xref: /openbmc/linux/kernel/time/timekeeping.c (revision 6dfcd296)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63 
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66 
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 		tk->xtime_sec++;
72 	}
73 }
74 
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 	struct timespec64 ts;
78 
79 	ts.tv_sec = tk->xtime_sec;
80 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 	return ts;
82 }
83 
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 	tk->xtime_sec = ts->tv_sec;
87 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89 
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec += ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 	tk_normalize_xtime(tk);
95 }
96 
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 	struct timespec64 tmp;
100 
101 	/*
102 	 * Verify consistency of: offset_real = -wall_to_monotonic
103 	 * before modifying anything
104 	 */
105 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 					-tk->wall_to_monotonic.tv_nsec);
107 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 	tk->wall_to_monotonic = wtm;
109 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 	tk->offs_real = timespec64_to_ktime(tmp);
111 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113 
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118 
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124 
125 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 	const char *name = tk->tkr_mono.clock->name;
127 
128 	if (offset > max_cycles) {
129 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 				offset, name, max_cycles);
131 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 	} else {
133 		if (offset > (max_cycles >> 1)) {
134 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 					offset, name, max_cycles >> 1);
136 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 		}
138 	}
139 
140 	if (tk->underflow_seen) {
141 		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144 			printk_deferred("         Your kernel is probably still fine.\n");
145 			tk->last_warning = jiffies;
146 		}
147 		tk->underflow_seen = 0;
148 	}
149 
150 	if (tk->overflow_seen) {
151 		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154 			printk_deferred("         Your kernel is probably still fine.\n");
155 			tk->last_warning = jiffies;
156 		}
157 		tk->overflow_seen = 0;
158 	}
159 }
160 
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 	struct timekeeper *tk = &tk_core.timekeeper;
164 	cycle_t now, last, mask, max, delta;
165 	unsigned int seq;
166 
167 	/*
168 	 * Since we're called holding a seqlock, the data may shift
169 	 * under us while we're doing the calculation. This can cause
170 	 * false positives, since we'd note a problem but throw the
171 	 * results away. So nest another seqlock here to atomically
172 	 * grab the points we are checking with.
173 	 */
174 	do {
175 		seq = read_seqcount_begin(&tk_core.seq);
176 		now = tkr->read(tkr->clock);
177 		last = tkr->cycle_last;
178 		mask = tkr->mask;
179 		max = tkr->clock->max_cycles;
180 	} while (read_seqcount_retry(&tk_core.seq, seq));
181 
182 	delta = clocksource_delta(now, last, mask);
183 
184 	/*
185 	 * Try to catch underflows by checking if we are seeing small
186 	 * mask-relative negative values.
187 	 */
188 	if (unlikely((~delta & mask) < (mask >> 3))) {
189 		tk->underflow_seen = 1;
190 		delta = 0;
191 	}
192 
193 	/* Cap delta value to the max_cycles values to avoid mult overflows */
194 	if (unlikely(delta > max)) {
195 		tk->overflow_seen = 1;
196 		delta = tkr->clock->max_cycles;
197 	}
198 
199 	return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 	cycle_t cycle_now, delta;
208 
209 	/* read clocksource */
210 	cycle_now = tkr->read(tkr->clock);
211 
212 	/* calculate the delta since the last update_wall_time */
213 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214 
215 	return delta;
216 }
217 #endif
218 
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:		The target timekeeper to setup.
223  * @clock:		Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 	cycle_t interval;
233 	u64 tmp, ntpinterval;
234 	struct clocksource *old_clock;
235 
236 	++tk->cs_was_changed_seq;
237 	old_clock = tk->tkr_mono.clock;
238 	tk->tkr_mono.clock = clock;
239 	tk->tkr_mono.read = clock->read;
240 	tk->tkr_mono.mask = clock->mask;
241 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242 
243 	tk->tkr_raw.clock = clock;
244 	tk->tkr_raw.read = clock->read;
245 	tk->tkr_raw.mask = clock->mask;
246 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247 
248 	/* Do the ns -> cycle conversion first, using original mult */
249 	tmp = NTP_INTERVAL_LENGTH;
250 	tmp <<= clock->shift;
251 	ntpinterval = tmp;
252 	tmp += clock->mult/2;
253 	do_div(tmp, clock->mult);
254 	if (tmp == 0)
255 		tmp = 1;
256 
257 	interval = (cycle_t) tmp;
258 	tk->cycle_interval = interval;
259 
260 	/* Go back from cycles -> shifted ns */
261 	tk->xtime_interval = (u64) interval * clock->mult;
262 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 	tk->raw_interval =
264 		((u64) interval * clock->mult) >> clock->shift;
265 
266 	 /* if changing clocks, convert xtime_nsec shift units */
267 	if (old_clock) {
268 		int shift_change = clock->shift - old_clock->shift;
269 		if (shift_change < 0)
270 			tk->tkr_mono.xtime_nsec >>= -shift_change;
271 		else
272 			tk->tkr_mono.xtime_nsec <<= shift_change;
273 	}
274 	tk->tkr_raw.xtime_nsec = 0;
275 
276 	tk->tkr_mono.shift = clock->shift;
277 	tk->tkr_raw.shift = clock->shift;
278 
279 	tk->ntp_error = 0;
280 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 
283 	/*
284 	 * The timekeeper keeps its own mult values for the currently
285 	 * active clocksource. These value will be adjusted via NTP
286 	 * to counteract clock drifting.
287 	 */
288 	tk->tkr_mono.mult = clock->mult;
289 	tk->tkr_raw.mult = clock->mult;
290 	tk->ntp_err_mult = 0;
291 }
292 
293 /* Timekeeper helper functions. */
294 
295 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 static u32 default_arch_gettimeoffset(void) { return 0; }
297 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298 #else
299 static inline u32 arch_gettimeoffset(void) { return 0; }
300 #endif
301 
302 static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 					  cycle_t delta)
304 {
305 	s64 nsec;
306 
307 	nsec = delta * tkr->mult + tkr->xtime_nsec;
308 	nsec >>= tkr->shift;
309 
310 	/* If arch requires, add in get_arch_timeoffset() */
311 	return nsec + arch_gettimeoffset();
312 }
313 
314 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315 {
316 	cycle_t delta;
317 
318 	delta = timekeeping_get_delta(tkr);
319 	return timekeeping_delta_to_ns(tkr, delta);
320 }
321 
322 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 					    cycle_t cycles)
324 {
325 	cycle_t delta;
326 
327 	/* calculate the delta since the last update_wall_time */
328 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 	return timekeeping_delta_to_ns(tkr, delta);
330 }
331 
332 /**
333  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334  * @tkr: Timekeeping readout base from which we take the update
335  *
336  * We want to use this from any context including NMI and tracing /
337  * instrumenting the timekeeping code itself.
338  *
339  * Employ the latch technique; see @raw_write_seqcount_latch.
340  *
341  * So if a NMI hits the update of base[0] then it will use base[1]
342  * which is still consistent. In the worst case this can result is a
343  * slightly wrong timestamp (a few nanoseconds). See
344  * @ktime_get_mono_fast_ns.
345  */
346 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347 {
348 	struct tk_read_base *base = tkf->base;
349 
350 	/* Force readers off to base[1] */
351 	raw_write_seqcount_latch(&tkf->seq);
352 
353 	/* Update base[0] */
354 	memcpy(base, tkr, sizeof(*base));
355 
356 	/* Force readers back to base[0] */
357 	raw_write_seqcount_latch(&tkf->seq);
358 
359 	/* Update base[1] */
360 	memcpy(base + 1, base, sizeof(*base));
361 }
362 
363 /**
364  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365  *
366  * This timestamp is not guaranteed to be monotonic across an update.
367  * The timestamp is calculated by:
368  *
369  *	now = base_mono + clock_delta * slope
370  *
371  * So if the update lowers the slope, readers who are forced to the
372  * not yet updated second array are still using the old steeper slope.
373  *
374  * tmono
375  * ^
376  * |    o  n
377  * |   o n
378  * |  u
379  * | o
380  * |o
381  * |12345678---> reader order
382  *
383  * o = old slope
384  * u = update
385  * n = new slope
386  *
387  * So reader 6 will observe time going backwards versus reader 5.
388  *
389  * While other CPUs are likely to be able observe that, the only way
390  * for a CPU local observation is when an NMI hits in the middle of
391  * the update. Timestamps taken from that NMI context might be ahead
392  * of the following timestamps. Callers need to be aware of that and
393  * deal with it.
394  */
395 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 {
397 	struct tk_read_base *tkr;
398 	unsigned int seq;
399 	u64 now;
400 
401 	do {
402 		seq = raw_read_seqcount_latch(&tkf->seq);
403 		tkr = tkf->base + (seq & 0x01);
404 		now = ktime_to_ns(tkr->base);
405 
406 		now += timekeeping_delta_to_ns(tkr,
407 				clocksource_delta(
408 					tkr->read(tkr->clock),
409 					tkr->cycle_last,
410 					tkr->mask));
411 	} while (read_seqcount_retry(&tkf->seq, seq));
412 
413 	return now;
414 }
415 
416 u64 ktime_get_mono_fast_ns(void)
417 {
418 	return __ktime_get_fast_ns(&tk_fast_mono);
419 }
420 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
421 
422 u64 ktime_get_raw_fast_ns(void)
423 {
424 	return __ktime_get_fast_ns(&tk_fast_raw);
425 }
426 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
427 
428 /* Suspend-time cycles value for halted fast timekeeper. */
429 static cycle_t cycles_at_suspend;
430 
431 static cycle_t dummy_clock_read(struct clocksource *cs)
432 {
433 	return cycles_at_suspend;
434 }
435 
436 /**
437  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
438  * @tk: Timekeeper to snapshot.
439  *
440  * It generally is unsafe to access the clocksource after timekeeping has been
441  * suspended, so take a snapshot of the readout base of @tk and use it as the
442  * fast timekeeper's readout base while suspended.  It will return the same
443  * number of cycles every time until timekeeping is resumed at which time the
444  * proper readout base for the fast timekeeper will be restored automatically.
445  */
446 static void halt_fast_timekeeper(struct timekeeper *tk)
447 {
448 	static struct tk_read_base tkr_dummy;
449 	struct tk_read_base *tkr = &tk->tkr_mono;
450 
451 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 	cycles_at_suspend = tkr->read(tkr->clock);
453 	tkr_dummy.read = dummy_clock_read;
454 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
455 
456 	tkr = &tk->tkr_raw;
457 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
458 	tkr_dummy.read = dummy_clock_read;
459 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
460 }
461 
462 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
463 
464 static inline void update_vsyscall(struct timekeeper *tk)
465 {
466 	struct timespec xt, wm;
467 
468 	xt = timespec64_to_timespec(tk_xtime(tk));
469 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
470 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
471 			    tk->tkr_mono.cycle_last);
472 }
473 
474 static inline void old_vsyscall_fixup(struct timekeeper *tk)
475 {
476 	s64 remainder;
477 
478 	/*
479 	* Store only full nanoseconds into xtime_nsec after rounding
480 	* it up and add the remainder to the error difference.
481 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
482 	* by truncating the remainder in vsyscalls. However, it causes
483 	* additional work to be done in timekeeping_adjust(). Once
484 	* the vsyscall implementations are converted to use xtime_nsec
485 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
486 	* users are removed, this can be killed.
487 	*/
488 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
489 	if (remainder != 0) {
490 		tk->tkr_mono.xtime_nsec -= remainder;
491 		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
492 		tk->ntp_error += remainder << tk->ntp_error_shift;
493 		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
494 	}
495 }
496 #else
497 #define old_vsyscall_fixup(tk)
498 #endif
499 
500 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501 
502 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503 {
504 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 }
506 
507 /**
508  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
509  */
510 int pvclock_gtod_register_notifier(struct notifier_block *nb)
511 {
512 	struct timekeeper *tk = &tk_core.timekeeper;
513 	unsigned long flags;
514 	int ret;
515 
516 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
517 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518 	update_pvclock_gtod(tk, true);
519 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520 
521 	return ret;
522 }
523 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524 
525 /**
526  * pvclock_gtod_unregister_notifier - unregister a pvclock
527  * timedata update listener
528  */
529 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530 {
531 	unsigned long flags;
532 	int ret;
533 
534 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
535 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537 
538 	return ret;
539 }
540 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541 
542 /*
543  * tk_update_leap_state - helper to update the next_leap_ktime
544  */
545 static inline void tk_update_leap_state(struct timekeeper *tk)
546 {
547 	tk->next_leap_ktime = ntp_get_next_leap();
548 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
549 		/* Convert to monotonic time */
550 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
551 }
552 
553 /*
554  * Update the ktime_t based scalar nsec members of the timekeeper
555  */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558 	u64 seconds;
559 	u32 nsec;
560 
561 	/*
562 	 * The xtime based monotonic readout is:
563 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 	 * The ktime based monotonic readout is:
565 	 *	nsec = base_mono + now();
566 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 	 */
568 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571 
572 	/* Update the monotonic raw base */
573 	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574 
575 	/*
576 	 * The sum of the nanoseconds portions of xtime and
577 	 * wall_to_monotonic can be greater/equal one second. Take
578 	 * this into account before updating tk->ktime_sec.
579 	 */
580 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581 	if (nsec >= NSEC_PER_SEC)
582 		seconds++;
583 	tk->ktime_sec = seconds;
584 }
585 
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589 	if (action & TK_CLEAR_NTP) {
590 		tk->ntp_error = 0;
591 		ntp_clear();
592 	}
593 
594 	tk_update_leap_state(tk);
595 	tk_update_ktime_data(tk);
596 
597 	update_vsyscall(tk);
598 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
599 
600 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
601 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
602 
603 	if (action & TK_CLOCK_WAS_SET)
604 		tk->clock_was_set_seq++;
605 	/*
606 	 * The mirroring of the data to the shadow-timekeeper needs
607 	 * to happen last here to ensure we don't over-write the
608 	 * timekeeper structure on the next update with stale data
609 	 */
610 	if (action & TK_MIRROR)
611 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
612 		       sizeof(tk_core.timekeeper));
613 }
614 
615 /**
616  * timekeeping_forward_now - update clock to the current time
617  *
618  * Forward the current clock to update its state since the last call to
619  * update_wall_time(). This is useful before significant clock changes,
620  * as it avoids having to deal with this time offset explicitly.
621  */
622 static void timekeeping_forward_now(struct timekeeper *tk)
623 {
624 	struct clocksource *clock = tk->tkr_mono.clock;
625 	cycle_t cycle_now, delta;
626 	s64 nsec;
627 
628 	cycle_now = tk->tkr_mono.read(clock);
629 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
630 	tk->tkr_mono.cycle_last = cycle_now;
631 	tk->tkr_raw.cycle_last  = cycle_now;
632 
633 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
634 
635 	/* If arch requires, add in get_arch_timeoffset() */
636 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
637 
638 	tk_normalize_xtime(tk);
639 
640 	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
641 	timespec64_add_ns(&tk->raw_time, nsec);
642 }
643 
644 /**
645  * __getnstimeofday64 - Returns the time of day in a timespec64.
646  * @ts:		pointer to the timespec to be set
647  *
648  * Updates the time of day in the timespec.
649  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
650  */
651 int __getnstimeofday64(struct timespec64 *ts)
652 {
653 	struct timekeeper *tk = &tk_core.timekeeper;
654 	unsigned long seq;
655 	s64 nsecs = 0;
656 
657 	do {
658 		seq = read_seqcount_begin(&tk_core.seq);
659 
660 		ts->tv_sec = tk->xtime_sec;
661 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
662 
663 	} while (read_seqcount_retry(&tk_core.seq, seq));
664 
665 	ts->tv_nsec = 0;
666 	timespec64_add_ns(ts, nsecs);
667 
668 	/*
669 	 * Do not bail out early, in case there were callers still using
670 	 * the value, even in the face of the WARN_ON.
671 	 */
672 	if (unlikely(timekeeping_suspended))
673 		return -EAGAIN;
674 	return 0;
675 }
676 EXPORT_SYMBOL(__getnstimeofday64);
677 
678 /**
679  * getnstimeofday64 - Returns the time of day in a timespec64.
680  * @ts:		pointer to the timespec64 to be set
681  *
682  * Returns the time of day in a timespec64 (WARN if suspended).
683  */
684 void getnstimeofday64(struct timespec64 *ts)
685 {
686 	WARN_ON(__getnstimeofday64(ts));
687 }
688 EXPORT_SYMBOL(getnstimeofday64);
689 
690 ktime_t ktime_get(void)
691 {
692 	struct timekeeper *tk = &tk_core.timekeeper;
693 	unsigned int seq;
694 	ktime_t base;
695 	s64 nsecs;
696 
697 	WARN_ON(timekeeping_suspended);
698 
699 	do {
700 		seq = read_seqcount_begin(&tk_core.seq);
701 		base = tk->tkr_mono.base;
702 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
703 
704 	} while (read_seqcount_retry(&tk_core.seq, seq));
705 
706 	return ktime_add_ns(base, nsecs);
707 }
708 EXPORT_SYMBOL_GPL(ktime_get);
709 
710 u32 ktime_get_resolution_ns(void)
711 {
712 	struct timekeeper *tk = &tk_core.timekeeper;
713 	unsigned int seq;
714 	u32 nsecs;
715 
716 	WARN_ON(timekeeping_suspended);
717 
718 	do {
719 		seq = read_seqcount_begin(&tk_core.seq);
720 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
721 	} while (read_seqcount_retry(&tk_core.seq, seq));
722 
723 	return nsecs;
724 }
725 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
726 
727 static ktime_t *offsets[TK_OFFS_MAX] = {
728 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
729 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
730 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
731 };
732 
733 ktime_t ktime_get_with_offset(enum tk_offsets offs)
734 {
735 	struct timekeeper *tk = &tk_core.timekeeper;
736 	unsigned int seq;
737 	ktime_t base, *offset = offsets[offs];
738 	s64 nsecs;
739 
740 	WARN_ON(timekeeping_suspended);
741 
742 	do {
743 		seq = read_seqcount_begin(&tk_core.seq);
744 		base = ktime_add(tk->tkr_mono.base, *offset);
745 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
746 
747 	} while (read_seqcount_retry(&tk_core.seq, seq));
748 
749 	return ktime_add_ns(base, nsecs);
750 
751 }
752 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
753 
754 /**
755  * ktime_mono_to_any() - convert mononotic time to any other time
756  * @tmono:	time to convert.
757  * @offs:	which offset to use
758  */
759 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
760 {
761 	ktime_t *offset = offsets[offs];
762 	unsigned long seq;
763 	ktime_t tconv;
764 
765 	do {
766 		seq = read_seqcount_begin(&tk_core.seq);
767 		tconv = ktime_add(tmono, *offset);
768 	} while (read_seqcount_retry(&tk_core.seq, seq));
769 
770 	return tconv;
771 }
772 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
773 
774 /**
775  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
776  */
777 ktime_t ktime_get_raw(void)
778 {
779 	struct timekeeper *tk = &tk_core.timekeeper;
780 	unsigned int seq;
781 	ktime_t base;
782 	s64 nsecs;
783 
784 	do {
785 		seq = read_seqcount_begin(&tk_core.seq);
786 		base = tk->tkr_raw.base;
787 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
788 
789 	} while (read_seqcount_retry(&tk_core.seq, seq));
790 
791 	return ktime_add_ns(base, nsecs);
792 }
793 EXPORT_SYMBOL_GPL(ktime_get_raw);
794 
795 /**
796  * ktime_get_ts64 - get the monotonic clock in timespec64 format
797  * @ts:		pointer to timespec variable
798  *
799  * The function calculates the monotonic clock from the realtime
800  * clock and the wall_to_monotonic offset and stores the result
801  * in normalized timespec64 format in the variable pointed to by @ts.
802  */
803 void ktime_get_ts64(struct timespec64 *ts)
804 {
805 	struct timekeeper *tk = &tk_core.timekeeper;
806 	struct timespec64 tomono;
807 	s64 nsec;
808 	unsigned int seq;
809 
810 	WARN_ON(timekeeping_suspended);
811 
812 	do {
813 		seq = read_seqcount_begin(&tk_core.seq);
814 		ts->tv_sec = tk->xtime_sec;
815 		nsec = timekeeping_get_ns(&tk->tkr_mono);
816 		tomono = tk->wall_to_monotonic;
817 
818 	} while (read_seqcount_retry(&tk_core.seq, seq));
819 
820 	ts->tv_sec += tomono.tv_sec;
821 	ts->tv_nsec = 0;
822 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
823 }
824 EXPORT_SYMBOL_GPL(ktime_get_ts64);
825 
826 /**
827  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
828  *
829  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
830  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
831  * works on both 32 and 64 bit systems. On 32 bit systems the readout
832  * covers ~136 years of uptime which should be enough to prevent
833  * premature wrap arounds.
834  */
835 time64_t ktime_get_seconds(void)
836 {
837 	struct timekeeper *tk = &tk_core.timekeeper;
838 
839 	WARN_ON(timekeeping_suspended);
840 	return tk->ktime_sec;
841 }
842 EXPORT_SYMBOL_GPL(ktime_get_seconds);
843 
844 /**
845  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
846  *
847  * Returns the wall clock seconds since 1970. This replaces the
848  * get_seconds() interface which is not y2038 safe on 32bit systems.
849  *
850  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
851  * 32bit systems the access must be protected with the sequence
852  * counter to provide "atomic" access to the 64bit tk->xtime_sec
853  * value.
854  */
855 time64_t ktime_get_real_seconds(void)
856 {
857 	struct timekeeper *tk = &tk_core.timekeeper;
858 	time64_t seconds;
859 	unsigned int seq;
860 
861 	if (IS_ENABLED(CONFIG_64BIT))
862 		return tk->xtime_sec;
863 
864 	do {
865 		seq = read_seqcount_begin(&tk_core.seq);
866 		seconds = tk->xtime_sec;
867 
868 	} while (read_seqcount_retry(&tk_core.seq, seq));
869 
870 	return seconds;
871 }
872 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
873 
874 /**
875  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
876  * but without the sequence counter protect. This internal function
877  * is called just when timekeeping lock is already held.
878  */
879 time64_t __ktime_get_real_seconds(void)
880 {
881 	struct timekeeper *tk = &tk_core.timekeeper;
882 
883 	return tk->xtime_sec;
884 }
885 
886 /**
887  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
888  * @systime_snapshot:	pointer to struct receiving the system time snapshot
889  */
890 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
891 {
892 	struct timekeeper *tk = &tk_core.timekeeper;
893 	unsigned long seq;
894 	ktime_t base_raw;
895 	ktime_t base_real;
896 	s64 nsec_raw;
897 	s64 nsec_real;
898 	cycle_t now;
899 
900 	WARN_ON_ONCE(timekeeping_suspended);
901 
902 	do {
903 		seq = read_seqcount_begin(&tk_core.seq);
904 
905 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
906 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
907 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
908 		base_real = ktime_add(tk->tkr_mono.base,
909 				      tk_core.timekeeper.offs_real);
910 		base_raw = tk->tkr_raw.base;
911 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
912 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
913 	} while (read_seqcount_retry(&tk_core.seq, seq));
914 
915 	systime_snapshot->cycles = now;
916 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
917 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
918 }
919 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
920 
921 /* Scale base by mult/div checking for overflow */
922 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
923 {
924 	u64 tmp, rem;
925 
926 	tmp = div64_u64_rem(*base, div, &rem);
927 
928 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
929 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
930 		return -EOVERFLOW;
931 	tmp *= mult;
932 	rem *= mult;
933 
934 	do_div(rem, div);
935 	*base = tmp + rem;
936 	return 0;
937 }
938 
939 /**
940  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
941  * @history:			Snapshot representing start of history
942  * @partial_history_cycles:	Cycle offset into history (fractional part)
943  * @total_history_cycles:	Total history length in cycles
944  * @discontinuity:		True indicates clock was set on history period
945  * @ts:				Cross timestamp that should be adjusted using
946  *	partial/total ratio
947  *
948  * Helper function used by get_device_system_crosststamp() to correct the
949  * crosstimestamp corresponding to the start of the current interval to the
950  * system counter value (timestamp point) provided by the driver. The
951  * total_history_* quantities are the total history starting at the provided
952  * reference point and ending at the start of the current interval. The cycle
953  * count between the driver timestamp point and the start of the current
954  * interval is partial_history_cycles.
955  */
956 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
957 					 cycle_t partial_history_cycles,
958 					 cycle_t total_history_cycles,
959 					 bool discontinuity,
960 					 struct system_device_crosststamp *ts)
961 {
962 	struct timekeeper *tk = &tk_core.timekeeper;
963 	u64 corr_raw, corr_real;
964 	bool interp_forward;
965 	int ret;
966 
967 	if (total_history_cycles == 0 || partial_history_cycles == 0)
968 		return 0;
969 
970 	/* Interpolate shortest distance from beginning or end of history */
971 	interp_forward = partial_history_cycles > total_history_cycles/2 ?
972 		true : false;
973 	partial_history_cycles = interp_forward ?
974 		total_history_cycles - partial_history_cycles :
975 		partial_history_cycles;
976 
977 	/*
978 	 * Scale the monotonic raw time delta by:
979 	 *	partial_history_cycles / total_history_cycles
980 	 */
981 	corr_raw = (u64)ktime_to_ns(
982 		ktime_sub(ts->sys_monoraw, history->raw));
983 	ret = scale64_check_overflow(partial_history_cycles,
984 				     total_history_cycles, &corr_raw);
985 	if (ret)
986 		return ret;
987 
988 	/*
989 	 * If there is a discontinuity in the history, scale monotonic raw
990 	 *	correction by:
991 	 *	mult(real)/mult(raw) yielding the realtime correction
992 	 * Otherwise, calculate the realtime correction similar to monotonic
993 	 *	raw calculation
994 	 */
995 	if (discontinuity) {
996 		corr_real = mul_u64_u32_div
997 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
998 	} else {
999 		corr_real = (u64)ktime_to_ns(
1000 			ktime_sub(ts->sys_realtime, history->real));
1001 		ret = scale64_check_overflow(partial_history_cycles,
1002 					     total_history_cycles, &corr_real);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	/* Fixup monotonic raw and real time time values */
1008 	if (interp_forward) {
1009 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1010 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1011 	} else {
1012 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1013 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 /*
1020  * cycle_between - true if test occurs chronologically between before and after
1021  */
1022 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1023 {
1024 	if (test > before && test < after)
1025 		return true;
1026 	if (test < before && before > after)
1027 		return true;
1028 	return false;
1029 }
1030 
1031 /**
1032  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1033  * @get_time_fn:	Callback to get simultaneous device time and
1034  *	system counter from the device driver
1035  * @ctx:		Context passed to get_time_fn()
1036  * @history_begin:	Historical reference point used to interpolate system
1037  *	time when counter provided by the driver is before the current interval
1038  * @xtstamp:		Receives simultaneously captured system and device time
1039  *
1040  * Reads a timestamp from a device and correlates it to system time
1041  */
1042 int get_device_system_crosststamp(int (*get_time_fn)
1043 				  (ktime_t *device_time,
1044 				   struct system_counterval_t *sys_counterval,
1045 				   void *ctx),
1046 				  void *ctx,
1047 				  struct system_time_snapshot *history_begin,
1048 				  struct system_device_crosststamp *xtstamp)
1049 {
1050 	struct system_counterval_t system_counterval;
1051 	struct timekeeper *tk = &tk_core.timekeeper;
1052 	cycle_t cycles, now, interval_start;
1053 	unsigned int clock_was_set_seq = 0;
1054 	ktime_t base_real, base_raw;
1055 	s64 nsec_real, nsec_raw;
1056 	u8 cs_was_changed_seq;
1057 	unsigned long seq;
1058 	bool do_interp;
1059 	int ret;
1060 
1061 	do {
1062 		seq = read_seqcount_begin(&tk_core.seq);
1063 		/*
1064 		 * Try to synchronously capture device time and a system
1065 		 * counter value calling back into the device driver
1066 		 */
1067 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1068 		if (ret)
1069 			return ret;
1070 
1071 		/*
1072 		 * Verify that the clocksource associated with the captured
1073 		 * system counter value is the same as the currently installed
1074 		 * timekeeper clocksource
1075 		 */
1076 		if (tk->tkr_mono.clock != system_counterval.cs)
1077 			return -ENODEV;
1078 		cycles = system_counterval.cycles;
1079 
1080 		/*
1081 		 * Check whether the system counter value provided by the
1082 		 * device driver is on the current timekeeping interval.
1083 		 */
1084 		now = tk->tkr_mono.read(tk->tkr_mono.clock);
1085 		interval_start = tk->tkr_mono.cycle_last;
1086 		if (!cycle_between(interval_start, cycles, now)) {
1087 			clock_was_set_seq = tk->clock_was_set_seq;
1088 			cs_was_changed_seq = tk->cs_was_changed_seq;
1089 			cycles = interval_start;
1090 			do_interp = true;
1091 		} else {
1092 			do_interp = false;
1093 		}
1094 
1095 		base_real = ktime_add(tk->tkr_mono.base,
1096 				      tk_core.timekeeper.offs_real);
1097 		base_raw = tk->tkr_raw.base;
1098 
1099 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1100 						     system_counterval.cycles);
1101 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1102 						    system_counterval.cycles);
1103 	} while (read_seqcount_retry(&tk_core.seq, seq));
1104 
1105 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1106 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1107 
1108 	/*
1109 	 * Interpolate if necessary, adjusting back from the start of the
1110 	 * current interval
1111 	 */
1112 	if (do_interp) {
1113 		cycle_t partial_history_cycles, total_history_cycles;
1114 		bool discontinuity;
1115 
1116 		/*
1117 		 * Check that the counter value occurs after the provided
1118 		 * history reference and that the history doesn't cross a
1119 		 * clocksource change
1120 		 */
1121 		if (!history_begin ||
1122 		    !cycle_between(history_begin->cycles,
1123 				   system_counterval.cycles, cycles) ||
1124 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1125 			return -EINVAL;
1126 		partial_history_cycles = cycles - system_counterval.cycles;
1127 		total_history_cycles = cycles - history_begin->cycles;
1128 		discontinuity =
1129 			history_begin->clock_was_set_seq != clock_was_set_seq;
1130 
1131 		ret = adjust_historical_crosststamp(history_begin,
1132 						    partial_history_cycles,
1133 						    total_history_cycles,
1134 						    discontinuity, xtstamp);
1135 		if (ret)
1136 			return ret;
1137 	}
1138 
1139 	return 0;
1140 }
1141 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1142 
1143 /**
1144  * do_gettimeofday - Returns the time of day in a timeval
1145  * @tv:		pointer to the timeval to be set
1146  *
1147  * NOTE: Users should be converted to using getnstimeofday()
1148  */
1149 void do_gettimeofday(struct timeval *tv)
1150 {
1151 	struct timespec64 now;
1152 
1153 	getnstimeofday64(&now);
1154 	tv->tv_sec = now.tv_sec;
1155 	tv->tv_usec = now.tv_nsec/1000;
1156 }
1157 EXPORT_SYMBOL(do_gettimeofday);
1158 
1159 /**
1160  * do_settimeofday64 - Sets the time of day.
1161  * @ts:     pointer to the timespec64 variable containing the new time
1162  *
1163  * Sets the time of day to the new time and update NTP and notify hrtimers
1164  */
1165 int do_settimeofday64(const struct timespec64 *ts)
1166 {
1167 	struct timekeeper *tk = &tk_core.timekeeper;
1168 	struct timespec64 ts_delta, xt;
1169 	unsigned long flags;
1170 	int ret = 0;
1171 
1172 	if (!timespec64_valid_strict(ts))
1173 		return -EINVAL;
1174 
1175 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1176 	write_seqcount_begin(&tk_core.seq);
1177 
1178 	timekeeping_forward_now(tk);
1179 
1180 	xt = tk_xtime(tk);
1181 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1182 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1183 
1184 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1185 		ret = -EINVAL;
1186 		goto out;
1187 	}
1188 
1189 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1190 
1191 	tk_set_xtime(tk, ts);
1192 out:
1193 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1194 
1195 	write_seqcount_end(&tk_core.seq);
1196 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1197 
1198 	/* signal hrtimers about time change */
1199 	clock_was_set();
1200 
1201 	return ret;
1202 }
1203 EXPORT_SYMBOL(do_settimeofday64);
1204 
1205 /**
1206  * timekeeping_inject_offset - Adds or subtracts from the current time.
1207  * @tv:		pointer to the timespec variable containing the offset
1208  *
1209  * Adds or subtracts an offset value from the current time.
1210  */
1211 int timekeeping_inject_offset(struct timespec *ts)
1212 {
1213 	struct timekeeper *tk = &tk_core.timekeeper;
1214 	unsigned long flags;
1215 	struct timespec64 ts64, tmp;
1216 	int ret = 0;
1217 
1218 	if (!timespec_inject_offset_valid(ts))
1219 		return -EINVAL;
1220 
1221 	ts64 = timespec_to_timespec64(*ts);
1222 
1223 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1224 	write_seqcount_begin(&tk_core.seq);
1225 
1226 	timekeeping_forward_now(tk);
1227 
1228 	/* Make sure the proposed value is valid */
1229 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1230 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1231 	    !timespec64_valid_strict(&tmp)) {
1232 		ret = -EINVAL;
1233 		goto error;
1234 	}
1235 
1236 	tk_xtime_add(tk, &ts64);
1237 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1238 
1239 error: /* even if we error out, we forwarded the time, so call update */
1240 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1241 
1242 	write_seqcount_end(&tk_core.seq);
1243 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1244 
1245 	/* signal hrtimers about time change */
1246 	clock_was_set();
1247 
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL(timekeeping_inject_offset);
1251 
1252 
1253 /**
1254  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1255  *
1256  */
1257 s32 timekeeping_get_tai_offset(void)
1258 {
1259 	struct timekeeper *tk = &tk_core.timekeeper;
1260 	unsigned int seq;
1261 	s32 ret;
1262 
1263 	do {
1264 		seq = read_seqcount_begin(&tk_core.seq);
1265 		ret = tk->tai_offset;
1266 	} while (read_seqcount_retry(&tk_core.seq, seq));
1267 
1268 	return ret;
1269 }
1270 
1271 /**
1272  * __timekeeping_set_tai_offset - Lock free worker function
1273  *
1274  */
1275 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1276 {
1277 	tk->tai_offset = tai_offset;
1278 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1279 }
1280 
1281 /**
1282  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1283  *
1284  */
1285 void timekeeping_set_tai_offset(s32 tai_offset)
1286 {
1287 	struct timekeeper *tk = &tk_core.timekeeper;
1288 	unsigned long flags;
1289 
1290 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1291 	write_seqcount_begin(&tk_core.seq);
1292 	__timekeeping_set_tai_offset(tk, tai_offset);
1293 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1294 	write_seqcount_end(&tk_core.seq);
1295 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1296 	clock_was_set();
1297 }
1298 
1299 /**
1300  * change_clocksource - Swaps clocksources if a new one is available
1301  *
1302  * Accumulates current time interval and initializes new clocksource
1303  */
1304 static int change_clocksource(void *data)
1305 {
1306 	struct timekeeper *tk = &tk_core.timekeeper;
1307 	struct clocksource *new, *old;
1308 	unsigned long flags;
1309 
1310 	new = (struct clocksource *) data;
1311 
1312 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1313 	write_seqcount_begin(&tk_core.seq);
1314 
1315 	timekeeping_forward_now(tk);
1316 	/*
1317 	 * If the cs is in module, get a module reference. Succeeds
1318 	 * for built-in code (owner == NULL) as well.
1319 	 */
1320 	if (try_module_get(new->owner)) {
1321 		if (!new->enable || new->enable(new) == 0) {
1322 			old = tk->tkr_mono.clock;
1323 			tk_setup_internals(tk, new);
1324 			if (old->disable)
1325 				old->disable(old);
1326 			module_put(old->owner);
1327 		} else {
1328 			module_put(new->owner);
1329 		}
1330 	}
1331 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1332 
1333 	write_seqcount_end(&tk_core.seq);
1334 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1335 
1336 	return 0;
1337 }
1338 
1339 /**
1340  * timekeeping_notify - Install a new clock source
1341  * @clock:		pointer to the clock source
1342  *
1343  * This function is called from clocksource.c after a new, better clock
1344  * source has been registered. The caller holds the clocksource_mutex.
1345  */
1346 int timekeeping_notify(struct clocksource *clock)
1347 {
1348 	struct timekeeper *tk = &tk_core.timekeeper;
1349 
1350 	if (tk->tkr_mono.clock == clock)
1351 		return 0;
1352 	stop_machine(change_clocksource, clock, NULL);
1353 	tick_clock_notify();
1354 	return tk->tkr_mono.clock == clock ? 0 : -1;
1355 }
1356 
1357 /**
1358  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1359  * @ts:		pointer to the timespec64 to be set
1360  *
1361  * Returns the raw monotonic time (completely un-modified by ntp)
1362  */
1363 void getrawmonotonic64(struct timespec64 *ts)
1364 {
1365 	struct timekeeper *tk = &tk_core.timekeeper;
1366 	struct timespec64 ts64;
1367 	unsigned long seq;
1368 	s64 nsecs;
1369 
1370 	do {
1371 		seq = read_seqcount_begin(&tk_core.seq);
1372 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1373 		ts64 = tk->raw_time;
1374 
1375 	} while (read_seqcount_retry(&tk_core.seq, seq));
1376 
1377 	timespec64_add_ns(&ts64, nsecs);
1378 	*ts = ts64;
1379 }
1380 EXPORT_SYMBOL(getrawmonotonic64);
1381 
1382 
1383 /**
1384  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1385  */
1386 int timekeeping_valid_for_hres(void)
1387 {
1388 	struct timekeeper *tk = &tk_core.timekeeper;
1389 	unsigned long seq;
1390 	int ret;
1391 
1392 	do {
1393 		seq = read_seqcount_begin(&tk_core.seq);
1394 
1395 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1396 
1397 	} while (read_seqcount_retry(&tk_core.seq, seq));
1398 
1399 	return ret;
1400 }
1401 
1402 /**
1403  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1404  */
1405 u64 timekeeping_max_deferment(void)
1406 {
1407 	struct timekeeper *tk = &tk_core.timekeeper;
1408 	unsigned long seq;
1409 	u64 ret;
1410 
1411 	do {
1412 		seq = read_seqcount_begin(&tk_core.seq);
1413 
1414 		ret = tk->tkr_mono.clock->max_idle_ns;
1415 
1416 	} while (read_seqcount_retry(&tk_core.seq, seq));
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  * read_persistent_clock -  Return time from the persistent clock.
1423  *
1424  * Weak dummy function for arches that do not yet support it.
1425  * Reads the time from the battery backed persistent clock.
1426  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1427  *
1428  *  XXX - Do be sure to remove it once all arches implement it.
1429  */
1430 void __weak read_persistent_clock(struct timespec *ts)
1431 {
1432 	ts->tv_sec = 0;
1433 	ts->tv_nsec = 0;
1434 }
1435 
1436 void __weak read_persistent_clock64(struct timespec64 *ts64)
1437 {
1438 	struct timespec ts;
1439 
1440 	read_persistent_clock(&ts);
1441 	*ts64 = timespec_to_timespec64(ts);
1442 }
1443 
1444 /**
1445  * read_boot_clock64 -  Return time of the system start.
1446  *
1447  * Weak dummy function for arches that do not yet support it.
1448  * Function to read the exact time the system has been started.
1449  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1450  *
1451  *  XXX - Do be sure to remove it once all arches implement it.
1452  */
1453 void __weak read_boot_clock64(struct timespec64 *ts)
1454 {
1455 	ts->tv_sec = 0;
1456 	ts->tv_nsec = 0;
1457 }
1458 
1459 /* Flag for if timekeeping_resume() has injected sleeptime */
1460 static bool sleeptime_injected;
1461 
1462 /* Flag for if there is a persistent clock on this platform */
1463 static bool persistent_clock_exists;
1464 
1465 /*
1466  * timekeeping_init - Initializes the clocksource and common timekeeping values
1467  */
1468 void __init timekeeping_init(void)
1469 {
1470 	struct timekeeper *tk = &tk_core.timekeeper;
1471 	struct clocksource *clock;
1472 	unsigned long flags;
1473 	struct timespec64 now, boot, tmp;
1474 
1475 	read_persistent_clock64(&now);
1476 	if (!timespec64_valid_strict(&now)) {
1477 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1478 			"         Check your CMOS/BIOS settings.\n");
1479 		now.tv_sec = 0;
1480 		now.tv_nsec = 0;
1481 	} else if (now.tv_sec || now.tv_nsec)
1482 		persistent_clock_exists = true;
1483 
1484 	read_boot_clock64(&boot);
1485 	if (!timespec64_valid_strict(&boot)) {
1486 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1487 			"         Check your CMOS/BIOS settings.\n");
1488 		boot.tv_sec = 0;
1489 		boot.tv_nsec = 0;
1490 	}
1491 
1492 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1493 	write_seqcount_begin(&tk_core.seq);
1494 	ntp_init();
1495 
1496 	clock = clocksource_default_clock();
1497 	if (clock->enable)
1498 		clock->enable(clock);
1499 	tk_setup_internals(tk, clock);
1500 
1501 	tk_set_xtime(tk, &now);
1502 	tk->raw_time.tv_sec = 0;
1503 	tk->raw_time.tv_nsec = 0;
1504 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1505 		boot = tk_xtime(tk);
1506 
1507 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1508 	tk_set_wall_to_mono(tk, tmp);
1509 
1510 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1511 
1512 	write_seqcount_end(&tk_core.seq);
1513 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1514 }
1515 
1516 /* time in seconds when suspend began for persistent clock */
1517 static struct timespec64 timekeeping_suspend_time;
1518 
1519 /**
1520  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1521  * @delta: pointer to a timespec delta value
1522  *
1523  * Takes a timespec offset measuring a suspend interval and properly
1524  * adds the sleep offset to the timekeeping variables.
1525  */
1526 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1527 					   struct timespec64 *delta)
1528 {
1529 	if (!timespec64_valid_strict(delta)) {
1530 		printk_deferred(KERN_WARNING
1531 				"__timekeeping_inject_sleeptime: Invalid "
1532 				"sleep delta value!\n");
1533 		return;
1534 	}
1535 	tk_xtime_add(tk, delta);
1536 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1537 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1538 	tk_debug_account_sleep_time(delta);
1539 }
1540 
1541 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1542 /**
1543  * We have three kinds of time sources to use for sleep time
1544  * injection, the preference order is:
1545  * 1) non-stop clocksource
1546  * 2) persistent clock (ie: RTC accessible when irqs are off)
1547  * 3) RTC
1548  *
1549  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1550  * If system has neither 1) nor 2), 3) will be used finally.
1551  *
1552  *
1553  * If timekeeping has injected sleeptime via either 1) or 2),
1554  * 3) becomes needless, so in this case we don't need to call
1555  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1556  * means.
1557  */
1558 bool timekeeping_rtc_skipresume(void)
1559 {
1560 	return sleeptime_injected;
1561 }
1562 
1563 /**
1564  * 1) can be determined whether to use or not only when doing
1565  * timekeeping_resume() which is invoked after rtc_suspend(),
1566  * so we can't skip rtc_suspend() surely if system has 1).
1567  *
1568  * But if system has 2), 2) will definitely be used, so in this
1569  * case we don't need to call rtc_suspend(), and this is what
1570  * timekeeping_rtc_skipsuspend() means.
1571  */
1572 bool timekeeping_rtc_skipsuspend(void)
1573 {
1574 	return persistent_clock_exists;
1575 }
1576 
1577 /**
1578  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1579  * @delta: pointer to a timespec64 delta value
1580  *
1581  * This hook is for architectures that cannot support read_persistent_clock64
1582  * because their RTC/persistent clock is only accessible when irqs are enabled.
1583  * and also don't have an effective nonstop clocksource.
1584  *
1585  * This function should only be called by rtc_resume(), and allows
1586  * a suspend offset to be injected into the timekeeping values.
1587  */
1588 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1589 {
1590 	struct timekeeper *tk = &tk_core.timekeeper;
1591 	unsigned long flags;
1592 
1593 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1594 	write_seqcount_begin(&tk_core.seq);
1595 
1596 	timekeeping_forward_now(tk);
1597 
1598 	__timekeeping_inject_sleeptime(tk, delta);
1599 
1600 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1601 
1602 	write_seqcount_end(&tk_core.seq);
1603 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1604 
1605 	/* signal hrtimers about time change */
1606 	clock_was_set();
1607 }
1608 #endif
1609 
1610 /**
1611  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1612  */
1613 void timekeeping_resume(void)
1614 {
1615 	struct timekeeper *tk = &tk_core.timekeeper;
1616 	struct clocksource *clock = tk->tkr_mono.clock;
1617 	unsigned long flags;
1618 	struct timespec64 ts_new, ts_delta;
1619 	cycle_t cycle_now, cycle_delta;
1620 
1621 	sleeptime_injected = false;
1622 	read_persistent_clock64(&ts_new);
1623 
1624 	clockevents_resume();
1625 	clocksource_resume();
1626 
1627 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1628 	write_seqcount_begin(&tk_core.seq);
1629 
1630 	/*
1631 	 * After system resumes, we need to calculate the suspended time and
1632 	 * compensate it for the OS time. There are 3 sources that could be
1633 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1634 	 * device.
1635 	 *
1636 	 * One specific platform may have 1 or 2 or all of them, and the
1637 	 * preference will be:
1638 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1639 	 * The less preferred source will only be tried if there is no better
1640 	 * usable source. The rtc part is handled separately in rtc core code.
1641 	 */
1642 	cycle_now = tk->tkr_mono.read(clock);
1643 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1644 		cycle_now > tk->tkr_mono.cycle_last) {
1645 		u64 num, max = ULLONG_MAX;
1646 		u32 mult = clock->mult;
1647 		u32 shift = clock->shift;
1648 		s64 nsec = 0;
1649 
1650 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1651 						tk->tkr_mono.mask);
1652 
1653 		/*
1654 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1655 		 * suspended time is too long. In that case we need do the
1656 		 * 64 bits math carefully
1657 		 */
1658 		do_div(max, mult);
1659 		if (cycle_delta > max) {
1660 			num = div64_u64(cycle_delta, max);
1661 			nsec = (((u64) max * mult) >> shift) * num;
1662 			cycle_delta -= num * max;
1663 		}
1664 		nsec += ((u64) cycle_delta * mult) >> shift;
1665 
1666 		ts_delta = ns_to_timespec64(nsec);
1667 		sleeptime_injected = true;
1668 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1669 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1670 		sleeptime_injected = true;
1671 	}
1672 
1673 	if (sleeptime_injected)
1674 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1675 
1676 	/* Re-base the last cycle value */
1677 	tk->tkr_mono.cycle_last = cycle_now;
1678 	tk->tkr_raw.cycle_last  = cycle_now;
1679 
1680 	tk->ntp_error = 0;
1681 	timekeeping_suspended = 0;
1682 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1683 	write_seqcount_end(&tk_core.seq);
1684 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1685 
1686 	touch_softlockup_watchdog();
1687 
1688 	tick_resume();
1689 	hrtimers_resume();
1690 }
1691 
1692 int timekeeping_suspend(void)
1693 {
1694 	struct timekeeper *tk = &tk_core.timekeeper;
1695 	unsigned long flags;
1696 	struct timespec64		delta, delta_delta;
1697 	static struct timespec64	old_delta;
1698 
1699 	read_persistent_clock64(&timekeeping_suspend_time);
1700 
1701 	/*
1702 	 * On some systems the persistent_clock can not be detected at
1703 	 * timekeeping_init by its return value, so if we see a valid
1704 	 * value returned, update the persistent_clock_exists flag.
1705 	 */
1706 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1707 		persistent_clock_exists = true;
1708 
1709 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1710 	write_seqcount_begin(&tk_core.seq);
1711 	timekeeping_forward_now(tk);
1712 	timekeeping_suspended = 1;
1713 
1714 	if (persistent_clock_exists) {
1715 		/*
1716 		 * To avoid drift caused by repeated suspend/resumes,
1717 		 * which each can add ~1 second drift error,
1718 		 * try to compensate so the difference in system time
1719 		 * and persistent_clock time stays close to constant.
1720 		 */
1721 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1722 		delta_delta = timespec64_sub(delta, old_delta);
1723 		if (abs(delta_delta.tv_sec) >= 2) {
1724 			/*
1725 			 * if delta_delta is too large, assume time correction
1726 			 * has occurred and set old_delta to the current delta.
1727 			 */
1728 			old_delta = delta;
1729 		} else {
1730 			/* Otherwise try to adjust old_system to compensate */
1731 			timekeeping_suspend_time =
1732 				timespec64_add(timekeeping_suspend_time, delta_delta);
1733 		}
1734 	}
1735 
1736 	timekeeping_update(tk, TK_MIRROR);
1737 	halt_fast_timekeeper(tk);
1738 	write_seqcount_end(&tk_core.seq);
1739 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1740 
1741 	tick_suspend();
1742 	clocksource_suspend();
1743 	clockevents_suspend();
1744 
1745 	return 0;
1746 }
1747 
1748 /* sysfs resume/suspend bits for timekeeping */
1749 static struct syscore_ops timekeeping_syscore_ops = {
1750 	.resume		= timekeeping_resume,
1751 	.suspend	= timekeeping_suspend,
1752 };
1753 
1754 static int __init timekeeping_init_ops(void)
1755 {
1756 	register_syscore_ops(&timekeeping_syscore_ops);
1757 	return 0;
1758 }
1759 device_initcall(timekeeping_init_ops);
1760 
1761 /*
1762  * Apply a multiplier adjustment to the timekeeper
1763  */
1764 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1765 							 s64 offset,
1766 							 bool negative,
1767 							 int adj_scale)
1768 {
1769 	s64 interval = tk->cycle_interval;
1770 	s32 mult_adj = 1;
1771 
1772 	if (negative) {
1773 		mult_adj = -mult_adj;
1774 		interval = -interval;
1775 		offset  = -offset;
1776 	}
1777 	mult_adj <<= adj_scale;
1778 	interval <<= adj_scale;
1779 	offset <<= adj_scale;
1780 
1781 	/*
1782 	 * So the following can be confusing.
1783 	 *
1784 	 * To keep things simple, lets assume mult_adj == 1 for now.
1785 	 *
1786 	 * When mult_adj != 1, remember that the interval and offset values
1787 	 * have been appropriately scaled so the math is the same.
1788 	 *
1789 	 * The basic idea here is that we're increasing the multiplier
1790 	 * by one, this causes the xtime_interval to be incremented by
1791 	 * one cycle_interval. This is because:
1792 	 *	xtime_interval = cycle_interval * mult
1793 	 * So if mult is being incremented by one:
1794 	 *	xtime_interval = cycle_interval * (mult + 1)
1795 	 * Its the same as:
1796 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1797 	 * Which can be shortened to:
1798 	 *	xtime_interval += cycle_interval
1799 	 *
1800 	 * So offset stores the non-accumulated cycles. Thus the current
1801 	 * time (in shifted nanoseconds) is:
1802 	 *	now = (offset * adj) + xtime_nsec
1803 	 * Now, even though we're adjusting the clock frequency, we have
1804 	 * to keep time consistent. In other words, we can't jump back
1805 	 * in time, and we also want to avoid jumping forward in time.
1806 	 *
1807 	 * So given the same offset value, we need the time to be the same
1808 	 * both before and after the freq adjustment.
1809 	 *	now = (offset * adj_1) + xtime_nsec_1
1810 	 *	now = (offset * adj_2) + xtime_nsec_2
1811 	 * So:
1812 	 *	(offset * adj_1) + xtime_nsec_1 =
1813 	 *		(offset * adj_2) + xtime_nsec_2
1814 	 * And we know:
1815 	 *	adj_2 = adj_1 + 1
1816 	 * So:
1817 	 *	(offset * adj_1) + xtime_nsec_1 =
1818 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1819 	 *	(offset * adj_1) + xtime_nsec_1 =
1820 	 *		(offset * adj_1) + offset + xtime_nsec_2
1821 	 * Canceling the sides:
1822 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1823 	 * Which gives us:
1824 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1825 	 * Which simplfies to:
1826 	 *	xtime_nsec -= offset
1827 	 *
1828 	 * XXX - TODO: Doc ntp_error calculation.
1829 	 */
1830 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1831 		/* NTP adjustment caused clocksource mult overflow */
1832 		WARN_ON_ONCE(1);
1833 		return;
1834 	}
1835 
1836 	tk->tkr_mono.mult += mult_adj;
1837 	tk->xtime_interval += interval;
1838 	tk->tkr_mono.xtime_nsec -= offset;
1839 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1840 }
1841 
1842 /*
1843  * Calculate the multiplier adjustment needed to match the frequency
1844  * specified by NTP
1845  */
1846 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1847 							s64 offset)
1848 {
1849 	s64 interval = tk->cycle_interval;
1850 	s64 xinterval = tk->xtime_interval;
1851 	u32 base = tk->tkr_mono.clock->mult;
1852 	u32 max = tk->tkr_mono.clock->maxadj;
1853 	u32 cur_adj = tk->tkr_mono.mult;
1854 	s64 tick_error;
1855 	bool negative;
1856 	u32 adj_scale;
1857 
1858 	/* Remove any current error adj from freq calculation */
1859 	if (tk->ntp_err_mult)
1860 		xinterval -= tk->cycle_interval;
1861 
1862 	tk->ntp_tick = ntp_tick_length();
1863 
1864 	/* Calculate current error per tick */
1865 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1866 	tick_error -= (xinterval + tk->xtime_remainder);
1867 
1868 	/* Don't worry about correcting it if its small */
1869 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1870 		return;
1871 
1872 	/* preserve the direction of correction */
1873 	negative = (tick_error < 0);
1874 
1875 	/* If any adjustment would pass the max, just return */
1876 	if (negative && (cur_adj - 1) <= (base - max))
1877 		return;
1878 	if (!negative && (cur_adj + 1) >= (base + max))
1879 		return;
1880 	/*
1881 	 * Sort out the magnitude of the correction, but
1882 	 * avoid making so large a correction that we go
1883 	 * over the max adjustment.
1884 	 */
1885 	adj_scale = 0;
1886 	tick_error = abs(tick_error);
1887 	while (tick_error > interval) {
1888 		u32 adj = 1 << (adj_scale + 1);
1889 
1890 		/* Check if adjustment gets us within 1 unit from the max */
1891 		if (negative && (cur_adj - adj) <= (base - max))
1892 			break;
1893 		if (!negative && (cur_adj + adj) >= (base + max))
1894 			break;
1895 
1896 		adj_scale++;
1897 		tick_error >>= 1;
1898 	}
1899 
1900 	/* scale the corrections */
1901 	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1902 }
1903 
1904 /*
1905  * Adjust the timekeeper's multiplier to the correct frequency
1906  * and also to reduce the accumulated error value.
1907  */
1908 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1909 {
1910 	/* Correct for the current frequency error */
1911 	timekeeping_freqadjust(tk, offset);
1912 
1913 	/* Next make a small adjustment to fix any cumulative error */
1914 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1915 		tk->ntp_err_mult = 1;
1916 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1917 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1918 		/* Undo any existing error adjustment */
1919 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1920 		tk->ntp_err_mult = 0;
1921 	}
1922 
1923 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1924 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1925 			> tk->tkr_mono.clock->maxadj))) {
1926 		printk_once(KERN_WARNING
1927 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1928 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1929 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1930 	}
1931 
1932 	/*
1933 	 * It may be possible that when we entered this function, xtime_nsec
1934 	 * was very small.  Further, if we're slightly speeding the clocksource
1935 	 * in the code above, its possible the required corrective factor to
1936 	 * xtime_nsec could cause it to underflow.
1937 	 *
1938 	 * Now, since we already accumulated the second, cannot simply roll
1939 	 * the accumulated second back, since the NTP subsystem has been
1940 	 * notified via second_overflow. So instead we push xtime_nsec forward
1941 	 * by the amount we underflowed, and add that amount into the error.
1942 	 *
1943 	 * We'll correct this error next time through this function, when
1944 	 * xtime_nsec is not as small.
1945 	 */
1946 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1947 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1948 		tk->tkr_mono.xtime_nsec = 0;
1949 		tk->ntp_error += neg << tk->ntp_error_shift;
1950 	}
1951 }
1952 
1953 /**
1954  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955  *
1956  * Helper function that accumulates the nsecs greater than a second
1957  * from the xtime_nsec field to the xtime_secs field.
1958  * It also calls into the NTP code to handle leapsecond processing.
1959  *
1960  */
1961 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962 {
1963 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964 	unsigned int clock_set = 0;
1965 
1966 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967 		int leap;
1968 
1969 		tk->tkr_mono.xtime_nsec -= nsecps;
1970 		tk->xtime_sec++;
1971 
1972 		/* Figure out if its a leap sec and apply if needed */
1973 		leap = second_overflow(tk->xtime_sec);
1974 		if (unlikely(leap)) {
1975 			struct timespec64 ts;
1976 
1977 			tk->xtime_sec += leap;
1978 
1979 			ts.tv_sec = leap;
1980 			ts.tv_nsec = 0;
1981 			tk_set_wall_to_mono(tk,
1982 				timespec64_sub(tk->wall_to_monotonic, ts));
1983 
1984 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1985 
1986 			clock_set = TK_CLOCK_WAS_SET;
1987 		}
1988 	}
1989 	return clock_set;
1990 }
1991 
1992 /**
1993  * logarithmic_accumulation - shifted accumulation of cycles
1994  *
1995  * This functions accumulates a shifted interval of cycles into
1996  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1997  * loop.
1998  *
1999  * Returns the unconsumed cycles.
2000  */
2001 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2002 						u32 shift,
2003 						unsigned int *clock_set)
2004 {
2005 	cycle_t interval = tk->cycle_interval << shift;
2006 	u64 raw_nsecs;
2007 
2008 	/* If the offset is smaller than a shifted interval, do nothing */
2009 	if (offset < interval)
2010 		return offset;
2011 
2012 	/* Accumulate one shifted interval */
2013 	offset -= interval;
2014 	tk->tkr_mono.cycle_last += interval;
2015 	tk->tkr_raw.cycle_last  += interval;
2016 
2017 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2018 	*clock_set |= accumulate_nsecs_to_secs(tk);
2019 
2020 	/* Accumulate raw time */
2021 	raw_nsecs = (u64)tk->raw_interval << shift;
2022 	raw_nsecs += tk->raw_time.tv_nsec;
2023 	if (raw_nsecs >= NSEC_PER_SEC) {
2024 		u64 raw_secs = raw_nsecs;
2025 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2026 		tk->raw_time.tv_sec += raw_secs;
2027 	}
2028 	tk->raw_time.tv_nsec = raw_nsecs;
2029 
2030 	/* Accumulate error between NTP and clock interval */
2031 	tk->ntp_error += tk->ntp_tick << shift;
2032 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2033 						(tk->ntp_error_shift + shift);
2034 
2035 	return offset;
2036 }
2037 
2038 /**
2039  * update_wall_time - Uses the current clocksource to increment the wall time
2040  *
2041  */
2042 void update_wall_time(void)
2043 {
2044 	struct timekeeper *real_tk = &tk_core.timekeeper;
2045 	struct timekeeper *tk = &shadow_timekeeper;
2046 	cycle_t offset;
2047 	int shift = 0, maxshift;
2048 	unsigned int clock_set = 0;
2049 	unsigned long flags;
2050 
2051 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2052 
2053 	/* Make sure we're fully resumed: */
2054 	if (unlikely(timekeeping_suspended))
2055 		goto out;
2056 
2057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2058 	offset = real_tk->cycle_interval;
2059 #else
2060 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2061 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2062 #endif
2063 
2064 	/* Check if there's really nothing to do */
2065 	if (offset < real_tk->cycle_interval)
2066 		goto out;
2067 
2068 	/* Do some additional sanity checking */
2069 	timekeeping_check_update(real_tk, offset);
2070 
2071 	/*
2072 	 * With NO_HZ we may have to accumulate many cycle_intervals
2073 	 * (think "ticks") worth of time at once. To do this efficiently,
2074 	 * we calculate the largest doubling multiple of cycle_intervals
2075 	 * that is smaller than the offset.  We then accumulate that
2076 	 * chunk in one go, and then try to consume the next smaller
2077 	 * doubled multiple.
2078 	 */
2079 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2080 	shift = max(0, shift);
2081 	/* Bound shift to one less than what overflows tick_length */
2082 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2083 	shift = min(shift, maxshift);
2084 	while (offset >= tk->cycle_interval) {
2085 		offset = logarithmic_accumulation(tk, offset, shift,
2086 							&clock_set);
2087 		if (offset < tk->cycle_interval<<shift)
2088 			shift--;
2089 	}
2090 
2091 	/* correct the clock when NTP error is too big */
2092 	timekeeping_adjust(tk, offset);
2093 
2094 	/*
2095 	 * XXX This can be killed once everyone converts
2096 	 * to the new update_vsyscall.
2097 	 */
2098 	old_vsyscall_fixup(tk);
2099 
2100 	/*
2101 	 * Finally, make sure that after the rounding
2102 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2103 	 */
2104 	clock_set |= accumulate_nsecs_to_secs(tk);
2105 
2106 	write_seqcount_begin(&tk_core.seq);
2107 	/*
2108 	 * Update the real timekeeper.
2109 	 *
2110 	 * We could avoid this memcpy by switching pointers, but that
2111 	 * requires changes to all other timekeeper usage sites as
2112 	 * well, i.e. move the timekeeper pointer getter into the
2113 	 * spinlocked/seqcount protected sections. And we trade this
2114 	 * memcpy under the tk_core.seq against one before we start
2115 	 * updating.
2116 	 */
2117 	timekeeping_update(tk, clock_set);
2118 	memcpy(real_tk, tk, sizeof(*tk));
2119 	/* The memcpy must come last. Do not put anything here! */
2120 	write_seqcount_end(&tk_core.seq);
2121 out:
2122 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2123 	if (clock_set)
2124 		/* Have to call _delayed version, since in irq context*/
2125 		clock_was_set_delayed();
2126 }
2127 
2128 /**
2129  * getboottime64 - Return the real time of system boot.
2130  * @ts:		pointer to the timespec64 to be set
2131  *
2132  * Returns the wall-time of boot in a timespec64.
2133  *
2134  * This is based on the wall_to_monotonic offset and the total suspend
2135  * time. Calls to settimeofday will affect the value returned (which
2136  * basically means that however wrong your real time clock is at boot time,
2137  * you get the right time here).
2138  */
2139 void getboottime64(struct timespec64 *ts)
2140 {
2141 	struct timekeeper *tk = &tk_core.timekeeper;
2142 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2143 
2144 	*ts = ktime_to_timespec64(t);
2145 }
2146 EXPORT_SYMBOL_GPL(getboottime64);
2147 
2148 unsigned long get_seconds(void)
2149 {
2150 	struct timekeeper *tk = &tk_core.timekeeper;
2151 
2152 	return tk->xtime_sec;
2153 }
2154 EXPORT_SYMBOL(get_seconds);
2155 
2156 struct timespec __current_kernel_time(void)
2157 {
2158 	struct timekeeper *tk = &tk_core.timekeeper;
2159 
2160 	return timespec64_to_timespec(tk_xtime(tk));
2161 }
2162 
2163 struct timespec64 current_kernel_time64(void)
2164 {
2165 	struct timekeeper *tk = &tk_core.timekeeper;
2166 	struct timespec64 now;
2167 	unsigned long seq;
2168 
2169 	do {
2170 		seq = read_seqcount_begin(&tk_core.seq);
2171 
2172 		now = tk_xtime(tk);
2173 	} while (read_seqcount_retry(&tk_core.seq, seq));
2174 
2175 	return now;
2176 }
2177 EXPORT_SYMBOL(current_kernel_time64);
2178 
2179 struct timespec64 get_monotonic_coarse64(void)
2180 {
2181 	struct timekeeper *tk = &tk_core.timekeeper;
2182 	struct timespec64 now, mono;
2183 	unsigned long seq;
2184 
2185 	do {
2186 		seq = read_seqcount_begin(&tk_core.seq);
2187 
2188 		now = tk_xtime(tk);
2189 		mono = tk->wall_to_monotonic;
2190 	} while (read_seqcount_retry(&tk_core.seq, seq));
2191 
2192 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2193 				now.tv_nsec + mono.tv_nsec);
2194 
2195 	return now;
2196 }
2197 EXPORT_SYMBOL(get_monotonic_coarse64);
2198 
2199 /*
2200  * Must hold jiffies_lock
2201  */
2202 void do_timer(unsigned long ticks)
2203 {
2204 	jiffies_64 += ticks;
2205 	calc_global_load(ticks);
2206 }
2207 
2208 /**
2209  * ktime_get_update_offsets_now - hrtimer helper
2210  * @cwsseq:	pointer to check and store the clock was set sequence number
2211  * @offs_real:	pointer to storage for monotonic -> realtime offset
2212  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2213  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2214  *
2215  * Returns current monotonic time and updates the offsets if the
2216  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2217  * different.
2218  *
2219  * Called from hrtimer_interrupt() or retrigger_next_event()
2220  */
2221 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2222 				     ktime_t *offs_boot, ktime_t *offs_tai)
2223 {
2224 	struct timekeeper *tk = &tk_core.timekeeper;
2225 	unsigned int seq;
2226 	ktime_t base;
2227 	u64 nsecs;
2228 
2229 	do {
2230 		seq = read_seqcount_begin(&tk_core.seq);
2231 
2232 		base = tk->tkr_mono.base;
2233 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2234 		base = ktime_add_ns(base, nsecs);
2235 
2236 		if (*cwsseq != tk->clock_was_set_seq) {
2237 			*cwsseq = tk->clock_was_set_seq;
2238 			*offs_real = tk->offs_real;
2239 			*offs_boot = tk->offs_boot;
2240 			*offs_tai = tk->offs_tai;
2241 		}
2242 
2243 		/* Handle leapsecond insertion adjustments */
2244 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2245 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2246 
2247 	} while (read_seqcount_retry(&tk_core.seq, seq));
2248 
2249 	return base;
2250 }
2251 
2252 /**
2253  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2254  */
2255 int do_adjtimex(struct timex *txc)
2256 {
2257 	struct timekeeper *tk = &tk_core.timekeeper;
2258 	unsigned long flags;
2259 	struct timespec64 ts;
2260 	s32 orig_tai, tai;
2261 	int ret;
2262 
2263 	/* Validate the data before disabling interrupts */
2264 	ret = ntp_validate_timex(txc);
2265 	if (ret)
2266 		return ret;
2267 
2268 	if (txc->modes & ADJ_SETOFFSET) {
2269 		struct timespec delta;
2270 		delta.tv_sec  = txc->time.tv_sec;
2271 		delta.tv_nsec = txc->time.tv_usec;
2272 		if (!(txc->modes & ADJ_NANO))
2273 			delta.tv_nsec *= 1000;
2274 		ret = timekeeping_inject_offset(&delta);
2275 		if (ret)
2276 			return ret;
2277 	}
2278 
2279 	getnstimeofday64(&ts);
2280 
2281 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2282 	write_seqcount_begin(&tk_core.seq);
2283 
2284 	orig_tai = tai = tk->tai_offset;
2285 	ret = __do_adjtimex(txc, &ts, &tai);
2286 
2287 	if (tai != orig_tai) {
2288 		__timekeeping_set_tai_offset(tk, tai);
2289 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2290 	}
2291 	tk_update_leap_state(tk);
2292 
2293 	write_seqcount_end(&tk_core.seq);
2294 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2295 
2296 	if (tai != orig_tai)
2297 		clock_was_set();
2298 
2299 	ntp_notify_cmos_timer();
2300 
2301 	return ret;
2302 }
2303 
2304 #ifdef CONFIG_NTP_PPS
2305 /**
2306  * hardpps() - Accessor function to NTP __hardpps function
2307  */
2308 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2309 {
2310 	unsigned long flags;
2311 
2312 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2313 	write_seqcount_begin(&tk_core.seq);
2314 
2315 	__hardpps(phase_ts, raw_ts);
2316 
2317 	write_seqcount_end(&tk_core.seq);
2318 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2319 }
2320 EXPORT_SYMBOL(hardpps);
2321 #endif
2322 
2323 /**
2324  * xtime_update() - advances the timekeeping infrastructure
2325  * @ticks:	number of ticks, that have elapsed since the last call.
2326  *
2327  * Must be called with interrupts disabled.
2328  */
2329 void xtime_update(unsigned long ticks)
2330 {
2331 	write_seqlock(&jiffies_lock);
2332 	do_timer(ticks);
2333 	write_sequnlock(&jiffies_lock);
2334 	update_wall_time();
2335 }
2336