 	write_seqlock_irqsave(&xtime_lock, flags);
339 
340 	if (now && (now > timekeeping_suspend_time)) {
341 		unsigned long sleep_length = now - timekeeping_suspend_time;
342 
343 		xtime.tv_sec += sleep_length;
344 		wall_to_monotonic.tv_sec -= sleep_length;
345 		total_sleep_time += sleep_length;
346 	}
347 	update_xtime_cache(0);
348 	/* re-base the last cycle value */
349 	clock->cycle_last = 0;
350 	clock->cycle_last = clocksource_read(clock);
351 	clock->error = 0;
352 	timekeeping_suspended = 0;
353 	write_sequnlock_irqrestore(&xtime_lock, flags);
354 
355 	touch_softlockup_watchdog();
356 
357 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
358 
359 	/* Resume hrtimers */
360 	hres_timers_resume();
361 
362 	return 0;
363 }
364 
365 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
366 {
367 	unsigned long flags;
368 
369 	timekeeping_suspend_time = read_persistent_clock();
370 
371 	write_seqlock_irqsave(&xtime_lock, flags);
372 	clocksource_forward_now();
373 	timekeeping_suspended = 1;
374 	write_sequnlock_irqrestore(&xtime_lock, flags);
375 
376 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
377 
378 	return 0;
379 }
380 
381 /* sysfs resume/suspend bits for timekeeping */
382 static struct sysdev_class timekeeping_sysclass = {
383 	.name		= "timekeeping",
384 	.resume		= timekeeping_resume,
385 	.suspend	= timekeeping_suspend,
386 };
387 
388 static struct sys_device device_timer = {
389 	.id		= 0,
390 	.cls		= &timekeeping_sysclass,
391 };
392 
393 static int __init timekeeping_init_device(void)
394 {
395 	int error = sysdev_class_register(&timekeeping_sysclass);
396 	if (!error)
397 		error = sysdev_register(&device_timer);
398 	return error;
399 }
400 
401 device_initcall(timekeeping_init_device);
402 
403 /*
404  * If the error is already larger, we look ahead even further
405  * to compensate for late or lost adjustments.
406  */
407 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
408 						 s64 *offset)
409 {
410 	s64 tick_error, i;
411 	u32 look_ahead, adj;
412 	s32 error2, mult;
413 
414 	/*
415 	 * Use the current error value to determine how much to look ahead.
416 	 * The larger the error the slower we adjust for it to avoid problems
417 	 * with losing too many ticks, otherwise we would overadjust and
418 	 * produce an even larger error.  The smaller the adjustment the
419 	 * faster we try to adjust for it, as lost ticks can do less harm
420 	 * here.  This is tuned so that an error of about 1 msec is adjusted
421 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
422 	 */
423 	error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
424 	error2 = abs(error2);
425 	for (look_ahead = 0; error2 > 0; look_ahead++)
426 		error2 >>= 2;
427 
428 	/*
429 	 * Now calculate the error in (1 << look_ahead) ticks, but first
430 	 * remove the single look ahead already included in the error.
431 	 */
432 	tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1);
433 	tick_error -= clock->xtime_interval >> 1;
434 	error = ((error - tick_error) >> look_ahead) + tick_error;
435 
436 	/* Finally calculate the adjustment shift value.  */
437 	i = *interval;
438 	mult = 1;
439 	if (error < 0) {
440 		error = -error;
441 		*interval = -*interval;
442 		*offset = -*offset;
443 		mult = -1;
444 	}
445 	for (adj = 0; error > i; adj++)
446 		error >>= 1;
447 
448 	*interval <<= adj;
449 	*offset <<= adj;
450 	return mult << adj;
451 }
452 
453 /*
454  * Adjust the multiplier to reduce the error value,
455  * this is optimized for the most common adjustments of -1,0,1,
456  * for other values we can do a bit more work.
457  */
458 static void clocksource_adjust(s64 offset)
459 {
460 	s64 error, interval = clock->cycle_interval;
461 	int adj;
462 
463 	error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1);
464 	if (error > interval) {
465 		error >>= 2;
466 		if (likely(error <= interval))
467 			adj = 1;
468 		else
469 			adj = clocksource_bigadjust(error, &interval, &offset);
470 	} else if (error < -interval) {
471 		error >>= 2;
472 		if (likely(error >= -interval)) {
473 			adj = -1;
474 			interval = -interval;
475 			offset = -offset;
476 		} else
477 			adj = clocksource_bigadjust(error, &interval, &offset);
478 	} else
479 		return;
480 
481 	clock->mult += adj;
482 	clock->xtime_interval += interval;
483 	clock->xtime_nsec -= offset;
484 	clock->error -= (interval - offset) <<
485 			(NTP_SCALE_SHIFT - clock->shift);
486 }
487 
488 /**
489  * update_wall_time - Uses the current clocksource to increment the wall time
490  *
491  * Called from the timer interrupt, must hold a write on xtime_lock.
492  */
493 void update_wall_time(void)
494 {
495 	cycle_t offset;
496 
497 	/* Make sure we're fully resumed: */
498 	if (unlikely(timekeeping_suspended))
499 		return;
500 
501 #ifdef CONFIG_GENERIC_TIME
502 	offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
503 #else
504 	offset = clock->cycle_interval;
505 #endif
506 	clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift;
507 
508 	/* normally this loop will run just once, however in the
509 	 * case of lost or late ticks, it will accumulate correctly.
510 	 */
511 	while (offset >= clock->cycle_interval) {
512 		/* accumulate one interval */
513 		offset -= clock->cycle_interval;
514 		clock->cycle_last += clock->cycle_interval;
515 
516 		clock->xtime_nsec += clock->xtime_interval;
517 		if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
518 			clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
519 			xtime.tv_sec++;
520 			second_overflow();
521 		}
522 
523 		clock->raw_time.tv_nsec += clock->raw_interval;
524 		if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) {
525 			clock->raw_time.tv_nsec -= NSEC_PER_SEC;
526 			clock->raw_time.tv_sec++;
527 		}
528 
529 		/* accumulate error between NTP and clock interval */
530 		clock->error += tick_length;
531 		clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift);
532 	}
533 
534 	/* correct the clock when NTP error is too big */
535 	clocksource_adjust(offset);
536 
537 	/*
538 	 * Since in the loop above, we accumulate any amount of time
539 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
540 	 * xtime_nsec to be fairly small after the loop. Further, if we're
541 	 * slightly speeding the clocksource up in clocksource_adjust(),
542 	 * its possible the required corrective factor to xtime_nsec could
543 	 * cause it to underflow.
544 	 *
545 	 * Now, we cannot simply roll the accumulated second back, since
546 	 * the NTP subsystem has been notified via second_overflow. So
547 	 * instead we push xtime_nsec forward by the amount we underflowed,
548 	 * and add that amount into the error.
549 	 *
550 	 * We'll correct this error next time through this function, when
551 	 * xtime_nsec is not as small.
552 	 */
553 	if (unlikely((s64)clock->xtime_nsec < 0)) {
554 		s64 neg = -(s64)clock->xtime_nsec;
555 		clock->xtime_nsec = 0;
556 		clock->error += neg << (NTP_SCALE_SHIFT - clock->shift);
557 	}
558 
559 	/* store full nanoseconds into xtime after rounding it up and
560 	 * add the remainder to the error difference.
561 	 */
562 	xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1;
563 	clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
564 	clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift);
565 
566 	update_xtime_cache(cyc2ns(clock, offset));
567 
568 	/* check to see if there is a new clocksource to use */
569 	change_clocksource();
570 	update_vsyscall(&xtime, clock);
571 }
572 
573 /**
574  * getboottime - Return the real time of system boot.
575  * @ts:		pointer to the timespec to be set
576  *
577  * Returns the time of day in a timespec.
578  *
579  * This is based on the wall_to_monotonic offset and the total suspend
580  * time. Calls to settimeofday will affect the value returned (which
581  * basically means that however wrong your real time clock is at boot time,
582  * you get the right time here).
583  */
584 void getboottime(struct timespec *ts)
585 {
586 	set_normalized_timespec(ts,
587 		- (wall_to_monotonic.tv_sec + total_sleep_time),
588 		- wall_to_monotonic.tv_nsec);
589 }
590 
591 /**
592  * monotonic_to_bootbased - Convert the monotonic time to boot based.
593  * @ts:		pointer to the timespec to be converted
594  */
595 void monotonic_to_bootbased(struct timespec *ts)
596 {
597 	ts->tv_sec += total_sleep_time;
598 }
599 
600 unsigned long get_seconds(void)
601 {
602 	return xtime_cache.tv_sec;
603 }
604 EXPORT_SYMBOL(get_seconds);
605 
606 
607 struct timespec current_kernel_time(void)
608 {
609 	struct timespec now;
610 	unsigned long seq;
611 
612 	do {
613 		seq = read_seqbegin(&xtime_lock);
614 
615 		now = xtime_cache;
616 	} while (read_seqretry(&xtime_lock, seq));
617 
618 	return now;
619 }
620 EXPORT_SYMBOL(current_kernel_time);
621