1 /* 2 * linux/kernel/time/timekeeping.c 3 * 4 * Kernel timekeeping code and accessor functions 5 * 6 * This code was moved from linux/kernel/timer.c. 7 * Please see that file for copyright and history logs. 8 * 9 */ 10 11 #include <linux/timekeeper_internal.h> 12 #include <linux/module.h> 13 #include <linux/interrupt.h> 14 #include <linux/percpu.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/clocksource.h> 20 #include <linux/jiffies.h> 21 #include <linux/time.h> 22 #include <linux/tick.h> 23 #include <linux/stop_machine.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/compiler.h> 26 27 #include "tick-internal.h" 28 #include "ntp_internal.h" 29 #include "timekeeping_internal.h" 30 31 #define TK_CLEAR_NTP (1 << 0) 32 #define TK_MIRROR (1 << 1) 33 #define TK_CLOCK_WAS_SET (1 << 2) 34 35 /* 36 * The most important data for readout fits into a single 64 byte 37 * cache line. 38 */ 39 static struct { 40 seqcount_t seq; 41 struct timekeeper timekeeper; 42 } tk_core ____cacheline_aligned; 43 44 static DEFINE_RAW_SPINLOCK(timekeeper_lock); 45 static struct timekeeper shadow_timekeeper; 46 47 /** 48 * struct tk_fast - NMI safe timekeeper 49 * @seq: Sequence counter for protecting updates. The lowest bit 50 * is the index for the tk_read_base array 51 * @base: tk_read_base array. Access is indexed by the lowest bit of 52 * @seq. 53 * 54 * See @update_fast_timekeeper() below. 55 */ 56 struct tk_fast { 57 seqcount_t seq; 58 struct tk_read_base base[2]; 59 }; 60 61 static struct tk_fast tk_fast_mono ____cacheline_aligned; 62 static struct tk_fast tk_fast_raw ____cacheline_aligned; 63 64 /* flag for if timekeeping is suspended */ 65 int __read_mostly timekeeping_suspended; 66 67 static inline void tk_normalize_xtime(struct timekeeper *tk) 68 { 69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 71 tk->xtime_sec++; 72 } 73 } 74 75 static inline struct timespec64 tk_xtime(struct timekeeper *tk) 76 { 77 struct timespec64 ts; 78 79 ts.tv_sec = tk->xtime_sec; 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 81 return ts; 82 } 83 84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 85 { 86 tk->xtime_sec = ts->tv_sec; 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 88 } 89 90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 91 { 92 tk->xtime_sec += ts->tv_sec; 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 94 tk_normalize_xtime(tk); 95 } 96 97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 98 { 99 struct timespec64 tmp; 100 101 /* 102 * Verify consistency of: offset_real = -wall_to_monotonic 103 * before modifying anything 104 */ 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 106 -tk->wall_to_monotonic.tv_nsec); 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64); 108 tk->wall_to_monotonic = wtm; 109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 110 tk->offs_real = timespec64_to_ktime(tmp); 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); 112 } 113 114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 115 { 116 tk->offs_boot = ktime_add(tk->offs_boot, delta); 117 } 118 119 #ifdef CONFIG_DEBUG_TIMEKEEPING 120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 121 122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 123 { 124 125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles; 126 const char *name = tk->tkr_mono.clock->name; 127 128 if (offset > max_cycles) { 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 130 offset, name, max_cycles); 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 132 } else { 133 if (offset > (max_cycles >> 1)) { 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 135 offset, name, max_cycles >> 1); 136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 137 } 138 } 139 140 if (tk->underflow_seen) { 141 if (jiffies - tk->last_warning > WARNING_FREQ) { 142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 144 printk_deferred(" Your kernel is probably still fine.\n"); 145 tk->last_warning = jiffies; 146 } 147 tk->underflow_seen = 0; 148 } 149 150 if (tk->overflow_seen) { 151 if (jiffies - tk->last_warning > WARNING_FREQ) { 152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 154 printk_deferred(" Your kernel is probably still fine.\n"); 155 tk->last_warning = jiffies; 156 } 157 tk->overflow_seen = 0; 158 } 159 } 160 161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 162 { 163 struct timekeeper *tk = &tk_core.timekeeper; 164 cycle_t now, last, mask, max, delta; 165 unsigned int seq; 166 167 /* 168 * Since we're called holding a seqlock, the data may shift 169 * under us while we're doing the calculation. This can cause 170 * false positives, since we'd note a problem but throw the 171 * results away. So nest another seqlock here to atomically 172 * grab the points we are checking with. 173 */ 174 do { 175 seq = read_seqcount_begin(&tk_core.seq); 176 now = tkr->read(tkr->clock); 177 last = tkr->cycle_last; 178 mask = tkr->mask; 179 max = tkr->clock->max_cycles; 180 } while (read_seqcount_retry(&tk_core.seq, seq)); 181 182 delta = clocksource_delta(now, last, mask); 183 184 /* 185 * Try to catch underflows by checking if we are seeing small 186 * mask-relative negative values. 187 */ 188 if (unlikely((~delta & mask) < (mask >> 3))) { 189 tk->underflow_seen = 1; 190 delta = 0; 191 } 192 193 /* Cap delta value to the max_cycles values to avoid mult overflows */ 194 if (unlikely(delta > max)) { 195 tk->overflow_seen = 1; 196 delta = tkr->clock->max_cycles; 197 } 198 199 return delta; 200 } 201 #else 202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset) 203 { 204 } 205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr) 206 { 207 cycle_t cycle_now, delta; 208 209 /* read clocksource */ 210 cycle_now = tkr->read(tkr->clock); 211 212 /* calculate the delta since the last update_wall_time */ 213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); 214 215 return delta; 216 } 217 #endif 218 219 /** 220 * tk_setup_internals - Set up internals to use clocksource clock. 221 * 222 * @tk: The target timekeeper to setup. 223 * @clock: Pointer to clocksource. 224 * 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 226 * pair and interval request. 227 * 228 * Unless you're the timekeeping code, you should not be using this! 229 */ 230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 231 { 232 cycle_t interval; 233 u64 tmp, ntpinterval; 234 struct clocksource *old_clock; 235 236 ++tk->cs_was_changed_seq; 237 old_clock = tk->tkr_mono.clock; 238 tk->tkr_mono.clock = clock; 239 tk->tkr_mono.read = clock->read; 240 tk->tkr_mono.mask = clock->mask; 241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock); 242 243 tk->tkr_raw.clock = clock; 244 tk->tkr_raw.read = clock->read; 245 tk->tkr_raw.mask = clock->mask; 246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 247 248 /* Do the ns -> cycle conversion first, using original mult */ 249 tmp = NTP_INTERVAL_LENGTH; 250 tmp <<= clock->shift; 251 ntpinterval = tmp; 252 tmp += clock->mult/2; 253 do_div(tmp, clock->mult); 254 if (tmp == 0) 255 tmp = 1; 256 257 interval = (cycle_t) tmp; 258 tk->cycle_interval = interval; 259 260 /* Go back from cycles -> shifted ns */ 261 tk->xtime_interval = (u64) interval * clock->mult; 262 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 263 tk->raw_interval = 264 ((u64) interval * clock->mult) >> clock->shift; 265 266 /* if changing clocks, convert xtime_nsec shift units */ 267 if (old_clock) { 268 int shift_change = clock->shift - old_clock->shift; 269 if (shift_change < 0) 270 tk->tkr_mono.xtime_nsec >>= -shift_change; 271 else 272 tk->tkr_mono.xtime_nsec <<= shift_change; 273 } 274 tk->tkr_raw.xtime_nsec = 0; 275 276 tk->tkr_mono.shift = clock->shift; 277 tk->tkr_raw.shift = clock->shift; 278 279 tk->ntp_error = 0; 280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 282 283 /* 284 * The timekeeper keeps its own mult values for the currently 285 * active clocksource. These value will be adjusted via NTP 286 * to counteract clock drifting. 287 */ 288 tk->tkr_mono.mult = clock->mult; 289 tk->tkr_raw.mult = clock->mult; 290 tk->ntp_err_mult = 0; 291 } 292 293 /* Timekeeper helper functions. */ 294 295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 296 static u32 default_arch_gettimeoffset(void) { return 0; } 297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; 298 #else 299 static inline u32 arch_gettimeoffset(void) { return 0; } 300 #endif 301 302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr, 303 cycle_t delta) 304 { 305 s64 nsec; 306 307 nsec = delta * tkr->mult + tkr->xtime_nsec; 308 nsec >>= tkr->shift; 309 310 /* If arch requires, add in get_arch_timeoffset() */ 311 return nsec + arch_gettimeoffset(); 312 } 313 314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr) 315 { 316 cycle_t delta; 317 318 delta = timekeeping_get_delta(tkr); 319 return timekeeping_delta_to_ns(tkr, delta); 320 } 321 322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, 323 cycle_t cycles) 324 { 325 cycle_t delta; 326 327 /* calculate the delta since the last update_wall_time */ 328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); 329 return timekeeping_delta_to_ns(tkr, delta); 330 } 331 332 /** 333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 334 * @tkr: Timekeeping readout base from which we take the update 335 * 336 * We want to use this from any context including NMI and tracing / 337 * instrumenting the timekeeping code itself. 338 * 339 * Employ the latch technique; see @raw_write_seqcount_latch. 340 * 341 * So if a NMI hits the update of base[0] then it will use base[1] 342 * which is still consistent. In the worst case this can result is a 343 * slightly wrong timestamp (a few nanoseconds). See 344 * @ktime_get_mono_fast_ns. 345 */ 346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf) 347 { 348 struct tk_read_base *base = tkf->base; 349 350 /* Force readers off to base[1] */ 351 raw_write_seqcount_latch(&tkf->seq); 352 353 /* Update base[0] */ 354 memcpy(base, tkr, sizeof(*base)); 355 356 /* Force readers back to base[0] */ 357 raw_write_seqcount_latch(&tkf->seq); 358 359 /* Update base[1] */ 360 memcpy(base + 1, base, sizeof(*base)); 361 } 362 363 /** 364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 365 * 366 * This timestamp is not guaranteed to be monotonic across an update. 367 * The timestamp is calculated by: 368 * 369 * now = base_mono + clock_delta * slope 370 * 371 * So if the update lowers the slope, readers who are forced to the 372 * not yet updated second array are still using the old steeper slope. 373 * 374 * tmono 375 * ^ 376 * | o n 377 * | o n 378 * | u 379 * | o 380 * |o 381 * |12345678---> reader order 382 * 383 * o = old slope 384 * u = update 385 * n = new slope 386 * 387 * So reader 6 will observe time going backwards versus reader 5. 388 * 389 * While other CPUs are likely to be able observe that, the only way 390 * for a CPU local observation is when an NMI hits in the middle of 391 * the update. Timestamps taken from that NMI context might be ahead 392 * of the following timestamps. Callers need to be aware of that and 393 * deal with it. 394 */ 395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 396 { 397 struct tk_read_base *tkr; 398 unsigned int seq; 399 u64 now; 400 401 do { 402 seq = raw_read_seqcount_latch(&tkf->seq); 403 tkr = tkf->base + (seq & 0x01); 404 now = ktime_to_ns(tkr->base); 405 406 now += timekeeping_delta_to_ns(tkr, 407 clocksource_delta( 408 tkr->read(tkr->clock), 409 tkr->cycle_last, 410 tkr->mask)); 411 } while (read_seqcount_retry(&tkf->seq, seq)); 412 413 return now; 414 } 415 416 u64 ktime_get_mono_fast_ns(void) 417 { 418 return __ktime_get_fast_ns(&tk_fast_mono); 419 } 420 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 421 422 u64 ktime_get_raw_fast_ns(void) 423 { 424 return __ktime_get_fast_ns(&tk_fast_raw); 425 } 426 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 427 428 /* Suspend-time cycles value for halted fast timekeeper. */ 429 static cycle_t cycles_at_suspend; 430 431 static cycle_t dummy_clock_read(struct clocksource *cs) 432 { 433 return cycles_at_suspend; 434 } 435 436 /** 437 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 438 * @tk: Timekeeper to snapshot. 439 * 440 * It generally is unsafe to access the clocksource after timekeeping has been 441 * suspended, so take a snapshot of the readout base of @tk and use it as the 442 * fast timekeeper's readout base while suspended. It will return the same 443 * number of cycles every time until timekeeping is resumed at which time the 444 * proper readout base for the fast timekeeper will be restored automatically. 445 */ 446 static void halt_fast_timekeeper(struct timekeeper *tk) 447 { 448 static struct tk_read_base tkr_dummy; 449 struct tk_read_base *tkr = &tk->tkr_mono; 450 451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 452 cycles_at_suspend = tkr->read(tkr->clock); 453 tkr_dummy.read = dummy_clock_read; 454 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 455 456 tkr = &tk->tkr_raw; 457 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 458 tkr_dummy.read = dummy_clock_read; 459 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 460 } 461 462 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD 463 464 static inline void update_vsyscall(struct timekeeper *tk) 465 { 466 struct timespec xt, wm; 467 468 xt = timespec64_to_timespec(tk_xtime(tk)); 469 wm = timespec64_to_timespec(tk->wall_to_monotonic); 470 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult, 471 tk->tkr_mono.cycle_last); 472 } 473 474 static inline void old_vsyscall_fixup(struct timekeeper *tk) 475 { 476 s64 remainder; 477 478 /* 479 * Store only full nanoseconds into xtime_nsec after rounding 480 * it up and add the remainder to the error difference. 481 * XXX - This is necessary to avoid small 1ns inconsistnecies caused 482 * by truncating the remainder in vsyscalls. However, it causes 483 * additional work to be done in timekeeping_adjust(). Once 484 * the vsyscall implementations are converted to use xtime_nsec 485 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD 486 * users are removed, this can be killed. 487 */ 488 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1); 489 if (remainder != 0) { 490 tk->tkr_mono.xtime_nsec -= remainder; 491 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift; 492 tk->ntp_error += remainder << tk->ntp_error_shift; 493 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift; 494 } 495 } 496 #else 497 #define old_vsyscall_fixup(tk) 498 #endif 499 500 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 501 502 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 503 { 504 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 505 } 506 507 /** 508 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 509 */ 510 int pvclock_gtod_register_notifier(struct notifier_block *nb) 511 { 512 struct timekeeper *tk = &tk_core.timekeeper; 513 unsigned long flags; 514 int ret; 515 516 raw_spin_lock_irqsave(&timekeeper_lock, flags); 517 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 518 update_pvclock_gtod(tk, true); 519 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 520 521 return ret; 522 } 523 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 524 525 /** 526 * pvclock_gtod_unregister_notifier - unregister a pvclock 527 * timedata update listener 528 */ 529 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 530 { 531 unsigned long flags; 532 int ret; 533 534 raw_spin_lock_irqsave(&timekeeper_lock, flags); 535 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 536 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 537 538 return ret; 539 } 540 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 541 542 /* 543 * tk_update_leap_state - helper to update the next_leap_ktime 544 */ 545 static inline void tk_update_leap_state(struct timekeeper *tk) 546 { 547 tk->next_leap_ktime = ntp_get_next_leap(); 548 if (tk->next_leap_ktime.tv64 != KTIME_MAX) 549 /* Convert to monotonic time */ 550 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 551 } 552 553 /* 554 * Update the ktime_t based scalar nsec members of the timekeeper 555 */ 556 static inline void tk_update_ktime_data(struct timekeeper *tk) 557 { 558 u64 seconds; 559 u32 nsec; 560 561 /* 562 * The xtime based monotonic readout is: 563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 564 * The ktime based monotonic readout is: 565 * nsec = base_mono + now(); 566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 567 */ 568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 569 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 571 572 /* Update the monotonic raw base */ 573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time); 574 575 /* 576 * The sum of the nanoseconds portions of xtime and 577 * wall_to_monotonic can be greater/equal one second. Take 578 * this into account before updating tk->ktime_sec. 579 */ 580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 581 if (nsec >= NSEC_PER_SEC) 582 seconds++; 583 tk->ktime_sec = seconds; 584 } 585 586 /* must hold timekeeper_lock */ 587 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 588 { 589 if (action & TK_CLEAR_NTP) { 590 tk->ntp_error = 0; 591 ntp_clear(); 592 } 593 594 tk_update_leap_state(tk); 595 tk_update_ktime_data(tk); 596 597 update_vsyscall(tk); 598 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 599 600 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 601 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 602 603 if (action & TK_CLOCK_WAS_SET) 604 tk->clock_was_set_seq++; 605 /* 606 * The mirroring of the data to the shadow-timekeeper needs 607 * to happen last here to ensure we don't over-write the 608 * timekeeper structure on the next update with stale data 609 */ 610 if (action & TK_MIRROR) 611 memcpy(&shadow_timekeeper, &tk_core.timekeeper, 612 sizeof(tk_core.timekeeper)); 613 } 614 615 /** 616 * timekeeping_forward_now - update clock to the current time 617 * 618 * Forward the current clock to update its state since the last call to 619 * update_wall_time(). This is useful before significant clock changes, 620 * as it avoids having to deal with this time offset explicitly. 621 */ 622 static void timekeeping_forward_now(struct timekeeper *tk) 623 { 624 struct clocksource *clock = tk->tkr_mono.clock; 625 cycle_t cycle_now, delta; 626 s64 nsec; 627 628 cycle_now = tk->tkr_mono.read(clock); 629 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 630 tk->tkr_mono.cycle_last = cycle_now; 631 tk->tkr_raw.cycle_last = cycle_now; 632 633 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; 634 635 /* If arch requires, add in get_arch_timeoffset() */ 636 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; 637 638 tk_normalize_xtime(tk); 639 640 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift); 641 timespec64_add_ns(&tk->raw_time, nsec); 642 } 643 644 /** 645 * __getnstimeofday64 - Returns the time of day in a timespec64. 646 * @ts: pointer to the timespec to be set 647 * 648 * Updates the time of day in the timespec. 649 * Returns 0 on success, or -ve when suspended (timespec will be undefined). 650 */ 651 int __getnstimeofday64(struct timespec64 *ts) 652 { 653 struct timekeeper *tk = &tk_core.timekeeper; 654 unsigned long seq; 655 s64 nsecs = 0; 656 657 do { 658 seq = read_seqcount_begin(&tk_core.seq); 659 660 ts->tv_sec = tk->xtime_sec; 661 nsecs = timekeeping_get_ns(&tk->tkr_mono); 662 663 } while (read_seqcount_retry(&tk_core.seq, seq)); 664 665 ts->tv_nsec = 0; 666 timespec64_add_ns(ts, nsecs); 667 668 /* 669 * Do not bail out early, in case there were callers still using 670 * the value, even in the face of the WARN_ON. 671 */ 672 if (unlikely(timekeeping_suspended)) 673 return -EAGAIN; 674 return 0; 675 } 676 EXPORT_SYMBOL(__getnstimeofday64); 677 678 /** 679 * getnstimeofday64 - Returns the time of day in a timespec64. 680 * @ts: pointer to the timespec64 to be set 681 * 682 * Returns the time of day in a timespec64 (WARN if suspended). 683 */ 684 void getnstimeofday64(struct timespec64 *ts) 685 { 686 WARN_ON(__getnstimeofday64(ts)); 687 } 688 EXPORT_SYMBOL(getnstimeofday64); 689 690 ktime_t ktime_get(void) 691 { 692 struct timekeeper *tk = &tk_core.timekeeper; 693 unsigned int seq; 694 ktime_t base; 695 s64 nsecs; 696 697 WARN_ON(timekeeping_suspended); 698 699 do { 700 seq = read_seqcount_begin(&tk_core.seq); 701 base = tk->tkr_mono.base; 702 nsecs = timekeeping_get_ns(&tk->tkr_mono); 703 704 } while (read_seqcount_retry(&tk_core.seq, seq)); 705 706 return ktime_add_ns(base, nsecs); 707 } 708 EXPORT_SYMBOL_GPL(ktime_get); 709 710 u32 ktime_get_resolution_ns(void) 711 { 712 struct timekeeper *tk = &tk_core.timekeeper; 713 unsigned int seq; 714 u32 nsecs; 715 716 WARN_ON(timekeeping_suspended); 717 718 do { 719 seq = read_seqcount_begin(&tk_core.seq); 720 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 721 } while (read_seqcount_retry(&tk_core.seq, seq)); 722 723 return nsecs; 724 } 725 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 726 727 static ktime_t *offsets[TK_OFFS_MAX] = { 728 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 729 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 730 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 731 }; 732 733 ktime_t ktime_get_with_offset(enum tk_offsets offs) 734 { 735 struct timekeeper *tk = &tk_core.timekeeper; 736 unsigned int seq; 737 ktime_t base, *offset = offsets[offs]; 738 s64 nsecs; 739 740 WARN_ON(timekeeping_suspended); 741 742 do { 743 seq = read_seqcount_begin(&tk_core.seq); 744 base = ktime_add(tk->tkr_mono.base, *offset); 745 nsecs = timekeeping_get_ns(&tk->tkr_mono); 746 747 } while (read_seqcount_retry(&tk_core.seq, seq)); 748 749 return ktime_add_ns(base, nsecs); 750 751 } 752 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 753 754 /** 755 * ktime_mono_to_any() - convert mononotic time to any other time 756 * @tmono: time to convert. 757 * @offs: which offset to use 758 */ 759 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 760 { 761 ktime_t *offset = offsets[offs]; 762 unsigned long seq; 763 ktime_t tconv; 764 765 do { 766 seq = read_seqcount_begin(&tk_core.seq); 767 tconv = ktime_add(tmono, *offset); 768 } while (read_seqcount_retry(&tk_core.seq, seq)); 769 770 return tconv; 771 } 772 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 773 774 /** 775 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 776 */ 777 ktime_t ktime_get_raw(void) 778 { 779 struct timekeeper *tk = &tk_core.timekeeper; 780 unsigned int seq; 781 ktime_t base; 782 s64 nsecs; 783 784 do { 785 seq = read_seqcount_begin(&tk_core.seq); 786 base = tk->tkr_raw.base; 787 nsecs = timekeeping_get_ns(&tk->tkr_raw); 788 789 } while (read_seqcount_retry(&tk_core.seq, seq)); 790 791 return ktime_add_ns(base, nsecs); 792 } 793 EXPORT_SYMBOL_GPL(ktime_get_raw); 794 795 /** 796 * ktime_get_ts64 - get the monotonic clock in timespec64 format 797 * @ts: pointer to timespec variable 798 * 799 * The function calculates the monotonic clock from the realtime 800 * clock and the wall_to_monotonic offset and stores the result 801 * in normalized timespec64 format in the variable pointed to by @ts. 802 */ 803 void ktime_get_ts64(struct timespec64 *ts) 804 { 805 struct timekeeper *tk = &tk_core.timekeeper; 806 struct timespec64 tomono; 807 s64 nsec; 808 unsigned int seq; 809 810 WARN_ON(timekeeping_suspended); 811 812 do { 813 seq = read_seqcount_begin(&tk_core.seq); 814 ts->tv_sec = tk->xtime_sec; 815 nsec = timekeeping_get_ns(&tk->tkr_mono); 816 tomono = tk->wall_to_monotonic; 817 818 } while (read_seqcount_retry(&tk_core.seq, seq)); 819 820 ts->tv_sec += tomono.tv_sec; 821 ts->tv_nsec = 0; 822 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 823 } 824 EXPORT_SYMBOL_GPL(ktime_get_ts64); 825 826 /** 827 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 828 * 829 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 830 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 831 * works on both 32 and 64 bit systems. On 32 bit systems the readout 832 * covers ~136 years of uptime which should be enough to prevent 833 * premature wrap arounds. 834 */ 835 time64_t ktime_get_seconds(void) 836 { 837 struct timekeeper *tk = &tk_core.timekeeper; 838 839 WARN_ON(timekeeping_suspended); 840 return tk->ktime_sec; 841 } 842 EXPORT_SYMBOL_GPL(ktime_get_seconds); 843 844 /** 845 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 846 * 847 * Returns the wall clock seconds since 1970. This replaces the 848 * get_seconds() interface which is not y2038 safe on 32bit systems. 849 * 850 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 851 * 32bit systems the access must be protected with the sequence 852 * counter to provide "atomic" access to the 64bit tk->xtime_sec 853 * value. 854 */ 855 time64_t ktime_get_real_seconds(void) 856 { 857 struct timekeeper *tk = &tk_core.timekeeper; 858 time64_t seconds; 859 unsigned int seq; 860 861 if (IS_ENABLED(CONFIG_64BIT)) 862 return tk->xtime_sec; 863 864 do { 865 seq = read_seqcount_begin(&tk_core.seq); 866 seconds = tk->xtime_sec; 867 868 } while (read_seqcount_retry(&tk_core.seq, seq)); 869 870 return seconds; 871 } 872 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 873 874 /** 875 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 876 * but without the sequence counter protect. This internal function 877 * is called just when timekeeping lock is already held. 878 */ 879 time64_t __ktime_get_real_seconds(void) 880 { 881 struct timekeeper *tk = &tk_core.timekeeper; 882 883 return tk->xtime_sec; 884 } 885 886 /** 887 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 888 * @systime_snapshot: pointer to struct receiving the system time snapshot 889 */ 890 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 891 { 892 struct timekeeper *tk = &tk_core.timekeeper; 893 unsigned long seq; 894 ktime_t base_raw; 895 ktime_t base_real; 896 s64 nsec_raw; 897 s64 nsec_real; 898 cycle_t now; 899 900 WARN_ON_ONCE(timekeeping_suspended); 901 902 do { 903 seq = read_seqcount_begin(&tk_core.seq); 904 905 now = tk->tkr_mono.read(tk->tkr_mono.clock); 906 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 907 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 908 base_real = ktime_add(tk->tkr_mono.base, 909 tk_core.timekeeper.offs_real); 910 base_raw = tk->tkr_raw.base; 911 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 912 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 913 } while (read_seqcount_retry(&tk_core.seq, seq)); 914 915 systime_snapshot->cycles = now; 916 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 917 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 918 } 919 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 920 921 /* Scale base by mult/div checking for overflow */ 922 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 923 { 924 u64 tmp, rem; 925 926 tmp = div64_u64_rem(*base, div, &rem); 927 928 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 929 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 930 return -EOVERFLOW; 931 tmp *= mult; 932 rem *= mult; 933 934 do_div(rem, div); 935 *base = tmp + rem; 936 return 0; 937 } 938 939 /** 940 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 941 * @history: Snapshot representing start of history 942 * @partial_history_cycles: Cycle offset into history (fractional part) 943 * @total_history_cycles: Total history length in cycles 944 * @discontinuity: True indicates clock was set on history period 945 * @ts: Cross timestamp that should be adjusted using 946 * partial/total ratio 947 * 948 * Helper function used by get_device_system_crosststamp() to correct the 949 * crosstimestamp corresponding to the start of the current interval to the 950 * system counter value (timestamp point) provided by the driver. The 951 * total_history_* quantities are the total history starting at the provided 952 * reference point and ending at the start of the current interval. The cycle 953 * count between the driver timestamp point and the start of the current 954 * interval is partial_history_cycles. 955 */ 956 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 957 cycle_t partial_history_cycles, 958 cycle_t total_history_cycles, 959 bool discontinuity, 960 struct system_device_crosststamp *ts) 961 { 962 struct timekeeper *tk = &tk_core.timekeeper; 963 u64 corr_raw, corr_real; 964 bool interp_forward; 965 int ret; 966 967 if (total_history_cycles == 0 || partial_history_cycles == 0) 968 return 0; 969 970 /* Interpolate shortest distance from beginning or end of history */ 971 interp_forward = partial_history_cycles > total_history_cycles/2 ? 972 true : false; 973 partial_history_cycles = interp_forward ? 974 total_history_cycles - partial_history_cycles : 975 partial_history_cycles; 976 977 /* 978 * Scale the monotonic raw time delta by: 979 * partial_history_cycles / total_history_cycles 980 */ 981 corr_raw = (u64)ktime_to_ns( 982 ktime_sub(ts->sys_monoraw, history->raw)); 983 ret = scale64_check_overflow(partial_history_cycles, 984 total_history_cycles, &corr_raw); 985 if (ret) 986 return ret; 987 988 /* 989 * If there is a discontinuity in the history, scale monotonic raw 990 * correction by: 991 * mult(real)/mult(raw) yielding the realtime correction 992 * Otherwise, calculate the realtime correction similar to monotonic 993 * raw calculation 994 */ 995 if (discontinuity) { 996 corr_real = mul_u64_u32_div 997 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 998 } else { 999 corr_real = (u64)ktime_to_ns( 1000 ktime_sub(ts->sys_realtime, history->real)); 1001 ret = scale64_check_overflow(partial_history_cycles, 1002 total_history_cycles, &corr_real); 1003 if (ret) 1004 return ret; 1005 } 1006 1007 /* Fixup monotonic raw and real time time values */ 1008 if (interp_forward) { 1009 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1010 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1011 } else { 1012 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1013 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1014 } 1015 1016 return 0; 1017 } 1018 1019 /* 1020 * cycle_between - true if test occurs chronologically between before and after 1021 */ 1022 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after) 1023 { 1024 if (test > before && test < after) 1025 return true; 1026 if (test < before && before > after) 1027 return true; 1028 return false; 1029 } 1030 1031 /** 1032 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1033 * @get_time_fn: Callback to get simultaneous device time and 1034 * system counter from the device driver 1035 * @ctx: Context passed to get_time_fn() 1036 * @history_begin: Historical reference point used to interpolate system 1037 * time when counter provided by the driver is before the current interval 1038 * @xtstamp: Receives simultaneously captured system and device time 1039 * 1040 * Reads a timestamp from a device and correlates it to system time 1041 */ 1042 int get_device_system_crosststamp(int (*get_time_fn) 1043 (ktime_t *device_time, 1044 struct system_counterval_t *sys_counterval, 1045 void *ctx), 1046 void *ctx, 1047 struct system_time_snapshot *history_begin, 1048 struct system_device_crosststamp *xtstamp) 1049 { 1050 struct system_counterval_t system_counterval; 1051 struct timekeeper *tk = &tk_core.timekeeper; 1052 cycle_t cycles, now, interval_start; 1053 unsigned int clock_was_set_seq = 0; 1054 ktime_t base_real, base_raw; 1055 s64 nsec_real, nsec_raw; 1056 u8 cs_was_changed_seq; 1057 unsigned long seq; 1058 bool do_interp; 1059 int ret; 1060 1061 do { 1062 seq = read_seqcount_begin(&tk_core.seq); 1063 /* 1064 * Try to synchronously capture device time and a system 1065 * counter value calling back into the device driver 1066 */ 1067 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1068 if (ret) 1069 return ret; 1070 1071 /* 1072 * Verify that the clocksource associated with the captured 1073 * system counter value is the same as the currently installed 1074 * timekeeper clocksource 1075 */ 1076 if (tk->tkr_mono.clock != system_counterval.cs) 1077 return -ENODEV; 1078 cycles = system_counterval.cycles; 1079 1080 /* 1081 * Check whether the system counter value provided by the 1082 * device driver is on the current timekeeping interval. 1083 */ 1084 now = tk->tkr_mono.read(tk->tkr_mono.clock); 1085 interval_start = tk->tkr_mono.cycle_last; 1086 if (!cycle_between(interval_start, cycles, now)) { 1087 clock_was_set_seq = tk->clock_was_set_seq; 1088 cs_was_changed_seq = tk->cs_was_changed_seq; 1089 cycles = interval_start; 1090 do_interp = true; 1091 } else { 1092 do_interp = false; 1093 } 1094 1095 base_real = ktime_add(tk->tkr_mono.base, 1096 tk_core.timekeeper.offs_real); 1097 base_raw = tk->tkr_raw.base; 1098 1099 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, 1100 system_counterval.cycles); 1101 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, 1102 system_counterval.cycles); 1103 } while (read_seqcount_retry(&tk_core.seq, seq)); 1104 1105 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1106 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1107 1108 /* 1109 * Interpolate if necessary, adjusting back from the start of the 1110 * current interval 1111 */ 1112 if (do_interp) { 1113 cycle_t partial_history_cycles, total_history_cycles; 1114 bool discontinuity; 1115 1116 /* 1117 * Check that the counter value occurs after the provided 1118 * history reference and that the history doesn't cross a 1119 * clocksource change 1120 */ 1121 if (!history_begin || 1122 !cycle_between(history_begin->cycles, 1123 system_counterval.cycles, cycles) || 1124 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1125 return -EINVAL; 1126 partial_history_cycles = cycles - system_counterval.cycles; 1127 total_history_cycles = cycles - history_begin->cycles; 1128 discontinuity = 1129 history_begin->clock_was_set_seq != clock_was_set_seq; 1130 1131 ret = adjust_historical_crosststamp(history_begin, 1132 partial_history_cycles, 1133 total_history_cycles, 1134 discontinuity, xtstamp); 1135 if (ret) 1136 return ret; 1137 } 1138 1139 return 0; 1140 } 1141 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1142 1143 /** 1144 * do_gettimeofday - Returns the time of day in a timeval 1145 * @tv: pointer to the timeval to be set 1146 * 1147 * NOTE: Users should be converted to using getnstimeofday() 1148 */ 1149 void do_gettimeofday(struct timeval *tv) 1150 { 1151 struct timespec64 now; 1152 1153 getnstimeofday64(&now); 1154 tv->tv_sec = now.tv_sec; 1155 tv->tv_usec = now.tv_nsec/1000; 1156 } 1157 EXPORT_SYMBOL(do_gettimeofday); 1158 1159 /** 1160 * do_settimeofday64 - Sets the time of day. 1161 * @ts: pointer to the timespec64 variable containing the new time 1162 * 1163 * Sets the time of day to the new time and update NTP and notify hrtimers 1164 */ 1165 int do_settimeofday64(const struct timespec64 *ts) 1166 { 1167 struct timekeeper *tk = &tk_core.timekeeper; 1168 struct timespec64 ts_delta, xt; 1169 unsigned long flags; 1170 int ret = 0; 1171 1172 if (!timespec64_valid_strict(ts)) 1173 return -EINVAL; 1174 1175 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1176 write_seqcount_begin(&tk_core.seq); 1177 1178 timekeeping_forward_now(tk); 1179 1180 xt = tk_xtime(tk); 1181 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec; 1182 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec; 1183 1184 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1185 ret = -EINVAL; 1186 goto out; 1187 } 1188 1189 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1190 1191 tk_set_xtime(tk, ts); 1192 out: 1193 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1194 1195 write_seqcount_end(&tk_core.seq); 1196 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1197 1198 /* signal hrtimers about time change */ 1199 clock_was_set(); 1200 1201 return ret; 1202 } 1203 EXPORT_SYMBOL(do_settimeofday64); 1204 1205 /** 1206 * timekeeping_inject_offset - Adds or subtracts from the current time. 1207 * @tv: pointer to the timespec variable containing the offset 1208 * 1209 * Adds or subtracts an offset value from the current time. 1210 */ 1211 int timekeeping_inject_offset(struct timespec *ts) 1212 { 1213 struct timekeeper *tk = &tk_core.timekeeper; 1214 unsigned long flags; 1215 struct timespec64 ts64, tmp; 1216 int ret = 0; 1217 1218 if (!timespec_inject_offset_valid(ts)) 1219 return -EINVAL; 1220 1221 ts64 = timespec_to_timespec64(*ts); 1222 1223 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1224 write_seqcount_begin(&tk_core.seq); 1225 1226 timekeeping_forward_now(tk); 1227 1228 /* Make sure the proposed value is valid */ 1229 tmp = timespec64_add(tk_xtime(tk), ts64); 1230 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 || 1231 !timespec64_valid_strict(&tmp)) { 1232 ret = -EINVAL; 1233 goto error; 1234 } 1235 1236 tk_xtime_add(tk, &ts64); 1237 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64)); 1238 1239 error: /* even if we error out, we forwarded the time, so call update */ 1240 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1241 1242 write_seqcount_end(&tk_core.seq); 1243 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1244 1245 /* signal hrtimers about time change */ 1246 clock_was_set(); 1247 1248 return ret; 1249 } 1250 EXPORT_SYMBOL(timekeeping_inject_offset); 1251 1252 1253 /** 1254 * timekeeping_get_tai_offset - Returns current TAI offset from UTC 1255 * 1256 */ 1257 s32 timekeeping_get_tai_offset(void) 1258 { 1259 struct timekeeper *tk = &tk_core.timekeeper; 1260 unsigned int seq; 1261 s32 ret; 1262 1263 do { 1264 seq = read_seqcount_begin(&tk_core.seq); 1265 ret = tk->tai_offset; 1266 } while (read_seqcount_retry(&tk_core.seq, seq)); 1267 1268 return ret; 1269 } 1270 1271 /** 1272 * __timekeeping_set_tai_offset - Lock free worker function 1273 * 1274 */ 1275 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1276 { 1277 tk->tai_offset = tai_offset; 1278 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1279 } 1280 1281 /** 1282 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC 1283 * 1284 */ 1285 void timekeeping_set_tai_offset(s32 tai_offset) 1286 { 1287 struct timekeeper *tk = &tk_core.timekeeper; 1288 unsigned long flags; 1289 1290 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1291 write_seqcount_begin(&tk_core.seq); 1292 __timekeeping_set_tai_offset(tk, tai_offset); 1293 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1294 write_seqcount_end(&tk_core.seq); 1295 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1296 clock_was_set(); 1297 } 1298 1299 /** 1300 * change_clocksource - Swaps clocksources if a new one is available 1301 * 1302 * Accumulates current time interval and initializes new clocksource 1303 */ 1304 static int change_clocksource(void *data) 1305 { 1306 struct timekeeper *tk = &tk_core.timekeeper; 1307 struct clocksource *new, *old; 1308 unsigned long flags; 1309 1310 new = (struct clocksource *) data; 1311 1312 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1313 write_seqcount_begin(&tk_core.seq); 1314 1315 timekeeping_forward_now(tk); 1316 /* 1317 * If the cs is in module, get a module reference. Succeeds 1318 * for built-in code (owner == NULL) as well. 1319 */ 1320 if (try_module_get(new->owner)) { 1321 if (!new->enable || new->enable(new) == 0) { 1322 old = tk->tkr_mono.clock; 1323 tk_setup_internals(tk, new); 1324 if (old->disable) 1325 old->disable(old); 1326 module_put(old->owner); 1327 } else { 1328 module_put(new->owner); 1329 } 1330 } 1331 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1332 1333 write_seqcount_end(&tk_core.seq); 1334 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1335 1336 return 0; 1337 } 1338 1339 /** 1340 * timekeeping_notify - Install a new clock source 1341 * @clock: pointer to the clock source 1342 * 1343 * This function is called from clocksource.c after a new, better clock 1344 * source has been registered. The caller holds the clocksource_mutex. 1345 */ 1346 int timekeeping_notify(struct clocksource *clock) 1347 { 1348 struct timekeeper *tk = &tk_core.timekeeper; 1349 1350 if (tk->tkr_mono.clock == clock) 1351 return 0; 1352 stop_machine(change_clocksource, clock, NULL); 1353 tick_clock_notify(); 1354 return tk->tkr_mono.clock == clock ? 0 : -1; 1355 } 1356 1357 /** 1358 * getrawmonotonic64 - Returns the raw monotonic time in a timespec 1359 * @ts: pointer to the timespec64 to be set 1360 * 1361 * Returns the raw monotonic time (completely un-modified by ntp) 1362 */ 1363 void getrawmonotonic64(struct timespec64 *ts) 1364 { 1365 struct timekeeper *tk = &tk_core.timekeeper; 1366 struct timespec64 ts64; 1367 unsigned long seq; 1368 s64 nsecs; 1369 1370 do { 1371 seq = read_seqcount_begin(&tk_core.seq); 1372 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1373 ts64 = tk->raw_time; 1374 1375 } while (read_seqcount_retry(&tk_core.seq, seq)); 1376 1377 timespec64_add_ns(&ts64, nsecs); 1378 *ts = ts64; 1379 } 1380 EXPORT_SYMBOL(getrawmonotonic64); 1381 1382 1383 /** 1384 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1385 */ 1386 int timekeeping_valid_for_hres(void) 1387 { 1388 struct timekeeper *tk = &tk_core.timekeeper; 1389 unsigned long seq; 1390 int ret; 1391 1392 do { 1393 seq = read_seqcount_begin(&tk_core.seq); 1394 1395 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1396 1397 } while (read_seqcount_retry(&tk_core.seq, seq)); 1398 1399 return ret; 1400 } 1401 1402 /** 1403 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1404 */ 1405 u64 timekeeping_max_deferment(void) 1406 { 1407 struct timekeeper *tk = &tk_core.timekeeper; 1408 unsigned long seq; 1409 u64 ret; 1410 1411 do { 1412 seq = read_seqcount_begin(&tk_core.seq); 1413 1414 ret = tk->tkr_mono.clock->max_idle_ns; 1415 1416 } while (read_seqcount_retry(&tk_core.seq, seq)); 1417 1418 return ret; 1419 } 1420 1421 /** 1422 * read_persistent_clock - Return time from the persistent clock. 1423 * 1424 * Weak dummy function for arches that do not yet support it. 1425 * Reads the time from the battery backed persistent clock. 1426 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1427 * 1428 * XXX - Do be sure to remove it once all arches implement it. 1429 */ 1430 void __weak read_persistent_clock(struct timespec *ts) 1431 { 1432 ts->tv_sec = 0; 1433 ts->tv_nsec = 0; 1434 } 1435 1436 void __weak read_persistent_clock64(struct timespec64 *ts64) 1437 { 1438 struct timespec ts; 1439 1440 read_persistent_clock(&ts); 1441 *ts64 = timespec_to_timespec64(ts); 1442 } 1443 1444 /** 1445 * read_boot_clock64 - Return time of the system start. 1446 * 1447 * Weak dummy function for arches that do not yet support it. 1448 * Function to read the exact time the system has been started. 1449 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported. 1450 * 1451 * XXX - Do be sure to remove it once all arches implement it. 1452 */ 1453 void __weak read_boot_clock64(struct timespec64 *ts) 1454 { 1455 ts->tv_sec = 0; 1456 ts->tv_nsec = 0; 1457 } 1458 1459 /* Flag for if timekeeping_resume() has injected sleeptime */ 1460 static bool sleeptime_injected; 1461 1462 /* Flag for if there is a persistent clock on this platform */ 1463 static bool persistent_clock_exists; 1464 1465 /* 1466 * timekeeping_init - Initializes the clocksource and common timekeeping values 1467 */ 1468 void __init timekeeping_init(void) 1469 { 1470 struct timekeeper *tk = &tk_core.timekeeper; 1471 struct clocksource *clock; 1472 unsigned long flags; 1473 struct timespec64 now, boot, tmp; 1474 1475 read_persistent_clock64(&now); 1476 if (!timespec64_valid_strict(&now)) { 1477 pr_warn("WARNING: Persistent clock returned invalid value!\n" 1478 " Check your CMOS/BIOS settings.\n"); 1479 now.tv_sec = 0; 1480 now.tv_nsec = 0; 1481 } else if (now.tv_sec || now.tv_nsec) 1482 persistent_clock_exists = true; 1483 1484 read_boot_clock64(&boot); 1485 if (!timespec64_valid_strict(&boot)) { 1486 pr_warn("WARNING: Boot clock returned invalid value!\n" 1487 " Check your CMOS/BIOS settings.\n"); 1488 boot.tv_sec = 0; 1489 boot.tv_nsec = 0; 1490 } 1491 1492 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1493 write_seqcount_begin(&tk_core.seq); 1494 ntp_init(); 1495 1496 clock = clocksource_default_clock(); 1497 if (clock->enable) 1498 clock->enable(clock); 1499 tk_setup_internals(tk, clock); 1500 1501 tk_set_xtime(tk, &now); 1502 tk->raw_time.tv_sec = 0; 1503 tk->raw_time.tv_nsec = 0; 1504 if (boot.tv_sec == 0 && boot.tv_nsec == 0) 1505 boot = tk_xtime(tk); 1506 1507 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec); 1508 tk_set_wall_to_mono(tk, tmp); 1509 1510 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1511 1512 write_seqcount_end(&tk_core.seq); 1513 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1514 } 1515 1516 /* time in seconds when suspend began for persistent clock */ 1517 static struct timespec64 timekeeping_suspend_time; 1518 1519 /** 1520 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1521 * @delta: pointer to a timespec delta value 1522 * 1523 * Takes a timespec offset measuring a suspend interval and properly 1524 * adds the sleep offset to the timekeeping variables. 1525 */ 1526 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1527 struct timespec64 *delta) 1528 { 1529 if (!timespec64_valid_strict(delta)) { 1530 printk_deferred(KERN_WARNING 1531 "__timekeeping_inject_sleeptime: Invalid " 1532 "sleep delta value!\n"); 1533 return; 1534 } 1535 tk_xtime_add(tk, delta); 1536 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1537 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1538 tk_debug_account_sleep_time(delta); 1539 } 1540 1541 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1542 /** 1543 * We have three kinds of time sources to use for sleep time 1544 * injection, the preference order is: 1545 * 1) non-stop clocksource 1546 * 2) persistent clock (ie: RTC accessible when irqs are off) 1547 * 3) RTC 1548 * 1549 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1550 * If system has neither 1) nor 2), 3) will be used finally. 1551 * 1552 * 1553 * If timekeeping has injected sleeptime via either 1) or 2), 1554 * 3) becomes needless, so in this case we don't need to call 1555 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1556 * means. 1557 */ 1558 bool timekeeping_rtc_skipresume(void) 1559 { 1560 return sleeptime_injected; 1561 } 1562 1563 /** 1564 * 1) can be determined whether to use or not only when doing 1565 * timekeeping_resume() which is invoked after rtc_suspend(), 1566 * so we can't skip rtc_suspend() surely if system has 1). 1567 * 1568 * But if system has 2), 2) will definitely be used, so in this 1569 * case we don't need to call rtc_suspend(), and this is what 1570 * timekeeping_rtc_skipsuspend() means. 1571 */ 1572 bool timekeeping_rtc_skipsuspend(void) 1573 { 1574 return persistent_clock_exists; 1575 } 1576 1577 /** 1578 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1579 * @delta: pointer to a timespec64 delta value 1580 * 1581 * This hook is for architectures that cannot support read_persistent_clock64 1582 * because their RTC/persistent clock is only accessible when irqs are enabled. 1583 * and also don't have an effective nonstop clocksource. 1584 * 1585 * This function should only be called by rtc_resume(), and allows 1586 * a suspend offset to be injected into the timekeeping values. 1587 */ 1588 void timekeeping_inject_sleeptime64(struct timespec64 *delta) 1589 { 1590 struct timekeeper *tk = &tk_core.timekeeper; 1591 unsigned long flags; 1592 1593 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1594 write_seqcount_begin(&tk_core.seq); 1595 1596 timekeeping_forward_now(tk); 1597 1598 __timekeeping_inject_sleeptime(tk, delta); 1599 1600 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1601 1602 write_seqcount_end(&tk_core.seq); 1603 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1604 1605 /* signal hrtimers about time change */ 1606 clock_was_set(); 1607 } 1608 #endif 1609 1610 /** 1611 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1612 */ 1613 void timekeeping_resume(void) 1614 { 1615 struct timekeeper *tk = &tk_core.timekeeper; 1616 struct clocksource *clock = tk->tkr_mono.clock; 1617 unsigned long flags; 1618 struct timespec64 ts_new, ts_delta; 1619 cycle_t cycle_now, cycle_delta; 1620 1621 sleeptime_injected = false; 1622 read_persistent_clock64(&ts_new); 1623 1624 clockevents_resume(); 1625 clocksource_resume(); 1626 1627 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1628 write_seqcount_begin(&tk_core.seq); 1629 1630 /* 1631 * After system resumes, we need to calculate the suspended time and 1632 * compensate it for the OS time. There are 3 sources that could be 1633 * used: Nonstop clocksource during suspend, persistent clock and rtc 1634 * device. 1635 * 1636 * One specific platform may have 1 or 2 or all of them, and the 1637 * preference will be: 1638 * suspend-nonstop clocksource -> persistent clock -> rtc 1639 * The less preferred source will only be tried if there is no better 1640 * usable source. The rtc part is handled separately in rtc core code. 1641 */ 1642 cycle_now = tk->tkr_mono.read(clock); 1643 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) && 1644 cycle_now > tk->tkr_mono.cycle_last) { 1645 u64 num, max = ULLONG_MAX; 1646 u32 mult = clock->mult; 1647 u32 shift = clock->shift; 1648 s64 nsec = 0; 1649 1650 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, 1651 tk->tkr_mono.mask); 1652 1653 /* 1654 * "cycle_delta * mutl" may cause 64 bits overflow, if the 1655 * suspended time is too long. In that case we need do the 1656 * 64 bits math carefully 1657 */ 1658 do_div(max, mult); 1659 if (cycle_delta > max) { 1660 num = div64_u64(cycle_delta, max); 1661 nsec = (((u64) max * mult) >> shift) * num; 1662 cycle_delta -= num * max; 1663 } 1664 nsec += ((u64) cycle_delta * mult) >> shift; 1665 1666 ts_delta = ns_to_timespec64(nsec); 1667 sleeptime_injected = true; 1668 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1669 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1670 sleeptime_injected = true; 1671 } 1672 1673 if (sleeptime_injected) 1674 __timekeeping_inject_sleeptime(tk, &ts_delta); 1675 1676 /* Re-base the last cycle value */ 1677 tk->tkr_mono.cycle_last = cycle_now; 1678 tk->tkr_raw.cycle_last = cycle_now; 1679 1680 tk->ntp_error = 0; 1681 timekeeping_suspended = 0; 1682 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1683 write_seqcount_end(&tk_core.seq); 1684 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1685 1686 touch_softlockup_watchdog(); 1687 1688 tick_resume(); 1689 hrtimers_resume(); 1690 } 1691 1692 int timekeeping_suspend(void) 1693 { 1694 struct timekeeper *tk = &tk_core.timekeeper; 1695 unsigned long flags; 1696 struct timespec64 delta, delta_delta; 1697 static struct timespec64 old_delta; 1698 1699 read_persistent_clock64(&timekeeping_suspend_time); 1700 1701 /* 1702 * On some systems the persistent_clock can not be detected at 1703 * timekeeping_init by its return value, so if we see a valid 1704 * value returned, update the persistent_clock_exists flag. 1705 */ 1706 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 1707 persistent_clock_exists = true; 1708 1709 raw_spin_lock_irqsave(&timekeeper_lock, flags); 1710 write_seqcount_begin(&tk_core.seq); 1711 timekeeping_forward_now(tk); 1712 timekeeping_suspended = 1; 1713 1714 if (persistent_clock_exists) { 1715 /* 1716 * To avoid drift caused by repeated suspend/resumes, 1717 * which each can add ~1 second drift error, 1718 * try to compensate so the difference in system time 1719 * and persistent_clock time stays close to constant. 1720 */ 1721 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 1722 delta_delta = timespec64_sub(delta, old_delta); 1723 if (abs(delta_delta.tv_sec) >= 2) { 1724 /* 1725 * if delta_delta is too large, assume time correction 1726 * has occurred and set old_delta to the current delta. 1727 */ 1728 old_delta = delta; 1729 } else { 1730 /* Otherwise try to adjust old_system to compensate */ 1731 timekeeping_suspend_time = 1732 timespec64_add(timekeeping_suspend_time, delta_delta); 1733 } 1734 } 1735 1736 timekeeping_update(tk, TK_MIRROR); 1737 halt_fast_timekeeper(tk); 1738 write_seqcount_end(&tk_core.seq); 1739 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 1740 1741 tick_suspend(); 1742 clocksource_suspend(); 1743 clockevents_suspend(); 1744 1745 return 0; 1746 } 1747 1748 /* sysfs resume/suspend bits for timekeeping */ 1749 static struct syscore_ops timekeeping_syscore_ops = { 1750 .resume = timekeeping_resume, 1751 .suspend = timekeeping_suspend, 1752 }; 1753 1754 static int __init timekeeping_init_ops(void) 1755 { 1756 register_syscore_ops(&timekeeping_syscore_ops); 1757 return 0; 1758 } 1759 device_initcall(timekeeping_init_ops); 1760 1761 /* 1762 * Apply a multiplier adjustment to the timekeeper 1763 */ 1764 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 1765 s64 offset, 1766 bool negative, 1767 int adj_scale) 1768 { 1769 s64 interval = tk->cycle_interval; 1770 s32 mult_adj = 1; 1771 1772 if (negative) { 1773 mult_adj = -mult_adj; 1774 interval = -interval; 1775 offset = -offset; 1776 } 1777 mult_adj <<= adj_scale; 1778 interval <<= adj_scale; 1779 offset <<= adj_scale; 1780 1781 /* 1782 * So the following can be confusing. 1783 * 1784 * To keep things simple, lets assume mult_adj == 1 for now. 1785 * 1786 * When mult_adj != 1, remember that the interval and offset values 1787 * have been appropriately scaled so the math is the same. 1788 * 1789 * The basic idea here is that we're increasing the multiplier 1790 * by one, this causes the xtime_interval to be incremented by 1791 * one cycle_interval. This is because: 1792 * xtime_interval = cycle_interval * mult 1793 * So if mult is being incremented by one: 1794 * xtime_interval = cycle_interval * (mult + 1) 1795 * Its the same as: 1796 * xtime_interval = (cycle_interval * mult) + cycle_interval 1797 * Which can be shortened to: 1798 * xtime_interval += cycle_interval 1799 * 1800 * So offset stores the non-accumulated cycles. Thus the current 1801 * time (in shifted nanoseconds) is: 1802 * now = (offset * adj) + xtime_nsec 1803 * Now, even though we're adjusting the clock frequency, we have 1804 * to keep time consistent. In other words, we can't jump back 1805 * in time, and we also want to avoid jumping forward in time. 1806 * 1807 * So given the same offset value, we need the time to be the same 1808 * both before and after the freq adjustment. 1809 * now = (offset * adj_1) + xtime_nsec_1 1810 * now = (offset * adj_2) + xtime_nsec_2 1811 * So: 1812 * (offset * adj_1) + xtime_nsec_1 = 1813 * (offset * adj_2) + xtime_nsec_2 1814 * And we know: 1815 * adj_2 = adj_1 + 1 1816 * So: 1817 * (offset * adj_1) + xtime_nsec_1 = 1818 * (offset * (adj_1+1)) + xtime_nsec_2 1819 * (offset * adj_1) + xtime_nsec_1 = 1820 * (offset * adj_1) + offset + xtime_nsec_2 1821 * Canceling the sides: 1822 * xtime_nsec_1 = offset + xtime_nsec_2 1823 * Which gives us: 1824 * xtime_nsec_2 = xtime_nsec_1 - offset 1825 * Which simplfies to: 1826 * xtime_nsec -= offset 1827 * 1828 * XXX - TODO: Doc ntp_error calculation. 1829 */ 1830 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 1831 /* NTP adjustment caused clocksource mult overflow */ 1832 WARN_ON_ONCE(1); 1833 return; 1834 } 1835 1836 tk->tkr_mono.mult += mult_adj; 1837 tk->xtime_interval += interval; 1838 tk->tkr_mono.xtime_nsec -= offset; 1839 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift; 1840 } 1841 1842 /* 1843 * Calculate the multiplier adjustment needed to match the frequency 1844 * specified by NTP 1845 */ 1846 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk, 1847 s64 offset) 1848 { 1849 s64 interval = tk->cycle_interval; 1850 s64 xinterval = tk->xtime_interval; 1851 u32 base = tk->tkr_mono.clock->mult; 1852 u32 max = tk->tkr_mono.clock->maxadj; 1853 u32 cur_adj = tk->tkr_mono.mult; 1854 s64 tick_error; 1855 bool negative; 1856 u32 adj_scale; 1857 1858 /* Remove any current error adj from freq calculation */ 1859 if (tk->ntp_err_mult) 1860 xinterval -= tk->cycle_interval; 1861 1862 tk->ntp_tick = ntp_tick_length(); 1863 1864 /* Calculate current error per tick */ 1865 tick_error = ntp_tick_length() >> tk->ntp_error_shift; 1866 tick_error -= (xinterval + tk->xtime_remainder); 1867 1868 /* Don't worry about correcting it if its small */ 1869 if (likely((tick_error >= 0) && (tick_error <= interval))) 1870 return; 1871 1872 /* preserve the direction of correction */ 1873 negative = (tick_error < 0); 1874 1875 /* If any adjustment would pass the max, just return */ 1876 if (negative && (cur_adj - 1) <= (base - max)) 1877 return; 1878 if (!negative && (cur_adj + 1) >= (base + max)) 1879 return; 1880 /* 1881 * Sort out the magnitude of the correction, but 1882 * avoid making so large a correction that we go 1883 * over the max adjustment. 1884 */ 1885 adj_scale = 0; 1886 tick_error = abs(tick_error); 1887 while (tick_error > interval) { 1888 u32 adj = 1 << (adj_scale + 1); 1889 1890 /* Check if adjustment gets us within 1 unit from the max */ 1891 if (negative && (cur_adj - adj) <= (base - max)) 1892 break; 1893 if (!negative && (cur_adj + adj) >= (base + max)) 1894 break; 1895 1896 adj_scale++; 1897 tick_error >>= 1; 1898 } 1899 1900 /* scale the corrections */ 1901 timekeeping_apply_adjustment(tk, offset, negative, adj_scale); 1902 } 1903 1904 /* 1905 * Adjust the timekeeper's multiplier to the correct frequency 1906 * and also to reduce the accumulated error value. 1907 */ 1908 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 1909 { 1910 /* Correct for the current frequency error */ 1911 timekeeping_freqadjust(tk, offset); 1912 1913 /* Next make a small adjustment to fix any cumulative error */ 1914 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) { 1915 tk->ntp_err_mult = 1; 1916 timekeeping_apply_adjustment(tk, offset, 0, 0); 1917 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) { 1918 /* Undo any existing error adjustment */ 1919 timekeeping_apply_adjustment(tk, offset, 1, 0); 1920 tk->ntp_err_mult = 0; 1921 } 1922 1923 if (unlikely(tk->tkr_mono.clock->maxadj && 1924 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 1925 > tk->tkr_mono.clock->maxadj))) { 1926 printk_once(KERN_WARNING 1927 "Adjusting %s more than 11%% (%ld vs %ld)\n", 1928 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 1929 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 1930 } 1931 1932 /* 1933 * It may be possible that when we entered this function, xtime_nsec 1934 * was very small. Further, if we're slightly speeding the clocksource 1935 * in the code above, its possible the required corrective factor to 1936 * xtime_nsec could cause it to underflow. 1937 * 1938 * Now, since we already accumulated the second, cannot simply roll 1939 * the accumulated second back, since the NTP subsystem has been 1940 * notified via second_overflow. So instead we push xtime_nsec forward 1941 * by the amount we underflowed, and add that amount into the error. 1942 * 1943 * We'll correct this error next time through this function, when 1944 * xtime_nsec is not as small. 1945 */ 1946 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 1947 s64 neg = -(s64)tk->tkr_mono.xtime_nsec; 1948 tk->tkr_mono.xtime_nsec = 0; 1949 tk->ntp_error += neg << tk->ntp_error_shift; 1950 } 1951 } 1952 1953 /** 1954 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 1955 * 1956 * Helper function that accumulates the nsecs greater than a second 1957 * from the xtime_nsec field to the xtime_secs field. 1958 * It also calls into the NTP code to handle leapsecond processing. 1959 * 1960 */ 1961 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 1962 { 1963 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 1964 unsigned int clock_set = 0; 1965 1966 while (tk->tkr_mono.xtime_nsec >= nsecps) { 1967 int leap; 1968 1969 tk->tkr_mono.xtime_nsec -= nsecps; 1970 tk->xtime_sec++; 1971 1972 /* Figure out if its a leap sec and apply if needed */ 1973 leap = second_overflow(tk->xtime_sec); 1974 if (unlikely(leap)) { 1975 struct timespec64 ts; 1976 1977 tk->xtime_sec += leap; 1978 1979 ts.tv_sec = leap; 1980 ts.tv_nsec = 0; 1981 tk_set_wall_to_mono(tk, 1982 timespec64_sub(tk->wall_to_monotonic, ts)); 1983 1984 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 1985 1986 clock_set = TK_CLOCK_WAS_SET; 1987 } 1988 } 1989 return clock_set; 1990 } 1991 1992 /** 1993 * logarithmic_accumulation - shifted accumulation of cycles 1994 * 1995 * This functions accumulates a shifted interval of cycles into 1996 * into a shifted interval nanoseconds. Allows for O(log) accumulation 1997 * loop. 1998 * 1999 * Returns the unconsumed cycles. 2000 */ 2001 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset, 2002 u32 shift, 2003 unsigned int *clock_set) 2004 { 2005 cycle_t interval = tk->cycle_interval << shift; 2006 u64 raw_nsecs; 2007 2008 /* If the offset is smaller than a shifted interval, do nothing */ 2009 if (offset < interval) 2010 return offset; 2011 2012 /* Accumulate one shifted interval */ 2013 offset -= interval; 2014 tk->tkr_mono.cycle_last += interval; 2015 tk->tkr_raw.cycle_last += interval; 2016 2017 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2018 *clock_set |= accumulate_nsecs_to_secs(tk); 2019 2020 /* Accumulate raw time */ 2021 raw_nsecs = (u64)tk->raw_interval << shift; 2022 raw_nsecs += tk->raw_time.tv_nsec; 2023 if (raw_nsecs >= NSEC_PER_SEC) { 2024 u64 raw_secs = raw_nsecs; 2025 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); 2026 tk->raw_time.tv_sec += raw_secs; 2027 } 2028 tk->raw_time.tv_nsec = raw_nsecs; 2029 2030 /* Accumulate error between NTP and clock interval */ 2031 tk->ntp_error += tk->ntp_tick << shift; 2032 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2033 (tk->ntp_error_shift + shift); 2034 2035 return offset; 2036 } 2037 2038 /** 2039 * update_wall_time - Uses the current clocksource to increment the wall time 2040 * 2041 */ 2042 void update_wall_time(void) 2043 { 2044 struct timekeeper *real_tk = &tk_core.timekeeper; 2045 struct timekeeper *tk = &shadow_timekeeper; 2046 cycle_t offset; 2047 int shift = 0, maxshift; 2048 unsigned int clock_set = 0; 2049 unsigned long flags; 2050 2051 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2052 2053 /* Make sure we're fully resumed: */ 2054 if (unlikely(timekeeping_suspended)) 2055 goto out; 2056 2057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET 2058 offset = real_tk->cycle_interval; 2059 #else 2060 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock), 2061 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2062 #endif 2063 2064 /* Check if there's really nothing to do */ 2065 if (offset < real_tk->cycle_interval) 2066 goto out; 2067 2068 /* Do some additional sanity checking */ 2069 timekeeping_check_update(real_tk, offset); 2070 2071 /* 2072 * With NO_HZ we may have to accumulate many cycle_intervals 2073 * (think "ticks") worth of time at once. To do this efficiently, 2074 * we calculate the largest doubling multiple of cycle_intervals 2075 * that is smaller than the offset. We then accumulate that 2076 * chunk in one go, and then try to consume the next smaller 2077 * doubled multiple. 2078 */ 2079 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2080 shift = max(0, shift); 2081 /* Bound shift to one less than what overflows tick_length */ 2082 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2083 shift = min(shift, maxshift); 2084 while (offset >= tk->cycle_interval) { 2085 offset = logarithmic_accumulation(tk, offset, shift, 2086 &clock_set); 2087 if (offset < tk->cycle_interval<<shift) 2088 shift--; 2089 } 2090 2091 /* correct the clock when NTP error is too big */ 2092 timekeeping_adjust(tk, offset); 2093 2094 /* 2095 * XXX This can be killed once everyone converts 2096 * to the new update_vsyscall. 2097 */ 2098 old_vsyscall_fixup(tk); 2099 2100 /* 2101 * Finally, make sure that after the rounding 2102 * xtime_nsec isn't larger than NSEC_PER_SEC 2103 */ 2104 clock_set |= accumulate_nsecs_to_secs(tk); 2105 2106 write_seqcount_begin(&tk_core.seq); 2107 /* 2108 * Update the real timekeeper. 2109 * 2110 * We could avoid this memcpy by switching pointers, but that 2111 * requires changes to all other timekeeper usage sites as 2112 * well, i.e. move the timekeeper pointer getter into the 2113 * spinlocked/seqcount protected sections. And we trade this 2114 * memcpy under the tk_core.seq against one before we start 2115 * updating. 2116 */ 2117 timekeeping_update(tk, clock_set); 2118 memcpy(real_tk, tk, sizeof(*tk)); 2119 /* The memcpy must come last. Do not put anything here! */ 2120 write_seqcount_end(&tk_core.seq); 2121 out: 2122 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2123 if (clock_set) 2124 /* Have to call _delayed version, since in irq context*/ 2125 clock_was_set_delayed(); 2126 } 2127 2128 /** 2129 * getboottime64 - Return the real time of system boot. 2130 * @ts: pointer to the timespec64 to be set 2131 * 2132 * Returns the wall-time of boot in a timespec64. 2133 * 2134 * This is based on the wall_to_monotonic offset and the total suspend 2135 * time. Calls to settimeofday will affect the value returned (which 2136 * basically means that however wrong your real time clock is at boot time, 2137 * you get the right time here). 2138 */ 2139 void getboottime64(struct timespec64 *ts) 2140 { 2141 struct timekeeper *tk = &tk_core.timekeeper; 2142 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2143 2144 *ts = ktime_to_timespec64(t); 2145 } 2146 EXPORT_SYMBOL_GPL(getboottime64); 2147 2148 unsigned long get_seconds(void) 2149 { 2150 struct timekeeper *tk = &tk_core.timekeeper; 2151 2152 return tk->xtime_sec; 2153 } 2154 EXPORT_SYMBOL(get_seconds); 2155 2156 struct timespec __current_kernel_time(void) 2157 { 2158 struct timekeeper *tk = &tk_core.timekeeper; 2159 2160 return timespec64_to_timespec(tk_xtime(tk)); 2161 } 2162 2163 struct timespec64 current_kernel_time64(void) 2164 { 2165 struct timekeeper *tk = &tk_core.timekeeper; 2166 struct timespec64 now; 2167 unsigned long seq; 2168 2169 do { 2170 seq = read_seqcount_begin(&tk_core.seq); 2171 2172 now = tk_xtime(tk); 2173 } while (read_seqcount_retry(&tk_core.seq, seq)); 2174 2175 return now; 2176 } 2177 EXPORT_SYMBOL(current_kernel_time64); 2178 2179 struct timespec64 get_monotonic_coarse64(void) 2180 { 2181 struct timekeeper *tk = &tk_core.timekeeper; 2182 struct timespec64 now, mono; 2183 unsigned long seq; 2184 2185 do { 2186 seq = read_seqcount_begin(&tk_core.seq); 2187 2188 now = tk_xtime(tk); 2189 mono = tk->wall_to_monotonic; 2190 } while (read_seqcount_retry(&tk_core.seq, seq)); 2191 2192 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec, 2193 now.tv_nsec + mono.tv_nsec); 2194 2195 return now; 2196 } 2197 EXPORT_SYMBOL(get_monotonic_coarse64); 2198 2199 /* 2200 * Must hold jiffies_lock 2201 */ 2202 void do_timer(unsigned long ticks) 2203 { 2204 jiffies_64 += ticks; 2205 calc_global_load(ticks); 2206 } 2207 2208 /** 2209 * ktime_get_update_offsets_now - hrtimer helper 2210 * @cwsseq: pointer to check and store the clock was set sequence number 2211 * @offs_real: pointer to storage for monotonic -> realtime offset 2212 * @offs_boot: pointer to storage for monotonic -> boottime offset 2213 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2214 * 2215 * Returns current monotonic time and updates the offsets if the 2216 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2217 * different. 2218 * 2219 * Called from hrtimer_interrupt() or retrigger_next_event() 2220 */ 2221 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2222 ktime_t *offs_boot, ktime_t *offs_tai) 2223 { 2224 struct timekeeper *tk = &tk_core.timekeeper; 2225 unsigned int seq; 2226 ktime_t base; 2227 u64 nsecs; 2228 2229 do { 2230 seq = read_seqcount_begin(&tk_core.seq); 2231 2232 base = tk->tkr_mono.base; 2233 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2234 base = ktime_add_ns(base, nsecs); 2235 2236 if (*cwsseq != tk->clock_was_set_seq) { 2237 *cwsseq = tk->clock_was_set_seq; 2238 *offs_real = tk->offs_real; 2239 *offs_boot = tk->offs_boot; 2240 *offs_tai = tk->offs_tai; 2241 } 2242 2243 /* Handle leapsecond insertion adjustments */ 2244 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64)) 2245 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2246 2247 } while (read_seqcount_retry(&tk_core.seq, seq)); 2248 2249 return base; 2250 } 2251 2252 /** 2253 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2254 */ 2255 int do_adjtimex(struct timex *txc) 2256 { 2257 struct timekeeper *tk = &tk_core.timekeeper; 2258 unsigned long flags; 2259 struct timespec64 ts; 2260 s32 orig_tai, tai; 2261 int ret; 2262 2263 /* Validate the data before disabling interrupts */ 2264 ret = ntp_validate_timex(txc); 2265 if (ret) 2266 return ret; 2267 2268 if (txc->modes & ADJ_SETOFFSET) { 2269 struct timespec delta; 2270 delta.tv_sec = txc->time.tv_sec; 2271 delta.tv_nsec = txc->time.tv_usec; 2272 if (!(txc->modes & ADJ_NANO)) 2273 delta.tv_nsec *= 1000; 2274 ret = timekeeping_inject_offset(&delta); 2275 if (ret) 2276 return ret; 2277 } 2278 2279 getnstimeofday64(&ts); 2280 2281 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2282 write_seqcount_begin(&tk_core.seq); 2283 2284 orig_tai = tai = tk->tai_offset; 2285 ret = __do_adjtimex(txc, &ts, &tai); 2286 2287 if (tai != orig_tai) { 2288 __timekeeping_set_tai_offset(tk, tai); 2289 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2290 } 2291 tk_update_leap_state(tk); 2292 2293 write_seqcount_end(&tk_core.seq); 2294 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2295 2296 if (tai != orig_tai) 2297 clock_was_set(); 2298 2299 ntp_notify_cmos_timer(); 2300 2301 return ret; 2302 } 2303 2304 #ifdef CONFIG_NTP_PPS 2305 /** 2306 * hardpps() - Accessor function to NTP __hardpps function 2307 */ 2308 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2309 { 2310 unsigned long flags; 2311 2312 raw_spin_lock_irqsave(&timekeeper_lock, flags); 2313 write_seqcount_begin(&tk_core.seq); 2314 2315 __hardpps(phase_ts, raw_ts); 2316 2317 write_seqcount_end(&tk_core.seq); 2318 raw_spin_unlock_irqrestore(&timekeeper_lock, flags); 2319 } 2320 EXPORT_SYMBOL(hardpps); 2321 #endif 2322 2323 /** 2324 * xtime_update() - advances the timekeeping infrastructure 2325 * @ticks: number of ticks, that have elapsed since the last call. 2326 * 2327 * Must be called with interrupts disabled. 2328 */ 2329 void xtime_update(unsigned long ticks) 2330 { 2331 write_seqlock(&jiffies_lock); 2332 do_timer(ticks); 2333 write_sequnlock(&jiffies_lock); 2334 update_wall_time(); 2335 } 2336